blob: 0c4df1ba8c3c7bb8a81f4525310600427473dab3 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#ifndef AOM_AV1_COMMON_TXB_COMMON_H_
#define AOM_AV1_COMMON_TXB_COMMON_H_
#include "av1/common/av1_common_int.h"
extern const int16_t av1_eob_group_start[12];
extern const int16_t av1_eob_offset_bits[12];
extern const int8_t *av1_nz_map_ctx_offset[TX_SIZES_ALL];
typedef struct txb_ctx {
int txb_skip_ctx;
int dc_sign_ctx;
} TXB_CTX;
static const TX_CLASS tx_type_to_class[TX_TYPES] = {
TX_CLASS_2D, // DCT_DCT
TX_CLASS_2D, // ADST_DCT
TX_CLASS_2D, // DCT_ADST
TX_CLASS_2D, // ADST_ADST
TX_CLASS_2D, // FLIPADST_DCT
TX_CLASS_2D, // DCT_FLIPADST
TX_CLASS_2D, // FLIPADST_FLIPADST
TX_CLASS_2D, // ADST_FLIPADST
TX_CLASS_2D, // FLIPADST_ADST
TX_CLASS_2D, // IDTX
TX_CLASS_VERT, // V_DCT
TX_CLASS_HORIZ, // H_DCT
TX_CLASS_VERT, // V_ADST
TX_CLASS_HORIZ, // H_ADST
TX_CLASS_VERT, // V_FLIPADST
TX_CLASS_HORIZ, // H_FLIPADST
};
static INLINE int get_txb_bwl(TX_SIZE tx_size) {
tx_size = av1_get_adjusted_tx_size(tx_size);
return tx_size_wide_log2[tx_size];
}
static INLINE int get_txb_wide(TX_SIZE tx_size) {
tx_size = av1_get_adjusted_tx_size(tx_size);
return tx_size_wide[tx_size];
}
static INLINE int get_txb_high(TX_SIZE tx_size) {
tx_size = av1_get_adjusted_tx_size(tx_size);
return tx_size_high[tx_size];
}
static INLINE uint8_t *set_levels(uint8_t *const levels_buf, const int width) {
return levels_buf + TX_PAD_TOP * (width + TX_PAD_HOR);
}
static INLINE int get_padded_idx(const int idx, const int bwl) {
return idx + ((idx >> bwl) << TX_PAD_HOR_LOG2);
}
// This function sets the signs buffer for coefficient coding.
static INLINE int8_t *set_signs(int8_t *const signs_buf, const int width) {
return signs_buf + TX_PAD_TOP * (width + TX_PAD_HOR);
}
// This function returns the coefficient index after left padding.
static INLINE int get_padded_idx_left(const int idx, const int bwl) {
return TX_PAD_LEFT + idx + ((idx >> bwl) << TX_PAD_HOR_LOG2);
}
/*
This function returns the base range coefficient coding context index
for forward skip residual coding for a given coefficient index.
It assumes padding from left and sums left and above level
samples: levels[pos - 1] + levels[pos - stride] and adds an
appropriate offset depending on row and column.
*/
static AOM_FORCE_INLINE int get_br_ctx_skip(const uint8_t *const levels,
const int c, const int bwl) {
const int row = c >> bwl;
const int col = (c - (row << bwl)) + TX_PAD_LEFT;
const int stride = (1 << bwl) + TX_PAD_LEFT;
const int pos = row * stride + col;
int mag = levels[pos - 1];
mag += levels[pos - stride];
mag = AOMMIN(mag, 6);
if ((row < 2) && (col < (2 + TX_PAD_LEFT))) return mag;
return mag + 7;
}
static INLINE int get_br_ctx_2d(const uint8_t *const levels,
const int c, // raster order
const int bwl) {
assert(c > 0);
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE) +
AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE) +
AOMMIN(levels[pos + 1 + stride], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, 6);
#if CONFIG_ATC_COEFCODING
return mag;
#else
//((row | col) < 2) is equivalent to ((row < 2) && (col < 2))
if ((row | col) < 2) return mag + 7;
return mag + 14;
#endif // CONFIG_ATC_COEFCODING
}
#if CONFIG_ATC_COEFCODING
// This function returns the low range context index for
// the low-frequency region for the EOB coefficient.
static AOM_FORCE_INLINE int get_br_ctx_lf_eob(const int c, // raster order
const TX_CLASS tx_class) {
if (tx_class == TX_CLASS_2D && c == 0) return 0;
return 7;
}
#else
static AOM_FORCE_INLINE int get_br_ctx_eob(const int c, // raster order
const int bwl,
const TX_CLASS tx_class) {
const int row = c >> bwl;
const int col = c - (row << bwl);
if (c == 0) return 0;
if ((tx_class == TX_CLASS_2D && row < 2 && col < 2) ||
(tx_class == TX_CLASS_HORIZ && col == 0) ||
(tx_class == TX_CLASS_VERT && row == 0))
return 7;
return 14;
}
#endif // CONFIG_ATC_COEFCODING
#if CONFIG_ATC_COEFCODING
// This function returns the low range context index/increment for the
// coefficients residing in the low-frequency region for 2D transforms.
// Not used for the DC term.
static INLINE int get_br_lf_ctx_2d(const uint8_t *const levels,
const int c, // raster order
const int bwl) {
assert(c > 0);
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE) +
AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE) +
AOMMIN(levels[pos + 1 + stride], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, 6);
return mag + 7;
}
// This function returns the low range context index/increment for the
// coefficients residing in the low-frequency region for 1D and 2D
// transforms and covers the 1D and 2D TX DC terms.
static AOM_FORCE_INLINE int get_br_lf_ctx(const uint8_t *const levels,
const int c, // raster order
const int bwl,
const TX_CLASS tx_class) {
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE);
mag += levels[pos + stride];
switch (tx_class) {
case TX_CLASS_2D:
mag += AOMMIN(levels[pos + stride + 1], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, 6);
if (c == 0) return mag;
if ((row < 2) && (col < 2)) return mag + 7;
break;
case TX_CLASS_HORIZ:
mag += AOMMIN(levels[pos + 2], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, 6);
if (col == 0) return mag + 7;
break;
case TX_CLASS_VERT:
mag += AOMMIN(levels[pos + (stride << 1)], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, 6);
if (row == 0) return mag + 7;
break;
default: break;
}
return mag + 7;
}
// This function returns the low range context index/increment for the
// coefficients residing in the higher-frequency default region
// for 1D and 2D transforms.
static AOM_FORCE_INLINE int get_br_ctx(const uint8_t *const levels,
const int c, // raster order
const int bwl, const TX_CLASS tx_class) {
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = levels[pos + 1];
mag += levels[pos + stride];
if (tx_class == TX_CLASS_2D) {
mag += levels[pos + stride + 1];
} else if (tx_class == TX_CLASS_VERT) {
mag += levels[pos + (stride << 1)];
} else {
mag += levels[pos + 2];
}
mag = AOMMIN((mag + 1) >> 1, 6);
return mag;
}
#else
static AOM_FORCE_INLINE int get_br_ctx(const uint8_t *const levels,
const int c, // raster order
const int bwl, const TX_CLASS tx_class) {
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = levels[pos + 1];
mag += levels[pos + stride];
switch (tx_class) {
case TX_CLASS_2D:
mag += levels[pos + stride + 1];
mag = AOMMIN((mag + 1) >> 1, 6);
if (c == 0) return mag;
if ((row < 2) && (col < 2)) return mag + 7;
break;
case TX_CLASS_HORIZ:
mag += levels[pos + 2];
mag = AOMMIN((mag + 1) >> 1, 6);
if (c == 0) return mag;
if (col == 0) return mag + 7;
break;
case TX_CLASS_VERT:
mag += levels[pos + (stride << 1)];
mag = AOMMIN((mag + 1) >> 1, 6);
if (c == 0) return mag;
if (row == 0) return mag + 7;
break;
default: break;
}
return mag + 14;
}
#endif // CONFIG_ATC_COEFCODING
#if CONFIG_ATC_COEFCODING
static const uint8_t clip_max5[256] = {
0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
};
#endif // CONFIG_ATC_COEFCODING
static const uint8_t clip_max3[256] = {
0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
};
// This function returns the neighboring left + above levels with clipping.
static AOM_FORCE_INLINE int get_nz_mag_skip(const uint8_t *const levels,
const int bwl) {
int mag = clip_max3[levels[-1]]; // { 0, -1 }
mag += clip_max3[levels[-(1 << bwl) - TX_PAD_LEFT]]; // { -1, 0 }
return mag;
}
/*
This helper function computes the sign context index for FSC residual
coding for a given coefficient index. Bottom, right and bottom-right
samples are used to derive the index.
*/
static AOM_FORCE_INLINE int get_sign_skip(const int8_t *const signs,
const uint8_t *const levels,
const int bwl) {
int signc = 0;
if (levels[1]) signc += signs[1]; // { 0, +1 }
if (levels[(1 << bwl) + TX_PAD_LEFT])
signc += signs[(1 << bwl) + TX_PAD_LEFT]; // { +1, 0 }
if (levels[(1 << bwl) + TX_PAD_LEFT + 1])
signc += signs[(1 << bwl) + TX_PAD_LEFT + 1]; // { +1, +1 }
if (signc > 2) return 5;
if (signc < -2) return 6;
if (signc > 0) return 1;
if (signc < 0) return 2;
return 0;
}
// This function returns the sign context index for residual coding.
static INLINE int get_sign_ctx_skip(const int8_t *const signs,
const uint8_t *const levels,
const int coeff_idx, const int bwl) {
const int8_t *const signs_pt = signs + get_padded_idx(coeff_idx, bwl);
const uint8_t *const level_pt = levels + get_padded_idx_left(coeff_idx, bwl);
int sign_ctx = get_sign_skip(signs_pt, level_pt, bwl);
if (level_pt[0] > COEFF_BASE_RANGE && sign_ctx != 0) sign_ctx += 2;
return sign_ctx;
}
#if CONFIG_ATC_COEFCODING
// This function returns the template sum of absolute values
// for coefficient coding for the low-frequency region.
static AOM_FORCE_INLINE int get_nz_mag_lf(const uint8_t *const levels,
const int bwl,
const TX_CLASS tx_class) {
int mag;
// Note: AOMMIN(level, 5) is useless for decoder since level < 5.
mag = clip_max5[levels[1]]; // { 0, 1 }
mag += clip_max5[levels[(1 << bwl) + TX_PAD_HOR]]; // { 1, 0 }
if (tx_class == TX_CLASS_2D) {
mag += clip_max5[levels[(1 << bwl) + TX_PAD_HOR + 1]]; // { 1, 1 }
mag += clip_max5[levels[2]]; // { 0, 2 }
mag += clip_max5[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 }
} else if (tx_class == TX_CLASS_VERT) {
mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 }
mag += clip_max3[levels[(3 << bwl) + (3 << TX_PAD_HOR_LOG2)]]; // { 3, 0 }
mag += clip_max3[levels[(4 << bwl) + (4 << TX_PAD_HOR_LOG2)]]; // { 4, 0 }
} else {
mag += clip_max3[levels[2]]; // { 0, 2 }
mag += clip_max3[levels[3]]; // { 0, 3 }
mag += clip_max3[levels[4]]; // { 0, 4 }
}
return mag;
}
#endif // CONFIG_ATC_COEFCODING
// This function returns the template sum of absolute values
// for coefficient coding for the higher-frequency default region.
static AOM_FORCE_INLINE int get_nz_mag(const uint8_t *const levels,
const int bwl, const TX_CLASS tx_class) {
int mag;
// Note: AOMMIN(level, 3) is useless for decoder since level < 3.
mag = clip_max3[levels[1]]; // { 0, 1 }
mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR]]; // { 1, 0 }
if (tx_class == TX_CLASS_2D) {
mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR + 1]]; // { 1, 1 }
mag += clip_max3[levels[2]]; // { 0, 2 }
mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 }
} else if (tx_class == TX_CLASS_VERT) {
mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 }
mag += clip_max3[levels[(3 << bwl) + (3 << TX_PAD_HOR_LOG2)]]; // { 3, 0 }
mag += clip_max3[levels[(4 << bwl) + (4 << TX_PAD_HOR_LOG2)]]; // { 4, 0 }
} else {
mag += clip_max3[levels[2]]; // { 0, 2 }
mag += clip_max3[levels[3]]; // { 0, 3 }
mag += clip_max3[levels[4]]; // { 0, 4 }
}
return mag;
}
#define NZ_MAP_CTX_0 SIG_COEF_CONTEXTS_2D
#define NZ_MAP_CTX_5 (NZ_MAP_CTX_0 + 5)
#define NZ_MAP_CTX_10 (NZ_MAP_CTX_0 + 10)
static const int nz_map_ctx_offset_1d[32] = {
NZ_MAP_CTX_0, NZ_MAP_CTX_5, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10,
};
static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats_skip(const int stats,
const int coeff_idx,
const int bwl) {
const int ctx = AOMMIN(stats, 6);
const int row = (coeff_idx >> bwl);
const int col = (coeff_idx - (row << bwl)) + TX_PAD_LEFT;
if ((row < 2) && (col < (2 + TX_PAD_LEFT))) return ctx;
return ctx + 7;
}
#if CONFIG_ATC_COEFCODING
// This function returns the base range context index/increment for the
// coefficients residing in the low-frequency region for 1D/2D transforms.
static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats_lf(
const int stats,
const int coeff_idx, // raster order
const int bwl, const TX_CLASS tx_class) {
int ctx = (stats + 1) >> 1;
switch (tx_class) {
case TX_CLASS_2D: {
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
if (coeff_idx == 0) {
ctx = AOMMIN(ctx, 8);
return ctx;
}
if (row + col < 2) {
ctx = AOMMIN(ctx, 6);
return ctx + 9;
}
ctx = AOMMIN(ctx, 4);
return ctx + 16;
}
case TX_CLASS_HORIZ: {
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
if (col == 0) {
ctx = AOMMIN(ctx, 6);
ctx += LF_SIG_COEF_CONTEXTS_2D;
} else { // col == 1
ctx = AOMMIN(ctx, 4);
ctx += LF_SIG_COEF_CONTEXTS_2D + 7;
}
return ctx;
}
case TX_CLASS_VERT: {
const int row = coeff_idx >> bwl;
if (row == 0) {
ctx = AOMMIN(ctx, 6);
ctx += LF_SIG_COEF_CONTEXTS_2D;
} else { // row == 1
ctx = AOMMIN(ctx, 4);
ctx += LF_SIG_COEF_CONTEXTS_2D + 7;
}
return ctx;
}
default: break;
}
return 0;
}
#endif // CONFIG_ATC_COEFCODING
// This function returns the base range context index/increment for the
// coefficients residing in the higher-frequency region for 1D/2D transforms.
static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats(
const int stats,
const int coeff_idx, // raster order
const int bwl,
#if !CONFIG_ATC_COEFCODING
const TX_SIZE tx_size,
#endif // !CONFIG_ATC_COEFCODING
const TX_CLASS tx_class) {
// tx_class == 0(TX_CLASS_2D)
if ((tx_class | coeff_idx) == 0) return 0;
int ctx = (stats + 1) >> 1;
ctx = AOMMIN(ctx, 4);
switch (tx_class) {
case TX_CLASS_2D: {
#if CONFIG_ATC_COEFCODING
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
if (row + col < 6) return ctx;
if (row + col < 8) return 5 + ctx;
return 10 + ctx;
#else
// This is the algorithm to generate av1_nz_map_ctx_offset[][]
// const int width = tx_size_wide[tx_size];
// const int height = tx_size_high[tx_size];
// if (width < height) {
// if (row < 2) return 11 + ctx;
// } else if (width > height) {
// if (col < 2) return 16 + ctx;
// }
// if (row + col < 2) return ctx + 1;
// if (row + col < 4) return 5 + ctx + 1;
// return 21 + ctx;
return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx];
#endif // CONFIG_ATC_COEFCODING
}
case TX_CLASS_HORIZ: {
#if CONFIG_ATC_COEFCODING
return ctx + 15;
#else
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
return ctx + nz_map_ctx_offset_1d[col];
#endif // CONFIG_ATC_COEFCODING
}
case TX_CLASS_VERT: {
#if CONFIG_ATC_COEFCODING
return ctx + 15;
#else
const int row = coeff_idx >> bwl;
return ctx + nz_map_ctx_offset_1d[row];
#endif // CONFIG_ATC_COEFCODING
}
default: break;
}
return 0;
}
#if CONFIG_ATC_COEFCODING
typedef aom_cdf_prob (*base_lf_cdf_arr)[CDF_SIZE(LF_BASE_SYMBOLS)];
#endif // CONFIG_ATC_COEFCODING
typedef aom_cdf_prob (*base_cdf_arr)[CDF_SIZE(4)];
typedef aom_cdf_prob (*br_cdf_arr)[CDF_SIZE(BR_CDF_SIZE)];
#if CONFIG_PAR_HIDING
// This function returns the base range context index/increment for the
// coefficients with hidden parity.
static INLINE int get_base_ctx_ph(const uint8_t *levels, int pos, int bwl,
const TX_CLASS tx_class) {
const int stats =
get_nz_mag(levels + get_padded_idx(pos, bwl), bwl, tx_class);
return AOMMIN((stats + 1) >> 1, (COEFF_BASE_PH_CONTEXTS - 1));
}
// This function returns the low range context index/increment for the
// coefficients with hidden parity.
static AOM_FORCE_INLINE int get_par_br_ctx(const uint8_t *const levels,
const int c, // raster order
const int bwl,
const TX_CLASS tx_class) {
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE);
mag += AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE);
switch (tx_class) {
case TX_CLASS_2D:
mag += AOMMIN(levels[pos + stride + 1], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, (COEFF_BR_PH_CONTEXTS - 1));
break;
case TX_CLASS_HORIZ:
mag += AOMMIN(levels[pos + 2], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, (COEFF_BR_PH_CONTEXTS - 1));
break;
case TX_CLASS_VERT:
mag += AOMMIN(levels[pos + (stride << 1)], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, (COEFF_BR_PH_CONTEXTS - 1));
break;
default: break;
}
return mag;
}
#endif // CONFIG_PAR_HIDING
static INLINE int get_lower_levels_ctx_eob(int bwl, int height, int scan_idx) {
if (scan_idx == 0) return 0;
if (scan_idx <= (height << bwl) / 8) return 1;
if (scan_idx <= (height << bwl) / 4) return 2;
return 3;
}
#if CONFIG_ATC_DCTX_ALIGNED
// Return context index for first position.
