| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AOM_DSP_MATHUTILS_H_ | 
 | #define AOM_AOM_DSP_MATHUTILS_H_ | 
 |  | 
 | #include <memory.h> | 
 | #include <math.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <assert.h> | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_mem/aom_mem.h" | 
 |  | 
 | static const double TINY_NEAR_ZERO = 1.0E-16; | 
 |  | 
 | // Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn | 
 | static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) { | 
 |   int i, j, k; | 
 |   double c; | 
 |   // Forward elimination | 
 |   for (k = 0; k < n - 1; k++) { | 
 |     // Bring the largest magnitude to the diagonal position | 
 |     for (i = n - 1; i > k; i--) { | 
 |       if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) { | 
 |         for (j = 0; j < n; j++) { | 
 |           c = A[i * stride + j]; | 
 |           A[i * stride + j] = A[(i - 1) * stride + j]; | 
 |           A[(i - 1) * stride + j] = c; | 
 |         } | 
 |         c = b[i]; | 
 |         b[i] = b[i - 1]; | 
 |         b[i - 1] = c; | 
 |       } | 
 |     } | 
 |     for (i = k; i < n - 1; i++) { | 
 |       if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0; | 
 |       c = A[(i + 1) * stride + k] / A[k * stride + k]; | 
 |       for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; | 
 |       b[i + 1] -= c * b[k]; | 
 |     } | 
 |   } | 
 |   // Backward substitution | 
 |   for (i = n - 1; i >= 0; i--) { | 
 |     if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0; | 
 |     c = 0; | 
 |     for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; | 
 |     x[i] = (b[i] - c) / A[i * stride + i]; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn, | 
 | // without destroying the contents of matrix A and vector b. | 
 | static INLINE int linsolve_const(int n, const double *A, int stride, | 
 |                                  const double *b, double *x) { | 
 |   assert(n > 0); | 
 |   assert(stride > 0); | 
 |   double *A_ = (double *)aom_malloc(sizeof(*A_) * n * n); | 
 |   double *b_ = (double *)aom_malloc(sizeof(*b_) * n); | 
 |   for (int i = 0; i < n; ++i) { | 
 |     memcpy(A_ + i * n, A + i * stride, sizeof(*A_) * n); | 
 |   } | 
 |   memcpy(b_, b, sizeof(*b_) * n); | 
 |   int ret = linsolve(n, A_, n, b_, x); | 
 |   aom_free(A_); | 
 |   aom_free(b_); | 
 |   return ret; | 
 | } | 
 |  | 
 | // Perform the Cholesky decomposition on a symmetric matrix A, and store | 
 | // the result into R. | 
 | // | 
 | // If A is no longer needed by the caller, it is safe to pass the same pointer | 
 | // as both R and M. This will perform the decomposition in place, with no | 
 | // additional storage needed. | 
 | // | 
 | // Conditions: | 
 | // 1) The input matrix must be symmetric. If not, the result will be | 
 | //    meaningless. | 
 | // 2) The input matrix must be positive-definite. If not, this function | 
 | //    will fail and return 0. | 
 | // | 
 | // A common example of a suitable matrix is the normal matrix A = M^T M from | 
 | // a regularized least squares problem. Without regularization, the matrix | 
 | // may only be positive semi-definite, and the decomposition may fail. | 
 | // | 
 | // Traditionally, the Cholesky decomposition computes a lower-triangular | 
 | // matrix L such that L L^T = A . Here we transpose the process, instead | 
 | // computing an upper-triangular matrix R such that R^T R = A. | 
 | // | 
 | // This is done to help simplify the callers of this code - all of the | 
 | // complicated parts need to work with R (== L^T), and not R^T (== L). | 
 | // So, by building R instead of L, we don't need to implicitly transpose | 
