|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include "av1/common/warped_motion.h" | 
|  |  | 
|  | #include "av1/encoder/encodeframe.h" | 
|  | #include "av1/encoder/encodeframe_utils.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/encoder_alloc.h" | 
|  | #include "av1/encoder/ethread.h" | 
|  | #include "av1/encoder/firstpass.h" | 
|  | #include "av1/encoder/global_motion.h" | 
|  | #include "av1/encoder/global_motion_facade.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "av1/encoder/tpl_model.h" | 
|  |  | 
|  | static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) { | 
|  | for (int i = 0; i < REFERENCE_MODES; i++) | 
|  | td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i]; | 
|  |  | 
|  | td->rd_counts.compound_ref_used_flag |= | 
|  | td_t->rd_counts.compound_ref_used_flag; | 
|  | td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag; | 
|  |  | 
|  | for (int i = 0; i < TX_SIZES_ALL; i++) { | 
|  | for (int j = 0; j < TX_TYPES; j++) | 
|  | td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j]; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 2; i++) { | 
|  | td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &cpi->td.mb.e_mbd; | 
|  | const int mib_size = cm->mib_size; | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int row = 0; row < cm->tiles.rows; row++) { | 
|  | for (int col = 0; col < cm->tiles.cols; col++) { | 
|  | TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col]; | 
|  | const TileInfo *const tile_info = &tile_data->tile_info; | 
|  | for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; | 
|  | mi_row += mib_size) { | 
|  | if (mi_row == tile_info->mi_row_start) | 
|  | av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); | 
|  | for (int mi_col = tile_info->mi_col_start; | 
|  | mi_col < tile_info->mi_col_end; mi_col += mib_size) { | 
|  | const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col; | 
|  | MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str; | 
|  | MB_MODE_INFO *mbmi = mi[0]; | 
|  | if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 1 && | 
|  | (mbmi->sb_type[xd->tree_type == CHROMA_PART] == cm->sb_size)) { | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) | 
|  | mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; | 
|  | mbmi->delta_lf_from_base = xd->delta_lf_from_base; | 
|  | } else { | 
|  | if (cm->delta_q_info.delta_lf_multi) { | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) | 
|  | xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; | 
|  | } else { | 
|  | xd->delta_lf_from_base = mbmi->delta_lf_from_base; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, | 
|  | int c) { | 
|  | (void)row_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | return; | 
|  | } | 
|  |  | 
|  | void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, | 
|  | int c, int cols) { | 
|  | (void)row_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)cols; | 
|  | return; | 
|  | } | 
|  |  | 
|  | void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | const int nsync = row_mt_sync->sync_range; | 
|  |  | 
|  | if (r) { | 
|  | pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1]; | 
|  | pthread_mutex_lock(mutex); | 
|  |  | 
|  | while (c > row_mt_sync->num_finished_cols[r - 1] - nsync) { | 
|  | pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex); | 
|  | } | 
|  | pthread_mutex_unlock(mutex); | 
|  | } | 
|  | #else | 
|  | (void)row_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c, | 
|  | int cols) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | const int nsync = row_mt_sync->sync_range; | 
|  | int cur; | 
|  | // Only signal when there are enough encoded blocks for next row to run. | 
|  | int sig = 1; | 
|  |  | 
|  | if (c < cols - 1) { | 
|  | cur = c; | 
|  | if (c % nsync) sig = 0; | 
|  | } else { | 
|  | cur = cols + nsync; | 
|  | } | 
|  |  | 
|  | if (sig) { | 
|  | pthread_mutex_lock(&row_mt_sync->mutex_[r]); | 
|  |  | 
|  | row_mt_sync->num_finished_cols[r] = cur; | 
|  |  | 
|  | pthread_cond_signal(&row_mt_sync->cond_[r]); | 
|  | pthread_mutex_unlock(&row_mt_sync->mutex_[r]); | 
|  | } | 
|  | #else | 
|  | (void)row_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)cols; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | // Allocate memory for row synchronization | 
|  | static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync, | 
|  | AV1_COMMON *cm, int rows) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | int i; | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, row_mt_sync->mutex_, | 
|  | aom_malloc(sizeof(*row_mt_sync->mutex_) * rows)); | 
|  | if (row_mt_sync->mutex_) { | 
|  | for (i = 0; i < rows; ++i) { | 
|  | pthread_mutex_init(&row_mt_sync->mutex_[i], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, row_mt_sync->cond_, | 
|  | aom_malloc(sizeof(*row_mt_sync->cond_) * rows)); | 
|  | if (row_mt_sync->cond_) { | 
|  | for (i = 0; i < rows; ++i) { | 
|  | pthread_cond_init(&row_mt_sync->cond_[i], NULL); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols, | 
|  | aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows)); | 
|  |  | 
|  | row_mt_sync->rows = rows; | 
|  | // Set up nsync. | 
|  | row_mt_sync->sync_range = 1; | 
|  | } | 
|  |  | 
|  | // Deallocate row based multi-threading synchronization related mutex and data | 
|  | static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) { | 
|  | if (row_mt_sync != NULL) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | int i; | 
|  |  | 
|  | if (row_mt_sync->mutex_ != NULL) { | 
|  | for (i = 0; i < row_mt_sync->rows; ++i) { | 
|  | pthread_mutex_destroy(&row_mt_sync->mutex_[i]); | 
|  | } | 
|  | aom_free(row_mt_sync->mutex_); | 
|  | } | 
|  | if (row_mt_sync->cond_ != NULL) { | 
|  | for (i = 0; i < row_mt_sync->rows; ++i) { | 
|  | pthread_cond_destroy(&row_mt_sync->cond_[i]); | 
|  | } | 
|  | aom_free(row_mt_sync->cond_); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | aom_free(row_mt_sync->num_finished_cols); | 
|  |  | 
|  | // clear the structure as the source of this call may be dynamic change | 
|  | // in tiles in which case this call will be followed by an _alloc() | 
|  | // which may fail. | 
|  | av1_zero(*row_mt_sync); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols, | 
|  | int alloc_row_ctx) { | 
|  | struct AV1Common *cm = &cpi->common; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int tile_col, tile_row; | 
|  |  | 
|  | // Allocate memory for row based multi-threading | 
|  | for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | int tile_index = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; | 
|  |  | 
|  | row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows); | 
|  |  | 
|  | this_tile->row_ctx = NULL; | 
|  | if (alloc_row_ctx) { | 
|  | assert(max_cols > 0); | 
|  | const int num_row_ctx = AOMMAX(1, (max_cols - 1)); | 
|  | CHECK_MEM_ERROR(cm, this_tile->row_ctx, | 
|  | (FRAME_CONTEXT *)aom_memalign( | 
|  | 16, num_row_ctx * sizeof(*this_tile->row_ctx))); | 
|  | } | 
|  | } | 
|  | } | 
