| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_TXB_COMMON_H_ |
| #define AOM_AV1_COMMON_TXB_COMMON_H_ |
| |
| #include "av1/common/av1_common_int.h" |
| |
| extern const int16_t av1_eob_group_start[12]; |
| extern const int16_t av1_eob_offset_bits[12]; |
| |
| extern const int8_t *av1_nz_map_ctx_offset[TX_SIZES_ALL]; |
| |
| typedef struct txb_ctx { |
| int txb_skip_ctx; |
| int dc_sign_ctx; |
| } TXB_CTX; |
| |
| static const TX_CLASS tx_type_to_class[TX_TYPES] = { |
| TX_CLASS_2D, // DCT_DCT |
| TX_CLASS_2D, // ADST_DCT |
| TX_CLASS_2D, // DCT_ADST |
| TX_CLASS_2D, // ADST_ADST |
| TX_CLASS_2D, // FLIPADST_DCT |
| TX_CLASS_2D, // DCT_FLIPADST |
| TX_CLASS_2D, // FLIPADST_FLIPADST |
| TX_CLASS_2D, // ADST_FLIPADST |
| TX_CLASS_2D, // FLIPADST_ADST |
| TX_CLASS_2D, // IDTX |
| TX_CLASS_VERT, // V_DCT |
| TX_CLASS_HORIZ, // H_DCT |
| TX_CLASS_VERT, // V_ADST |
| TX_CLASS_HORIZ, // H_ADST |
| TX_CLASS_VERT, // V_FLIPADST |
| TX_CLASS_HORIZ, // H_FLIPADST |
| }; |
| |
| static INLINE int get_txb_bwl(TX_SIZE tx_size) { |
| tx_size = av1_get_adjusted_tx_size(tx_size); |
| return tx_size_wide_log2[tx_size]; |
| } |
| |
| static INLINE int get_txb_wide(TX_SIZE tx_size) { |
| tx_size = av1_get_adjusted_tx_size(tx_size); |
| return tx_size_wide[tx_size]; |
| } |
| |
| static INLINE int get_txb_high(TX_SIZE tx_size) { |
| tx_size = av1_get_adjusted_tx_size(tx_size); |
| return tx_size_high[tx_size]; |
| } |
| |
| static INLINE uint8_t *set_levels(uint8_t *const levels_buf, const int width) { |
| return levels_buf + TX_PAD_TOP * (width + TX_PAD_HOR); |
| } |
| |
| static INLINE int get_padded_idx(const int idx, const int bwl) { |
| return idx + ((idx >> bwl) << TX_PAD_HOR_LOG2); |
| } |
| |
| // This function sets the signs buffer for coefficient coding. |
| static INLINE int8_t *set_signs(int8_t *const signs_buf, const int width) { |
| return signs_buf + TX_PAD_TOP * (width + TX_PAD_HOR); |
| } |
| |
| // This function returns the coefficient index after left padding. |
| static INLINE int get_padded_idx_left(const int idx, const int bwl) { |
| return TX_PAD_LEFT + idx + ((idx >> bwl) << TX_PAD_HOR_LOG2); |
| } |
| |
| /* |
| This function returns the base range coefficient coding context index |
| for forward skip residual coding for a given coefficient index. |
| It assumes padding from left and sums left and above level |
| samples: levels[pos - 1] + levels[pos - stride] and adds an |
| appropriate offset depending on row and column. |
| */ |
| static AOM_FORCE_INLINE int get_br_ctx_skip(const uint8_t *const levels, |
| const int c, const int bwl) { |
| const int row = c >> bwl; |
| const int col = (c - (row << bwl)) + TX_PAD_LEFT; |
| const int stride = (1 << bwl) + TX_PAD_LEFT; |
| const int pos = row * stride + col; |
| int mag = levels[pos - 1]; |
| mag += levels[pos - stride]; |
| mag = AOMMIN(mag, 6); |
| if ((row < 2) && (col < (2 + TX_PAD_LEFT))) return mag; |
| return mag + 7; |
| } |
| |
| static INLINE int get_br_ctx_2d(const uint8_t *const levels, |
| const int c, // raster order |
| const int bwl) { |
| assert(c > 0); |
| const int row = c >> bwl; |
| const int col = c - (row << bwl); |
| const int stride = (1 << bwl) + TX_PAD_HOR; |
| const int pos = row * stride + col; |
| int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE) + |
| AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE) + |
| AOMMIN(levels[pos + 1 + stride], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| #if CONFIG_ATC_COEFCODING |
| return mag; |
| #else |
| //((row | col) < 2) is equivalent to ((row < 2) && (col < 2)) |
| if ((row | col) < 2) return mag + 7; |
| return mag + 14; |