 | // later, which removes a bit of mental overhead from the more complex | 
 | // parts of the code. | 
 | // | 
 | // We also invert the diagonal elements of R, so that later code can use | 
 | // multiplications instead of divisions. | 
 | // | 
 | // Returns 1 on success, 0 on failure. | 
 | static INLINE int cholesky_decompose(int n, const double *A, double *R, | 
 |                                      int stride) { | 
 |   for (int i = 0; i < n; i++) { | 
 |     // Compute diagonal element and invert | 
 |     double diag = A[i * stride + i]; | 
 |     for (int k = 0; k < i; k++) { | 
 |       diag -= R[k * stride + i] * R[k * stride + i]; | 
 |     } | 
 |     if (diag <= 0.0) return 0; | 
 |     diag = 1.0 / sqrt(diag); | 
 |     R[i * stride + i] = diag; | 
 |  | 
 |     // Compute off-diagonal elements on this row | 
 |     for (int j = i + 1; j < n; j++) { | 
 |       double v = A[i * stride + j]; | 
 |       for (int k = 0; k < i; k++) { | 
 |         v -= R[k * stride + i] * R[k * stride + j]; | 
 |       } | 
 |       R[i * stride + j] = v * diag; | 
 |     } | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | // Solve A x = b, where A is a symmetric positive-definite matrix. | 
 | // See cholesky_decompose() for conditions on A. | 
 | // | 
 | // If A and b are no longer needed by the caller, it is safe to pass the same | 
 | // pointer for R and M, and similarly for x and b. This will solve the equations | 
 | // in place, with no additional storage needed. | 
 | // | 
 | // Returns 1 on success, 0 on failure. | 
 | static INLINE int linsolve_spd(int n, const double *A, double *R, int stride, | 
 |                                const double *b, double *x) { | 
 |   // Decompose A = R^T R | 
 |   if (!cholesky_decompose(n, A, R, stride)) return 0; | 
 |  | 
 |   // Forward substitution | 
 |   // This step solves the equations R^T y = b, and stores y into x | 
 |   for (int i = 0; i < n; i++) { | 
 |     double v = b[i]; | 
 |     for (int j = 0; j < i; j++) { | 
 |       v -= R[j * stride + i] * x[j]; | 
 |     } | 
 |     x[i] = v * R[i * stride + i]; | 
 |   } | 
 |  | 
 |   // Backward substitution | 
 |   // This step solves the equations R x = y | 
 |   for (int i = n - 1; i >= 0; i--) { | 
 |     double v = x[i]; | 
 |     for (int j = i + 1; j < n; j++) { | 
 |       v -= R[i * stride + j] * x[j]; | 
 |     } | 
 |     x[i] = v * R[i * stride + i]; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // Similar to linsolve_spd, except that each output parameter is quantized to | 
 | // an integer, which is stored in `x`. This implements the "bootstrap | 
 | // quantization" algorithm [TODO: Insert citation]. | 
 | // | 
 | // This function requires n * sizeof(double) bytes of auxiliary storage, | 
 | // provided as the "tmp" argument. If the caller does not need b after this | 
 | // function, it is safe to pass the same pointer as tmp and b, to reuse | 
 | // this space. | 
 | // | 
 | // When applied to a least squares problem, this method almost always gives a | 
 | // better result than a simple solve-then-quantize approach, although the result | 
 | // is still not guaranteed to be completely optimal. | 
 | // | 
 | // The constraints supported are that variable i is quantized in units of | 
 | // prec[i], then clamped between min[i] and max[i], and finally scaled by | 
 | // a multiplier scale[i]. | 
 | static INLINE int linsolve_spd_quantize(int n, const double *A, double *R, | 
 |                                         int stride, const double *b, | 
 |                                         double *tmp, int32_t *x, | 