|  | enc_row_mt->allocated_tile_cols = tile_cols; | 
|  | enc_row_mt->allocated_tile_rows = tile_rows; | 
|  | enc_row_mt->allocated_rows = max_rows; | 
|  | enc_row_mt->allocated_cols = max_cols - 1; | 
|  | } | 
|  |  | 
|  | void av1_row_mt_mem_dealloc(AV1_COMP *cpi) { | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; | 
|  | const int tile_cols = enc_row_mt->allocated_tile_cols; | 
|  | const int tile_rows = enc_row_mt->allocated_tile_rows; | 
|  | int tile_col, tile_row; | 
|  |  | 
|  | // Free row based multi-threading sync memory | 
|  | for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | int tile_index = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; | 
|  |  | 
|  | row_mt_sync_mem_dealloc(&this_tile->row_mt_sync); | 
|  |  | 
|  | if (cpi->oxcf.algo_cfg.cdf_update_mode) aom_free(this_tile->row_ctx); | 
|  | } | 
|  | } | 
|  | enc_row_mt->allocated_rows = 0; | 
|  | enc_row_mt->allocated_cols = 0; | 
|  | enc_row_mt->allocated_tile_cols = 0; | 
|  | enc_row_mt->allocated_tile_rows = 0; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id, | 
|  | int num_tiles, int num_workers) { | 
|  | int tile_id = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_workers; i++) { | 
|  | thread_id_to_tile_id[i] = tile_id++; | 
|  | if (tile_id == num_tiles) tile_id = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int get_next_job(TileDataEnc *const tile_data, | 
|  | int *current_mi_row, int mib_size) { | 
|  | AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; | 
|  | const int mi_row_end = tile_data->tile_info.mi_row_end; | 
|  |  | 
|  | if (row_mt_sync->next_mi_row < mi_row_end) { | 
|  | *current_mi_row = row_mt_sync->next_mi_row; | 
|  | row_mt_sync->num_threads_working++; | 
|  | row_mt_sync->next_mi_row += mib_size; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void switch_tile_and_get_next_job( | 
|  | AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id, | 
|  | int *current_mi_row, int *end_of_frame, int is_firstpass) { | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  |  | 
|  | int tile_id = -1;  // Stores the tile ID with minimum proc done | 
|  | int max_mis_to_encode = 0; | 
|  | int min_num_threads_working = INT_MAX; | 
|  |  | 
|  | for (int tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | for (int tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | int tile_index = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *const this_tile = &tile_data[tile_index]; | 
|  | AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; | 
|  |  | 
|  | int num_b_rows_in_tile = | 
|  | is_firstpass ? av1_get_mb_rows_in_tile(this_tile->tile_info) | 
|  | : av1_get_sb_rows_in_tile(cm, this_tile->tile_info); | 
|  | int num_b_cols_in_tile = | 
|  | is_firstpass ? av1_get_mb_cols_in_tile(this_tile->tile_info) | 
|  | : av1_get_sb_cols_in_tile(cm, this_tile->tile_info); | 
|  | int theoretical_limit_on_threads = | 
|  | AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile); | 
|  | int num_threads_working = row_mt_sync->num_threads_working; | 
|  |  | 
|  | if (num_threads_working < theoretical_limit_on_threads) { | 
|  | int num_mis_to_encode = | 
|  | this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row; | 
|  |  | 
|  | // Tile to be processed by this thread is selected on the basis of | 
|  | // availability of jobs: | 
|  | // 1) If jobs are available, tile to be processed is chosen on the | 
|  | // basis of minimum number of threads working for that tile. If two or | 
|  | // more tiles have same number of threads working for them, then the | 
|  | // tile with maximum number of jobs available will be chosen. | 
|  | // 2) If no jobs are available, then end_of_frame is reached. | 
|  | if (num_mis_to_encode > 0) { | 
|  | if (num_threads_working < min_num_threads_working) { | 
|  | min_num_threads_working = num_threads_working; | 
|  | max_mis_to_encode = 0; | 
|  | } | 
|  | if (num_threads_working == min_num_threads_working && | 
|  | num_mis_to_encode > max_mis_to_encode) { | 
|  | tile_id = tile_index; | 
|  | max_mis_to_encode = num_mis_to_encode; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (tile_id == -1) { | 
|  | *end_of_frame = 1; | 
|  | } else { | 
|  | // Update the current tile id to the tile id that will be processed next, | 
|  | // which will be the least processed tile. | 
|  | *cur_tile_id = tile_id; | 
|  | get_next_job(&tile_data[tile_id], current_mi_row, | 
|  | is_firstpass ? FP_MIB_SIZE : cm->mib_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) { | 
|  | EncWorkerData *const thread_data = (EncWorkerData *)arg1; | 
|  | AV1_COMP *const cpi = thread_data->cpi; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | int thread_id = thread_data->thread_id; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; | 
|  | int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; | 
|  | #endif | 
|  | (void)unused; | 
|  |  | 
|  | assert(cur_tile_id != -1); | 
|  |  | 
|  | int end_of_frame = 0; | 
|  | while (1) { | 
|  | int current_mi_row = -1; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, | 
|  | FP_MIB_SIZE)) { | 
|  | // No jobs are available for the current tile. Query for the status of | 
|  | // other tiles and get the next job if available | 
|  | switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, | 
|  | ¤t_mi_row, &end_of_frame, 1); | 
|  | } | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | if (end_of_frame == 1) break; | 
|  |  | 
|  | TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; | 
|  | AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; | 
|  | ThreadData *td = thread_data->td; | 
|  |  | 
|  | assert(current_mi_row != -1 && | 
|  | current_mi_row <= this_tile->tile_info.mi_row_end); | 
|  |  | 
|  | av1_first_pass_row(cpi, td, this_tile, current_mi_row >> FP_MIB_SIZE_LOG2); | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | row_mt_sync->num_threads_working--; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int enc_row_mt_worker_hook(void *arg1, void *unused) { | 
|  | EncWorkerData *const thread_data = (EncWorkerData *)arg1; | 
|  | AV1_COMP *const cpi = thread_data->cpi; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | int thread_id = thread_data->thread_id; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; | 
|  | int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; | 
|  | #endif | 
|  | (void)unused; | 
|  |  | 
|  | assert(cur_tile_id != -1); | 
|  |  | 
|  | int end_of_frame = 0; | 
|  | while (1) { | 
|  | int current_mi_row = -1; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, | 
|  | cm->mib_size)) { | 
|  | // No jobs are available for the current tile. Query for the status of | 
|  | // other tiles and get the next job if available | 
|  | switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, | 
|  | ¤t_mi_row, &end_of_frame, 0); | 
|  | } | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | if (end_of_frame == 1) break; | 
|  |  | 
|  | TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; | 
|  | AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; | 
