blob: 1293edfb2b4714d1d11a6b2fdee2e02461947515 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <assert.h>
#include <stdbool.h>
#include "config/av1_rtcd.h"
#include "av1/common/warped_motion.h"
#include "av1/common/scale.h"
// For warping, we really use a 6-tap filter, but we do blocks of 8 pixels
// at a time. The zoom/rotation/shear in the model are applied to the
// "fractional" position of each pixel, which therefore varies within
// [-1, 2) * WARPEDPIXEL_PREC_SHIFTS.
// We need an extra 2 taps to fit this in, for a total of 8 taps.
/* clang-format off */
const int16_t av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS * 3 + 1][8] = {
#if WARPEDPIXEL_PREC_BITS == 6
// [-1, 0)
{ 0, 0, 127, 1, 0, 0, 0, 0 }, { 0, - 1, 127, 2, 0, 0, 0, 0 },
{ 1, - 3, 127, 4, - 1, 0, 0, 0 }, { 1, - 4, 126, 6, - 2, 1, 0, 0 },
{ 1, - 5, 126, 8, - 3, 1, 0, 0 }, { 1, - 6, 125, 11, - 4, 1, 0, 0 },
{ 1, - 7, 124, 13, - 4, 1, 0, 0 }, { 2, - 8, 123, 15, - 5, 1, 0, 0 },
{ 2, - 9, 122, 18, - 6, 1, 0, 0 }, { 2, -10, 121, 20, - 6, 1, 0, 0 },
{ 2, -11, 120, 22, - 7, 2, 0, 0 }, { 2, -12, 119, 25, - 8, 2, 0, 0 },
{ 3, -13, 117, 27, - 8, 2, 0, 0 }, { 3, -13, 116, 29, - 9, 2, 0, 0 },
{ 3, -14, 114, 32, -10, 3, 0, 0 }, { 3, -15, 113, 35, -10, 2, 0, 0 },
{ 3, -15, 111, 37, -11, 3, 0, 0 }, { 3, -16, 109, 40, -11, 3, 0, 0 },
{ 3, -16, 108, 42, -12, 3, 0, 0 }, { 4, -17, 106, 45, -13, 3, 0, 0 },
{ 4, -17, 104, 47, -13, 3, 0, 0 }, { 4, -17, 102, 50, -14, 3, 0, 0 },
{ 4, -17, 100, 52, -14, 3, 0, 0 }, { 4, -18, 98, 55, -15, 4, 0, 0 },
{ 4, -18, 96, 58, -15, 3, 0, 0 }, { 4, -18, 94, 60, -16, 4, 0, 0 },
{ 4, -18, 91, 63, -16, 4, 0, 0 }, { 4, -18, 89, 65, -16, 4, 0, 0 },
{ 4, -18, 87, 68, -17, 4, 0, 0 }, { 4, -18, 85, 70, -17, 4, 0, 0 },
{ 4, -18, 82, 73, -17, 4, 0, 0 }, { 4, -18, 80, 75, -17, 4, 0, 0 },
{ 4, -18, 78, 78, -18, 4, 0, 0 }, { 4, -17, 75, 80, -18, 4, 0, 0 },
{ 4, -17, 73, 82, -18, 4, 0, 0 }, { 4, -17, 70, 85, -18, 4, 0, 0 },
{ 4, -17, 68, 87, -18, 4, 0, 0 }, { 4, -16, 65, 89, -18, 4, 0, 0 },
{ 4, -16, 63, 91, -18, 4, 0, 0 }, { 4, -16, 60, 94, -18, 4, 0, 0 },
{ 3, -15, 58, 96, -18, 4, 0, 0 }, { 4, -15, 55, 98, -18, 4, 0, 0 },
{ 3, -14, 52, 100, -17, 4, 0, 0 }, { 3, -14, 50, 102, -17, 4, 0, 0 },
{ 3, -13, 47, 104, -17, 4, 0, 0 }, { 3, -13, 45, 106, -17, 4, 0, 0 },
{ 3, -12, 42, 108, -16, 3, 0, 0 }, { 3, -11, 40, 109, -16, 3, 0, 0 },
{ 3, -11, 37, 111, -15, 3, 0, 0 }, { 2, -10, 35, 113, -15, 3, 0, 0 },
{ 3, -10, 32, 114, -14, 3, 0, 0 }, { 2, - 9, 29, 116, -13, 3, 0, 0 },
{ 2, - 8, 27, 117, -13, 3, 0, 0 }, { 2, - 8, 25, 119, -12, 2, 0, 0 },
{ 2, - 7, 22, 120, -11, 2, 0, 0 }, { 1, - 6, 20, 121, -10, 2, 0, 0 },
{ 1, - 6, 18, 122, - 9, 2, 0, 0 }, { 1, - 5, 15, 123, - 8, 2, 0, 0 },
{ 1, - 4, 13, 124, - 7, 1, 0, 0 }, { 1, - 4, 11, 125, - 6, 1, 0, 0 },
{ 1, - 3, 8, 126, - 5, 1, 0, 0 }, { 1, - 2, 6, 126, - 4, 1, 0, 0 },
{ 0, - 1, 4, 127, - 3, 1, 0, 0 }, { 0, 0, 2, 127, - 1, 0, 0, 0 },
// [0, 1)
{ 0, 0, 0, 127, 1, 0, 0, 0}, { 0, 0, -1, 127, 2, 0, 0, 0},
{ 0, 1, -3, 127, 4, -2, 1, 0}, { 0, 1, -5, 127, 6, -2, 1, 0},
{ 0, 2, -6, 126, 8, -3, 1, 0}, {-1, 2, -7, 126, 11, -4, 2, -1},
{-1, 3, -8, 125, 13, -5, 2, -1}, {-1, 3, -10, 124, 16, -6, 3, -1},
{-1, 4, -11, 123, 18, -7, 3, -1}, {-1, 4, -12, 122, 20, -7, 3, -1},
{-1, 4, -13, 121, 23, -8, 3, -1}, {-2, 5, -14, 120, 25, -9, 4, -1},
{-1, 5, -15, 119, 27, -10, 4, -1}, {-1, 5, -16, 118, 30, -11, 4, -1},
{-2, 6, -17, 116, 33, -12, 5, -1}, {-2, 6, -17, 114, 35, -12, 5, -1},
{-2, 6, -18, 113, 38, -13, 5, -1}, {-2, 7, -19, 111, 41, -14, 6, -2},
{-2, 7, -19, 110, 43, -15, 6, -2}, {-2, 7, -20, 108, 46, -15, 6, -2},
{-2, 7, -20, 106, 49, -16, 6, -2}, {-2, 7, -21, 104, 51, -16, 7, -2},
{-2, 7, -21, 102, 54, -17, 7, -2}, {-2, 8, -21, 100, 56, -18, 7, -2},