| #endif // CONFIG_ATC_COEFCODING |
| } |
| |
| #if CONFIG_ATC_COEFCODING |
| // This function returns the low range context index for |
| // the low-frequency region for the EOB coefficient. |
| static AOM_FORCE_INLINE int get_br_ctx_lf_eob(const int c, // raster order |
| const TX_CLASS tx_class) { |
| if (tx_class == TX_CLASS_2D && c == 0) return 0; |
| return 7; |
| } |
| #else |
| static AOM_FORCE_INLINE int get_br_ctx_eob(const int c, // raster order |
| const int bwl, |
| const TX_CLASS tx_class) { |
| const int row = c >> bwl; |
| const int col = c - (row << bwl); |
| if (c == 0) return 0; |
| if ((tx_class == TX_CLASS_2D && row < 2 && col < 2) || |
| (tx_class == TX_CLASS_HORIZ && col == 0) || |
| (tx_class == TX_CLASS_VERT && row == 0)) |
| return 7; |
| return 14; |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| |
| #if CONFIG_ATC_COEFCODING |
| // This function returns the low range context index/increment for the |
| // coefficients residing in the low-frequency region for 2D transforms. |
| // Not used for the DC term. |
| static INLINE int get_br_lf_ctx_2d(const uint8_t *const levels, |
| const int c, // raster order |
| const int bwl) { |
| assert(c > 0); |
| const int row = c >> bwl; |
| const int col = c - (row << bwl); |
| const int stride = (1 << bwl) + TX_PAD_HOR; |
| const int pos = row * stride + col; |
| int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE) + |
| AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE) + |
| AOMMIN(levels[pos + 1 + stride], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| return mag + 7; |
| } |
| |
| // This function returns the low range context index/increment for the |
| // coefficients residing in the low-frequency region for 1D and 2D |
| // transforms and covers the 1D and 2D TX DC terms. |
| static AOM_FORCE_INLINE int get_br_lf_ctx(const uint8_t *const levels, |
| const int c, // raster order |
| const int bwl, |
| const TX_CLASS tx_class) { |
| const int row = c >> bwl; |
| const int col = c - (row << bwl); |
| const int stride = (1 << bwl) + TX_PAD_HOR; |
| const int pos = row * stride + col; |
| int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE); |
| mag += levels[pos + stride]; |
| switch (tx_class) { |
| case TX_CLASS_2D: |
| mag += AOMMIN(levels[pos + stride + 1], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| if (c == 0) return mag; |
| if ((row < 2) && (col < 2)) return mag + 7; |
| break; |
| case TX_CLASS_HORIZ: |
| mag += AOMMIN(levels[pos + 2], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| if (col == 0) return mag + 7; |
| break; |
| case TX_CLASS_VERT: |
| mag += AOMMIN(levels[pos + (stride << 1)], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| if (row == 0) return mag + 7; |
| break; |
| default: break; |
| } |
| return mag + 7; |
| } |
| |
| // This function returns the low range context index/increment for the |
| // coefficients residing in the higher-frequency default region |
| // for 1D and 2D transforms. |
| static AOM_FORCE_INLINE int get_br_ctx(const uint8_t *const levels, |
| const int c, // raster order |
| const int bwl, const TX_CLASS tx_class) { |
| const int row = c >> bwl; |
| const int col = c - (row << bwl); |
| const int stride = (1 << bwl) + TX_PAD_HOR; |
| const int pos = row * stride + col; |
| int mag = levels[pos + 1]; |
| mag += levels[pos + stride]; |
| if (tx_class == TX_CLASS_2D) { |
| mag += levels[pos + stride + 1]; |
| } else if (tx_class == TX_CLASS_VERT) { |
| mag += levels[pos + (stride << 1)]; |
| } else { |
| mag += levels[pos + 2]; |
| } |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| return mag; |
| } |
| #else |