|  | const TileInfo *const tile_info = &this_tile->tile_info; | 
|  | const int tile_row = tile_info->tile_row; | 
|  | const int tile_col = tile_info->tile_col; | 
|  | ThreadData *td = thread_data->td; | 
|  |  | 
|  | assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end); | 
|  |  | 
|  | td->mb.e_mbd.tile_ctx = td->tctx; | 
|  | td->mb.tile_pb_ctx = &this_tile->tctx; | 
|  |  | 
|  | if (this_tile->allow_update_cdf) { | 
|  | td->mb.row_ctx = this_tile->row_ctx; | 
|  | if (current_mi_row == tile_info->mi_row_start) | 
|  | memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); | 
|  | } else { | 
|  | memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); | 
|  | } | 
|  |  | 
|  | av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, | 
|  | &td->mb.e_mbd); | 
|  |  | 
|  | cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params); | 
|  | av1_crc32c_calculator_init( | 
|  | &td->mb.txfm_search_info.mb_rd_record.crc_calculator); | 
|  | av1_zero(td->mb.e_mbd.ref_mv_bank); | 
|  | #if !CONFIG_MVP_IMPROVEMENT | 
|  | td->mb.e_mbd.ref_mv_bank_pt = &td->mb.e_mbd.ref_mv_bank; | 
|  | #endif | 
|  |  | 
|  | av1_zero(td->mb.e_mbd.warp_param_bank); | 
|  | #if !WARP_CU_BANK | 
|  | td->mb.e_mbd.warp_param_bank_pt = &td->mb.e_mbd.warp_param_bank; | 
|  | #endif  //! WARP_CU_BANK | 
|  |  | 
|  | av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row); | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | row_mt_sync->num_threads_working--; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(enc_row_mt_mutex_); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int enc_worker_hook(void *arg1, void *unused) { | 
|  | EncWorkerData *const thread_data = (EncWorkerData *)arg1; | 
|  | AV1_COMP *const cpi = thread_data->cpi; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int t; | 
|  |  | 
|  | (void)unused; | 
|  |  | 
|  | for (t = thread_data->start; t < tile_rows * tile_cols; | 
|  | t += cpi->mt_info.num_workers) { | 
|  | int tile_row = t / tile_cols; | 
|  | int tile_col = t % tile_cols; | 
|  |  | 
|  | TileDataEnc *const this_tile = | 
|  | &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; | 
|  | thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx; | 
|  | thread_data->td->mb.tile_pb_ctx = &this_tile->tctx; | 
|  | av1_encode_tile(cpi, thread_data->td, tile_row, tile_col); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void create_enc_workers(AV1_COMP *cpi, int num_workers) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | int sb_mi_size = av1_get_sb_mi_size(cm); | 
|  |  | 
|  | assert(mt_info->workers != NULL); | 
|  | assert(mt_info->tile_thr_data != NULL); | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (cpi->oxcf.row_mt == 1) { | 
|  | AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt; | 
|  | if (enc_row_mt->mutex_ == NULL) { | 
|  | CHECK_MEM_ERROR(cm, enc_row_mt->mutex_, | 
|  | aom_malloc(sizeof(*(enc_row_mt->mutex_)))); | 
|  | if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL); | 
|  | } | 
|  | } | 
|  | AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync; | 
|  | if (gm_sync->mutex_ == NULL) { | 
|  | CHECK_MEM_ERROR(cm, gm_sync->mutex_, | 
|  | aom_malloc(sizeof(*(gm_sync->mutex_)))); | 
|  | if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &mt_info->workers[i]; | 
|  | EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; | 
|  |  | 
|  | ++mt_info->num_enc_workers; | 
|  |  | 
|  | thread_data->cpi = cpi; | 
|  | thread_data->thread_id = i; | 
|  |  | 
|  | if (i > 0) { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | thread_data->td->sb_size = cpi->td.sb_size; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Set up sms_tree. | 
|  | av1_setup_sms_tree(cpi, thread_data->td); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | av1_setup_sms_bufs(cm, thread_data->td); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | for (int x = 0; x < 2; x++) | 
|  | for (int y = 0; y < 2; y++) | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->hash_value_buffer[x][y], | 
|  | (uint32_t *)aom_malloc( | 
|  | AOM_BUFFER_SIZE_FOR_BLOCK_HASH * | 
|  | sizeof(*thread_data->td->hash_value_buffer[0][0]))); | 
|  |  | 
|  | // Allocate frame counters in thread data. | 
|  | CHECK_MEM_ERROR(cm, thread_data->td->counts, | 
|  | aom_calloc(1, sizeof(*thread_data->td->counts))); | 
|  |  | 
|  | // Allocate buffers used by palette coding mode. | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->palette_buffer, | 
|  | aom_memalign(16, sizeof(*thread_data->td->palette_buffer))); | 
|  |  | 
|  | alloc_compound_type_rd_buffers(cm, &thread_data->td->comp_rd_buffer); | 
|  |  | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->tmp_conv_dst, | 
|  | aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * | 
|  | sizeof(*thread_data->td->tmp_conv_dst))); | 
|  |  | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->coef_info, | 
|  | aom_malloc(MAX_TX_SQUARE * sizeof(*thread_data->td->coef_info))); | 
|  |  | 
|  | // Temporary buffers used during the DMVR and OPFL processing. | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->opfl_vxy_bufs, | 
|  | aom_memalign( | 
|  | 32, N_OF_OFFSETS * 4 * sizeof(*thread_data->td->opfl_vxy_bufs))); | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->opfl_gxy_bufs, | 
|  | aom_memalign( | 
|  | 32, MAX_SB_SQUARE * 4 * sizeof(*thread_data->td->opfl_gxy_bufs))); | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->opfl_dst_bufs, | 
|  | aom_memalign( | 
|  | 32, MAX_SB_SQUARE * 2 * sizeof(*thread_data->td->opfl_dst_bufs))); | 
|  |  | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->upsample_pred, | 
|  | aom_memalign(16, ((MAX_SB_SIZE + 16) + 16) * MAX_SB_SIZE * | 
|  | sizeof(*thread_data->td->upsample_pred))); | 
|  |  | 
|  | for (int j = 0; j < 2; ++j) { | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->tmp_pred_bufs[j], | 
|  | aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * | 
|  | sizeof(*thread_data->td->tmp_pred_bufs[j]))); | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->mbmi_ext, | 
|  | aom_calloc(sb_mi_size, sizeof(*thread_data->td->mbmi_ext))); | 
|  |  | 
|  | // Create threads | 
|  | if (!winterface->reset(worker)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
|  | "Tile encoder thread creation failed"); | 
|  | } else { | 
|  | // Main thread acts as a worker and uses the thread data in cpi. | 
|  | thread_data->td = &cpi->td; | 
|  | } | 
|  | if (cpi->oxcf.row_mt == 1) | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->td->tctx, | 
|  | (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx))); | 
|  | winterface->sync(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_create_workers(AV1_COMP *cpi, int num_workers) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, mt_info->workers, | 
|  | aom_malloc(num_workers * sizeof(*mt_info->workers))); | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, mt_info->tile_thr_data, | 
|  | aom_calloc(num_workers, sizeof(*mt_info->tile_thr_data))); | 
|  |  | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &mt_info->workers[i]; | 