{-2, 8, -22, 98, 59, -18, 7, -2}, {-2, 8, -22, 96, 62, -19, 7, -2},
{-2, 8, -22, 94, 64, -19, 7, -2}, {-2, 8, -22, 91, 67, -20, 8, -2},
{-2, 8, -22, 89, 69, -20, 8, -2}, {-2, 8, -22, 87, 72, -21, 8, -2},
{-2, 8, -21, 84, 74, -21, 8, -2}, {-2, 8, -22, 82, 77, -21, 8, -2},
{-2, 8, -21, 79, 79, -21, 8, -2}, {-2, 8, -21, 77, 82, -22, 8, -2},
{-2, 8, -21, 74, 84, -21, 8, -2}, {-2, 8, -21, 72, 87, -22, 8, -2},
{-2, 8, -20, 69, 89, -22, 8, -2}, {-2, 8, -20, 67, 91, -22, 8, -2},
{-2, 7, -19, 64, 94, -22, 8, -2}, {-2, 7, -19, 62, 96, -22, 8, -2},
{-2, 7, -18, 59, 98, -22, 8, -2}, {-2, 7, -18, 56, 100, -21, 8, -2},
{-2, 7, -17, 54, 102, -21, 7, -2}, {-2, 7, -16, 51, 104, -21, 7, -2},
{-2, 6, -16, 49, 106, -20, 7, -2}, {-2, 6, -15, 46, 108, -20, 7, -2},
{-2, 6, -15, 43, 110, -19, 7, -2}, {-2, 6, -14, 41, 111, -19, 7, -2},
{-1, 5, -13, 38, 113, -18, 6, -2}, {-1, 5, -12, 35, 114, -17, 6, -2},
{-1, 5, -12, 33, 116, -17, 6, -2}, {-1, 4, -11, 30, 118, -16, 5, -1},
{-1, 4, -10, 27, 119, -15, 5, -1}, {-1, 4, -9, 25, 120, -14, 5, -2},
{-1, 3, -8, 23, 121, -13, 4, -1}, {-1, 3, -7, 20, 122, -12, 4, -1},
{-1, 3, -7, 18, 123, -11, 4, -1}, {-1, 3, -6, 16, 124, -10, 3, -1},
{-1, 2, -5, 13, 125, -8, 3, -1}, {-1, 2, -4, 11, 126, -7, 2, -1},
{ 0, 1, -3, 8, 126, -6, 2, 0}, { 0, 1, -2, 6, 127, -5, 1, 0},
{ 0, 1, -2, 4, 127, -3, 1, 0}, { 0, 0, 0, 2, 127, -1, 0, 0},
// [1, 2)
{ 0, 0, 0, 1, 127, 0, 0, 0 }, { 0, 0, 0, - 1, 127, 2, 0, 0 },
{ 0, 0, 1, - 3, 127, 4, - 1, 0 }, { 0, 0, 1, - 4, 126, 6, - 2, 1 },
{ 0, 0, 1, - 5, 126, 8, - 3, 1 }, { 0, 0, 1, - 6, 125, 11, - 4, 1 },
{ 0, 0, 1, - 7, 124, 13, - 4, 1 }, { 0, 0, 2, - 8, 123, 15, - 5, 1 },
{ 0, 0, 2, - 9, 122, 18, - 6, 1 }, { 0, 0, 2, -10, 121, 20, - 6, 1 },
{ 0, 0, 2, -11, 120, 22, - 7, 2 }, { 0, 0, 2, -12, 119, 25, - 8, 2 },
{ 0, 0, 3, -13, 117, 27, - 8, 2 }, { 0, 0, 3, -13, 116, 29, - 9, 2 },
{ 0, 0, 3, -14, 114, 32, -10, 3 }, { 0, 0, 3, -15, 113, 35, -10, 2 },
{ 0, 0, 3, -15, 111, 37, -11, 3 }, { 0, 0, 3, -16, 109, 40, -11, 3 },
{ 0, 0, 3, -16, 108, 42, -12, 3 }, { 0, 0, 4, -17, 106, 45, -13, 3 },
{ 0, 0, 4, -17, 104, 47, -13, 3 }, { 0, 0, 4, -17, 102, 50, -14, 3 },
{ 0, 0, 4, -17, 100, 52, -14, 3 }, { 0, 0, 4, -18, 98, 55, -15, 4 },
{ 0, 0, 4, -18, 96, 58, -15, 3 }, { 0, 0, 4, -18, 94, 60, -16, 4 },
{ 0, 0, 4, -18, 91, 63, -16, 4 }, { 0, 0, 4, -18, 89, 65, -16, 4 },
{ 0, 0, 4, -18, 87, 68, -17, 4 }, { 0, 0, 4, -18, 85, 70, -17, 4 },
{ 0, 0, 4, -18, 82, 73, -17, 4 }, { 0, 0, 4, -18, 80, 75, -17, 4 },
{ 0, 0, 4, -18, 78, 78, -18, 4 }, { 0, 0, 4, -17, 75, 80, -18, 4 },
{ 0, 0, 4, -17, 73, 82, -18, 4 }, { 0, 0, 4, -17, 70, 85, -18, 4 },
{ 0, 0, 4, -17, 68, 87, -18, 4 }, { 0, 0, 4, -16, 65, 89, -18, 4 },
{ 0, 0, 4, -16, 63, 91, -18, 4 }, { 0, 0, 4, -16, 60, 94, -18, 4 },
{ 0, 0, 3, -15, 58, 96, -18, 4 }, { 0, 0, 4, -15, 55, 98, -18, 4 },
{ 0, 0, 3, -14, 52, 100, -17, 4 }, { 0, 0, 3, -14, 50, 102, -17, 4 },
{ 0, 0, 3, -13, 47, 104, -17, 4 }, { 0, 0, 3, -13, 45, 106, -17, 4 },
{ 0, 0, 3, -12, 42, 108, -16, 3 }, { 0, 0, 3, -11, 40, 109, -16, 3 },
{ 0, 0, 3, -11, 37, 111, -15, 3 }, { 0, 0, 2, -10, 35, 113, -15, 3 },
{ 0, 0, 3, -10, 32, 114, -14, 3 }, { 0, 0, 2, - 9, 29, 116, -13, 3 },
{ 0, 0, 2, - 8, 27, 117, -13, 3 }, { 0, 0, 2, - 8, 25, 119, -12, 2 },
{ 0, 0, 2, - 7, 22, 120, -11, 2 }, { 0, 0, 1, - 6, 20, 121, -10, 2 },
{ 0, 0, 1, - 6, 18, 122, - 9, 2 }, { 0, 0, 1, - 5, 15, 123, - 8, 2 },
{ 0, 0, 1, - 4, 13, 124, - 7, 1 }, { 0, 0, 1, - 4, 11, 125, - 6, 1 },
{ 0, 0, 1, - 3, 8, 126, - 5, 1 }, { 0, 0, 1, - 2, 6, 126, - 4, 1 },
{ 0, 0, 0, - 1, 4, 127, - 3, 1 }, { 0, 0, 0, 0, 2, 127, - 1, 0 },
// dummy (replicate row index 191)
{ 0, 0, 0, 0, 2, 127, - 1, 0 },
#elif WARPEDPIXEL_PREC_BITS == 5
// [-1, 0)
{0, 0, 127, 1, 0, 0, 0, 0}, {1, -3, 127, 4, -1, 0, 0, 0},