| static AOM_FORCE_INLINE int get_br_ctx(const uint8_t *const levels, |
| const int c, // raster order |
| const int bwl, const TX_CLASS tx_class) { |
| const int row = c >> bwl; |
| const int col = c - (row << bwl); |
| const int stride = (1 << bwl) + TX_PAD_HOR; |
| const int pos = row * stride + col; |
| int mag = levels[pos + 1]; |
| mag += levels[pos + stride]; |
| switch (tx_class) { |
| case TX_CLASS_2D: |
| mag += levels[pos + stride + 1]; |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| if (c == 0) return mag; |
| if ((row < 2) && (col < 2)) return mag + 7; |
| break; |
| case TX_CLASS_HORIZ: |
| mag += levels[pos + 2]; |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| if (c == 0) return mag; |
| if (col == 0) return mag + 7; |
| break; |
| case TX_CLASS_VERT: |
| mag += levels[pos + (stride << 1)]; |
| mag = AOMMIN((mag + 1) >> 1, 6); |
| if (c == 0) return mag; |
| if (row == 0) return mag + 7; |
| break; |
| default: break; |
| } |
| |
| return mag + 14; |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| |
| #if CONFIG_ATC_COEFCODING |
| static const uint8_t clip_max5[256] = { |
| 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 |
| }; |
| #endif // CONFIG_ATC_COEFCODING |
| |
| static const uint8_t clip_max3[256] = { |
| 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 |
| }; |
| |
| // This function returns the neighboring left + above levels with clipping. |
| static AOM_FORCE_INLINE int get_nz_mag_skip(const uint8_t *const levels, |
| const int bwl) { |
| int mag = clip_max3[levels[-1]]; // { 0, -1 } |
| mag += clip_max3[levels[-(1 << bwl) - TX_PAD_LEFT]]; // { -1, 0 } |
| return mag; |
| } |
| |
| /* |
| This helper function computes the sign context index for FSC residual |
| coding for a given coefficient index. Bottom, right and bottom-right |
| samples are used to derive the index. |
| */ |
| static AOM_FORCE_INLINE int get_sign_skip(const int8_t *const signs, |
| const uint8_t *const levels, |
| const int bwl) { |
| int signc = 0; |
| if (levels[1]) signc += signs[1]; // { 0, +1 } |
| if (levels[(1 << bwl) + TX_PAD_LEFT]) |
| signc += signs[(1 << bwl) + TX_PAD_LEFT]; // { +1, 0 } |
| if (levels[(1 << bwl) + TX_PAD_LEFT + 1]) |
| signc += signs[(1 << bwl) + TX_PAD_LEFT + 1]; // { +1, +1 } |
| if (signc > 2) return 5; |
| if (signc < -2) return 6; |
| if (signc > 0) return 1; |
| if (signc < 0) return 2; |
| return 0; |
| } |
| |
| // This function returns the sign context index for residual coding. |
| static INLINE int get_sign_ctx_skip(const int8_t *const signs, |
| const uint8_t *const levels, |
| const int coeff_idx, const int bwl) { |
| const int8_t *const signs_pt = signs + get_padded_idx(coeff_idx, bwl); |
| const uint8_t *const level_pt = levels + get_padded_idx_left(coeff_idx, bwl); |
| int sign_ctx = get_sign_skip(signs_pt, level_pt, bwl); |
| if (level_pt[0] > COEFF_BASE_RANGE && sign_ctx != 0) sign_ctx += 2; |
| return sign_ctx; |
| } |
| |
| #if CONFIG_ATC_COEFCODING |
| // This function returns the template sum of absolute values |
| // for coefficient coding for the low-frequency region. |
| static AOM_FORCE_INLINE int get_nz_mag_lf(const uint8_t *const levels, |
| const int bwl, |
| const TX_CLASS tx_class) { |
| int mag; |
| // Note: AOMMIN(level, 5) is useless for decoder since level < 5. |
| mag = clip_max5[levels[1]]; // { 0, 1 } |
| mag += clip_max5[levels[(1 << bwl) + TX_PAD_HOR]]; // { 1, 0 } |
| if (tx_class == TX_CLASS_2D) { |
| mag += clip_max5[levels[(1 << bwl) + TX_PAD_HOR + 1]]; // { 1, 1 } |
| mag += clip_max5[levels[2]]; // { 0, 2 } |
| mag += clip_max5[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 } |
| } else if (tx_class == TX_CLASS_VERT) { |
| mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 } |
| mag += clip_max3[levels[(3 << bwl) + (3 << TX_PAD_HOR_LOG2)]]; // { 3, 0 } |
| mag += clip_max3[levels[(4 << bwl) + (4 << TX_PAD_HOR_LOG2)]]; // { 4, 0 } |
| } else { |
| mag += clip_max3[levels[2]]; // { 0, 2 } |
| mag += clip_max3[levels[3]]; // { 0, 3 } |
| mag += clip_max3[levels[4]]; // { 0, 4 } |
| } |
| return mag; |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| |
| // This function returns the template sum of absolute values |
| // for coefficient coding for the higher-frequency default region. |
| static AOM_FORCE_INLINE int get_nz_mag(const uint8_t *const levels, |
| const int bwl, const TX_CLASS tx_class) { |
| int mag; |
| |
| // Note: AOMMIN(level, 3) is useless for decoder since level < 3. |
| mag = clip_max3[levels[1]]; // { 0, 1 } |
| mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR]]; // { 1, 0 } |
| |
| if (tx_class == TX_CLASS_2D) { |
| mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR + 1]]; // { 1, 1 } |
| mag += clip_max3[levels[2]]; // { 0, 2 } |
| mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 } |
| } else if (tx_class == TX_CLASS_VERT) { |
| mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 } |
| mag += clip_max3[levels[(3 << bwl) + (3 << TX_PAD_HOR_LOG2)]]; // { 3, 0 } |
| mag += clip_max3[levels[(4 << bwl) + (4 << TX_PAD_HOR_LOG2)]]; // { 4, 0 } |
| } else { |
| mag += clip_max3[levels[2]]; // { 0, 2 } |
| mag += clip_max3[levels[3]]; // { 0, 3 } |
| mag += clip_max3[levels[4]]; // { 0, 4 } |
| } |
| |
| return mag; |
| } |
| |
| #define NZ_MAP_CTX_0 SIG_COEF_CONTEXTS_2D |
| #define NZ_MAP_CTX_5 (NZ_MAP_CTX_0 + 5) |
| #define NZ_MAP_CTX_10 (NZ_MAP_CTX_0 + 10) |
| |
| static const int nz_map_ctx_offset_1d[32] = { |
| NZ_MAP_CTX_0, NZ_MAP_CTX_5, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, |
| NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, |
| NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, |
| NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, |
| NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, |
| NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, |
| NZ_MAP_CTX_10, NZ_MAP_CTX_10, |
| }; |
| |
| static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats_skip(const int stats, |
| const int coeff_idx, |
| const int bwl) { |
| const int ctx = AOMMIN(stats, 6); |
| const int row = (coeff_idx >> bwl); |
| const int col = (coeff_idx - (row << bwl)) + TX_PAD_LEFT; |
| if ((row < 2) && (col < (2 + TX_PAD_LEFT))) return ctx; |
| return ctx + 7; |
| } |
| |
| #if CONFIG_ATC_COEFCODING |
| // This function returns the base range context index/increment for the |
| // coefficients residing in the low-frequency region for 1D/2D transforms. |
| static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats_lf( |
| const int stats, |
| const int coeff_idx, // raster order |
| const int bwl, const TX_CLASS tx_class) { |
| int ctx = (stats + 1) >> 1; |
| switch (tx_class) { |
| case TX_CLASS_2D: { |
| const int row = coeff_idx >> bwl; |
| const int col = coeff_idx - (row << bwl); |
| if (coeff_idx == 0) { |
| ctx = AOMMIN(ctx, 8); |
| return ctx; |
| } |
| if (row + col < 2) { |
| ctx = AOMMIN(ctx, 6); |
| return ctx + 9; |
| } |
| ctx = AOMMIN(ctx, 4); |
| return ctx + 16; |
| } |
| case TX_CLASS_HORIZ: { |
| const int row = coeff_idx >> bwl; |
| const int col = coeff_idx - (row << bwl); |
| if (col == 0) { |
| ctx = AOMMIN(ctx, 6); |
| ctx += LF_SIG_COEF_CONTEXTS_2D; |
| } else { // col == 1 |
| ctx = AOMMIN(ctx, 4); |
| ctx += LF_SIG_COEF_CONTEXTS_2D + 7; |
| } |
| return ctx; |
| } |
| case TX_CLASS_VERT: { |