|  | EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; | 
|  |  | 
|  | winterface->init(worker); | 
|  | worker->thread_name = "aom enc worker"; | 
|  |  | 
|  | if (i > 0) { | 
|  | // Allocate thread data. | 
|  | CHECK_MEM_ERROR(cm, thread_data->td, | 
|  | aom_memalign(32, sizeof(*thread_data->td))); | 
|  | av1_zero(*thread_data->td); | 
|  |  | 
|  | // Set up shared coeff buffers. | 
|  | av1_setup_shared_coeff_buffer(cm, &thread_data->td->shared_coeff_buf); | 
|  | } | 
|  | ++mt_info->num_workers; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void fp_create_enc_workers(AV1_COMP *cpi, int num_workers) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  |  | 
|  | assert(mt_info->workers != NULL); | 
|  | assert(mt_info->tile_thr_data != NULL); | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt; | 
|  | if (enc_row_mt->mutex_ == NULL) { | 
|  | CHECK_MEM_ERROR(cm, enc_row_mt->mutex_, | 
|  | aom_malloc(sizeof(*(enc_row_mt->mutex_)))); | 
|  | if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &mt_info->workers[i]; | 
|  | EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; | 
|  |  | 
|  | ++mt_info->num_fp_workers; | 
|  |  | 
|  | thread_data->cpi = cpi; | 
|  | thread_data->thread_id = i; | 
|  |  | 
|  | if (i > 0) { | 
|  | // Set up firstpass PICK_MODE_CONTEXT. | 
|  | thread_data->td->firstpass_ctx = av1_alloc_pmc( | 
|  | cm, SHARED_PART, 0, 0, BLOCK_16X16, NULL, PARTITION_NONE, 0, | 
|  | cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, | 
|  | &thread_data->td->shared_coeff_buf); | 
|  |  | 
|  | // Create threads | 
|  | if (!winterface->reset(worker)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
|  | "Tile encoder thread creation failed"); | 
|  | } else { | 
|  | // Main thread acts as a worker and uses the thread data in cpi. | 
|  | thread_data->td = &cpi->td; | 
|  | } | 
|  | winterface->sync(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void launch_enc_workers(MultiThreadInfo *const mt_info, | 
|  | int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | // Encode a frame | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &mt_info->workers[i]; | 
|  | EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; | 
|  |  | 
|  | // Set the starting tile for each thread. | 
|  | thread_data->start = i; | 
|  |  | 
|  | if (i == 0) | 
|  | winterface->execute(worker); | 
|  | else | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info, | 
|  | AV1_COMMON *const cm, int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int had_error = 0; | 
|  |  | 
|  | // Encoding ends. | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &mt_info->workers[i]; | 
|  | had_error |= !winterface->sync(worker); | 
|  | } | 
|  |  | 
|  | if (had_error) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
|  | "Failed to encode tile data"); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi, | 
|  | int num_workers) { | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &cpi->mt_info.workers[i]; | 
|  | EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; | 
|  | cpi->intrabc_used |= thread_data->td->intrabc_used; | 
|  | cpi->deltaq_used |= thread_data->td->deltaq_used; | 
|  | #if CONFIG_SCC_DETERMINATION | 
|  | cpi->palette_pixel_num += thread_data->td->mb.palette_pixels; | 
|  | #endif  // CONFIG_SCC_DETERMINATION | 
|  | dealloc_inter_modes_info_data(&thread_data->td->mb); | 
|  |  | 
|  | // Accumulate counters. | 
|  | if (i > 0) { | 
|  | av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts); | 
|  | accumulate_rd_opt(&cpi->td, thread_data->td); | 
|  | cpi->td.mb.txfm_search_info.txb_split_count += | 
|  | thread_data->td->mb.txfm_search_info.txb_split_count; | 
|  | #if CONFIG_SPEED_STATS | 
|  | cpi->td.mb.txfm_search_info.tx_search_count += | 
|  | thread_data->td->mb.txfm_search_info.tx_search_count; | 
|  | #endif  // CONFIG_SPEED_STATS | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, | 
|  | int num_workers) { | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &mt_info->workers[i]; | 
|  | EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; | 
|  |  | 
|  | worker->hook = hook; | 
|  | worker->data1 = thread_data; | 
|  | worker->data2 = NULL; | 
|  |  | 
|  | thread_data->cpi = cpi; | 
|  | if (i == 0) { | 
|  | thread_data->td = &cpi->td; | 
|  | } | 
|  |  | 
|  | thread_data->td->intrabc_used = 0; | 
|  | thread_data->td->deltaq_used = 0; | 
|  |  | 
|  | // Before encoding a frame, copy the thread data from cpi. | 
|  | if (thread_data->td != &cpi->td) { | 
|  | thread_data->td->mb = cpi->td.mb; | 
|  | thread_data->td->rd_counts = cpi->td.rd_counts; | 
|  |  | 
|  | for (int x = 0; x < 2; x++) { | 
|  | for (int y = 0; y < 2; y++) { | 
|  | memcpy(thread_data->td->hash_value_buffer[x][y], | 
|  | cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y], | 
|  | AOM_BUFFER_SIZE_FOR_BLOCK_HASH * | 
|  | sizeof(*thread_data->td->hash_value_buffer[0][0])); | 
|  | thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] = | 
|  | thread_data->td->hash_value_buffer[x][y]; | 
|  | } | 
|  | } | 
|  | thread_data->td->mb.mbmi_ext = thread_data->td->mbmi_ext; | 
|  | } | 
|  | #if CONFIG_SCC_DETERMINATION | 
|  | thread_data->td->mb.palette_pixels = 0; | 
|  | #endif  // CONFIG_SCC_DETERMINATION | 
|  |  | 
|  | alloc_inter_modes_info_data(&cpi->common, &thread_data->td->mb); | 
|  | if (thread_data->td->counts != &cpi->counts) { | 
|  | memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts)); | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (thread_data->td->sb_size != cpi->common.sb_size) { | 
|  | av1_free_sms_tree(thread_data->td); | 
|  | av1_setup_sms_tree(cpi, thread_data->td); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | if (i > 0) { | 
|  | thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer; | 
|  | thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer; | 
|  | thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst; | 
|  | thread_data->td->mb.upsample_pred = thread_data->td->upsample_pred; | 
|  | thread_data->td->mb.coef_info = thread_data->td->coef_info; | 
|  | // Temporary buffers used during the DMVR and OPFL processing. | 
|  | thread_data->td->mb.opfl_vxy_bufs = thread_data->td->opfl_vxy_bufs; | 
|  | thread_data->td->mb.opfl_gxy_bufs = thread_data->td->opfl_gxy_bufs; | 
|  | thread_data->td->mb.opfl_dst_bufs = thread_data->td->opfl_dst_bufs; | 
|  |  | 
|  | for (int j = 0; j < 2; ++j) { | 
|  | thread_data->td->mb.tmp_pred_bufs[j] = | 
|  | thread_data->td->tmp_pred_bufs[j]; | 
|  | } | 
|  |  | 
|  | thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst; | 
|  | thread_data->td->mb.e_mbd.tmp_upsample_pred = | 
|  | thread_data->td->mb.upsample_pred; | 
|  | // Temporary buffers used during the DMVR and OPFL processing. | 
|  | thread_data->td->mb.e_mbd.opfl_vxy_bufs = | 
|  | thread_data->td->mb.opfl_vxy_bufs; | 
|  | thread_data->td->mb.e_mbd.opfl_gxy_bufs = | 
|  | thread_data->td->mb.opfl_gxy_bufs; | 
|  | thread_data->td->mb.e_mbd.opfl_dst_bufs = | 
|  | thread_data->td->mb.opfl_dst_bufs; | 