{1, -5, 126, 8, -3, 1, 0, 0}, {1, -7, 124, 13, -4, 1, 0, 0},
{2, -9, 122, 18, -6, 1, 0, 0}, {2, -11, 120, 22, -7, 2, 0, 0},
{3, -13, 117, 27, -8, 2, 0, 0}, {3, -14, 114, 32, -10, 3, 0, 0},
{3, -15, 111, 37, -11, 3, 0, 0}, {3, -16, 108, 42, -12, 3, 0, 0},
{4, -17, 104, 47, -13, 3, 0, 0}, {4, -17, 100, 52, -14, 3, 0, 0},
{4, -18, 96, 58, -15, 3, 0, 0}, {4, -18, 91, 63, -16, 4, 0, 0},
{4, -18, 87, 68, -17, 4, 0, 0}, {4, -18, 82, 73, -17, 4, 0, 0},
{4, -18, 78, 78, -18, 4, 0, 0}, {4, -17, 73, 82, -18, 4, 0, 0},
{4, -17, 68, 87, -18, 4, 0, 0}, {4, -16, 63, 91, -18, 4, 0, 0},
{3, -15, 58, 96, -18, 4, 0, 0}, {3, -14, 52, 100, -17, 4, 0, 0},
{3, -13, 47, 104, -17, 4, 0, 0}, {3, -12, 42, 108, -16, 3, 0, 0},
{3, -11, 37, 111, -15, 3, 0, 0}, {3, -10, 32, 114, -14, 3, 0, 0},
{2, -8, 27, 117, -13, 3, 0, 0}, {2, -7, 22, 120, -11, 2, 0, 0},
{1, -6, 18, 122, -9, 2, 0, 0}, {1, -4, 13, 124, -7, 1, 0, 0},
{1, -3, 8, 126, -5, 1, 0, 0}, {0, -1, 4, 127, -3, 1, 0, 0},
// [0, 1)
{ 0, 0, 0, 127, 1, 0, 0, 0}, { 0, 1, -3, 127, 4, -2, 1, 0},
{ 0, 2, -6, 126, 8, -3, 1, 0}, {-1, 3, -8, 125, 13, -5, 2, -1},
{-1, 4, -11, 123, 18, -7, 3, -1}, {-1, 4, -13, 121, 23, -8, 3, -1},
{-1, 5, -15, 119, 27, -10, 4, -1}, {-2, 6, -17, 116, 33, -12, 5, -1},
{-2, 6, -18, 113, 38, -13, 5, -1}, {-2, 7, -19, 110, 43, -15, 6, -2},
{-2, 7, -20, 106, 49, -16, 6, -2}, {-2, 7, -21, 102, 54, -17, 7, -2},
{-2, 8, -22, 98, 59, -18, 7, -2}, {-2, 8, -22, 94, 64, -19, 7, -2},
{-2, 8, -22, 89, 69, -20, 8, -2}, {-2, 8, -21, 84, 74, -21, 8, -2},
{-2, 8, -21, 79, 79, -21, 8, -2}, {-2, 8, -21, 74, 84, -21, 8, -2},
{-2, 8, -20, 69, 89, -22, 8, -2}, {-2, 7, -19, 64, 94, -22, 8, -2},
{-2, 7, -18, 59, 98, -22, 8, -2}, {-2, 7, -17, 54, 102, -21, 7, -2},
{-2, 6, -16, 49, 106, -20, 7, -2}, {-2, 6, -15, 43, 110, -19, 7, -2},
{-1, 5, -13, 38, 113, -18, 6, -2}, {-1, 5, -12, 33, 116, -17, 6, -2},
{-1, 4, -10, 27, 119, -15, 5, -1}, {-1, 3, -8, 23, 121, -13, 4, -1},
{-1, 3, -7, 18, 123, -11, 4, -1}, {-1, 2, -5, 13, 125, -8, 3, -1},
{ 0, 1, -3, 8, 126, -6, 2, 0}, { 0, 1, -2, 4, 127, -3, 1, 0},
// [1, 2)
{0, 0, 0, 1, 127, 0, 0, 0}, {0, 0, 1, -3, 127, 4, -1, 0},
{0, 0, 1, -5, 126, 8, -3, 1}, {0, 0, 1, -7, 124, 13, -4, 1},
{0, 0, 2, -9, 122, 18, -6, 1}, {0, 0, 2, -11, 120, 22, -7, 2},
{0, 0, 3, -13, 117, 27, -8, 2}, {0, 0, 3, -14, 114, 32, -10, 3},
{0, 0, 3, -15, 111, 37, -11, 3}, {0, 0, 3, -16, 108, 42, -12, 3},
{0, 0, 4, -17, 104, 47, -13, 3}, {0, 0, 4, -17, 100, 52, -14, 3},
{0, 0, 4, -18, 96, 58, -15, 3}, {0, 0, 4, -18, 91, 63, -16, 4},
{0, 0, 4, -18, 87, 68, -17, 4}, {0, 0, 4, -18, 82, 73, -17, 4},
{0, 0, 4, -18, 78, 78, -18, 4}, {0, 0, 4, -17, 73, 82, -18, 4},
{0, 0, 4, -17, 68, 87, -18, 4}, {0, 0, 4, -16, 63, 91, -18, 4},
{0, 0, 3, -15, 58, 96, -18, 4}, {0, 0, 3, -14, 52, 100, -17, 4},
{0, 0, 3, -13, 47, 104, -17, 4}, {0, 0, 3, -12, 42, 108, -16, 3},
{0, 0, 3, -11, 37, 111, -15, 3}, {0, 0, 3, -10, 32, 114, -14, 3},
{0, 0, 2, -8, 27, 117, -13, 3}, {0, 0, 2, -7, 22, 120, -11, 2},
{0, 0, 1, -6, 18, 122, -9, 2}, {0, 0, 1, -4, 13, 124, -7, 1},
{0, 0, 1, -3, 8, 126, -5, 1}, {0, 0, 0, -1, 4, 127, -3, 1},
// dummy (replicate row index 95)
{0, 0, 0, -1, 4, 127, -3, 1},
#endif // WARPEDPIXEL_PREC_BITS == 6
};
/* clang-format on */
// Recompute the translational part of a warp model, so that the center
// of the current block (determined by `mi_row`, `mi_col`, `bsize`)
// has an induced motion vector of `mv`
void av1_set_warp_translation(int mi_row, int mi_col, BLOCK_SIZE bsize, MV mv,
WarpedMotionParams *wm) {
const int center_x = mi_col * MI_SIZE + block_size_wide[bsize] / 2 - 1;
const int center_y = mi_row * MI_SIZE + block_size_high[bsize] / 2 - 1;
// Note(rachelbarker): We subtract 1 from the diagonal part of the model here.