| const int row = coeff_idx >> bwl; |
| if (row == 0) { |
| ctx = AOMMIN(ctx, 6); |
| ctx += LF_SIG_COEF_CONTEXTS_2D; |
| } else { // row == 1 |
| ctx = AOMMIN(ctx, 4); |
| ctx += LF_SIG_COEF_CONTEXTS_2D + 7; |
| } |
| return ctx; |
| } |
| default: break; |
| } |
| return 0; |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| |
| // This function returns the base range context index/increment for the |
| // coefficients residing in the higher-frequency region for 1D/2D transforms. |
| static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats( |
| const int stats, |
| const int coeff_idx, // raster order |
| const int bwl, |
| #if !CONFIG_ATC_COEFCODING |
| const TX_SIZE tx_size, |
| #endif // !CONFIG_ATC_COEFCODING |
| const TX_CLASS tx_class) { |
| // tx_class == 0(TX_CLASS_2D) |
| if ((tx_class | coeff_idx) == 0) return 0; |
| int ctx = (stats + 1) >> 1; |
| ctx = AOMMIN(ctx, 4); |
| switch (tx_class) { |
| case TX_CLASS_2D: { |
| #if CONFIG_ATC_COEFCODING |
| const int row = coeff_idx >> bwl; |
| const int col = coeff_idx - (row << bwl); |
| if (row + col < 6) return ctx; |
| if (row + col < 8) return 5 + ctx; |
| return 10 + ctx; |
| #else |
| // This is the algorithm to generate av1_nz_map_ctx_offset[][] |
| // const int width = tx_size_wide[tx_size]; |
| // const int height = tx_size_high[tx_size]; |
| // if (width < height) { |
| // if (row < 2) return 11 + ctx; |
| // } else if (width > height) { |
| // if (col < 2) return 16 + ctx; |
| // } |
| // if (row + col < 2) return ctx + 1; |
| // if (row + col < 4) return 5 + ctx + 1; |
| // return 21 + ctx; |
| return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx]; |
| #endif // CONFIG_ATC_COEFCODING |
| } |
| case TX_CLASS_HORIZ: { |
| #if CONFIG_ATC_COEFCODING |
| return ctx + 15; |
| #else |
| const int row = coeff_idx >> bwl; |
| const int col = coeff_idx - (row << bwl); |
| return ctx + nz_map_ctx_offset_1d[col]; |
| #endif // CONFIG_ATC_COEFCODING |
| } |
| case TX_CLASS_VERT: { |
| #if CONFIG_ATC_COEFCODING |
| return ctx + 15; |
| #else |
| const int row = coeff_idx >> bwl; |
| return ctx + nz_map_ctx_offset_1d[row]; |
| #endif // CONFIG_ATC_COEFCODING |
| } |
| default: break; |
| } |
| return 0; |
| } |
| |
| #if CONFIG_ATC_COEFCODING |
| typedef aom_cdf_prob (*base_lf_cdf_arr)[CDF_SIZE(LF_BASE_SYMBOLS)]; |
| #endif // CONFIG_ATC_COEFCODING |
| typedef aom_cdf_prob (*base_cdf_arr)[CDF_SIZE(4)]; |
| typedef aom_cdf_prob (*br_cdf_arr)[CDF_SIZE(BR_CDF_SIZE)]; |
| #if CONFIG_PAR_HIDING |
| // This function returns the base range context index/increment for the |
| // coefficients with hidden parity. |
| static INLINE int get_base_ctx_ph(const uint8_t *levels, int pos, int bwl, |
| const TX_CLASS tx_class) { |
| const int stats = |
| get_nz_mag(levels + get_padded_idx(pos, bwl), bwl, tx_class); |
| return AOMMIN((stats + 1) >> 1, (COEFF_BASE_PH_CONTEXTS - 1)); |
| } |
| |
| // This function returns the low range context index/increment for the |
| // coefficients with hidden parity. |
| static AOM_FORCE_INLINE int get_par_br_ctx(const uint8_t *const levels, |
| const int c, // raster order |
| const int bwl, |
| const TX_CLASS tx_class) { |
| const int row = c >> bwl; |
| const int col = c - (row << bwl); |
| const int stride = (1 << bwl) + TX_PAD_HOR; |
| const int pos = row * stride + col; |
| int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE); |
| mag += AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE); |
| switch (tx_class) { |
| case TX_CLASS_2D: |
| mag += AOMMIN(levels[pos + stride + 1], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, (COEFF_BR_PH_CONTEXTS - 1)); |
| break; |
| case TX_CLASS_HORIZ: |
| mag += AOMMIN(levels[pos + 2], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, (COEFF_BR_PH_CONTEXTS - 1)); |
| break; |
| case TX_CLASS_VERT: |
| mag += AOMMIN(levels[pos + (stride << 1)], MAX_BASE_BR_RANGE); |
| mag = AOMMIN((mag + 1) >> 1, (COEFF_BR_PH_CONTEXTS - 1)); |
| break; |
| default: break; |
| } |
| return mag; |
| } |
| #endif // CONFIG_PAR_HIDING |
| |
| static INLINE int get_lower_levels_ctx_eob(int bwl, int height, int scan_idx) { |
| if (scan_idx == 0) return 0; |
| if (scan_idx <= (height << bwl) / 8) return 1; |
| if (scan_idx <= (height << bwl) / 4) return 2; |
| return 3; |
| } |
| |
| #if CONFIG_ATC_DCTX_ALIGNED |
| // Return context index for first position. |
| static INLINE int get_lower_levels_ctx_bob(int bwl, int height, int scan_idx) { |
| if (scan_idx <= (height << bwl) / 8) return 0; |
| if (scan_idx <= (height << bwl) / 4) return 1; |
| return 2; |
| } |
| #endif // CONFIG_ATC_DCTX_ALIGNED |
| |
| static INLINE int get_upper_levels_ctx_2d(const uint8_t *levels, int coeff_idx, |
| int bwl) { |
| int mag; |
| levels = levels + get_padded_idx_left(coeff_idx, bwl); |
| mag = AOMMIN(levels[-1], 3); // { 0, -1 } |
| mag += AOMMIN(levels[-(1 << bwl) - TX_PAD_LEFT], 3); // { -1, 0 } |
| const int ctx = AOMMIN(mag, 6); |
| const int row = (coeff_idx >> bwl); |
| const int col = (coeff_idx - (row << bwl)) + TX_PAD_LEFT; |
| if ((row < 2) && (col < (2 + TX_PAD_LEFT))) return ctx; |
| return ctx + 7; |
| } |
| |
| #if CONFIG_ATC_COEFCODING |
| // This function returns the base range context index/increment for the |
| // coefficients residing in the low-frequency region for 2D transforms. |
| static INLINE int get_lower_levels_ctx_lf_2d(const uint8_t *levels, |
| int coeff_idx, int bwl) { |
| assert(coeff_idx > 0); |
| int mag; |
| // Note: AOMMIN(level, 3) is useless for decoder since level < 5. |
| levels = levels + get_padded_idx(coeff_idx, bwl); |
| mag = AOMMIN(levels[1], 5); // { 0, 1 } |
| mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR], 5); // { 1, 0 } |
| mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR + 1], 5); // { 1, 1 } |
| mag += AOMMIN(levels[2], 5); // { 0, 2 } |
| mag += AOMMIN(levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)], 5); // { 2, 0 } |
| int ctx = (mag + 1) >> 1; |
| const int row = coeff_idx >> bwl; |
| const int col = coeff_idx - (row << bwl); |
| if (coeff_idx == 0) { |
| ctx = AOMMIN(ctx, 8); |
| return ctx; |
| } |
| if (row + col < 2) { |
| ctx = AOMMIN(ctx, 6); |
| return ctx + 9; |
| } |
| ctx = AOMMIN(ctx, 4); |
| return ctx + 16; |
| } |
| |
| static AOM_FORCE_INLINE int get_lower_levels_lf_ctx(const uint8_t *levels, |
| int coeff_idx, int bwl, |
| TX_CLASS tx_class) { |
| const int stats = |
| get_nz_mag_lf(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class); |
| return get_nz_map_ctx_from_stats_lf(stats, coeff_idx, bwl, tx_class); |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| |
| static INLINE int get_lower_levels_ctx_2d(const uint8_t *levels, int coeff_idx, |
| int bwl |
| #if !CONFIG_ATC_COEFCODING |
| , |
| TX_SIZE tx_size |
| #endif // !CONFIG_ATC_COEFCODING |
| ) { |
| assert(coeff_idx > 0); |
| int mag; |
| // Note: AOMMIN(level, 3) is useless for decoder since level < 3. |
| levels = levels + get_padded_idx(coeff_idx, bwl); |
| mag = AOMMIN(levels[1], 3); // { 0, 1 } |
| mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR], 3); // { 1, 0 } |
| mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR + 1], 3); // { 1, 1 } |
| mag += AOMMIN(levels[2], 3); // { 0, 2 } |
| mag += AOMMIN(levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)], 3); // { 2, 0 } |
| |
| const int ctx = AOMMIN((mag + 1) >> 1, 4); |
| #if CONFIG_ATC_COEFCODING |
| const int row = coeff_idx >> bwl; |
| const int col = coeff_idx - (row << bwl); |
| if (row + col < 6) return ctx; |
| if (row + col < 8) return ctx + 5; |
| return ctx + 10; |
| #else |
| return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx]; |
| #endif // CONFIG_ATC_COEFCODING |
| } |
| |
| #if CONFIG_ATC_COEFCODING |
| // This function determines the limits to separate the low-frequency |
| // coefficient coding region from the higher-frequency default |
| // region. It is based on the diagonal sum (row+col) or row, columns |
| // of the given coefficient in a scan order. |
| static INLINE int get_lf_limits(int row, int col, TX_CLASS tx_class, |
| int plane) { |
| int limits = 0; |
| if (tx_class == TX_CLASS_2D) { |
| limits = |
| plane == 0 ? ((row + col) < LF_2D_LIM) : ((row + col) < LF_2D_LIM_UV); |
| } else if (tx_class == TX_CLASS_HORIZ) { |
| limits = plane == 0 ? (col < LF_RC_LIM) : (col < LF_RC_LIM_UV); |
| } else { |
| limits = plane == 0 ? (row < LF_RC_LIM) : (row < LF_RC_LIM_UV); |
| } |
| return limits; |
| } |
| #endif // CONFIG_ATC_COEFCODING |
| |
| static AOM_FORCE_INLINE int get_lower_levels_ctx(const uint8_t *levels, |
| int coeff_idx, int bwl, |
| #if !CONFIG_ATC_COEFCODING |
| TX_SIZE tx_size, |
| #endif // !CONFIG_ATC_COEFCODING |
| TX_CLASS tx_class) { |
| const int stats = |
| get_nz_mag(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class); |
| #if CONFIG_ATC_COEFCODING |
| return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_class); |
| #else |
| return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_size, tx_class); |
| #endif // CONFIG_ATC_COEFCODING |
| } |
| |
| static INLINE int get_lower_levels_ctx_general(int is_last, int scan_idx, |
| int bwl, int height, |
| const uint8_t *levels, |
| int coeff_idx, |
| #if !CONFIG_ATC_COEFCODING |
| TX_SIZE tx_size, |
| #endif // !CONFIG_ATC_COEFCODING |
| TX_CLASS tx_class |
| #if CONFIG_ATC_COEFCODING |
| , |
| int plane |
| #endif // CONFIG_ATC_COEFCODING |
| ) { |
| if (is_last) { |
| if (scan_idx == 0) return 0; |
| if (scan_idx <= (height << bwl) >> 3) return 1; |
| if (scan_idx <= (height << bwl) >> 2) return 2; |
| return 3; |
| } |
| #if CONFIG_ATC_COEFCODING |
| const int row = coeff_idx >> bwl; |
| const int col = coeff_idx - (row << bwl); |
| int limits = get_lf_limits(row, col, tx_class, plane); |
| if (limits) { |
| return get_lower_levels_lf_ctx(levels, coeff_idx, bwl, tx_class); |
| } else { |
| return get_lower_levels_ctx(levels, coeff_idx, bwl, tx_class); |
| } |
| #else |
| return get_lower_levels_ctx(levels, coeff_idx, bwl, tx_size, tx_class); |
| #endif // CONFIG_ATC_COEFCODING |
| } |
| |
| static INLINE void set_dc_sign(int *cul_level, int dc_val) { |
| if (dc_val < 0) |
| *cul_level |= 1 << COEFF_CONTEXT_BITS; |
| else if (dc_val > 0) |
| *cul_level += 2 << COEFF_CONTEXT_BITS; |
| } |
| |
| static INLINE void get_txb_ctx_skip(const BLOCK_SIZE plane_bsize, |
| const TX_SIZE tx_size, |
| const ENTROPY_CONTEXT *const a, |
| const ENTROPY_CONTEXT *const l, |
| TXB_CTX *const txb_ctx) { |
| const int txb_w_unit = tx_size_wide_unit[tx_size]; |
| const int txb_h_unit = tx_size_high_unit[tx_size]; |
| const int skip_offset = 13; |
| txb_ctx->dc_sign_ctx = 0; |
| if (plane_bsize == txsize_to_bsize[tx_size]) { |
| txb_ctx->txb_skip_ctx = skip_offset; |
| } else { |
| static const uint8_t skip_contexts[5][5] = { { 1, 2, 2, 2, 3 }, |
| { 2, 4, 4, 4, 5 }, |
| { 2, 4, 4, 4, 5 }, |
| { 2, 4, 4, 4, 5 }, |
| { 3, 5, 5, 5, 6 } }; |
| int top = 0; |
| int left = 0; |
| int k = 0; |
| do { |
| top |= a[k]; |