|  | } | 
|  | av1_zero(thread_data->td->mb.e_mbd.ref_mv_bank); | 
|  | #if !CONFIG_MVP_IMPROVEMENT | 
|  | thread_data->td->mb.e_mbd.ref_mv_bank_pt = | 
|  | &thread_data->td->mb.e_mbd.ref_mv_bank; | 
|  |  | 
|  | #endif | 
|  | av1_zero(thread_data->td->mb.e_mbd.warp_param_bank); | 
|  | #if !WARP_CU_BANK | 
|  | thread_data->td->mb.e_mbd.warp_param_bank_pt = | 
|  | &thread_data->td->mb.e_mbd.warp_param_bank; | 
|  | #endif  //! WARP_CU_BANK | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, | 
|  | int num_workers) { | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &mt_info->workers[i]; | 
|  | EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; | 
|  |  | 
|  | worker->hook = hook; | 
|  | worker->data1 = thread_data; | 
|  | worker->data2 = NULL; | 
|  |  | 
|  | thread_data->cpi = cpi; | 
|  | if (i == 0) { | 
|  | thread_data->td = &cpi->td; | 
|  | } | 
|  |  | 
|  | // Before encoding a frame, copy the thread data from cpi. | 
|  | if (thread_data->td != &cpi->td) { | 
|  | thread_data->td->mb = cpi->td.mb; | 
|  | } | 
|  |  | 
|  | if (i > 0) { | 
|  | thread_data->td->mb.upsample_pred = thread_data->td->upsample_pred; | 
|  | thread_data->td->mb.e_mbd.tmp_upsample_pred = | 
|  | thread_data->td->mb.upsample_pred; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes the number of workers for row multi-threading of encoding stage | 
|  | static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm, | 
|  | int max_threads) { | 
|  | TileInfo tile_info; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int total_num_threads_row_mt = 0; | 
|  | for (int row = 0; row < tile_rows; row++) { | 
|  | for (int col = 0; col < tile_cols; col++) { | 
|  | av1_tile_init(&tile_info, cm, row, col); | 
|  | const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info); | 
|  | const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); | 
|  | total_num_threads_row_mt += | 
|  | AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile); | 
|  | } | 
|  | } | 
|  | return AOMMIN(max_threads, total_num_threads_row_mt); | 
|  | } | 
|  |  | 
|  | // Computes the number of workers for tile multi-threading of encoding stage | 
|  | static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm, | 
|  | int max_threads) { | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | return AOMMIN(max_threads, tile_cols * tile_rows); | 
|  | } | 
|  |  | 
|  | // Computes the number of workers for encoding stage (row/tile multi-threading) | 
|  | int av1_compute_num_enc_workers(AV1_COMP *cpi, int max_workers) { | 
|  | if (max_workers <= 1) return 1; | 
|  | if (cpi->oxcf.row_mt) | 
|  | return compute_num_enc_row_mt_workers(&cpi->common, max_workers); | 
|  | else | 
|  | return compute_num_enc_tile_mt_workers(&cpi->common, max_workers); | 
|  | } | 
|  |  | 
|  | void av1_encode_tiles_mt(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int num_workers = av1_compute_num_enc_workers(cpi, mt_info->num_workers); | 
|  |  | 
|  | assert(IMPLIES(cpi->tile_data == NULL, | 
|  | cpi->allocated_tiles < tile_cols * tile_rows)); | 
|  | if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); | 
|  |  | 
|  | av1_init_tile_data(cpi); | 
|  | // Only run once to create threads and allocate thread data. | 
|  | if (mt_info->num_enc_workers == 0) { | 
|  | create_enc_workers(cpi, num_workers); | 
|  | } else { | 
|  | num_workers = AOMMIN(num_workers, mt_info->num_enc_workers); | 
|  | } | 
|  | prepare_enc_workers(cpi, enc_worker_hook, num_workers); | 
|  | launch_enc_workers(&cpi->mt_info, num_workers); | 
|  | sync_enc_workers(&cpi->mt_info, cm, num_workers); | 
|  | accumulate_counters_enc_workers(cpi, num_workers); | 
|  | } | 
|  |  | 
|  | // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int' | 
|  | // members, so we treat it as an array, and sum over the whole length. | 
|  | void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts, | 
|  | const FRAME_COUNTS *counts) { | 
|  | unsigned int *const acc = (unsigned int *)acc_counts; | 
|  | const unsigned int *const cnt = (const unsigned int *)counts; | 
|  |  | 
|  | const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int); | 
|  |  | 
|  | for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i]; | 
|  | } | 
|  |  | 
|  | // Computes the maximum number of sb_rows for row multi-threading of encoding | 
|  | // stage | 
|  | static AOM_INLINE void compute_max_sb_rows_cols(AV1_COMP *cpi, int *max_sb_rows, | 
|  | int *max_sb_cols) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | for (int row = 0; row < tile_rows; row++) { | 
|  | for (int col = 0; col < tile_cols; col++) { | 
|  | const int tile_index = row * cm->tiles.cols + col; | 
|  | TileInfo tile_info = cpi->tile_data[tile_index].tile_info; | 
|  | const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info); | 
|  | const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); | 
|  | *max_sb_rows = AOMMAX(*max_sb_rows, num_sb_rows_in_tile); | 
|  | *max_sb_cols = AOMMAX(*max_sb_cols, num_sb_cols_in_tile); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes the number of workers for firstpass stage (row/tile multi-threading) | 
|  | int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int total_num_threads_row_mt = 0; | 
|  | TileInfo tile_info; | 
|  |  | 
|  | if (cpi->oxcf.max_threads <= 1) return 1; | 
|  |  | 
|  | for (int row = 0; row < tile_rows; row++) { | 
|  | for (int col = 0; col < tile_cols; col++) { | 
|  | av1_tile_init(&tile_info, cm, row, col); | 
|  | const int num_mb_rows_in_tile = av1_get_mb_rows_in_tile(tile_info); | 
|  | const int num_mb_cols_in_tile = av1_get_mb_cols_in_tile(tile_info); | 
|  | total_num_threads_row_mt += | 
|  | AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile); | 
|  | } | 
|  | } | 
|  | return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt); | 
|  | } | 
|  |  | 
|  | // Computes the maximum number of mb_rows for row multi-threading of firstpass | 
|  | // stage | 
|  | static AOM_INLINE int fp_compute_max_mb_rows( | 
|  | const AV1_COMMON *const cm, const TileDataEnc *const tile_data) { | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int max_mb_rows = 0; | 
|  | for (int row = 0; row < tile_rows; row++) { | 
|  | for (int col = 0; col < tile_cols; col++) { | 
|  | const int tile_index = row * cm->tiles.cols + col; | 
|  | TileInfo tile_info = tile_data[tile_index].tile_info; | 
|  | const int num_mb_rows_in_tile = av1_get_mb_rows_in_tile(tile_info); | 
|  | max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile); | 
|  | } | 
|  | } | 
|  | return max_mb_rows; | 
|  | } | 
|  |  | 
|  | void av1_encode_tiles_row_mt(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; | 
|  | int max_sb_rows = 0, max_sb_cols = 0; | 
|  |  | 
|  | // TODO(ravi.chaudhary@ittiam.com): Currently the percentage of | 
|  | // post-processing stages in encoder is quiet low, so limiting the number of | 
|  | // threads to the theoretical limit in row-mt does not have much impact on | 
|  | // post-processing multi-threading stage. Need to revisit this when | 