// This is because the warp model M maps (current frame) pixel coordinates to
// (ref frame) pixel coordinates. So, in order to calculate the induced
// motion vector, we have to subtract the identity matrix.
wm->wmmat[0] = mv.col * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
(center_x * (wm->wmmat[2] - (1 << WARPEDMODEL_PREC_BITS)) +
center_y * wm->wmmat[3]);
wm->wmmat[1] = mv.row * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
(center_x * wm->wmmat[4] +
center_y * (wm->wmmat[5] - (1 << WARPEDMODEL_PREC_BITS)));
#if CONFIG_EXTENDED_WARP_PREDICTION
wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS));
wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS));
#endif // CONFIG_EXTENDED_WARP_PREDICTION
}
const uint16_t div_lut[DIV_LUT_NUM + 1] = {
16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768,
15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142,
15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564,
14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028,
13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530,
13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066,
13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633,
12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228,
12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848,
11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491,
11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155,
11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838,
10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538,
10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255,
10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986,
9963, 9939, 9916, 9892, 9869, 9846, 9823, 9800, 9777, 9754, 9732,
9709, 9687, 9664, 9642, 9620, 9598, 9576, 9554, 9533, 9511, 9489,
9468, 9447, 9425, 9404, 9383, 9362, 9341, 9321, 9300, 9279, 9259,
9239, 9218, 9198, 9178, 9158, 9138, 9118, 9098, 9079, 9059, 9039,
9020, 9001, 8981, 8962, 8943, 8924, 8905, 8886, 8867, 8849, 8830,
8812, 8793, 8775, 8756, 8738, 8720, 8702, 8684, 8666, 8648, 8630,
8613, 8595, 8577, 8560, 8542, 8525, 8508, 8490, 8473, 8456, 8439,
8422, 8405, 8389, 8372, 8355, 8339, 8322, 8306, 8289, 8273, 8257,
8240, 8224, 8208, 8192,
};
static int is_affine_valid(const WarpedMotionParams *const wm) {
const int32_t *mat = wm->wmmat;
return (mat[2] > 0);
}
static int is_affine_shear_allowed(int16_t alpha, int16_t beta, int16_t gamma,
int16_t delta) {
if ((4 * abs(alpha) + 7 * abs(beta) >= (1 << WARPEDMODEL_PREC_BITS)) ||
(4 * abs(gamma) + 4 * abs(delta) >= (1 << WARPEDMODEL_PREC_BITS)))
return 0;
else
return 1;
}
// Returns 1 on success or 0 on an invalid affine set
int av1_get_shear_params(WarpedMotionParams *wm) {
const int32_t *mat = wm->wmmat;
if (!is_affine_valid(wm)) return 0;
wm->alpha =
clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX);
wm->beta = clamp(mat[3], INT16_MIN, INT16_MAX);
int16_t shift;
int16_t y = resolve_divisor_32(abs(mat[2]), &shift) * (mat[2] < 0 ? -1 : 1);
int64_t v = ((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) * y;
wm->gamma =
clamp((int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift), INT16_MIN, INT16_MAX);
v = ((int64_t)mat[3] * mat[4]) * y;
wm->delta = clamp(mat[5] - (int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift) -
(1 << WARPEDMODEL_PREC_BITS),
INT16_MIN, INT16_MAX);
// Note(rachelbarker):
// In extreme cases, the `clamp` operations in the previous block can set
// parameters equal to to INT16_MAX == 32767.
//
// The following round-then-multiply, which is intended to reduce the bit
// storage requirement in hardware, then rounds to 32768, which is outside
// the range of an int16_t. But casting to int16_t is okay - it will cause
// this value to become -32768, and so the model will be rejected
// by is_affine_shear_allowed(), so the outcome is the same.