 |                                         const double *prec, const int32_t *min, | 
 |                                         const int32_t *max, | 
 |                                         const int32_t *scale) { | 
 |   if (!cholesky_decompose(n, A, R, stride)) return 0; | 
 |  | 
 |   // Forward substitution | 
 |   // This step solves the equations R^T y = b, and stores y into tmp | 
 |   for (int i = 0; i < n; i++) { | 
 |     double v = b[i]; | 
 |     for (int j = 0; j < i; j++) { | 
 |       v -= R[j * stride + i] * tmp[j]; | 
 |     } | 
 |     tmp[i] = v * R[i * stride + i]; | 
 |   } | 
 |  | 
 |   // Backward substitution + quantization | 
 |   // This step solves the equations R x = y | 
 |   for (int i = n - 1; i >= 0; i--) { | 
 |     double v = tmp[i]; | 
 |     for (int j = i + 1; j < n; j++) { | 
 |       v -= R[i * stride + j] * tmp[j]; | 
 |     } | 
 |     v *= R[i * stride + i]; | 
 |  | 
 |     // Quantize | 
 |     // After quantization, we need to simultaneously rescale: | 
 |     // 1) to the original scale and store back into tmp, for use in later | 
 |     //    equations | 
 |     // 2) to the model scale and store into x, for output | 
 |     int32_t quantized = clamp((int)rint(v * prec[i]), min[i], max[i]); | 
 |     tmp[i] = (double)quantized / prec[i]; | 
 |     x[i] = quantized * scale[i]; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // Least-squares | 
 | // Solves for n-dim x in a least squares sense to minimize |Ax - b|^2 | 
 | // The solution is simply x = (A'A)^-1 A'b or simply the solution for | 
 | // the system: A'A x = A'b | 
 | // | 
 | // This process is split into three steps in order to avoid needing to | 
 | // explicitly allocate the A matrix, which may be very large if there | 
 | // are many equations to solve. | 
 | // | 
 | // The process for using this is (in pseudocode): | 
 | // | 
 | // Allocate mat (size n*n), y (size n), a (size n), x (size n) | 
 | // least_squares_init(mat, y, n) | 
 | // for each equation a . x = b { | 
 | //    least_squares_accumulate(mat, y, a, b, n) | 
 | // } | 
 | // least_squares_solve(mat, y, x, n) | 
 | // | 
 | // where: | 
 | // * mat, y are accumulators for the values A'A and A'b respectively, | 
 | // * a, b are the coefficients of each individual equation, | 
 | // * x is the result vector | 
 | // * and n is the problem size | 
 | static INLINE void least_squares_init(double *mat, double *y, int n) { | 
 |   memset(mat, 0, n * n * sizeof(double)); | 
 |   memset(y, 0, n * sizeof(double)); | 
 | } | 
 |  | 
 | // Round the given positive value to nearest integer | 
 | static AOM_FORCE_INLINE int iroundpf(float x) { | 
 |   assert(x >= 0.0); | 
 |   return (int)(x + 0.5f); | 
 | } | 
 |  | 
 | static INLINE void least_squares_accumulate(double *mat, double *y, | 
 |                                             const double *a, double b, int n) { | 
 |   // Only fill the upper triangle of the matrix, as this is all that is | 
 |   // needed by linsolve_spd() | 
 |   for (int i = 0; i < n; i++) { | 
 |     for (int j = i; j < n; j++) { | 
 |       mat[i * n + j] += a[i] * a[j]; | 
 |     } | 
 |   } | 
 |   for (int i = 0; i < n; i++) { | 
 |     y[i] += a[i] * b; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE int least_squares_solve(const double *A, double *R, | 
 |                                       const double *y, double *x, int n) { | 
 |   return linsolve_spd(n, A, R, n, y, x); | 
 | } | 
 |  | 
 | static INLINE int least_squares_solve_quant( | 
 |     const double *A, double *R, const double *y, double *tmp, int32_t *x, int n, | 