|  | // post-processing time starts shooting up. | 
|  | int num_workers = av1_compute_num_enc_workers(cpi, mt_info->num_workers); | 
|  |  | 
|  | assert(IMPLIES(cpi->tile_data == NULL, | 
|  | cpi->allocated_tiles < tile_cols * tile_rows)); | 
|  | if (cpi->allocated_tiles < tile_cols * tile_rows) { | 
|  | av1_row_mt_mem_dealloc(cpi); | 
|  | av1_alloc_tile_data(cpi); | 
|  | } | 
|  |  | 
|  | av1_init_tile_data(cpi); | 
|  |  | 
|  | compute_max_sb_rows_cols(cpi, &max_sb_rows, &max_sb_cols); | 
|  |  | 
|  | if (enc_row_mt->allocated_tile_cols != tile_cols || | 
|  | enc_row_mt->allocated_tile_rows != tile_rows || | 
|  | enc_row_mt->allocated_rows != max_sb_rows || | 
|  | enc_row_mt->allocated_cols != (max_sb_cols - 1)) { | 
|  | av1_row_mt_mem_dealloc(cpi); | 
|  | row_mt_mem_alloc(cpi, max_sb_rows, max_sb_cols, | 
|  | cpi->oxcf.algo_cfg.cdf_update_mode); | 
|  | } | 
|  |  | 
|  | memset(thread_id_to_tile_id, -1, | 
|  | sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); | 
|  |  | 
|  | for (int tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | for (int tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | int tile_index = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; | 
|  | AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; | 
|  |  | 
|  | // Initialize num_finished_cols to -1 for all rows. | 
|  | memset(row_mt_sync->num_finished_cols, -1, | 
|  | sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows); | 
|  | row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; | 
|  | row_mt_sync->num_threads_working = 0; | 
|  |  | 
|  | av1_inter_mode_data_init(this_tile); | 
|  | av1_zero_above_context(cm, &cpi->td.mb.e_mbd, | 
|  | this_tile->tile_info.mi_col_start, | 
|  | this_tile->tile_info.mi_col_end, tile_row); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only run once to create threads and allocate thread data. | 
|  | if (mt_info->num_enc_workers == 0) { | 
|  | create_enc_workers(cpi, num_workers); | 
|  | } else { | 
|  | num_workers = AOMMIN(num_workers, mt_info->num_enc_workers); | 
|  | } | 
|  | assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, | 
|  | num_workers); | 
|  | prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers); | 
|  | launch_enc_workers(&cpi->mt_info, num_workers); | 
|  | sync_enc_workers(&cpi->mt_info, cm, num_workers); | 
|  | if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi); | 
|  | accumulate_counters_enc_workers(cpi, num_workers); | 
|  | } | 
|  |  | 
|  | void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; | 
|  | int num_workers = 0; | 
|  | int max_mb_rows = 0; | 
|  |  | 
|  | assert(IMPLIES(cpi->tile_data == NULL, | 
|  | cpi->allocated_tiles < tile_cols * tile_rows)); | 
|  | if (cpi->allocated_tiles < tile_cols * tile_rows) { | 
|  | av1_row_mt_mem_dealloc(cpi); | 
|  | av1_alloc_tile_data(cpi); | 
|  | } | 
|  |  | 
|  | av1_init_tile_data(cpi); | 
|  |  | 
|  | max_mb_rows = fp_compute_max_mb_rows(cm, cpi->tile_data); | 
|  |  | 
|  | // TODO(ravi.chaudhary@ittiam.com): Currently the percentage of | 
|  | // post-processing stages in encoder is quiet low, so limiting the number of | 
|  | // threads to the theoretical limit in row-mt does not have much impact on | 
|  | // post-processing multi-threading stage. Need to revisit this when | 
|  | // post-processing time starts shooting up. | 
|  | num_workers = av1_fp_compute_num_enc_workers(cpi); | 
|  |  | 
|  | if (enc_row_mt->allocated_tile_cols != tile_cols || | 
|  | enc_row_mt->allocated_tile_rows != tile_rows || | 
|  | enc_row_mt->allocated_rows != max_mb_rows) { | 
|  | av1_row_mt_mem_dealloc(cpi); | 
|  | row_mt_mem_alloc(cpi, max_mb_rows, -1, 0); | 
|  | } | 
|  |  | 
|  | memset(thread_id_to_tile_id, -1, | 
|  | sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); | 
|  |  | 
|  | for (int tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | for (int tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | int tile_index = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; | 
|  | AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; | 
|  |  | 
|  | // Initialize num_finished_cols to -1 for all rows. | 
|  | memset(row_mt_sync->num_finished_cols, -1, | 
|  | sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows); | 
|  | row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; | 
|  | row_mt_sync->num_threads_working = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | num_workers = AOMMIN(num_workers, mt_info->num_workers); | 
|  | // Only run once to create threads and allocate thread data. | 
|  | if (mt_info->num_fp_workers == 0) fp_create_enc_workers(cpi, num_workers); | 
|  | assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, | 
|  | num_workers); | 
|  | fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers); | 
|  | launch_enc_workers(&cpi->mt_info, num_workers); | 
|  | sync_enc_workers(&cpi->mt_info, cm, num_workers); | 
|  | } | 
|  |  | 
|  | void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, | 
|  | int r, int c) { | 
|  | (void)tpl_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | return; | 
|  | } | 
|  |  | 
|  | void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, | 
|  | int r, int c, int cols) { | 
|  | (void)tpl_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)cols; | 
|  | return; | 
|  | } | 
|  |  | 
|  | void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, | 
|  | int c) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | int nsync = tpl_row_mt_sync->sync_range; | 
|  |  | 
|  | if (r) { | 
|  | pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1]; | 
|  | pthread_mutex_lock(mutex); | 
|  |  | 
|  | while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync) | 
|  | pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex); | 
|  | pthread_mutex_unlock(mutex); | 
|  | } | 
|  | #else | 
|  | (void)tpl_row_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, | 
|  | int c, int cols) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | int nsync = tpl_row_mt_sync->sync_range; | 
|  | int cur; | 
|  | // Only signal when there are enough encoded blocks for next row to run. | 
|  | int sig = 1; | 
|  |  | 
|  | if (c < cols - 1) { | 
|  | cur = c; | 
|  | if (c % nsync) sig = 0; | 
|  | } else { | 
|  | cur = cols + nsync; | 
|  | } | 
|  |  | 
|  | if (sig) { | 
|  | pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]); | 
|  |  | 
|  | tpl_row_mt_sync->num_finished_cols[r] = cur; | 
|  |  | 
|  | pthread_cond_signal(&tpl_row_mt_sync->cond_[r]); | 
|  | pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]); | 
|  | } | 
|  | #else | 
|  | (void)tpl_row_mt_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)cols; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | // Each worker calls tpl_worker_hook() and computes the tpl data. | 
|  | static int tpl_worker_hook(void *arg1, void *unused) { | 
|  | (void)unused; | 
|  | EncWorkerData *thread_data = (EncWorkerData *)arg1; | 