//
// However, we must make this cast explicit, because otherwise the integer
// sanitizer (correctly) complains about overflow during an implicit cast
wm->alpha =
(int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->alpha, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS));
wm->beta =
(int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->beta, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS));
wm->gamma =
(int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->gamma, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS));
wm->delta =
(int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->delta, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS));
if (!is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta))
return 0;
return 1;
}
#if CONFIG_EXTENDED_WARP_PREDICTION
// Reduce the precision of a warp model, ready for use in the warp filter
// and for storage. This should be called after the non-translational parameters
// are calculated, but before av1_set_warp_translation() or
// av1_get_shear_params() are called
//
// This also clamps the values. The clamping range is well outside the
// "useful" range (ie, what is_affine_shear_allowed() permits), but it
// ensures that hardware can store each value in a signed integer with
// (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) total bits
void av1_reduce_warp_model(WarpedMotionParams *wm) {
// Think of this range as an int<N>, multiplied by (1 <<
// WARP_PARAM_REDUCE_BITS). In other words, the max is -2^(N-1) and max is
// (2^(N-1) - 1), but with an extra multiplier applied to both terms
const int min_value = -(1 << (WARPEDMODEL_PREC_BITS - 1));
const int max_value =
(1 << (WARPEDMODEL_PREC_BITS - 1)) - (1 << WARP_PARAM_REDUCE_BITS);
for (int i = 2; i < 6; i++) {
int offset = (i == 2 || i == 5) ? (1 << WARPEDMODEL_PREC_BITS) : 0;
int original = wm->wmmat[i] - offset;
int rounded = ROUND_POWER_OF_TWO_SIGNED(original, WARP_PARAM_REDUCE_BITS) *
(1 << WARP_PARAM_REDUCE_BITS);
int clamped = clamp(rounded, min_value, max_value);
wm->wmmat[i] = clamped + offset;
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
static INLINE int highbd_error_measure(int err, int bd) {
const int b = bd - 8;
const int bmask = (1 << b) - 1;
const int v = (1 << b);
err = abs(err);
const int e1 = err >> b;
const int e2 = err & bmask;
return error_measure_lut[255 + e1] * (v - e2) +
error_measure_lut[256 + e1] * e2;
}
/* The warp filter for ROTZOOM and AFFINE models works as follows:
* Split the input into 8x8 blocks
* For each block, project the point (4, 4) within the block, to get the
overall block position. Split into integer and fractional coordinates,
maintaining full WARPEDMODEL precision
* Filter horizontally: Generate 15 rows of 8 pixels each. Each pixel gets a
variable horizontal offset. This means that, while the rows of the
intermediate buffer align with the rows of the *reference* image, the
columns align with the columns of the *destination* image.
* Filter vertically: Generate the output block (up to 8x8 pixels, but if the
destination is too small we crop the output at this stage). Each pixel has
a variable vertical offset, so that the resulting rows are aligned with
the rows of the destination image.
To accomplish these alignments, we factor the warp matrix as a
product of two shear / asymmetric zoom matrices:
/ a b \ = / 1 0 \ * / 1+alpha beta \
\ c d / \ gamma 1+delta / \ 0 1 /
where a, b, c, d are wmmat[2], wmmat[3], wmmat[4], wmmat[5] respectively.
The horizontal shear (with alpha and beta) is applied first,
then the vertical shear (with gamma and delta) is applied second.
The only limitation is that, to fit this in a fixed 8-tap filter size,
the fractional pixel offsets must be at most +-1. Since the horizontal filter
generates 15 rows of 8 columns, and the initial point we project is at (4, 4)
within the block, the parameters must satisfy
4 * |alpha| + 7 * |beta| <= 1 and 4 * |gamma| + 4 * |delta| <= 1
for this filter to be applicable.
Note: This function assumes that the caller has done all of the relevant
checks, ie. that we have a ROTZOOM or AFFINE model, that wm[4] and wm[5]
are set appropriately (if using a ROTZOOM model), and that alpha, beta,
gamma, delta are all in range.
TODO(rachelbarker): Maybe support scaled references?
*/
/* A note on hardware implementation:
The warp filter is intended to be implementable using the same hardware as
the high-precision convolve filters from the loop-restoration and
convolve-round experiments.
For a single filter stage, considering all of the coefficient sets for the
warp filter and the regular convolution filter, an input in the range
[0, 2^k - 1] is mapped into the range [-56 * (2^k - 1), 184 * (2^k - 1)]
before rounding.
Allowing for some changes to the filter coefficient sets, call the range
[-64 * 2^k, 192 * 2^k]. Then, if we initialize the accumulator to 64 * 2^k,
we can replace this by the range [0, 256 * 2^k], which can be stored in an
unsigned value with 8 + k bits.
This allows the derivation of the appropriate bit widths and offsets for
the various intermediate values: If
F := FILTER_BITS = 7 (or else the above ranges need adjusting)
So a *single* filter stage maps a k-bit input to a (k + F + 1)-bit
intermediate value.
H := ROUND0_BITS
V := VERSHEAR_REDUCE_PREC_BITS
(and note that we must have H + V = 2*F for the output to have the same
scale as the input)
then we end up with the following offsets and ranges:
Horizontal filter: Apply an offset of 1 << (bd + F - 1), sum fits into a
uint{bd + F + 1}
After rounding: The values stored in 'tmp' fit into a uint{bd + F + 1 - H}.
Vertical filter: Apply an offset of 1 << (bd + 2*F - H), sum fits into a
uint{bd + 2*F + 2 - H}
After rounding: The final value, before undoing the offset, fits into a
uint{bd + 2}.
Then we need to undo the offsets before clamping to a pixel. Note that,
if we do this at the end, the amount to subtract is actually independent
of H and V:
offset to subtract = (1 << ((bd + F - 1) - H + F - V)) +
(1 << ((bd + 2*F - H) - V))
== (1 << (bd - 1)) + (1 << bd)
This allows us to entirely avoid clamping in both the warp filter and
the convolve-round experiment. As of the time of writing, the Wiener filter
from loop-restoration can encode a central coefficient up to 216, which
leads to a maximum value of about 282 * 2^k after applying the offset.
So in that case we still need to clamp.