 |     const double *prec, const int32_t *min, const int32_t *max, | 
 |     const int32_t *scale) { | 
 |   return linsolve_spd_quantize(n, A, R, n, y, tmp, x, prec, min, max, scale); | 
 | } | 
 |  | 
 | // Matrix multiply | 
 | static INLINE void multiply_mat(const double *m1, const double *m2, double *res, | 
 |                                 const int m1_rows, const int inner_dim, | 
 |                                 const int m2_cols) { | 
 |   double sum; | 
 |  | 
 |   int row, col, inner; | 
 |   for (row = 0; row < m1_rows; ++row) { | 
 |     for (col = 0; col < m2_cols; ++col) { | 
 |       sum = 0; | 
 |       for (inner = 0; inner < inner_dim; ++inner) | 
 |         sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col]; | 
 |       *(res++) = sum; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // | 
 | // The functions below are needed only for homography computation | 
 | // Remove if the homography models are not used. | 
 | // | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 | // svdcmp | 
 | // Adopted from Numerical Recipes in C | 
 |  | 
 | static INLINE double sign(double a, double b) { | 
 |   return ((b) >= 0 ? fabs(a) : -fabs(a)); | 
 | } | 
 |  | 
 | static INLINE double pythag(double a, double b) { | 
 |   double ct; | 
 |   const double absa = fabs(a); | 
 |   const double absb = fabs(b); | 
 |  | 
 |   if (absa > absb) { | 
 |     ct = absb / absa; | 
 |     return absa * sqrt(1.0 + ct * ct); | 
 |   } else { | 
 |     ct = absa / absb; | 
 |     return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct); | 
 |   } | 
 | } | 
 |  | 
 | static INLINE int svdcmp(double **u, int m, int n, double w[], double **v) { | 
 |   const int max_its = 30; | 
 |   int flag, i, its, j, jj, k, l, nm; | 
 |   double anorm, c, f, g, h, s, scale, x, y, z; | 
 |   double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1)); | 
 |   g = scale = anorm = 0.0; | 
 |   for (i = 0; i < n; i++) { | 
 |     l = i + 1; | 
 |     rv1[i] = scale * g; | 
 |     g = s = scale = 0.0; | 
 |     if (i < m) { | 
 |       for (k = i; k < m; k++) scale += fabs(u[k][i]); | 
 |       if (scale != 0.) { | 
 |         for (k = i; k < m; k++) { | 
 |           u[k][i] /= scale; | 
 |           s += u[k][i] * u[k][i]; | 
 |         } | 
 |         f = u[i][i]; | 
 |         g = -sign(sqrt(s), f); | 
 |         h = f * g - s; | 
 |         u[i][i] = f - g; | 
 |         for (j = l; j < n; j++) { | 
 |           for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j]; | 
 |           f = s / h; | 
 |           for (k = i; k < m; k++) u[k][j] += f * u[k][i]; | 
 |         } | 
 |         for (k = i; k < m; k++) u[k][i] *= scale; | 
 |       } | 
 |     } | 
 |     w[i] = scale * g; | 
 |     g = s = scale = 0.0; | 
 |     if (i < m && i != n - 1) { | 
 |       for (k = l; k < n; k++) scale += fabs(u[i][k]); | 
 |       if (scale != 0.) { | 
 |         for (k = l; k < n; k++) { | 
 |           u[i][k] /= scale; | 
 |           s += u[i][k] * u[i][k]; | 
 |         } | 
 |         f = u[i][l]; | 
 |         g = -sign(sqrt(s), f); | 
 |         h = f * g - s; | 
 |         u[i][l] = f - g; | 
 |         for (k = l; k < n; k++) rv1[k] = u[i][k] / h; | 
 |         for (j = l; j < m; j++) { | 
 |           for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k]; | 
 |           for (k = l; k < n; k++) u[j][k] += s * rv1[k]; | 
 |         } | 
 |         for (k = l; k < n; k++) u[i][k] *= scale; | 
 |       } | 
 |     } | 
 |     anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i]))); | 
 |   } | 
 |  | 
 |   for (i = n - 1; i >= 0; i--) { | 
 |     if (i < n - 1) { | 
 |       if (g != 0.) { | 