static INLINE int get_lower_levels_ctx_bob(int bwl, int height, int scan_idx) {
if (scan_idx <= (height << bwl) / 8) return 0;
if (scan_idx <= (height << bwl) / 4) return 1;
return 2;
}
#endif // CONFIG_ATC_DCTX_ALIGNED
static INLINE int get_upper_levels_ctx_2d(const uint8_t *levels, int coeff_idx,
int bwl) {
int mag;
levels = levels + get_padded_idx_left(coeff_idx, bwl);
mag = AOMMIN(levels[-1], 3); // { 0, -1 }
mag += AOMMIN(levels[-(1 << bwl) - TX_PAD_LEFT], 3); // { -1, 0 }
const int ctx = AOMMIN(mag, 6);
const int row = (coeff_idx >> bwl);
const int col = (coeff_idx - (row << bwl)) + TX_PAD_LEFT;
if ((row < 2) && (col < (2 + TX_PAD_LEFT))) return ctx;
return ctx + 7;
}
#if CONFIG_ATC_COEFCODING
// This function returns the base range context index/increment for the
// coefficients residing in the low-frequency region for 2D transforms.
static INLINE int get_lower_levels_ctx_lf_2d(const uint8_t *levels,
int coeff_idx, int bwl) {
assert(coeff_idx > 0);
int mag;
// Note: AOMMIN(level, 3) is useless for decoder since level < 5.
levels = levels + get_padded_idx(coeff_idx, bwl);
mag = AOMMIN(levels[1], 5); // { 0, 1 }
mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR], 5); // { 1, 0 }
mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR + 1], 5); // { 1, 1 }
mag += AOMMIN(levels[2], 5); // { 0, 2 }
mag += AOMMIN(levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)], 5); // { 2, 0 }
int ctx = (mag + 1) >> 1;
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
if (coeff_idx == 0) {
ctx = AOMMIN(ctx, 8);
return ctx;
}
if (row + col < 2) {
ctx = AOMMIN(ctx, 6);
return ctx + 9;
}
ctx = AOMMIN(ctx, 4);
return ctx + 16;
}
static AOM_FORCE_INLINE int get_lower_levels_lf_ctx(const uint8_t *levels,
int coeff_idx, int bwl,
TX_CLASS tx_class) {
const int stats =
get_nz_mag_lf(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class);
return get_nz_map_ctx_from_stats_lf(stats, coeff_idx, bwl, tx_class);
}
#endif // CONFIG_ATC_COEFCODING
static INLINE int get_lower_levels_ctx_2d(const uint8_t *levels, int coeff_idx,
int bwl
#if !CONFIG_ATC_COEFCODING
,
TX_SIZE tx_size
#endif // !CONFIG_ATC_COEFCODING
) {
assert(coeff_idx > 0);
int mag;
// Note: AOMMIN(level, 3) is useless for decoder since level < 3.
levels = levels + get_padded_idx(coeff_idx, bwl);
mag = AOMMIN(levels[1], 3); // { 0, 1 }
mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR], 3); // { 1, 0 }
mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR + 1], 3); // { 1, 1 }
mag += AOMMIN(levels[2], 3); // { 0, 2 }
mag += AOMMIN(levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)], 3); // { 2, 0 }
const int ctx = AOMMIN((mag + 1) >> 1, 4);
#if CONFIG_ATC_COEFCODING
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
if (row + col < 6) return ctx;
if (row + col < 8) return ctx + 5;
return ctx + 10;
#else
return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx];
#endif // CONFIG_ATC_COEFCODING
}
#if CONFIG_ATC_COEFCODING
// This function determines the limits to separate the low-frequency
// coefficient coding region from the higher-frequency default
// region. It is based on the diagonal sum (row+col) or row, columns
// of the given coefficient in a scan order.
static INLINE int get_lf_limits(int row, int col, TX_CLASS tx_class,
int plane) {
int limits = 0;
if (tx_class == TX_CLASS_2D) {
limits =
plane == 0 ? ((row + col) < LF_2D_LIM) : ((row + col) < LF_2D_LIM_UV);
} else if (tx_class == TX_CLASS_HORIZ) {
limits = plane == 0 ? (col < LF_RC_LIM) : (col < LF_RC_LIM_UV);
} else {
limits = plane == 0 ? (row < LF_RC_LIM) : (row < LF_RC_LIM_UV);
}
return limits;
}
#endif // CONFIG_ATC_COEFCODING
static AOM_FORCE_INLINE int get_lower_levels_ctx(const uint8_t *levels,
int coeff_idx, int bwl,
#if !CONFIG_ATC_COEFCODING
TX_SIZE tx_size,
#endif // !CONFIG_ATC_COEFCODING
TX_CLASS tx_class) {
const int stats =
get_nz_mag(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class);
#if CONFIG_ATC_COEFCODING
return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_class);
#else
return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_size, tx_class);
#endif // CONFIG_ATC_COEFCODING
}
static INLINE int get_lower_levels_ctx_general(int is_last, int scan_idx,
int bwl, int height,
const uint8_t *levels,
int coeff_idx,
#if !CONFIG_ATC_COEFCODING
TX_SIZE tx_size,
#endif // !CONFIG_ATC_COEFCODING
TX_CLASS tx_class
#if CONFIG_ATC_COEFCODING
,
int plane
#endif // CONFIG_ATC_COEFCODING
) {
if (is_last) {
if (scan_idx == 0) return 0;
if (scan_idx <= (height << bwl) >> 3) return 1;
if (scan_idx <= (height << bwl) >> 2) return 2;
return 3;
}
#if CONFIG_ATC_COEFCODING
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
int limits = get_lf_limits(row, col, tx_class, plane);
if (limits) {
return get_lower_levels_lf_ctx(levels, coeff_idx, bwl, tx_class);
} else {
return get_lower_levels_ctx(levels, coeff_idx, bwl, tx_class);
}
#else
return get_lower_levels_ctx(levels, coeff_idx, bwl, tx_size, tx_class);
#endif // CONFIG_ATC_COEFCODING
}
static INLINE void set_dc_sign(int *cul_level, int dc_val) {
if (dc_val < 0)
*cul_level |= 1 << COEFF_CONTEXT_BITS;
else if (dc_val > 0)
*cul_level += 2 << COEFF_CONTEXT_BITS;
}
static INLINE void get_txb_ctx_skip(const BLOCK_SIZE plane_bsize,
const TX_SIZE tx_size,
const ENTROPY_CONTEXT *const a,
const ENTROPY_CONTEXT *const l,
TXB_CTX *const txb_ctx) {
const int txb_w_unit = tx_size_wide_unit[tx_size];
const int txb_h_unit = tx_size_high_unit[tx_size];
const int skip_offset = 13;
txb_ctx->dc_sign_ctx = 0;
if (plane_bsize == txsize_to_bsize[tx_size]) {
txb_ctx->txb_skip_ctx = skip_offset;
} else {
static const uint8_t skip_contexts[5][5] = { { 1, 2, 2, 2, 3 },
{ 2, 4, 4, 4, 5 },
{ 2, 4, 4, 4, 5 },
{ 2, 4, 4, 4, 5 },
{ 3, 5, 5, 5, 6 } };
int top = 0;
int left = 0;
int k = 0;
do {
top |= a[k];
} while (++k < txb_w_unit);
top &= COEFF_CONTEXT_MASK;
top = AOMMIN(top, 4);
k = 0;
do {
left |= l[k];
} while (++k < txb_h_unit);
left &= COEFF_CONTEXT_MASK;
left = AOMMIN(left, 4);
txb_ctx->txb_skip_ctx = skip_contexts[top][left] + skip_offset;
}
}
static INLINE void get_txb_ctx(const BLOCK_SIZE plane_bsize,
const TX_SIZE tx_size, const int plane,
const ENTROPY_CONTEXT *const a,
const ENTROPY_CONTEXT *const l,
TXB_CTX *const txb_ctx, uint8_t fsc_mode) {
#define MAX_TX_SIZE_UNIT 16
if (fsc_mode && plane == PLANE_TYPE_Y) {
get_txb_ctx_skip(plane_bsize, tx_size, a, l, txb_ctx);
return;
}
static const int8_t signs[3] = { 0, -1, 1 };
static const int8_t dc_sign_contexts[4 * MAX_TX_SIZE_UNIT + 1] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
const int txb_w_unit = tx_size_wide_unit[tx_size];
const int txb_h_unit = tx_size_high_unit[tx_size];
int dc_sign = 0;
int k = 0;
do {
const unsigned int sign = ((uint8_t)a[k]) >> COEFF_CONTEXT_BITS;
assert(sign <= 2);
dc_sign += signs[sign];
} while (++k < txb_w_unit);
k = 0;
do {
const unsigned int sign = ((uint8_t)l[k]) >> COEFF_CONTEXT_BITS;
assert(sign <= 2);
dc_sign += signs[sign];
} while (++k < txb_h_unit);
txb_ctx->dc_sign_ctx = dc_sign_contexts[dc_sign + 2 * MAX_TX_SIZE_UNIT];
if (plane == 0) {
if (plane_bsize == txsize_to_bsize[tx_size]) {
txb_ctx->txb_skip_ctx = 0;
} else {
// This is the algorithm to generate table skip_contexts[top][left].
// const int max = AOMMIN(top | left, 4);
// const int min = AOMMIN(AOMMIN(top, left), 4);
// if (!max)
// txb_skip_ctx = 1;
// else if (!min)
// txb_skip_ctx = 2 + (max > 3);
// else if (max <= 3)
// txb_skip_ctx = 4;
// else if (min <= 3)
// txb_skip_ctx = 5;
// else
// txb_skip_ctx = 6;
static const uint8_t skip_contexts[5][5] = { { 1, 2, 2, 2, 3 },
{ 2, 4, 4, 4, 5 },
{ 2, 4, 4, 4, 5 },
{ 2, 4, 4, 4, 5 },
{ 3, 5, 5, 5, 6 } };
// For top and left, we only care about which of the following three
// categories they belong to: { 0 }, { 1, 2, 3 }, or { 4, 5, ... }. The
// spec calculates top and left with the Max() function. We can calculate
// an approximate max with bitwise OR because the real max and the
// approximate max belong to the same category.
int top = 0;
int left = 0;
k = 0;
do {
top |= a[k];
} while (++k < txb_w_unit);
top &= COEFF_CONTEXT_MASK;
top = AOMMIN(top, 4);
k = 0;
do {
left |= l[k];
} while (++k < txb_h_unit);
left &= COEFF_CONTEXT_MASK;
left = AOMMIN(left, 4);
txb_ctx->txb_skip_ctx = skip_contexts[top][left];
}
} else {
const int ctx_base = get_entropy_context(tx_size, a, l);
#if CONFIG_CONTEXT_DERIVATION
int ctx_offset = 0;
if (plane == AOM_PLANE_U) {
ctx_offset = (num_pels_log2_lookup[plane_bsize] >
num_pels_log2_lookup[txsize_to_bsize[tx_size]])
? 10
: 7;
} else {
ctx_offset = (num_pels_log2_lookup[plane_bsize] >
num_pels_log2_lookup[txsize_to_bsize[tx_size]])
? (V_TXB_SKIP_CONTEXT_OFFSET >> 1)
: 0;
}
txb_ctx->txb_skip_ctx = ctx_base + ctx_offset;
#else
const int ctx_offset = (num_pels_log2_lookup[plane_bsize] >
num_pels_log2_lookup[txsize_to_bsize[tx_size]])
? 10
: 7;
txb_ctx->txb_skip_ctx = ctx_base + ctx_offset;
#endif // CONFIG_CONTEXT_DERIVATION
}
#undef MAX_TX_SIZE_UNIT
}
#endif // AOM_AV1_COMMON_TXB_COMMON_H_