*/
void av1_highbd_warp_affine_c(const int32_t *mat, const uint16_t *ref,
int width, int height, int stride, uint16_t *pred,
int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x,
int subsampling_y, int bd,
ConvolveParams *conv_params, int16_t alpha,
int16_t beta, int16_t gamma, int16_t delta) {
int32_t tmp[15 * 8];
const int reduce_bits_horiz =
conv_params->round_0 +
AOMMAX(bd + FILTER_BITS - conv_params->round_0 - 14, 0);
const int reduce_bits_vert = conv_params->is_compound
? conv_params->round_1
: 2 * FILTER_BITS - reduce_bits_horiz;
const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz;
const int offset_bits_horiz = bd + FILTER_BITS - 1;
const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params);
(void)max_bits_horiz;
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
for (int i = p_row; i < p_row + p_height; i += 8) {
for (int j = p_col; j < p_col + p_width; j += 8) {
// Calculate the center of this 8x8 block,
// project to luma coordinates (if in a subsampled chroma plane),
// apply the affine transformation,
// then convert back to the original coordinates (if necessary)
const int32_t src_x = (j + 4) << subsampling_x;
const int32_t src_y = (i + 4) << subsampling_y;
const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0];
const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1];
const int32_t x4 = dst_x >> subsampling_x;
const int32_t y4 = dst_y >> subsampling_y;
const int32_t ix4 = x4 >> WARPEDMODEL_PREC_BITS;
int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t iy4 = y4 >> WARPEDMODEL_PREC_BITS;
int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
sx4 += alpha * (-4) + beta * (-4);
sy4 += gamma * (-4) + delta * (-4);
sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
// Horizontal filter
for (int k = -7; k < 8; ++k) {
const int iy = clamp(iy4 + k, 0, height - 1);
int sx = sx4 + beta * (k + 4);
for (int l = -4; l < 4; ++l) {
int ix = ix4 + l - 3;
const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) +
WARPEDPIXEL_PREC_SHIFTS;
assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
const int16_t *coeffs = av1_warped_filter[offs];
int32_t sum = 1 << offset_bits_horiz;
for (int m = 0; m < 8; ++m) {
const int sample_x = clamp(ix + m, 0, width - 1);
sum += ref[iy * stride + sample_x] * coeffs[m];
}
sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz);
assert(0 <= sum && sum < (1 << max_bits_horiz));
tmp[(k + 7) * 8 + (l + 4)] = sum;
sx += alpha;
}
}
// Vertical filter
for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) {
int sy = sy4 + delta * (k + 4);
for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) {
const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) +
WARPEDPIXEL_PREC_SHIFTS;
assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
const int16_t *coeffs = av1_warped_filter[offs];
int32_t sum = 1 << offset_bits_vert;
for (int m = 0; m < 8; ++m) {
sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m];
}
if (conv_params->is_compound) {
CONV_BUF_TYPE *p =
&conv_params
->dst[(i - p_row + k + 4) * conv_params->dst_stride +
(j - p_col + l + 4)];
sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
if (conv_params->do_average) {
uint16_t *dst16 =
&pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
int32_t tmp32 = *p;
if (use_wtd_comp_avg) {
tmp32 = tmp32 * conv_params->fwd_offset +
sum * conv_params->bck_offset;
tmp32 = tmp32 >> DIST_PRECISION_BITS;
} else {
tmp32 += sum;
tmp32 = tmp32 >> 1;
}
tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) -
(1 << (offset_bits - conv_params->round_1 - 1));
*dst16 =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp32, round_bits), bd);
} else {
*p = sum;
}
} else {
uint16_t *p =
&pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
assert(0 <= sum && sum < (1 << (bd + 2)));
*p = clip_pixel_highbd(sum - (1 << (bd - 1)) - (1 << bd), bd);
}
sy += gamma;
}
}
}
}
}
void highbd_warp_plane(WarpedMotionParams *wm, const uint16_t *const ref,
int width, int height, int stride, uint16_t *const pred,
int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y,
int bd, ConvolveParams *conv_params) {
assert(wm->wmtype <= AFFINE);
if (wm->wmtype == ROTZOOM) {
wm->wmmat[5] = wm->wmmat[2];
wm->wmmat[4] = -wm->wmmat[3];
}
const int32_t *const mat = wm->wmmat;
const int16_t alpha = wm->alpha;
const int16_t beta = wm->beta;
const int16_t gamma = wm->gamma;
const int16_t delta = wm->delta;
av1_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row,
p_width, p_height, p_stride, subsampling_x,
subsampling_y, bd, conv_params, alpha, beta, gamma,
delta);
}
int64_t av1_calc_highbd_frame_error(const uint16_t *const ref, int stride,
const uint16_t *const dst, int p_width,
int p_height, int p_stride, int bd) {
int64_t sum_error = 0;
for (int i = 0; i < p_height; ++i) {
for (int j = 0; j < p_width; ++j) {
sum_error +=
highbd_error_measure(dst[j + i * p_stride] - ref[j + i * stride], bd);
}
}
return sum_error;
}
static int64_t highbd_segmented_frame_error(
const uint16_t *const ref, int stride, const uint16_t *const dst,
int p_width, int p_height, int p_stride, int bd, uint8_t *segment_map,
int segment_map_stride) {
int patch_w, patch_h;
const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
int64_t sum_error = 0;
for (int i = 0; i < p_height; i += WARP_ERROR_BLOCK) {
for (int j = 0; j < p_width; j += WARP_ERROR_BLOCK) {
int seg_x = j >> WARP_ERROR_BLOCK_LOG;
int seg_y = i >> WARP_ERROR_BLOCK_LOG;
// Only compute the error if this block contains inliers from the motion
// model
if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;
// avoid computing error into the frame padding
patch_w = AOMMIN(error_bsize_w, p_width - j);
patch_h = AOMMIN(error_bsize_h, p_height - i);
sum_error += av1_calc_highbd_frame_error(ref + j + i * stride, stride,
dst + j + i * p_stride, patch_w,
patch_h, p_stride, bd);
}
}
return sum_error;
}
int64_t av1_frame_error(int bd, const uint16_t *ref, int stride, uint16_t *dst,
int p_width, int p_height, int p_stride) {
return av1_calc_highbd_frame_error(ref, stride, dst, p_width, p_height,
p_stride, bd);
}
int64_t av1_segmented_frame_error(int bd, const uint16_t *ref, int stride,
uint16_t *dst, int p_width, int p_height,
int p_stride, uint8_t *segment_map,
int segment_map_stride) {
return highbd_segmented_frame_error(ref, stride, dst, p_width, p_height,
p_stride, bd, segment_map,
segment_map_stride);
}
void av1_warp_plane(WarpedMotionParams *wm, int bd, const uint16_t *ref,
int width, int height, int stride, uint16_t *pred,
int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y,
ConvolveParams *conv_params) {
highbd_warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
p_height, p_stride, subsampling_x, subsampling_y, bd,
conv_params);
}
#define LS_MV_MAX 256 // max mv in 1/8-pel
// Use LS_STEP = 8 so that 2 less bits needed for A, Bx, By.