|  | AV1_COMP *cpi = thread_data->cpi; | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCK *x = &thread_data->td->mb; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | CommonModeInfoParams *mi_params = &cm->mi_params; | 
|  | BLOCK_SIZE bsize = convert_length_to_bsize(cpi->tpl_data.tpl_bsize_1d); | 
|  | TX_SIZE tx_size = max_txsize_lookup[bsize]; | 
|  | int mi_height = mi_size_high[bsize]; | 
|  | int num_active_workers = cpi->tpl_data.tpl_mt_sync.num_threads_working; | 
|  | for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows; | 
|  | mi_row += num_active_workers * mi_height) { | 
|  | // Motion estimation row boundary | 
|  | av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height, | 
|  | cpi->oxcf.border_in_pixels); | 
|  | xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); | 
|  | xd->mb_to_bottom_edge = | 
|  | GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE); | 
|  | av1_mc_flow_dispenser_row(cpi, x, mi_row, bsize, tx_size); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Deallocate tpl synchronization related mutex and data. | 
|  | void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) { | 
|  | assert(tpl_sync != NULL); | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (tpl_sync->mutex_ != NULL) { | 
|  | for (int i = 0; i < tpl_sync->rows; ++i) | 
|  | pthread_mutex_destroy(&tpl_sync->mutex_[i]); | 
|  | aom_free(tpl_sync->mutex_); | 
|  | } | 
|  | if (tpl_sync->cond_ != NULL) { | 
|  | for (int i = 0; i < tpl_sync->rows; ++i) | 
|  | pthread_cond_destroy(&tpl_sync->cond_[i]); | 
|  | aom_free(tpl_sync->cond_); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  |  | 
|  | aom_free(tpl_sync->num_finished_cols); | 
|  | // clear the structure as the source of this call may be a resize in which | 
|  | // case this call will be followed by an _alloc() which may fail. | 
|  | av1_zero(*tpl_sync); | 
|  | } | 
|  |  | 
|  | // Allocate memory for tpl row synchronization. | 
|  | void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm, | 
|  | int mb_rows) { | 
|  | tpl_sync->rows = mb_rows; | 
|  | #if CONFIG_MULTITHREAD | 
|  | { | 
|  | CHECK_MEM_ERROR(cm, tpl_sync->mutex_, | 
|  | aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows)); | 
|  | if (tpl_sync->mutex_) { | 
|  | for (int i = 0; i < mb_rows; ++i) | 
|  | pthread_mutex_init(&tpl_sync->mutex_[i], NULL); | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, tpl_sync->cond_, | 
|  | aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows)); | 
|  | if (tpl_sync->cond_) { | 
|  | for (int i = 0; i < mb_rows; ++i) | 
|  | pthread_cond_init(&tpl_sync->cond_[i], NULL); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols, | 
|  | aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows)); | 
|  |  | 
|  | // Set up nsync. | 
|  | tpl_sync->sync_range = 1; | 
|  | } | 
|  |  | 
|  | // Each worker is prepared by assigning the hook function and individual thread | 
|  | // data. | 
|  | static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook, | 
|  | int num_workers) { | 
|  | MultiThreadInfo *mt_info = &cpi->mt_info; | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *worker = &mt_info->workers[i]; | 
|  | EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; | 
|  |  | 
|  | worker->hook = hook; | 
|  | worker->data1 = thread_data; | 
|  | worker->data2 = NULL; | 
|  |  | 
|  | thread_data->cpi = cpi; | 
|  | if (i == 0) { | 
|  | thread_data->td = &cpi->td; | 
|  | } | 
|  |  | 
|  | // Before encoding a frame, copy the thread data from cpi. | 
|  | if (thread_data->td != &cpi->td) { | 
|  | thread_data->td->mb = cpi->td.mb; | 
|  | thread_data->td->mb.mbmi_ext = thread_data->td->mbmi_ext; | 
|  | } | 
|  |  | 
|  | if (i > 0) { | 
|  | thread_data->td->mb.upsample_pred = thread_data->td->upsample_pred; | 
|  | thread_data->td->mb.e_mbd.tmp_upsample_pred = | 
|  | thread_data->td->mb.upsample_pred; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes num_workers for tpl multi-threading. | 
|  | static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) { | 
|  | return av1_compute_num_enc_workers(cpi, cpi->mt_info.num_workers); | 
|  | } | 
|  |  | 
|  | // Implements multi-threading for tpl. | 
|  | void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | CommonModeInfoParams *mi_params = &cm->mi_params; | 
|  | MultiThreadInfo *mt_info = &cpi->mt_info; | 
|  | TplParams *tpl_data = &cpi->tpl_data; | 
|  | AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync; | 
|  | int mb_rows = mi_params->mb_rows; | 
|  | int num_workers = compute_num_tpl_workers(cpi); | 
|  |  | 
|  | if (mt_info->num_enc_workers == 0) | 
|  | create_enc_workers(cpi, num_workers); | 
|  | else | 
|  | num_workers = AOMMIN(num_workers, mt_info->num_enc_workers); | 
|  |  | 
|  | if (mb_rows != tpl_sync->rows) { | 
|  | av1_tpl_dealloc(tpl_sync); | 
|  | av1_tpl_alloc(tpl_sync, cm, mb_rows); | 
|  | } | 
|  | tpl_sync->num_threads_working = num_workers; | 
|  |  | 
|  | // Initialize cur_mb_col to -1 for all MB rows. | 
|  | memset(tpl_sync->num_finished_cols, -1, | 
|  | sizeof(*tpl_sync->num_finished_cols) * mb_rows); | 
|  |  | 
|  | prepare_tpl_workers(cpi, tpl_worker_hook, num_workers); | 
|  | launch_enc_workers(&cpi->mt_info, num_workers); | 
|  | sync_enc_workers(&cpi->mt_info, cm, num_workers); | 
|  | } | 
|  |  | 
|  | // Checks if a job is available in the current direction. If a job is available, | 
|  | // frame_idx will be populated and returns 1, else returns 0. | 
|  | static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx, | 
|  | int cur_dir) { | 
|  | GlobalMotionInfo *gm_info = &cpi->gm_info; | 
|  | JobInfo *job_info = &cpi->mt_info.gm_sync.job_info; | 
|  |  | 
|  | int total_refs = gm_info->num_ref_frames[cur_dir]; | 
|  | int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir]; | 
|  |  | 
|  | if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) { | 
|  | *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame; | 
|  | job_info->next_frame_to_process[cur_dir] += 1; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Switches the current direction and calls the function get_next_gm_job() if | 
|  | // the speed feature 'prune_ref_frame_for_gm_search' is not set. | 
|  | static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx, | 
|  | int *cur_dir) { | 
|  | if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return; | 
|  | // Switch the direction and get next job | 
|  | *cur_dir = !(*cur_dir); | 
|  | get_next_gm_job(cpi, frame_idx, *(cur_dir)); | 
|  | } | 
|  |  | 
|  | // Initializes inliers, num_inliers and segment_map. | 
|  | static AOM_INLINE void init_gm_thread_data( | 
|  | const GlobalMotionInfo *gm_info, GlobalMotionThreadData *thread_data) { | 
|  | for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { | 
|  | MotionModel motion_params = thread_data->motion_models[m]; | 
|  | av1_zero(motion_params.params); | 
|  | motion_params.num_inliers = 0; | 
|  | } | 
|  |  | 
|  | av1_zero_array(thread_data->segment_map, | 
|  | gm_info->segment_map_w * gm_info->segment_map_h); | 
|  | } | 
|  |  | 
|  | // Hook function for each thread in global motion multi-threading. | 
|  | static int gm_mt_worker_hook(void *arg1, void *unused) { | 
|  | (void)unused; | 
|  |  | 
|  | EncWorkerData *thread_data = (EncWorkerData *)arg1; | 
|  | AV1_COMP *cpi = thread_data->cpi; | 
|  | MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; | 
|  | GlobalMotionInfo *gm_info = &cpi->gm_info; | 
|  | MultiThreadInfo *mt_info = &cpi->mt_info; | 
|  | JobInfo *job_info = &mt_info->gm_sync.job_info; | 
|  | int thread_id = thread_data->thread_id; | 
|  | GlobalMotionThreadData *gm_thread_data = | 
|  | &mt_info->gm_sync.thread_data[thread_id]; | 
|  | int cur_dir = job_info->thread_id_to_dir[thread_id]; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t *gm_mt_mutex_ = mt_info->gm_sync.mutex_; | 
|  | #endif | 
|  |  | 
|  | while (1) { | 
|  | int ref_buf_idx = -1; | 
|  | int ref_frame_idx = -1; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(gm_mt_mutex_); | 
|  | #endif | 
|  |  | 
|  | // Populates ref_buf_idx(the reference frame type) for which global motion | 
|  | // estimation will be done. | 
|  | if (!get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) { | 
|  | // No jobs are available for the current direction. Switch | 
|  | // to other direction and get the next job, if available. | 
|  | switch_direction(cpi, &ref_buf_idx, &cur_dir); | 
|  | } | 
|  |  | 
|  | // 'ref_frame_idx' holds the index of the current reference frame type in | 
|  | // gm_info->reference_frames. job_info->next_frame_to_process will be | 
|  | // incremented in get_next_gm_job() and hence subtracting by 1. | 
|  | ref_frame_idx = job_info->next_frame_to_process[cur_dir] - 1; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(gm_mt_mutex_); | 
|  | #endif | 
|  |  | 
|  | if (ref_buf_idx == -1) break; | 
|  |  | 
|  | init_gm_thread_data(gm_info, gm_thread_data); | 
|  |  | 
|  | // Compute global motion for the given ref_buf_idx. | 
|  | av1_compute_gm_for_valid_ref_frames( | 
|  | cpi, xd->error_info, gm_info->ref_buf, ref_buf_idx, | 
|  | gm_thread_data->motion_models, gm_thread_data->segment_map, | 
|  | gm_info->segment_map_w, gm_info->segment_map_h); | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(gm_mt_mutex_); | 
|  | #endif | 
|  | assert(ref_frame_idx != -1); | 
|  | // If global motion w.r.t. current ref frame is | 
|  | // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t | 
|  | // the remaining ref frames in that direction. The below exit is disabled | 
|  | // when ref frame distance w.r.t. current frame is zero. E.g.: | 
|  | // source_alt_ref_frame w.r.t. ARF frames. | 
|  | if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search && | 
|  | gm_info->reference_frames[cur_dir][ref_frame_idx].distance != 0 && | 
|  | cpi->common.global_motion[ref_buf_idx].wmtype <= TRANSLATION) | 
|  | job_info->early_exit[cur_dir] = 1; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(gm_mt_mutex_); | 
|  | #endif | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Assigns global motion hook function and thread data to each worker. | 
|  | static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook, | 
|  | int num_workers) { | 
|  | MultiThreadInfo *mt_info = &cpi->mt_info; | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *worker = &mt_info->workers[i]; | 
|  | EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; | 
|  |  | 
|  | worker->hook = hook; | 
|  | worker->data1 = thread_data; | 
|  | worker->data2 = NULL; | 
|  |  | 
|  | thread_data->cpi = cpi; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assigns available threads to past/future direction. | 
|  | static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir, | 
|  | int num_workers) { | 
|  | int8_t frame_dir_idx = 0; | 
|  |  | 
|  | for (int i = 0; i < num_workers; i++) { | 
|  | thread_id_to_dir[i] = frame_dir_idx++; | 
|  | if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes number of workers for global motion multi-threading. | 
|  | static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) { | 
|  | int total_refs = | 
|  | cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1]; | 
|  | int max_num_workers = cpi->mt_info.num_workers; | 
|  | int max_allowed_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search | 
|  | ? AOMMIN(MAX_DIRECTIONS, max_num_workers) | 
|  | : max_num_workers; | 
|  |  | 
|  | return (AOMMIN(total_refs, max_allowed_workers)); | 
|  | } | 
|  |  | 
|  | // Frees the memory allocated for each worker in global motion multi-threading. | 
|  | void av1_gm_dealloc(AV1GlobalMotionSync *gm_sync_data) { | 
|  | if (gm_sync_data->thread_data != NULL) { | 
|  | for (int j = 0; j < gm_sync_data->allocated_workers; j++) { | 
|  | GlobalMotionThreadData *thread_data = &gm_sync_data->thread_data[j]; | 
|  | aom_free(thread_data->segment_map); | 
|  |  | 
|  | for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) | 
|  | aom_free(thread_data->motion_models[m].inliers); | 
|  | } | 
|  | aom_free(gm_sync_data->thread_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocates memory for inliers and segment_map for each worker in global motion | 
|  | // multi-threading. | 
|  | static AOM_INLINE void gm_alloc(AV1_COMP *cpi, int num_workers) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync; | 
|  | GlobalMotionInfo *gm_info = &cpi->gm_info; | 
|  |  | 
|  | gm_sync->allocated_workers = num_workers; | 
|  | gm_sync->allocated_width = cpi->source->y_width; | 
|  | gm_sync->allocated_height = cpi->source->y_height; | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, gm_sync->thread_data, | 
|  | aom_malloc(sizeof(*gm_sync->thread_data) * num_workers)); | 
|  |  | 
|  | for (int i = 0; i < num_workers; i++) { | 
|  | GlobalMotionThreadData *thread_data = &gm_sync->thread_data[i]; | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->segment_map, | 
|  | aom_malloc(sizeof(*thread_data->segment_map) * gm_info->segment_map_w * | 
|  | gm_info->segment_map_h)); | 
|  |  | 
|  | for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { | 
|  | CHECK_MEM_ERROR( | 
|  | cm, thread_data->motion_models[m].inliers, | 
|  | aom_malloc(sizeof(*thread_data->motion_models[m].inliers) * 2 * | 
|  | MAX_CORNERS)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Implements multi-threading for global motion. | 
|  | void av1_global_motion_estimation_mt(AV1_COMP *cpi) { | 
|  | AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync; | 
|  | JobInfo *job_info = &gm_sync->job_info; | 
|  |  | 
|  | av1_zero(*job_info); | 
|  |  | 
|  | int num_workers = compute_gm_workers(cpi); | 
|  |  | 
|  | if (num_workers > gm_sync->allocated_workers || | 
|  | cpi->source->y_width != gm_sync->allocated_width || | 
|  | cpi->source->y_height != gm_sync->allocated_height) { | 
|  | av1_gm_dealloc(gm_sync); | 
|  | gm_alloc(cpi, num_workers); | 
|  | } | 
|  |  | 
|  | assign_thread_to_dir(job_info->thread_id_to_dir, num_workers); | 
|  | prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers); | 
|  | launch_enc_workers(&cpi->mt_info, num_workers); | 
|  | sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers); | 
|  | } |