| } while (++k < txb_w_unit); |
| top &= COEFF_CONTEXT_MASK; |
| top = AOMMIN(top, 4); |
| k = 0; |
| do { |
| left |= l[k]; |
| } while (++k < txb_h_unit); |
| left &= COEFF_CONTEXT_MASK; |
| left = AOMMIN(left, 4); |
| txb_ctx->txb_skip_ctx = skip_contexts[top][left] + skip_offset; |
| } |
| } |
| |
| static INLINE void get_txb_ctx(const BLOCK_SIZE plane_bsize, |
| const TX_SIZE tx_size, const int plane, |
| const ENTROPY_CONTEXT *const a, |
| const ENTROPY_CONTEXT *const l, |
| TXB_CTX *const txb_ctx, uint8_t fsc_mode) { |
| #define MAX_TX_SIZE_UNIT 16 |
| if (fsc_mode && plane == PLANE_TYPE_Y) { |
| get_txb_ctx_skip(plane_bsize, tx_size, a, l, txb_ctx); |
| return; |
| } |
| static const int8_t signs[3] = { 0, -1, 1 }; |
| static const int8_t dc_sign_contexts[4 * MAX_TX_SIZE_UNIT + 1] = { |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
| }; |
| const int txb_w_unit = tx_size_wide_unit[tx_size]; |
| const int txb_h_unit = tx_size_high_unit[tx_size]; |
| int dc_sign = 0; |
| int k = 0; |
| |
| do { |
| const unsigned int sign = ((uint8_t)a[k]) >> COEFF_CONTEXT_BITS; |
| assert(sign <= 2); |
| dc_sign += signs[sign]; |
| } while (++k < txb_w_unit); |
| |
| k = 0; |
| do { |
| const unsigned int sign = ((uint8_t)l[k]) >> COEFF_CONTEXT_BITS; |
| assert(sign <= 2); |
| dc_sign += signs[sign]; |
| } while (++k < txb_h_unit); |
| |
| txb_ctx->dc_sign_ctx = dc_sign_contexts[dc_sign + 2 * MAX_TX_SIZE_UNIT]; |
| |
| if (plane == 0) { |
| if (plane_bsize == txsize_to_bsize[tx_size]) { |
| txb_ctx->txb_skip_ctx = 0; |
| } else { |
| // This is the algorithm to generate table skip_contexts[top][left]. |
| // const int max = AOMMIN(top | left, 4); |
| // const int min = AOMMIN(AOMMIN(top, left), 4); |
| // if (!max) |
| // txb_skip_ctx = 1; |
| // else if (!min) |
| // txb_skip_ctx = 2 + (max > 3); |
| // else if (max <= 3) |
| // txb_skip_ctx = 4; |
| // else if (min <= 3) |
| // txb_skip_ctx = 5; |
| // else |
| // txb_skip_ctx = 6; |
| static const uint8_t skip_contexts[5][5] = { { 1, 2, 2, 2, 3 }, |
| { 2, 4, 4, 4, 5 }, |
| { 2, 4, 4, 4, 5 }, |
| { 2, 4, 4, 4, 5 }, |
| { 3, 5, 5, 5, 6 } }; |
| // For top and left, we only care about which of the following three |
| // categories they belong to: { 0 }, { 1, 2, 3 }, or { 4, 5, ... }. The |
| // spec calculates top and left with the Max() function. We can calculate |
| // an approximate max with bitwise OR because the real max and the |
| // approximate max belong to the same category. |
| int top = 0; |
| int left = 0; |
| |
| k = 0; |
| do { |
| top |= a[k]; |
| } while (++k < txb_w_unit); |
| top &= COEFF_CONTEXT_MASK; |
| top = AOMMIN(top, 4); |
| |
| k = 0; |
| do { |
| left |= l[k]; |
| } while (++k < txb_h_unit); |
| left &= COEFF_CONTEXT_MASK; |
| left = AOMMIN(left, 4); |
| |
| txb_ctx->txb_skip_ctx = skip_contexts[top][left]; |
| } |
| } else { |
| const int ctx_base = get_entropy_context(tx_size, a, l); |
| #if CONFIG_CONTEXT_DERIVATION |
| int ctx_offset = 0; |
| if (plane == AOM_PLANE_U) { |
| ctx_offset = (num_pels_log2_lookup[plane_bsize] > |
| num_pels_log2_lookup[txsize_to_bsize[tx_size]]) |
| ? 10 |
| : 7; |
| } else { |
| ctx_offset = (num_pels_log2_lookup[plane_bsize] > |
| num_pels_log2_lookup[txsize_to_bsize[tx_size]]) |
| ? (V_TXB_SKIP_CONTEXT_OFFSET >> 1) |
| : 0; |
| } |
| txb_ctx->txb_skip_ctx = ctx_base + ctx_offset; |
| #else |
| const int ctx_offset = (num_pels_log2_lookup[plane_bsize] > |
| num_pels_log2_lookup[txsize_to_bsize[tx_size]]) |
| ? 10 |
| : 7; |
| txb_ctx->txb_skip_ctx = ctx_base + ctx_offset; |
| #endif // CONFIG_CONTEXT_DERIVATION |
| } |
| #undef MAX_TX_SIZE_UNIT |
| } |
| |
| #endif // AOM_AV1_COMMON_TXB_COMMON_H_ |