#define LS_STEP 8
// Assuming LS_MV_MAX is < MAX_SB_SIZE * 8,
// the precision needed is:
// (MAX_SB_SIZE_LOG2 + 3) [for sx * sx magnitude] +
// (MAX_SB_SIZE_LOG2 + 4) [for sx * dx magnitude] +
// 1 [for sign] +
// LEAST_SQUARES_SAMPLES_MAX_BITS
// [for adding up to LEAST_SQUARES_SAMPLES_MAX samples]
// The value is 23
#define LS_MAT_RANGE_BITS \
((MAX_SB_SIZE_LOG2 + 4) * 2 + LEAST_SQUARES_SAMPLES_MAX_BITS)
// Bit-depth reduction from the full-range
#define LS_MAT_DOWN_BITS 2
// bits range of A, Bx and By after downshifting
#define LS_MAT_BITS (LS_MAT_RANGE_BITS - LS_MAT_DOWN_BITS)
#define LS_MAT_MIN (-(1 << (LS_MAT_BITS - 1)))
#define LS_MAT_MAX ((1 << (LS_MAT_BITS - 1)) - 1)
// By setting LS_STEP = 8, the least 2 bits of every elements in A, Bx, By are
// 0. So, we can reduce LS_MAT_RANGE_BITS(2) bits here.
#define LS_SQUARE(a) \
(((a) * (a)*4 + (a)*4 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
(2 + LS_MAT_DOWN_BITS))
#define LS_PRODUCT1(a, b) \
(((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP) >> \
(2 + LS_MAT_DOWN_BITS))
#define LS_PRODUCT2(a, b) \
(((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
(2 + LS_MAT_DOWN_BITS))
#define USE_LIMITED_PREC_MULT 0
#if USE_LIMITED_PREC_MULT
#define MUL_PREC_BITS 16
static uint16_t resolve_multiplier_64(uint64_t D, int16_t *shift) {
int msb = 0;
uint16_t mult = 0;
*shift = 0;
if (D != 0) {
msb = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32
: get_msb((unsigned int)D));
if (msb >= MUL_PREC_BITS) {
mult = (uint16_t)ROUND_POWER_OF_TWO_64(D, msb + 1 - MUL_PREC_BITS);
*shift = msb + 1 - MUL_PREC_BITS;
} else {
mult = (uint16_t)D;
*shift = 0;
}
}
return mult;
}
static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
int32_t ret;
int16_t mshift;
uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
shift -= mshift;
if (shift > 0) {
return (int32_t)clamp(ROUND_POWER_OF_TWO_SIGNED(v, shift),
-WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
} else {
return (int32_t)clamp(v * (1 << (-shift)),
-WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
}
return ret;
}
static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
int16_t mshift;
uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
shift -= mshift;
if (shift > 0) {
return (int32_t)clamp(
ROUND_POWER_OF_TWO_SIGNED(v, shift),
(1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
(1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
} else {
return (int32_t)clamp(
v * (1 << (-shift)),
(1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
(1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
}
}
#else
static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
int64_t v = Px * (int64_t)iDet;
return (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
-WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
}
static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
int64_t v = Px * (int64_t)iDet;
return (int32_t)clamp64(
ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
(1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
(1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
}
#endif // USE_LIMITED_PREC_MULT
static int find_affine_int(int np, const int *pts1, const int *pts2,
BLOCK_SIZE bsize, MV mv, WarpedMotionParams *wm,
int mi_row, int mi_col) {
int32_t A[2][2] = { { 0, 0 }, { 0, 0 } };
int32_t Bx[2] = { 0, 0 };
int32_t By[2] = { 0, 0 };
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int rsuy = bh / 2 - 1;
const int rsux = bw / 2 - 1;
const int suy = rsuy * 8;
const int sux = rsux * 8;
const int duy = suy + mv.row;
const int dux = sux + mv.col;
// Assume the center pixel of the block has exactly the same motion vector
// as transmitted for the block. First shift the origin of the source
// points to the block center, and the origin of the destination points to
// the block center added to the motion vector transmitted.
// Let (xi, yi) denote the source points and (xi', yi') denote destination
// points after origin shfifting, for i = 0, 1, 2, .... n-1.
// Then if P = [x0, y0,
// x1, y1
// x2, y1,
// ....
// ]
// q = [x0', x1', x2', ... ]'
// r = [y0', y1', y2', ... ]'
// the least squares problems that need to be solved are:
// [h1, h2]' = inv(P'P)P'q and
// [h3, h4]' = inv(P'P)P'r
// where the affine transformation is given by:
// x' = h1.x + h2.y
// y' = h3.x + h4.y
//
// The loop below computes: A = P'P, Bx = P'q, By = P'r
// We need to just compute inv(A).Bx and inv(A).By for the solutions.
// Contribution from neighbor block
for (int i = 0; i < np; i++) {
const int dx = pts2[i * 2] - dux;
const int dy = pts2[i * 2 + 1] - duy;
const int sx = pts1[i * 2] - sux;
const int sy = pts1[i * 2 + 1] - suy;
// (TODO)yunqing: This comparison wouldn't be necessary if the sample
// selection is done in find_samples(). Also, global offset can be removed
// while collecting samples.
if (abs(sx - dx) < LS_MV_MAX && abs(sy - dy) < LS_MV_MAX) {
A[0][0] += LS_SQUARE(sx);
A[0][1] += LS_PRODUCT1(sx, sy);
A[1][1] += LS_SQUARE(sy);
Bx[0] += LS_PRODUCT2(sx, dx);
Bx[1] += LS_PRODUCT1(sy, dx);
By[0] += LS_PRODUCT1(sx, dy);
By[1] += LS_PRODUCT2(sy, dy);
}
}
// Just for debugging, and can be removed later.