 |         for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g; | 
 |         for (j = l; j < n; j++) { | 
 |           for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j]; | 
 |           for (k = l; k < n; k++) v[k][j] += s * v[k][i]; | 
 |         } | 
 |       } | 
 |       for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0; | 
 |     } | 
 |     v[i][i] = 1.0; | 
 |     g = rv1[i]; | 
 |     l = i; | 
 |   } | 
 |   for (i = AOMMIN(m, n) - 1; i >= 0; i--) { | 
 |     l = i + 1; | 
 |     g = w[i]; | 
 |     for (j = l; j < n; j++) u[i][j] = 0.0; | 
 |     if (g != 0.) { | 
 |       g = 1.0 / g; | 
 |       for (j = l; j < n; j++) { | 
 |         for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j]; | 
 |         f = (s / u[i][i]) * g; | 
 |         for (k = i; k < m; k++) u[k][j] += f * u[k][i]; | 
 |       } | 
 |       for (j = i; j < m; j++) u[j][i] *= g; | 
 |     } else { | 
 |       for (j = i; j < m; j++) u[j][i] = 0.0; | 
 |     } | 
 |     ++u[i][i]; | 
 |   } | 
 |   for (k = n - 1; k >= 0; k--) { | 
 |     for (its = 0; its < max_its; its++) { | 
 |       flag = 1; | 
 |       for (l = k; l >= 0; l--) { | 
 |         nm = l - 1; | 
 |         if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) { | 
 |           flag = 0; | 
 |           break; | 
 |         } | 
 |         if ((double)(fabs(w[nm]) + anorm) == anorm) break; | 
 |       } | 
 |       if (flag) { | 
 |         c = 0.0; | 
 |         s = 1.0; | 
 |         for (i = l; i <= k; i++) { | 
 |           f = s * rv1[i]; | 
 |           rv1[i] = c * rv1[i]; | 
 |           if ((double)(fabs(f) + anorm) == anorm) break; | 
 |           g = w[i]; | 
 |           h = pythag(f, g); | 
 |           w[i] = h; | 
 |           h = 1.0 / h; | 
 |           c = g * h; | 
 |           s = -f * h; | 
 |           for (j = 0; j < m; j++) { | 
 |             y = u[j][nm]; | 
 |             z = u[j][i]; | 
 |             u[j][nm] = y * c + z * s; | 
 |             u[j][i] = z * c - y * s; | 
 |           } | 
 |         } | 
 |       } | 
 |       z = w[k]; | 
 |       if (l == k) { | 
 |         if (z < 0.0) { | 
 |           w[k] = -z; | 
 |           for (j = 0; j < n; j++) v[j][k] = -v[j][k]; | 
 |         } | 
 |         break; | 
 |       } | 
 |       if (its == max_its - 1) { | 
 |         aom_free(rv1); | 
 |         return 1; | 
 |       } | 
 |       assert(k > 0); | 
 |       x = w[l]; | 
 |       nm = k - 1; | 
 |       y = w[nm]; | 
 |       g = rv1[nm]; | 
 |       h = rv1[k]; | 
 |       f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y); | 
 |       g = pythag(f, 1.0); | 
 |       f = ((x - z) * (x + z) + h * ((y / (f + sign(g, f))) - h)) / x; | 
 |       c = s = 1.0; | 
 |       for (j = l; j <= nm; j++) { | 
 |         i = j + 1; | 
 |         g = rv1[i]; | 
 |         y = w[i]; | 
 |         h = s * g; | 
 |         g = c * g; | 
 |         z = pythag(f, h); | 
 |         rv1[j] = z; | 
 |         c = f / z; | 
 |         s = h / z; | 
 |         f = x * c + g * s; | 
 |         g = g * c - x * s; | 
 |         h = y * s; | 
 |         y *= c; | 
 |         for (jj = 0; jj < n; jj++) { | 
 |           x = v[jj][j]; | 
 |           z = v[jj][i]; | 
 |           v[jj][j] = x * c + z * s; | 
 |           v[jj][i] = z * c - x * s; | 
 |         } | 
 |         z = pythag(f, h); | 
 |         w[j] = z; | 
 |         if (z != 0.) { | 
 |           z = 1.0 / z; | 
 |           c = f * z; | 
 |           s = h * z; | 
 |         } | 
 |         f = c * g + s * y; | 
 |         x = c * y - s * g; | 
 |         for (jj = 0; jj < m; jj++) { | 
 |           y = u[jj][j]; | 
 |           z = u[jj][i]; | 
 |           u[jj][j] = y * c + z * s; | 
 |           u[jj][i] = z * c - y * s; | 
 |         } | 
 |       } | 
 |       rv1[l] = 0.0; | 
 |       rv1[k] = f; | 
 |       w[k] = x; | 
 |     } | 
 |   } | 
 |   aom_free(rv1); | 
 |   return 0; | 
 | } | 
 |  | 
 | static INLINE int SVD(double *U, double *W, double *V, double *matx, int M, | 
 |                       int N) { | 
 |   // Assumes allocation for U is MxN | 
 |   double **nrU = (double **)aom_malloc((M) * sizeof(*nrU)); | 
 |   double **nrV = (double **)aom_malloc((N) * sizeof(*nrV)); | 
 |   int problem, i; | 
 |  | 
 |   problem = !(nrU && nrV); | 
 |   if (!problem) { | 
 |     for (i = 0; i < M; i++) { | 
 |       nrU[i] = &U[i * N]; | 
 |     } | 
 |     for (i = 0; i < N; i++) { | 
 |       nrV[i] = &V[i * N]; | 
 |     } | 
 |   } else { | 
 |     if (nrU) aom_free(nrU); | 
 |     if (nrV) aom_free(nrV); | 
 |     return 1; | 
 |   } | 
 |  | 
 |   /* copy from given matx into nrU */ | 
 |   for (i = 0; i < M; i++) { | 
 |     memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx)); | 
 |   } | 
 |  | 
 |   /* HERE IT IS: do SVD */ | 
 |   if (svdcmp(nrU, M, N, W, nrV)) { | 
 |     aom_free(nrU); | 
 |     aom_free(nrV); | 
 |     return 1; | 
 |   } | 
 |  | 
 |   /* aom_free Numerical Recipes arrays */ | 
 |   aom_free(nrU); | 
 |   aom_free(nrV); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // Finds n - dimensional KLT to decorrelate n image components of size | 
 | // width x height stored in components arrays each with the same stride. | 
 | // The n x n forward KLT is returned in klt array which is assumed to store n^2 | 
 | // values in the KLT matrix in row by row order. | 
 | // Returns 0 for success, 1 for failure. | 
 | static INLINE int klt_components(int n, const int16_t **components, int width, | 
 |                                  int height, int stride, double *klt) { | 
 |   const int size = width * height; | 
 |   double one_by_size = 1.0 / size; | 
 |   int64_t *sumsq = (int64_t *)aom_malloc(n * (n + 2) * sizeof(*sumsq)); | 
 |   if (!sumsq) return 1; | 
 |   int64_t *sum = sumsq + n * n; | 
 |   int64_t *vec = sum + n; | 
 |  | 
 |   double *covar = (double *)aom_malloc(2 * n * (n + 1) * sizeof(*covar)); | 
 |   if (!covar) { | 
 |     aom_free(sumsq); | 
 |     return 1; | 
 |   } | 
 |   double *means = covar + n * n; | 
 |   double *V = means + n; | 
 |   double *W = V + n * n; | 
 |  | 
 |   for (int i = 0; i < n; ++i) sum[i] = 0; | 
 |   for (int i = 0; i < n * n; ++i) sumsq[i] = 0; | 
 |   for (int r = 0; r < height; ++r) { | 
 |     for (int c = 0; c < width; ++c) { | 
 |       const int o = r * stride + c; | 
 |       for (int i = 0; i < n; ++i) vec[i] = components[i][o]; | 
 |       for (int i = 0; i < n; ++i) { | 
 |         for (int j = i; j < n; ++j) sumsq[i * n + j] += vec[i] * vec[j]; | 
 |         sum[i] += vec[i]; | 
 |       } | 
 |     } | 
 |   } | 
 |   for (int i = 0; i < n; ++i) means[i] = (double)sum[i] * one_by_size; | 
 |   for (int i = 0; i < n; ++i) | 
 |     for (int j = i; j < n; ++j) | 
 |       covar[i * n + j] = | 
 |           (double)sumsq[i * n + j] * one_by_size - means[i] * means[j]; | 
 |  | 
 |   // Fill up with Symmetry | 
 |   for (int i = 0; i < n; ++i) | 
 |     for (int j = 0; j < i; ++j) covar[i * n + j] = covar[j * n + i]; | 
 |   aom_free(sumsq); | 
 |  | 
 |   int res = SVD(klt, W, V, covar, n, n); | 
 |   if (!res) { | 
 |     // Transpose to get the forward klt | 
 |     for (int i = 0; i < n; ++i) { | 
 |       for (int j = i + 1; j < n; ++j) { | 
 |         double tmp = klt[i * n + j]; | 
 |         klt[i * n + j] = klt[j * n + i]; | 
 |         klt[j * n + i] = tmp; | 
 |       } | 
 |     } | 
 |     // As a convention make the first column of the KLT non-negative | 
 |     for (int i = 0; i < n; ++i) { | 
 |       if (klt[i * n] < 0.0) { | 
 |         for (int j = 0; j < n; ++j) klt[i * n + j] = -klt[i * n + j]; | 
 |       } | 
 |     } | 
 |   } | 
 |   aom_free(covar); | 
 |   return res; | 
 | } | 
 |  | 
 | // Variation of the above where filtered versions of the components | 
 | // are used where the filter kernel is provided as an input. | 
 | static INLINE int klt_filtered_components(int n, const int16_t **components, | 
 |                                           int width, int height, int stride, | 
 |                                           int kernel_size, int *kernel, | 
 |                                           double *klt) { | 
 |   assert(kernel_size & 1);  // must be odd | 
 |   const int half_kernel_size = kernel_size >> 1; | 
 |   assert(width > 2 * half_kernel_size); | 
 |   assert(height > 2 * half_kernel_size); | 
 |   const int size = | 
 |       (width - 2 * half_kernel_size) * (height - 2 * half_kernel_size); | 
 |  | 
 |   double one_by_size = 1.0 / size; | 
 |   int64_t *sumsq = (int64_t *)aom_malloc(n * (n + 2) * sizeof(*sumsq)); | 
 |   if (!sumsq) return 1; | 
 |   int64_t *sum = sumsq + n * n; | 
 |   int64_t *vec = sum + n; | 
 |  | 
 |   double *covar = (double *)aom_malloc(2 * n * (n + 1) * sizeof(*covar)); | 
 |   if (!covar) { | 
 |     aom_free(sumsq); | 
 |     return 1; | 
 |   } | 
 |   double *means = covar + n * n; | 
 |   double *V = means + n; | 
 |   double *W = V + n * n; | 
 |  | 
 |   for (int i = 0; i < n; ++i) sum[i] = 0; | 
 |   for (int i = 0; i < n * n; ++i) sumsq[i] = 0; | 
 |   for (int r = half_kernel_size; r < height - half_kernel_size; ++r) { | 
 |     for (int c = half_kernel_size; c < width - half_kernel_size; ++c) { | 
 |       const int o = r * stride + c; | 
 |       for (int i = 0; i < n; ++i) { | 
 |         vec[i] = 0; | 
 |         int m = 0; | 
 |         for (int k = -half_kernel_size; k <= half_kernel_size; ++k) | 
 |           for (int l = -half_kernel_size; l <= half_kernel_size; ++l) | 
 |             vec[i] += components[i][o + k * stride + l] * kernel[m++]; | 
 |       } | 
 |       for (int i = 0; i < n; ++i) { | 
 |         for (int j = i; j < n; ++j) sumsq[i * n + j] += vec[i] * vec[j]; | 
 |         sum[i] += vec[i]; | 
 |       } | 
 |     } | 
 |   } | 
 |   for (int i = 0; i < n; ++i) means[i] = (double)sum[i] * one_by_size; | 
 |   for (int i = 0; i < n; ++i) | 
 |     for (int j = i; j < n; ++j) | 
 |       covar[i * n + j] = | 
 |           (double)sumsq[i * n + j] * one_by_size - means[i] * means[j]; | 
 |  | 
 |   // Fill up with Symmetry | 
 |   for (int i = 0; i < n; ++i) | 
 |     for (int j = 0; j < i; ++j) covar[i * n + j] = covar[j * n + i]; | 
 |   aom_free(sumsq); | 
 |  | 
 |   int res = SVD(klt, W, V, covar, n, n); | 
 |   if (!res) { | 
 |     // Transpose to get the forward klt | 
 |     for (int i = 0; i < n; ++i) { | 
 |       for (int j = i + 1; j < n; ++j) { | 
 |         double tmp = klt[i * n + j]; | 
 |         klt[i * n + j] = klt[j * n + i]; | 
 |         klt[j * n + i] = tmp; | 
 |       } | 
 |     } | 
 |     // As a convention make the first column of the KLT non-negative | 
 |     for (int i = 0; i < n; ++i) { | 
 |       if (klt[i * n] < 0.0) { | 
 |         for (int j = 0; j < n; ++j) klt[i * n + j] = -klt[i * n + j]; | 
 |       } | 
 |     } | 
 |   } | 
 |   aom_free(covar); | 
 |   return res; | 
 | } | 
 | #endif  // AOM_AOM_DSP_MATHUTILS_H_ |