assert(A[0][0] >= LS_MAT_MIN && A[0][0] <= LS_MAT_MAX);
assert(A[0][1] >= LS_MAT_MIN && A[0][1] <= LS_MAT_MAX);
assert(A[1][1] >= LS_MAT_MIN && A[1][1] <= LS_MAT_MAX);
assert(Bx[0] >= LS_MAT_MIN && Bx[0] <= LS_MAT_MAX);
assert(Bx[1] >= LS_MAT_MIN && Bx[1] <= LS_MAT_MAX);
assert(By[0] >= LS_MAT_MIN && By[0] <= LS_MAT_MAX);
assert(By[1] >= LS_MAT_MIN && By[1] <= LS_MAT_MAX);
// Compute Determinant of A
const int64_t Det = (int64_t)A[0][0] * A[1][1] - (int64_t)A[0][1] * A[0][1];
if (Det == 0) return 1;
int16_t shift;
int16_t iDet = resolve_divisor_64(llabs(Det), &shift) * (Det < 0 ? -1 : 1);
shift -= WARPEDMODEL_PREC_BITS;
if (shift < 0) {
iDet <<= (-shift);
shift = 0;
}
int64_t Px[2], Py[2];
// These divided by the Det, are the least squares solutions
Px[0] = (int64_t)A[1][1] * Bx[0] - (int64_t)A[0][1] * Bx[1];
Px[1] = -(int64_t)A[0][1] * Bx[0] + (int64_t)A[0][0] * Bx[1];
Py[0] = (int64_t)A[1][1] * By[0] - (int64_t)A[0][1] * By[1];
Py[1] = -(int64_t)A[0][1] * By[0] + (int64_t)A[0][0] * By[1];
wm->wmmat[2] = get_mult_shift_diag(Px[0], iDet, shift);
wm->wmmat[3] = get_mult_shift_ndiag(Px[1], iDet, shift);
wm->wmmat[4] = get_mult_shift_ndiag(Py[0], iDet, shift);
wm->wmmat[5] = get_mult_shift_diag(Py[1], iDet, shift);
#if CONFIG_EXTENDED_WARP_PREDICTION
av1_reduce_warp_model(wm);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
// check compatibility with the fast warp filter
if (!av1_get_shear_params(wm)) return 1;
av1_set_warp_translation(mi_row, mi_col, bsize, mv, wm);
#if !CONFIG_EXTENDED_WARP_PREDICTION
wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - 1);
wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - 1);
#endif // !CONFIG_EXTENDED_WARP_PREDICTION
wm->wmmat[6] = wm->wmmat[7] = 0;
return 0;
}
int av1_find_projection(int np, const int *pts1, const int *pts2,
BLOCK_SIZE bsize, MV mv, WarpedMotionParams *wm_params,
int mi_row, int mi_col) {
assert(wm_params->wmtype == AFFINE);
if (find_affine_int(np, pts1, pts2, bsize, mv, wm_params, mi_row, mi_col))
return 1;
return 0;
}
#if CONFIG_EXTENDED_WARP_PREDICTION
/* Given a neighboring block's warp model and the motion vector at the center
of the current block, construct a new warp model which is continuous with
the neighbor at the common edge but which has the given motion vector at
the center of the block.
The `neighbor_is_above` parameter should be true if the neighboring block
is above the current block, or false if it is to the left of the current
block.
Returns 0 if the resulting model can be used with the warp filter,
1 if not.
*/
int av1_extend_warp_model(const bool neighbor_is_above, const BLOCK_SIZE bsize,
const MV *center_mv, const int mi_row,
const int mi_col,
const WarpedMotionParams *neighbor_wm,
WarpedMotionParams *wm_params) {
const int half_width_log2 = mi_size_wide_log2[bsize] + MI_SIZE_LOG2 - 1;
const int half_height_log2 = mi_size_high_log2[bsize] + MI_SIZE_LOG2 - 1;
const int center_x = (mi_col * MI_SIZE) + (1 << half_width_log2) - 1;
const int center_y = (mi_row * MI_SIZE) + (1 << half_height_log2) - 1;
// Calculate the point (at warp model precision) where the center of the
// current block should be mapped to
int proj_center_x = (center_x * (1 << WARPEDMODEL_PREC_BITS)) +
(center_mv->col * (1 << (WARPEDMODEL_PREC_BITS - 3)));
int proj_center_y = (center_y * (1 << WARPEDMODEL_PREC_BITS)) +
(center_mv->row * (1 << (WARPEDMODEL_PREC_BITS - 3)));
*wm_params = default_warp_params;
wm_params->wmtype = AFFINE;
if (neighbor_is_above) {
// We want to construct a model which will project the block center
// according to the signaled motion vector, and which matches the
// neighbor's warp model along the top edge of the block.
//
// We do this in three steps:
// 1) Since the models should match along the whole top edge of the block,
// the coefficients of x in the warp model must be the same as for the
// neighboring block
//
// 2) The coefficients of y in the warp model can then be determined from
// the difference in projected positions between a point on the edge
// and the block center
//
// 3) The translational part can be derived (outside of this `if`)
// by subtracting the linear part of the model from the signaled MV.
wm_params->wmmat[2] = neighbor_wm->wmmat[2];
wm_params->wmmat[4] = neighbor_wm->wmmat[4];
// Project above point
int above_x = center_x;
int above_y = center_y - (1 << half_height_log2);
int proj_above_x = neighbor_wm->wmmat[2] * above_x +
neighbor_wm->wmmat[3] * above_y + neighbor_wm->wmmat[0];
int proj_above_y = neighbor_wm->wmmat[4] * above_x +
neighbor_wm->wmmat[5] * above_y + neighbor_wm->wmmat[1];
// y coefficients are (project(center) - project(above)) / (center.y -
// above.y), which simplifies to (project(center) - project(above)) /
// 2^(half_height_log2)
wm_params->wmmat[3] =
ROUND_POWER_OF_TWO(proj_center_x - proj_above_x, half_height_log2);
wm_params->wmmat[5] =
ROUND_POWER_OF_TWO(proj_center_y - proj_above_y, half_height_log2);
} else {
// If the neighboring block is to the left of the current block, we do the
// same thing as for the above case, but with x and y axes interchanged
wm_params->wmmat[3] = neighbor_wm->wmmat[3];
wm_params->wmmat[5] = neighbor_wm->wmmat[5];
// Project left point
int left_x = center_x - (1 << half_width_log2);
int left_y = center_y;
int proj_left_x = neighbor_wm->wmmat[2] * left_x +
neighbor_wm->wmmat[3] * left_y + neighbor_wm->wmmat[0];
int proj_left_y = neighbor_wm->wmmat[4] * left_x +
neighbor_wm->wmmat[5] * left_y + neighbor_wm->wmmat[1];
// y coefficients are
// (project(center) - project(left)) / (center.y - left.y)
// which simplifies to
// (project(center) - project(left)) / 2^(half_width_log2)
wm_params->wmmat[2] =
ROUND_POWER_OF_TWO(proj_center_x - proj_left_x, half_width_log2);
wm_params->wmmat[4] =
ROUND_POWER_OF_TWO(proj_center_y - proj_left_y, half_width_log2);
}
av1_reduce_warp_model(wm_params);
// check compatibility with the fast warp filter
if (!av1_get_shear_params(wm_params)) return 1;
// Derive translational part from signaled MV
av1_set_warp_translation(mi_row, mi_col, bsize, *center_mv, wm_params);
return 0;
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION