|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  | #include "config/aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/resize.h" | 
|  | #include "av1/common/restoration.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  |  | 
|  | #include "aom_ports/mem.h" | 
|  |  | 
|  | #if CONFIG_PC_WIENER || CONFIG_WIENER_NONSEP | 
|  | // Origin-symmetric taps first then the last singleton tap. | 
|  | static const int | 
|  | pcwiener_tap_config_luma[2 * NUM_PC_WIENER_TAPS_LUMA - 1][3] = { | 
|  | { -3, 0, 0 },  { 3, 0, 0 },  { -2, -1, 1 }, { 2, 1, 1 },   { -2, 0, 2 }, | 
|  | { 2, 0, 2 },   { -2, 1, 3 }, { 2, -1, 3 },  { -1, -2, 4 }, { 1, 2, 4 }, | 
|  | { -1, -1, 5 }, { 1, 1, 5 },  { -1, 0, 6 },  { 1, 0, 6 },   { -1, 1, 7 }, | 
|  | { 1, -1, 7 },  { -1, 2, 8 }, { 1, -2, 8 },  { 0, -3, 9 },  { 0, 3, 9 }, | 
|  | { 0, -2, 10 }, { 0, 2, 10 }, { 0, -1, 11 }, { 0, 1, 11 },  { 0, 0, 12 }, | 
|  | }; | 
|  | #endif  // CONFIG_PC_WIENER || CONFIG_WIENER_NONSEP | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP | 
|  | #define AOM_WIENERNS_COEFF(p, b, m, k) \ | 
|  | { (b) + (p)-6, (m) * (1 << ((p)-6)), k } | 
|  |  | 
|  | #define AOM_MAKE_WIENERNS_CONFIG(prec, config, coeff)                        \ | 
|  | {                                                                          \ | 
|  | { (prec), sizeof(config) / sizeof(config[0]), 0, (config), NULL, 0, 1 }, \ | 
|  | sizeof(coeff) / sizeof(coeff[0]), (coeff)                            \ | 
|  | } | 
|  |  | 
|  | #define AOM_MAKE_WIENERNS_CONFIG2(prec, config, config2, coeff) \ | 
|  | {                                                             \ | 
|  | { (prec),                                                   \ | 
|  | sizeof(config) / sizeof(config[0]),                       \ | 
|  | sizeof(config2) / sizeof(config2[0]),                     \ | 
|  | (config),                                                 \ | 
|  | (config2),                                                \ | 
|  | 0,                                                        \ | 
|  | 1 },                                                      \ | 
|  | sizeof(coeff) / sizeof(coeff[0]), (coeff)               \ | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////// | 
|  | // First filter configuration | 
|  | /////////////////////////////////////////////////////////////////////////// | 
|  | const int wienerns_config_y[][3] = { | 
|  | { 1, 0, 0 },  { -1, 0, 0 },  { 0, 1, 1 },   { 0, -1, 1 },  { 2, 0, 2 }, | 
|  | { -2, 0, 2 }, { 0, 2, 3 },   { 0, -2, 3 },  { 1, 1, 4 },   { -1, -1, 4 }, | 
|  | { -1, 1, 5 }, { 1, -1, 5 },  { 2, 1, 6 },   { -2, -1, 6 }, { 2, -1, 7 }, | 
|  | { -2, 1, 7 }, { 1, 2, 8 },   { -1, -2, 8 }, { 1, -2, 9 },  { -1, 2, 9 }, | 
|  | { 3, 0, 10 }, { -3, 0, 10 }, { 0, 3, 11 },  { 0, -3, 11 }, | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | { 0, 0, 12 }, | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | }; | 
|  |  | 
|  | const int wienerns_config_uv_from_uv[][3] = { | 
|  | { 1, 0, 0 }, { -1, 0, 0 },  { 0, 1, 1 },  { 0, -1, 1 }, | 
|  | { 1, 1, 2 }, { -1, -1, 2 }, { -1, 1, 3 }, { 1, -1, 3 }, | 
|  | { 2, 0, 4 }, { -2, 0, 4 },  { 0, 2, 5 },  { 0, -2, 5 }, | 
|  | }; | 
|  |  | 
|  | const int wienerns_config_uv_from_y[][3] = { | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | { 1, 0, 6 },  { -1, 0, 6 },  { 0, 1, 7 },  { 0, -1, 7 }, | 
|  | { 1, 1, 8 },  { -1, -1, 8 }, { -1, 1, 9 }, { 1, -1, 9 }, | 
|  | { 2, 0, 10 }, { -2, 0, 10 }, { 0, 2, 11 }, { 0, -2, 11 }, | 
|  | #else | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | }; | 
|  |  | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | // Filter configuration of cross component weiner filter | 
|  | const int wienerns_config_uv_from_y_cross[][3] = { | 
|  | { 1, 0, 0 }, { -1, 0, 0 },  { 0, 1, 1 },  { 0, -1, 1 }, | 
|  | { 1, 1, 2 }, { -1, -1, 2 }, { -1, 1, 3 }, { 1, -1, 3 }, | 
|  | { 2, 0, 4 }, { -2, 0, 4 },  { 0, 2, 5 },  { 0, -2, 5 }, | 
|  | }; | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  |  | 
|  | #define WIENERNS_PREC_BITS_Y 7 | 
|  | const int wienerns_coeff_y[][WIENERNS_COEFCFG_LEN] = { | 
|  | #if ENABLE_LR_4PART_CODE | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 5, -16, 0), | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | #else | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 3, -4, 2), | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y, 5, -16, 3), | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | #endif  // ENABLE_LR_4PART_CODE | 
|  | }; | 
|  |  | 
|  | #define WIENERNS_PREC_BITS_UV 7 | 
|  | const int wienerns_coeff_uv[][WIENERNS_COEFCFG_LEN] = { | 
|  | #if ENABLE_LR_4PART_CODE | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 1), | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | #else | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 3), | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 3, -4, 2), | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | #endif  // ENABLE_LR_4PART_CODE | 
|  | }; | 
|  |  | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | const int wienerns_coeff_uv_from_y[][WIENERNS_COEFCFG_LEN] = { | 
|  | #if ENABLE_LR_4PART_CODE | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 1), | 
|  | #else | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_UV, 4, -8, 3), | 
|  | #endif  // ENABLE_LR_4PART_CODE | 
|  | }; | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  |  | 
|  | const WienernsFilterParameters wienerns_filter_y = AOM_MAKE_WIENERNS_CONFIG( | 
|  | WIENERNS_PREC_BITS_Y, wienerns_config_y, wienerns_coeff_y); | 
|  | const WienernsFilterParameters wienerns_filter_uv = | 
|  | AOM_MAKE_WIENERNS_CONFIG2(WIENERNS_PREC_BITS_UV, wienerns_config_uv_from_uv, | 
|  | wienerns_config_uv_from_y, wienerns_coeff_uv); | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | const WienernsFilterParameters wienerns_cross_filter_uv = | 
|  | AOM_MAKE_WIENERNS_CONFIG(WIENERNS_PREC_BITS_UV, | 
|  | wienerns_config_uv_from_y_cross, | 
|  | wienerns_coeff_uv_from_y); | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | const WienernsFilterPairParameters wienerns_filters_midqp = { | 
|  | &wienerns_filter_y, &wienerns_filter_uv | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | , | 
|  | &wienerns_cross_filter_uv | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | }; | 
|  |  | 
|  | // Configs for the first set of filters for the case without subtract center. | 
|  | // Add a tap at (0, 0). | 
|  | const int wienerns_wout_subtract_center_config_uv_from_uv[][3] = { | 
|  | { 1, 0, 0 },   { -1, 0, 0 }, { 0, 1, 1 },  { 0, -1, 1 }, { 1, 1, 2 }, | 
|  | { -1, -1, 2 }, { -1, 1, 3 }, { 1, -1, 3 }, { 2, 0, 4 },  { -2, 0, 4 }, | 
|  | { 0, 2, 5 },   { 0, -2, 5 }, { 0, 0, 6 }, | 
|  | }; | 
|  |  | 
|  | // Adjust the beginning tap to account for the above change and add a tap at | 
|  | // (0, 0). | 
|  | const int wienerns_wout_subtract_center_config_uv_from_y[][3] = { | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | { 1, 0, 7 },   { -1, 0, 7 },  { 0, 1, 8 },   { 0, -1, 8 }, { 1, 1, 9 }, | 
|  | { -1, -1, 9 }, { -1, 1, 10 }, { 1, -1, 10 }, { 2, 0, 11 }, { -2, 0, 11 }, | 
|  | { 0, 2, 12 },  { 0, -2, 12 }, { 0, 0, 13 }, | 
|  | #else | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 } | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | }; | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////// | 
|  | // Second filter configuration | 
|  | /////////////////////////////////////////////////////////////////////////// | 
|  | const int wienerns_config_y2[][3] = { | 
|  | { 1, 0, 0 },  { -1, 0, 0 }, { 0, 1, 1 },   { 0, -1, 1 },  { 2, 0, 2 }, | 
|  | { -2, 0, 2 }, { 0, 2, 3 },  { 0, -2, 3 },  { 1, 1, 4 },   { -1, -1, 4 }, | 
|  | { -1, 1, 5 }, { 1, -1, 5 }, { 2, 1, 6 },   { -2, -1, 6 }, { 2, -1, 7 }, | 
|  | { -2, 1, 7 }, { 1, 2, 8 },  { -1, -2, 8 }, { 1, -2, 9 },  { -1, 2, 9 }, | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | { 0, 0, 10 }, | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | }; | 
|  |  | 
|  | const int wienerns_config_uv_from_uv2[][3] = { | 
|  | { 1, 0, 0 }, { -1, 0, 0 },  { 0, 1, 1 },  { 0, -1, 1 }, | 
|  | { 1, 1, 2 }, { -1, -1, 2 }, { -1, 1, 3 }, { 1, -1, 3 }, | 
|  | { 2, 0, 4 }, { -2, 0, 4 },  { 0, 2, 5 },  { 0, -2, 5 }, | 
|  | }; | 
|  |  | 
|  | const int wienerns_config_uv_from_y2[][3] = { | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | { 1, 0, 6 },  { -1, 0, 6 },  { 0, 1, 7 },  { 0, -1, 7 }, | 
|  | { 1, 1, 8 },  { -1, -1, 8 }, { -1, 1, 9 }, { 1, -1, 9 }, | 
|  | { 2, 0, 10 }, { -2, 0, 10 }, { 0, 2, 11 }, { 0, -2, 11 }, | 
|  | #else | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | }; | 
|  |  | 
|  | #define WIENERNS_PREC_BITS_Y2 7 | 
|  | const int wienerns_coeff_y2[][WIENERNS_COEFCFG_LEN] = { | 
|  | #if ENABLE_LR_4PART_CODE | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 5, -16, 0), | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | #else | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 3, -4, 2), | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y2, 5, -16, 3), | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | #endif  // ENABLE_LR_4PART_CODE | 
|  | }; | 
|  |  | 
|  | const WienernsFilterParameters wienerns_filter_y2 = AOM_MAKE_WIENERNS_CONFIG( | 
|  | WIENERNS_PREC_BITS_Y2, wienerns_config_y2, wienerns_coeff_y2); | 
|  |  | 
|  | const WienernsFilterPairParameters wienerns_filters_highqp = { | 
|  | &wienerns_filter_y2, &wienerns_filter_uv | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | , | 
|  | &wienerns_cross_filter_uv | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | }; | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////// | 
|  | // Third filter configuration | 
|  | /////////////////////////////////////////////////////////////////////////// | 
|  | const int wienerns_config_y3[][3] = { | 
|  | { 1, 0, 0 },    { -1, 0, 0 },  { 0, 1, 1 },   { 0, -1, 1 },  { 2, 0, 2 }, | 
|  | { -2, 0, 2 },   { 0, 2, 3 },   { 0, -2, 3 },  { 1, 1, 4 },   { -1, -1, 4 }, | 
|  | { -1, 1, 5 },   { 1, -1, 5 },  { 2, 1, 6 },   { -2, -1, 6 }, { 2, -1, 7 }, | 
|  | { -2, 1, 7 },   { 1, 2, 8 },   { -1, -2, 8 }, { 1, -2, 9 },  { -1, 2, 9 }, | 
|  | { 3, 0, 10 },   { -3, 0, 10 }, { 0, 3, 11 },  { 0, -3, 11 }, { 2, 2, 12 }, | 
|  | { -2, -2, 12 }, { -2, 2, 13 }, { 2, -2, 13 }, | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | { 0, 0, 14 }, | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | }; | 
|  |  | 
|  | const int wienerns_config_uv_from_uv3[][3] = { | 
|  | { 1, 0, 0 }, { -1, 0, 0 },  { 0, 1, 1 },  { 0, -1, 1 }, | 
|  | { 1, 1, 2 }, { -1, -1, 2 }, { -1, 1, 3 }, { 1, -1, 3 }, | 
|  | { 2, 0, 4 }, { -2, 0, 4 },  { 0, 2, 5 },  { 0, -2, 5 }, | 
|  | }; | 
|  |  | 
|  | const int wienerns_config_uv_from_y3[][3] = { | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | { 1, 0, 6 },  { -1, 0, 6 },  { 0, 1, 7 },  { 0, -1, 7 }, | 
|  | { 1, 1, 8 },  { -1, -1, 8 }, { -1, 1, 9 }, { 1, -1, 9 }, | 
|  | { 2, 0, 10 }, { -2, 0, 10 }, { 0, 2, 11 }, { 0, -2, 11 }, | 
|  | #else | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 }, | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | }; | 
|  |  | 
|  | #define WIENERNS_PREC_BITS_Y3 7 | 
|  | const int wienerns_coeff_y3[][WIENERNS_COEFCFG_LEN] = { | 
|  | #if ENABLE_LR_4PART_CODE | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 5, -12, 0), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -7, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -8, 1), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 5, -16, 0), | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | #else | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 5, -12, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -7, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 4, -8, 3), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 3, -4, 2), | 
|  | #if USE_CENTER_WIENER_NONSEP | 
|  | AOM_WIENERNS_COEFF(WIENERNS_PREC_BITS_Y3, 5, -16, 3), | 
|  | #endif  // USE_CENTER_WIENER_NONSEP | 
|  | #endif  // ENABLE_LR_4PART_CODE | 
|  | }; | 
|  |  | 
|  | const WienernsFilterParameters wienerns_filter_y3 = AOM_MAKE_WIENERNS_CONFIG( | 
|  | WIENERNS_PREC_BITS_Y3, wienerns_config_y3, wienerns_coeff_y3); | 
|  |  | 
|  | const WienernsFilterPairParameters wienerns_filters_lowqp = { | 
|  | &wienerns_filter_y3, &wienerns_filter_uv | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | , | 
|  | &wienerns_cross_filter_uv | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | }; | 
|  |  | 
|  | #endif  // CONFIG_WIENER_NONSEP | 
|  |  | 
|  | // The 's' values are calculated based on original 'r' and 'e' values in the | 
|  | // spec using GenSgrprojVtable(). | 
|  | // Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid). | 
|  | const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = { | 
|  | { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } }, | 
|  | { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } }, | 
|  | { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } }, | 
|  | { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } }, | 
|  | { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } }, | 
|  | { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } }, | 
|  | { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } }, | 
|  | { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } }, | 
|  | }; | 
|  |  | 
|  | AV1PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) { | 
|  | AV1PixelRect rect; | 
|  |  | 
|  | int ss_x = is_uv && cm->seq_params.subsampling_x; | 
|  | int ss_y = is_uv && cm->seq_params.subsampling_y; | 
|  |  | 
|  | rect.top = 0; | 
|  | rect.bottom = ROUND_POWER_OF_TWO(cm->superres_upscaled_height, ss_y); | 
|  | rect.left = 0; | 
|  | rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x); | 
|  | return rect; | 
|  | } | 
|  |  | 
|  | // Count horizontal or vertical units per tile (use a width or height for | 
|  | // tile_size, respectively). We basically want to divide the tile size by the | 
|  | // size of a restoration unit. Rather than rounding up unconditionally as you | 
|  | // might expect, we round to nearest, which models the way a right or bottom | 
|  | // restoration unit can extend to up to 150% its normal width or height. The | 
|  | // max with 1 is to deal with tiles that are smaller than half of a restoration | 
|  | // unit. | 
|  | int av1_lr_count_units_in_tile(int unit_size, int tile_size) { | 
|  | return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1); | 
|  | } | 
|  |  | 
|  | // Finds a pixel rectangle for a RU, given the limits in ru domain | 
|  | // (i.e. ru_start_row, ru_end_row, ru_start_col, ru_end_col) | 
|  | // and the ru size (ru_height and ru_width). | 
|  | // Note that offset RUs vertically by RESTORATION_UNIT_OFFSET for luma, | 
|  | // and RESTORATION_UNIT_OFFSET >> ss_y for chroma, so | 
|  | // that the first RU in col is shorter than the rest. | 
|  | // Note the limits of the last RU in row or col is simply the size | 
|  | // of the image, which makes the last RU either bigger or smaller | 
|  | // than the other RUs. | 
|  | AV1PixelRect av1_get_rutile_rect(const AV1_COMMON *cm, int plane, | 
|  | int ru_start_row, int ru_end_row, | 
|  | int ru_start_col, int ru_end_col, | 
|  | int ru_height, int ru_width) { | 
|  | AV1PixelRect rect; | 
|  | const RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  |  | 
|  | int ss_x = plane && cm->seq_params.subsampling_x; | 
|  | int ss_y = plane && cm->seq_params.subsampling_y; | 
|  | const int plane_height = | 
|  | ROUND_POWER_OF_TWO(cm->superres_upscaled_height, ss_y); | 
|  | const int plane_width = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x); | 
|  |  | 
|  | const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  | // Top limit is a multiple of RU height minus the offset, clamped to be | 
|  | // non-negative. So the first RU vertically is shorter than the rest. | 
|  | // The bottom limit is similar except for the apecial case for the last RU. | 
|  | rect.top = AOMMAX(ru_start_row * ru_height - runit_offset, 0); | 
|  | rect.bottom = rsi->vert_units_per_tile == ru_end_row | 
|  | ? plane_height | 
|  | : AOMMAX(ru_end_row * ru_height - runit_offset, 0); | 
|  |  | 
|  | // Left limit is a multiple of RU width. | 
|  | // The right limit is similar except for the apecial case for the last RU. | 
|  | rect.left = ru_start_col * ru_width; | 
|  | rect.right = rsi->horz_units_per_tile == ru_end_col ? plane_width | 
|  | : ru_end_col * ru_width; | 
|  |  | 
|  | return rect; | 
|  | } | 
|  |  | 
|  | void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi, | 
|  | int is_uv) { | 
|  | // We need to allocate enough space for restoration units to cover the | 
|  | // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the | 
|  | // top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have | 
|  | // to do the computation ourselves, iterating over the tiles and keeping | 
|  | // track of the largest width and height, then upscaling. | 
|  | const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | const int max_tile_w = tile_rect.right - tile_rect.left; | 
|  | const int max_tile_h = tile_rect.bottom - tile_rect.top; | 
|  |  | 
|  | // To calculate hpertile and vpertile (horizontal and vertical units per | 
|  | // tile), we basically want to divide the largest tile width or height by the | 
|  | // size of a restoration unit. Rather than rounding up unconditionally as you | 
|  | // might expect, we round to nearest, which models the way a right or bottom | 
|  | // restoration unit can extend to up to 150% its normal width or height. The | 
|  | // max with 1 is to deal with tiles that are smaller than half of a | 
|  | // restoration unit. | 
|  | const int unit_size = rsi->restoration_unit_size; | 
|  | const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w); | 
|  | const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h); | 
|  |  | 
|  | rsi->units_per_tile = hpertile * vpertile; | 
|  | rsi->horz_units_per_tile = hpertile; | 
|  | rsi->vert_units_per_tile = vpertile; | 
|  |  | 
|  | const int ntiles = 1; | 
|  | const int nunits = ntiles * rsi->units_per_tile; | 
|  |  | 
|  | aom_free(rsi->unit_info); | 
|  | CHECK_MEM_ERROR(cm, rsi->unit_info, | 
|  | (RestorationUnitInfo *)aom_memalign( | 
|  | 16, sizeof(*rsi->unit_info) * nunits)); | 
|  | } | 
|  |  | 
|  | void av1_free_restoration_struct(RestorationInfo *rst_info) { | 
|  | aom_free(rst_info->unit_info); | 
|  | rst_info->unit_info = NULL; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | // Pair of values for each sgrproj parameter: | 
|  | // Index 0 corresponds to r[0], e[0] | 
|  | // Index 1 corresponds to r[1], e[1] | 
|  | int sgrproj_mtable[SGRPROJ_PARAMS][2]; | 
|  |  | 
|  | static void GenSgrprojVtable() { | 
|  | for (int i = 0; i < SGRPROJ_PARAMS; ++i) { | 
|  | const sgr_params_type *const params = &av1_sgr_params[i]; | 
|  | for (int j = 0; j < 2; ++j) { | 
|  | const int e = params->e[j]; | 
|  | const int r = params->r[j]; | 
|  | if (r == 0) {                 // filter is disabled | 
|  | sgrproj_mtable[i][j] = -1;  // mark invalid | 
|  | } else {                      // filter is enabled | 
|  | const int n = (2 * r + 1) * (2 * r + 1); | 
|  | const int n2e = n * n * e; | 
|  | assert(n2e != 0); | 
|  | sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void av1_loop_restoration_precal() { | 
|  | #if 0 | 
|  | GenSgrprojVtable(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if CONFIG_FLEXIBLE_RU_SIZE | 
|  | // set up the Minimum and maximum RU size for enacoder search | 
|  | // As normative regulation: | 
|  | // minimum RU size is equal to RESTORATION_UNITSIZE_MAX >> 2, | 
|  | // maximum RU size is equal to RESTORATION_UNITSIZE_MAX | 
|  | // The setting here is also for encoder search. | 
|  | void set_restoration_unit_size(int width, int height, int sx, int sy, | 
|  | RestorationInfo *rst) { | 
|  | int s = AOMMIN(sx, sy); | 
|  |  | 
|  | rst[0].max_restoration_unit_size = RESTORATION_UNITSIZE_MAX >> 0; | 
|  | rst[0].min_restoration_unit_size = RESTORATION_UNITSIZE_MAX >> 2; | 
|  |  | 
|  | // For large resolution, the minimum RU size is set to | 
|  | // RESTORATION_UNITSIZE_MAX >> 1 to reduce the encode complexity. | 
|  | if (width * height > 1920 * 1080 * 2) | 
|  | rst[0].min_restoration_unit_size = RESTORATION_UNITSIZE_MAX >> 1; | 
|  |  | 
|  | rst[1].max_restoration_unit_size = rst[0].max_restoration_unit_size >> s; | 
|  | rst[1].min_restoration_unit_size = rst[0].min_restoration_unit_size >> s; | 
|  |  | 
|  | rst[2].max_restoration_unit_size = rst[1].max_restoration_unit_size; | 
|  | rst[2].min_restoration_unit_size = rst[1].min_restoration_unit_size; | 
|  |  | 
|  | rst[0].restoration_unit_size = rst[0].min_restoration_unit_size; | 
|  | rst[1].restoration_unit_size = rst[1].min_restoration_unit_size; | 
|  | rst[2].restoration_unit_size = rst[2].min_restoration_unit_size; | 
|  | } | 
|  | #endif  // CONFIG_FLEXIBLE_RU_SIZE | 
|  |  | 
|  | static void extend_frame_highbd(uint16_t *data, int width, int height, | 
|  | int stride, int border_horz, int border_vert) { | 
|  | uint16_t *data_p; | 
|  | int i, j; | 
|  | for (i = 0; i < height; ++i) { | 
|  | data_p = data + i * stride; | 
|  | for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0]; | 
|  | for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1]; | 
|  | } | 
|  | data_p = data - border_horz; | 
|  | for (i = -border_vert; i < 0; ++i) { | 
|  | memcpy(data_p + i * stride, data_p, | 
|  | (width + 2 * border_horz) * sizeof(uint16_t)); | 
|  | } | 
|  | for (i = height; i < height + border_vert; ++i) { | 
|  | memcpy(data_p + i * stride, data_p + (height - 1) * stride, | 
|  | (width + 2 * border_horz) * sizeof(uint16_t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void copy_tile_highbd(int width, int height, const uint16_t *src, | 
|  | int src_stride, uint16_t *dst, int dst_stride) { | 
|  | for (int i = 0; i < height; ++i) | 
|  | memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst)); | 
|  | } | 
|  |  | 
|  | void av1_extend_frame(uint16_t *data, int width, int height, int stride, | 
|  | int border_horz, int border_vert) { | 
|  | extend_frame_highbd(data, width, height, stride, border_horz, border_vert); | 
|  | } | 
|  |  | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | void copy_tile(int width, int height, const uint16_t *src, | 
|  | #else | 
|  | static void copy_tile(int width, int height, const uint16_t *src, | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | int src_stride, uint16_t *dst, int dst_stride) { | 
|  | copy_tile_highbd(width, height, src, src_stride, dst, dst_stride); | 
|  | } | 
|  |  | 
|  | // With striped loop restoration, the filtering for each 64-pixel stripe gets | 
|  | // most of its input from the output of CDEF (stored in data8), but we need to | 
|  | // fill out a border of 3 pixels above/below the stripe according to the | 
|  | // following | 
|  | // rules: | 
|  | // | 
|  | // * At a frame boundary, we copy the outermost row of CDEF pixels three times. | 
|  | //   This extension is done by a call to av1_extend_frame() at the start of the | 
|  | //   loop restoration process, so the value of copy_above/copy_below doesn't | 
|  | //   strictly matter. However, by setting *copy_above = *copy_below = 1 whenever | 
|  | //   loop filtering across tiles is disabled, we can allow | 
|  | //   {setup,restore}_processing_stripe_boundary to assume that the top/bottom | 
|  | //   data has always been copied, simplifying the behaviour at the left and | 
|  | //   right edges of tiles. | 
|  | // | 
|  | // * If we're at a tile boundary and loop filtering across tiles is enabled, | 
|  | //   then there is a logical stripe which is 64 pixels high, but which is split | 
|  | //   into an 8px high and a 56px high stripe so that the processing (and | 
|  | //   coefficient set usage) can be aligned to tiles. | 
|  | //   In this case, we use the 3 rows of CDEF output across the boundary for | 
|  | //   context; this corresponds to leaving the frame buffer as-is. | 
|  | // | 
|  | // * If we're at a tile boundary and loop filtering across tiles is disabled, | 
|  | //   then we take the outermost row of CDEF pixels *within the current tile* | 
|  | //   and copy it three times. Thus we behave exactly as if the tile were a full | 
|  | //   frame. | 
|  | // | 
|  | // * Otherwise, we're at a stripe boundary within a tile. In that case, we | 
|  | //   take 2 rows of deblocked pixels and extend them to 3 rows of context. | 
|  | // | 
|  | // The distinction between the latter two cases is handled by the | 
|  | // av1_loop_restoration_save_boundary_lines() function, so here we just need | 
|  | // to decide if we're overwriting the above/below boundary pixels or not. | 
|  | static void get_stripe_boundary_info(const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, int ss_y, | 
|  | int *copy_above, int *copy_below) { | 
|  | *copy_above = 1; | 
|  | *copy_below = 1; | 
|  |  | 
|  | const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; | 
|  | const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  |  | 
|  | const int first_stripe_in_tile = (limits->v_start == tile_rect->top); | 
|  | const int this_stripe_height = | 
|  | full_stripe_height - (first_stripe_in_tile ? runit_offset : 0); | 
|  | const int last_stripe_in_tile = | 
|  | (limits->v_start + this_stripe_height >= tile_rect->bottom); | 
|  |  | 
|  | if (first_stripe_in_tile) *copy_above = 0; | 
|  | if (last_stripe_in_tile) *copy_below = 0; | 
|  | } | 
|  |  | 
|  | // Overwrite the border pixels around a processing stripe so that the conditions | 
|  | // listed above get_stripe_boundary_info() are preserved. | 
|  | // We save the pixels which get overwritten into a temporary buffer, so that | 
|  | // they can be restored by restore_processing_stripe_boundary() after we've | 
|  | // processed the stripe. | 
|  | // | 
|  | // limits gives the rectangular limits of the remaining stripes for the current | 
|  | // restoration unit. rsb is the stored stripe boundaries (taken from either | 
|  | // deblock or CDEF output as necessary). | 
|  | // | 
|  | // tile_rect is the limits of the current tile and tile_stripe0 is the index of | 
|  | // the first stripe in this tile (needed to convert the tile-relative stripe | 
|  | // index we get from limits into something we can look up in rsb). | 
|  | static void setup_processing_stripe_boundary( | 
|  | const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb, | 
|  | int rsb_row, int h, uint16_t *data, int data_stride, | 
|  | RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) { | 
|  | // Offsets within the line buffers. The buffer logically starts at column | 
|  | // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ) | 
|  | // has column x0 in the buffer. | 
|  | const int buf_stride = rsb->stripe_boundary_stride; | 
|  | const int buf_x0_off = limits->h_start; | 
|  | const int line_width = | 
|  | (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ; | 
|  | const int line_size = line_width << 1; | 
|  |  | 
|  | const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ; | 
|  |  | 
|  | // Replace RESTORATION_BORDER pixels above the top of the stripe | 
|  | // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above | 
|  | // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by | 
|  | // duplicating the topmost of the 2 lines (see the AOMMAX call when | 
|  | // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1). | 
|  | // | 
|  | // Special case: If we're at the top of a tile, which isn't on the topmost | 
|  | // tile row, and we're allowed to loop filter across tiles, then we have a | 
|  | // logical 64-pixel-high stripe which has been split into an 8-pixel high | 
|  | // stripe and a 56-pixel high stripe (the current one). So, in this case, | 
|  | // we want to leave the boundary alone! | 
|  | if (!opt) { | 
|  | if (copy_above) { | 
|  | uint16_t *data_tl = data + data_x0 + limits->v_start * data_stride; | 
|  |  | 
|  | for (int i = -RESTORATION_BORDER; i < 0; ++i) { | 
|  | const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0); | 
|  | const int buf_off = buf_x0_off + buf_row * buf_stride; | 
|  | const uint16_t *buf = rsb->stripe_boundary_above + buf_off; | 
|  | uint16_t *dst = data_tl + i * data_stride; | 
|  | // Save old pixels, then replace with data from stripe_boundary_above | 
|  | memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER], dst, line_size); | 
|  | memcpy(dst, buf, line_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace RESTORATION_BORDER pixels below the bottom of the stripe. | 
|  | // The second buffer row is repeated, so src_row gets the values 0, 1, 1 | 
|  | // for i = 0, 1, 2. | 
|  | if (copy_below) { | 
|  | const int stripe_end = limits->v_start + h; | 
|  | uint16_t *data_bl = data + data_x0 + stripe_end * data_stride; | 
|  |  | 
|  | for (int i = 0; i < RESTORATION_BORDER; ++i) { | 
|  | const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1); | 
|  | const int buf_off = buf_x0_off + buf_row * buf_stride; | 
|  | const uint16_t *src = rsb->stripe_boundary_below + buf_off; | 
|  |  | 
|  | uint16_t *dst = data_bl + i * data_stride; | 
|  | // Save old pixels, then replace with data from stripe_boundary_below | 
|  | memcpy(rlbs->tmp_save_below[i], dst, line_size); | 
|  | memcpy(dst, src, line_size); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (copy_above) { | 
|  | uint16_t *data_tl = data + data_x0 + limits->v_start * data_stride; | 
|  |  | 
|  | // Only save and overwrite i=-RESTORATION_BORDER line. | 
|  | uint16_t *dst = data_tl + (-RESTORATION_BORDER) * data_stride; | 
|  | // Save old pixels, then replace with data from stripe_boundary_above | 
|  | memcpy(rlbs->tmp_save_above[0], dst, line_size); | 
|  | memcpy(dst, data_tl + (-RESTORATION_BORDER + 1) * data_stride, line_size); | 
|  | } | 
|  |  | 
|  | if (copy_below) { | 
|  | const int stripe_end = limits->v_start + h; | 
|  | uint16_t *data_bl = data + data_x0 + stripe_end * data_stride; | 
|  |  | 
|  | // Only save and overwrite i=2 line. | 
|  | uint16_t *dst = data_bl + 2 * data_stride; | 
|  | // Save old pixels, then replace with data from stripe_boundary_below | 
|  | memcpy(rlbs->tmp_save_below[2], dst, line_size); | 
|  | memcpy(dst, data_bl + (2 - 1) * data_stride, line_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function restores the boundary lines modified by | 
|  | // setup_processing_stripe_boundary. | 
|  | // | 
|  | // Note: We need to be careful when handling the corners of the processing | 
|  | // unit, because (eg.) the top-left corner is considered to be part of | 
|  | // both the left and top borders. This means that, depending on the | 
|  | // loop_filter_across_tiles_enabled flag, the corner pixels might get | 
|  | // overwritten twice, once as part of the "top" border and once as part | 
|  | // of the "left" border (or similar for other corners). | 
|  | // | 
|  | // Everything works out fine as long as we make sure to reverse the order | 
|  | // when restoring, ie. we need to restore the left/right borders followed | 
|  | // by the top/bottom borders. | 
|  | static void restore_processing_stripe_boundary( | 
|  | const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs, | 
|  | int h, uint16_t *data, int data_stride, int copy_above, int copy_below, | 
|  | int opt) { | 
|  | const int line_width = | 
|  | (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ; | 
|  | const int line_size = line_width << 1; | 
|  |  | 
|  | const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ; | 
|  |  | 
|  | if (!opt) { | 
|  | if (copy_above) { | 
|  | uint16_t *data_tl = data + data_x0 + limits->v_start * data_stride; | 
|  | for (int i = -RESTORATION_BORDER; i < 0; ++i) { | 
|  | uint16_t *dst = data_tl + i * data_stride; | 
|  | memcpy(dst, rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (copy_below) { | 
|  | const int stripe_bottom = limits->v_start + h; | 
|  | uint16_t *data_bl = data + data_x0 + stripe_bottom * data_stride; | 
|  |  | 
|  | for (int i = 0; i < RESTORATION_BORDER; ++i) { | 
|  | if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break; | 
|  |  | 
|  | uint16_t *dst = data_bl + i * data_stride; | 
|  | memcpy(dst, rlbs->tmp_save_below[i], line_size); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (copy_above) { | 
|  | uint16_t *data_tl = data + data_x0 + limits->v_start * data_stride; | 
|  |  | 
|  | // Only restore i=-RESTORATION_BORDER line. | 
|  | uint16_t *dst = data_tl + (-RESTORATION_BORDER) * data_stride; | 
|  | memcpy(dst, rlbs->tmp_save_above[0], line_size); | 
|  | } | 
|  |  | 
|  | if (copy_below) { | 
|  | const int stripe_bottom = limits->v_start + h; | 
|  | uint16_t *data_bl = data + data_x0 + stripe_bottom * data_stride; | 
|  |  | 
|  | // Only restore i=2 line. | 
|  | if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) { | 
|  | uint16_t *dst = data_bl + 2 * data_stride; | 
|  | memcpy(dst, rlbs->tmp_save_below[2], line_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1) | 
|  | over the input. The window is of size (2r + 1)x(2r + 1), and we | 
|  | specialize to r = 1, 2, 3. A default function is used for r > 3. | 
|  |  | 
|  | Each loop follows the same format: We keep a window's worth of input | 
|  | in individual variables and select data out of that as appropriate. | 
|  | */ | 
|  | static void boxsum1(int32_t *src, int width, int height, int src_stride, | 
|  | int sqr, int32_t *dst, int dst_stride) { | 
|  | int i, j, a, b, c; | 
|  | assert(width > 2 * SGRPROJ_BORDER_HORZ); | 
|  | assert(height > 2 * SGRPROJ_BORDER_VERT); | 
|  |  | 
|  | // Vertical sum over 3-pixel regions, from src into dst. | 
|  | if (!sqr) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | a = src[j]; | 
|  | b = src[src_stride + j]; | 
|  | c = src[2 * src_stride + j]; | 
|  |  | 
|  | dst[j] = a + b; | 
|  | for (i = 1; i < height - 2; ++i) { | 
|  | // Loop invariant: At the start of each iteration, | 
|  | // a = src[(i - 1) * src_stride + j] | 
|  | // b = src[(i    ) * src_stride + j] | 
|  | // c = src[(i + 1) * src_stride + j] | 
|  | dst[i * dst_stride + j] = a + b + c; | 
|  | a = b; | 
|  | b = c; | 
|  | c = src[(i + 2) * src_stride + j]; | 
|  | } | 
|  | dst[i * dst_stride + j] = a + b + c; | 
|  | dst[(i + 1) * dst_stride + j] = b + c; | 
|  | } | 
|  | } else { | 
|  | for (j = 0; j < width; ++j) { | 
|  | a = src[j] * src[j]; | 
|  | b = src[src_stride + j] * src[src_stride + j]; | 
|  | c = src[2 * src_stride + j] * src[2 * src_stride + j]; | 
|  |  | 
|  | dst[j] = a + b; | 
|  | for (i = 1; i < height - 2; ++i) { | 
|  | dst[i * dst_stride + j] = a + b + c; | 
|  | a = b; | 
|  | b = c; | 
|  | c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j]; | 
|  | } | 
|  | dst[i * dst_stride + j] = a + b + c; | 
|  | dst[(i + 1) * dst_stride + j] = b + c; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Horizontal sum over 3-pixel regions of dst | 
|  | for (i = 0; i < height; ++i) { | 
|  | a = dst[i * dst_stride]; | 
|  | b = dst[i * dst_stride + 1]; | 
|  | c = dst[i * dst_stride + 2]; | 
|  |  | 
|  | dst[i * dst_stride] = a + b; | 
|  | for (j = 1; j < width - 2; ++j) { | 
|  | // Loop invariant: At the start of each iteration, | 
|  | // a = src[i * src_stride + (j - 1)] | 
|  | // b = src[i * src_stride + (j    )] | 
|  | // c = src[i * src_stride + (j + 1)] | 
|  | dst[i * dst_stride + j] = a + b + c; | 
|  | a = b; | 
|  | b = c; | 
|  | c = dst[i * dst_stride + (j + 2)]; | 
|  | } | 
|  | dst[i * dst_stride + j] = a + b + c; | 
|  | dst[i * dst_stride + (j + 1)] = b + c; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void boxsum2(int32_t *src, int width, int height, int src_stride, | 
|  | int sqr, int32_t *dst, int dst_stride) { | 
|  | int i, j, a, b, c, d, e; | 
|  | assert(width > 2 * SGRPROJ_BORDER_HORZ); | 
|  | assert(height > 2 * SGRPROJ_BORDER_VERT); | 
|  |  | 
|  | // Vertical sum over 5-pixel regions, from src into dst. | 
|  | if (!sqr) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | a = src[j]; | 
|  | b = src[src_stride + j]; | 
|  | c = src[2 * src_stride + j]; | 
|  | d = src[3 * src_stride + j]; | 
|  | e = src[4 * src_stride + j]; | 
|  |  | 
|  | dst[j] = a + b + c; | 
|  | dst[dst_stride + j] = a + b + c + d; | 
|  | for (i = 2; i < height - 3; ++i) { | 
|  | // Loop invariant: At the start of each iteration, | 
|  | // a = src[(i - 2) * src_stride + j] | 
|  | // b = src[(i - 1) * src_stride + j] | 
|  | // c = src[(i    ) * src_stride + j] | 
|  | // d = src[(i + 1) * src_stride + j] | 
|  | // e = src[(i + 2) * src_stride + j] | 
|  | dst[i * dst_stride + j] = a + b + c + d + e; | 
|  | a = b; | 
|  | b = c; | 
|  | c = d; | 
|  | d = e; | 
|  | e = src[(i + 3) * src_stride + j]; | 
|  | } | 
|  | dst[i * dst_stride + j] = a + b + c + d + e; | 
|  | dst[(i + 1) * dst_stride + j] = b + c + d + e; | 
|  | dst[(i + 2) * dst_stride + j] = c + d + e; | 
|  | } | 
|  | } else { | 
|  | for (j = 0; j < width; ++j) { | 
|  | a = src[j] * src[j]; | 
|  | b = src[src_stride + j] * src[src_stride + j]; | 
|  | c = src[2 * src_stride + j] * src[2 * src_stride + j]; | 
|  | d = src[3 * src_stride + j] * src[3 * src_stride + j]; | 
|  | e = src[4 * src_stride + j] * src[4 * src_stride + j]; | 
|  |  | 
|  | dst[j] = a + b + c; | 
|  | dst[dst_stride + j] = a + b + c + d; | 
|  | for (i = 2; i < height - 3; ++i) { | 
|  | dst[i * dst_stride + j] = a + b + c + d + e; | 
|  | a = b; | 
|  | b = c; | 
|  | c = d; | 
|  | d = e; | 
|  | e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j]; | 
|  | } | 
|  | dst[i * dst_stride + j] = a + b + c + d + e; | 
|  | dst[(i + 1) * dst_stride + j] = b + c + d + e; | 
|  | dst[(i + 2) * dst_stride + j] = c + d + e; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Horizontal sum over 5-pixel regions of dst | 
|  | for (i = 0; i < height; ++i) { | 
|  | a = dst[i * dst_stride]; | 
|  | b = dst[i * dst_stride + 1]; | 
|  | c = dst[i * dst_stride + 2]; | 
|  | d = dst[i * dst_stride + 3]; | 
|  | e = dst[i * dst_stride + 4]; | 
|  |  | 
|  | dst[i * dst_stride] = a + b + c; | 
|  | dst[i * dst_stride + 1] = a + b + c + d; | 
|  | for (j = 2; j < width - 3; ++j) { | 
|  | // Loop invariant: At the start of each iteration, | 
|  | // a = src[i * src_stride + (j - 2)] | 
|  | // b = src[i * src_stride + (j - 1)] | 
|  | // c = src[i * src_stride + (j    )] | 
|  | // d = src[i * src_stride + (j + 1)] | 
|  | // e = src[i * src_stride + (j + 2)] | 
|  | dst[i * dst_stride + j] = a + b + c + d + e; | 
|  | a = b; | 
|  | b = c; | 
|  | c = d; | 
|  | d = e; | 
|  | e = dst[i * dst_stride + (j + 3)]; | 
|  | } | 
|  | dst[i * dst_stride + j] = a + b + c + d + e; | 
|  | dst[i * dst_stride + (j + 1)] = b + c + d + e; | 
|  | dst[i * dst_stride + (j + 2)] = c + d + e; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void boxsum(int32_t *src, int width, int height, int src_stride, int r, | 
|  | int sqr, int32_t *dst, int dst_stride) { | 
|  | if (r == 1) | 
|  | boxsum1(src, width, height, src_stride, sqr, dst, dst_stride); | 
|  | else if (r == 2) | 
|  | boxsum2(src, width, height, src_stride, sqr, dst, dst_stride); | 
|  | else | 
|  | assert(0 && "Invalid value of r in self-guided filter"); | 
|  | } | 
|  |  | 
|  | void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) { | 
|  | if (params->r[0] == 0) { | 
|  | xq[0] = 0; | 
|  | xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1]; | 
|  | } else if (params->r[1] == 0) { | 
|  | xq[0] = xqd[0]; | 
|  | xq[1] = 0; | 
|  | } else { | 
|  | xq[0] = xqd[0]; | 
|  | xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | const int32_t av1_x_by_xplus1[256] = { | 
|  | // Special case: Map 0 -> 1 (corresponding to a value of 1/256) | 
|  | // instead of 0. See comments in selfguided_restoration_internal() for why | 
|  | 1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239, | 
|  | 240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247, | 
|  | 248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, | 
|  | 250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252, | 
|  | 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253, | 
|  | 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, | 
|  | 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254, | 
|  | 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, | 
|  | 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, | 
|  | 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, | 
|  | 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, | 
|  | 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, | 
|  | 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, | 
|  | 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, | 
|  | 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, | 
|  | 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, | 
|  | 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, | 
|  | 256, | 
|  | }; | 
|  |  | 
|  | const int32_t av1_one_by_x[MAX_NELEM] = { | 
|  | 4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315, | 
|  | 293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164, | 
|  | }; | 
|  |  | 
|  | static void calculate_intermediate_result(int32_t *dgd, int width, int height, | 
|  | int dgd_stride, int bit_depth, | 
|  | int sgr_params_idx, int radius_idx, | 
|  | int pass, int32_t *A, int32_t *B) { | 
|  | const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; | 
|  | const int r = params->r[radius_idx]; | 
|  | const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; | 
|  | const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; | 
|  | // Adjusting the stride of A and B here appears to avoid bad cache effects, | 
|  | // leading to a significant speed improvement. | 
|  | // We also align the stride to a multiple of 16 bytes, for consistency | 
|  | // with the SIMD version of this function. | 
|  | int buf_stride = ((width_ext + 3) & ~3) + 16; | 
|  | const int step = pass == 0 ? 1 : 2; | 
|  | int i, j; | 
|  |  | 
|  | assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r"); | 
|  | assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 && | 
|  | "Need SGRPROJ_BORDER_* >= r+1"); | 
|  |  | 
|  | boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, | 
|  | width_ext, height_ext, dgd_stride, r, 0, B, buf_stride); | 
|  | boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, | 
|  | width_ext, height_ext, dgd_stride, r, 1, A, buf_stride); | 
|  | A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; | 
|  | B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; | 
|  | // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie, | 
|  | // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[]. | 
|  | for (i = -1; i < height + 1; i += step) { | 
|  | for (j = -1; j < width + 1; ++j) { | 
|  | const int k = i * buf_stride + j; | 
|  | const int n = (2 * r + 1) * (2 * r + 1); | 
|  |  | 
|  | // a < 2^16 * n < 2^22 regardless of bit depth | 
|  | uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8)); | 
|  | // b < 2^8 * n < 2^14 regardless of bit depth | 
|  | uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8); | 
|  |  | 
|  | // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28, | 
|  | // and p itself satisfies p < 2^14 * n^2 < 2^26. | 
|  | // This bound on p is due to: | 
|  | // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances | 
|  | // | 
|  | // Note: Sometimes, in high bit depth, we can end up with a*n < b*b. | 
|  | // This is an artefact of rounding, and can only happen if all pixels | 
|  | // are (almost) identical, so in this case we saturate to p=0. | 
|  | uint32_t p = (a * n < b * b) ? 0 : a * n - b * b; | 
|  |  | 
|  | const uint32_t s = params->s[radius_idx]; | 
|  |  | 
|  | // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32 | 
|  | // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12 | 
|  | // (this holds even after accounting for the rounding in s) | 
|  | const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS); | 
|  |  | 
|  | // Note: We have to be quite careful about the value of A[k]. | 
|  | // This is used as a blend factor between individual pixel values and the | 
|  | // local mean. So it logically has a range of [0, 256], including both | 
|  | // endpoints. | 
|  | // | 
|  | // This is a pain for hardware, as we'd like something which can be stored | 
|  | // in exactly 8 bits. | 
|  | // Further, in the calculation of B[k] below, if z == 0 and r == 2, | 
|  | // then A[k] "should be" 0. But then we can end up setting B[k] to a value | 
|  | // slightly above 2^(8 + bit depth), due to rounding in the value of | 
|  | // av1_one_by_x[25-1]. | 
|  | // | 
|  | // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0. | 
|  | // This fixes the above issues (256 - A[k] fits in a uint8, and we can't | 
|  | // overflow), without significantly affecting the final result: z == 0 | 
|  | // implies that the image is essentially "flat", so the local mean and | 
|  | // individual pixel values are very similar. | 
|  | // | 
|  | // Note that saturating on the other side, ie. requring A[k] <= 255, | 
|  | // would be a bad idea, as that corresponds to the case where the image | 
|  | // is very variable, when we want to preserve the local pixel value as | 
|  | // much as possible. | 
|  | A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256] | 
|  |  | 
|  | // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n, | 
|  | // av1_one_by_x[n - 1] = round(2^12 / n) | 
|  | // => the product here is < 2^(20 + bit_depth) <= 2^32, | 
|  | // and B[k] is set to a value < 2^(8 + bit depth) | 
|  | // This holds even with the rounding in av1_one_by_x and in the overall | 
|  | // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8. | 
|  | B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) * | 
|  | (uint32_t)B[k] * | 
|  | (uint32_t)av1_one_by_x[n - 1], | 
|  | SGRPROJ_RECIP_BITS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void selfguided_restoration_fast_internal( | 
|  | int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst, | 
|  | int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) { | 
|  | const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; | 
|  | const int r = params->r[radius_idx]; | 
|  | const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; | 
|  | // Adjusting the stride of A and B here appears to avoid bad cache effects, | 
|  | // leading to a significant speed improvement. | 
|  | // We also align the stride to a multiple of 16 bytes, for consistency | 
|  | // with the SIMD version of this function. | 
|  | int buf_stride = ((width_ext + 3) & ~3) + 16; | 
|  | int32_t A_[RESTORATION_PROC_UNIT_PELS]; | 
|  | int32_t B_[RESTORATION_PROC_UNIT_PELS]; | 
|  | int32_t *A = A_; | 
|  | int32_t *B = B_; | 
|  | int i, j; | 
|  | calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth, | 
|  | sgr_params_idx, radius_idx, 1, A, B); | 
|  | A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; | 
|  | B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; | 
|  |  | 
|  | // Use the A[] and B[] arrays to calculate the filtered image | 
|  | (void)r; | 
|  | assert(r == 2); | 
|  | for (i = 0; i < height; ++i) { | 
|  | if (!(i & 1)) {  // even row | 
|  | for (j = 0; j < width; ++j) { | 
|  | const int k = i * buf_stride + j; | 
|  | const int l = i * dgd_stride + j; | 
|  | const int m = i * dst_stride + j; | 
|  | const int nb = 5; | 
|  | const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 + | 
|  | (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] + | 
|  | A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) * | 
|  | 5; | 
|  | const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 + | 
|  | (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] + | 
|  | B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) * | 
|  | 5; | 
|  | const int32_t v = a * dgd[l] + b; | 
|  | dst[m] = | 
|  | ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); | 
|  | } | 
|  | } else {  // odd row | 
|  | for (j = 0; j < width; ++j) { | 
|  | const int k = i * buf_stride + j; | 
|  | const int l = i * dgd_stride + j; | 
|  | const int m = i * dst_stride + j; | 
|  | const int nb = 4; | 
|  | const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5; | 
|  | const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5; | 
|  | const int32_t v = a * dgd[l] + b; | 
|  | dst[m] = | 
|  | ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void selfguided_restoration_internal(int32_t *dgd, int width, int height, | 
|  | int dgd_stride, int32_t *dst, | 
|  | int dst_stride, int bit_depth, | 
|  | int sgr_params_idx, | 
|  | int radius_idx) { | 
|  | const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; | 
|  | // Adjusting the stride of A and B here appears to avoid bad cache effects, | 
|  | // leading to a significant speed improvement. | 
|  | // We also align the stride to a multiple of 16 bytes, for consistency | 
|  | // with the SIMD version of this function. | 
|  | int buf_stride = ((width_ext + 3) & ~3) + 16; | 
|  | int32_t A_[RESTORATION_PROC_UNIT_PELS]; | 
|  | int32_t B_[RESTORATION_PROC_UNIT_PELS]; | 
|  | int32_t *A = A_; | 
|  | int32_t *B = B_; | 
|  | int i, j; | 
|  | calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth, | 
|  | sgr_params_idx, radius_idx, 0, A, B); | 
|  | A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; | 
|  | B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; | 
|  |  | 
|  | // Use the A[] and B[] arrays to calculate the filtered image | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | const int k = i * buf_stride + j; | 
|  | const int l = i * dgd_stride + j; | 
|  | const int m = i * dst_stride + j; | 
|  | const int nb = 5; | 
|  | const int32_t a = | 
|  | (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) * | 
|  | 4 + | 
|  | (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] + | 
|  | A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) * | 
|  | 3; | 
|  | const int32_t b = | 
|  | (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) * | 
|  | 4 + | 
|  | (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] + | 
|  | B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) * | 
|  | 3; | 
|  | const int32_t v = a * dgd[l] + b; | 
|  | dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_selfguided_restoration_c(const uint16_t *dgd, int width, int height, | 
|  | int dgd_stride, int32_t *flt0, int32_t *flt1, | 
|  | int flt_stride, int sgr_params_idx, | 
|  | int bit_depth) { | 
|  | int32_t dgd32_[RESTORATION_PROC_UNIT_PELS]; | 
|  | const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ; | 
|  | int32_t *dgd32 = | 
|  | dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ; | 
|  |  | 
|  | for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { | 
|  | for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { | 
|  | dgd32[i * dgd32_stride + j] = dgd[i * dgd_stride + j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; | 
|  | // If params->r == 0 we skip the corresponding filter. We only allow one of | 
|  | // the radii to be 0, as having both equal to 0 would be equivalent to | 
|  | // skipping SGR entirely. | 
|  | assert(!(params->r[0] == 0 && params->r[1] == 0)); | 
|  |  | 
|  | if (params->r[0] > 0) | 
|  | selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride, | 
|  | flt0, flt_stride, bit_depth, | 
|  | sgr_params_idx, 0); | 
|  | if (params->r[1] > 0) | 
|  | selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1, | 
|  | flt_stride, bit_depth, sgr_params_idx, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void av1_apply_selfguided_restoration_c(const uint16_t *dat, int width, | 
|  | int height, int stride, int eps, | 
|  | const int *xqd, uint16_t *dst, | 
|  | int dst_stride, int32_t *tmpbuf, | 
|  | int bit_depth) { | 
|  | int32_t *flt0 = tmpbuf; | 
|  | int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; | 
|  | assert(width * height <= RESTORATION_UNITPELS_MAX); | 
|  |  | 
|  | const int ret = av1_selfguided_restoration_c(dat, width, height, stride, flt0, | 
|  | flt1, width, eps, bit_depth); | 
|  | (void)ret; | 
|  | assert(!ret); | 
|  | const sgr_params_type *const params = &av1_sgr_params[eps]; | 
|  | int xq[2]; | 
|  | av1_decode_xq(xqd, xq, params); | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int k = i * width + j; | 
|  | uint16_t *dstij = dst + i * dst_stride + j; | 
|  | const uint16_t *datij = dat + i * stride + j; | 
|  |  | 
|  | const uint16_t pre_u = *datij; | 
|  | const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS; | 
|  | int32_t v = u << SGRPROJ_PRJ_BITS; | 
|  | // If params->r == 0 then we skipped the filtering in | 
|  | // av1_selfguided_restoration_c, i.e. flt[k] == u | 
|  | if (params->r[0] > 0) v += xq[0] * (flt0[k] - u); | 
|  | if (params->r[1] > 0) v += xq[1] * (flt1[k] - u); | 
|  | const int16_t w = | 
|  | (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); | 
|  |  | 
|  | const uint16_t out = clip_pixel_highbd(w, bit_depth); | 
|  | *dstij = out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_PC_WIENER | 
|  |  | 
|  | // This routine should remain in sync with av1_convert_qindex_to_q. | 
|  | // The actual qstep used to quantize coefficients should be: | 
|  | //  get_qstep() / (1 << shift) | 
|  | static int get_qstep(int base_qindex, int bit_depth, int *shift) { | 
|  | int base_shift = QUANT_TABLE_BITS; | 
|  | switch (bit_depth) { | 
|  | case AOM_BITS_8: | 
|  | *shift = 2 + base_shift; | 
|  | return av1_ac_quant_QTX(base_qindex, 0, bit_depth); | 
|  | case AOM_BITS_10: | 
|  | *shift = 4 + base_shift; | 
|  | return av1_ac_quant_QTX(base_qindex, 0, bit_depth); | 
|  | case AOM_BITS_12: | 
|  | *shift = 6 + base_shift; | 
|  | return av1_ac_quant_QTX(base_qindex, 0, bit_depth); | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rotate_feature_line_buffers(int feature_len, | 
|  | PcwienerBuffers *buffers) { | 
|  | assert(feature_len <= MAX_FEATURE_LENGTH); | 
|  | for (int feature = 0; feature < NUM_PC_WIENER_FEATURES; ++feature) { | 
|  | const int row_begin = feature * feature_len; | 
|  | int16_t *buffer_0 = buffers->feature_line_buffers[row_begin]; | 
|  | for (int row = row_begin; row < row_begin + feature_len - 1; ++row) { | 
|  | buffers->feature_line_buffers[row] = | 
|  | buffers->feature_line_buffers[row + 1]; | 
|  | } | 
|  | buffers->feature_line_buffers[row_begin + feature_len - 1] = buffer_0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void allocate_pcwiener_line_buffers(int procunit_width, | 
|  | PcwienerBuffers *buffers) { | 
|  | buffers->buffer_width = procunit_width + MAX_FEATURE_LENGTH - 1; | 
|  | for (int j = 0; j < NUM_FEATURE_LINE_BUFFERS; ++j) { | 
|  | // This should be done only once. | 
|  | buffers->feature_line_buffers[j] = (int16_t *)(aom_malloc( | 
|  | buffers->buffer_width * sizeof(*buffers->feature_line_buffers[j]))); | 
|  | } | 
|  | for (int j = 0; j < NUM_PC_WIENER_FEATURES; ++j) { | 
|  | // This should be done only once. | 
|  | buffers->feature_sum_buffers[j] = (int *)(aom_malloc( | 
|  | buffers->buffer_width * sizeof(*buffers->feature_sum_buffers[j]))); | 
|  | } | 
|  | buffers->tskip_sum_buffer = (int8_t *)(aom_malloc( | 
|  | buffers->buffer_width * sizeof(*buffers->tskip_sum_buffer))); | 
|  | } | 
|  |  | 
|  | static void free_pcwiener_line_buffers(PcwienerBuffers *buffers) { | 
|  | for (int j = 0; j < NUM_FEATURE_LINE_BUFFERS; ++j) { | 
|  | aom_free(buffers->feature_line_buffers[j]); | 
|  | buffers->feature_line_buffers[j] = NULL; | 
|  | } | 
|  | for (int j = 0; j < NUM_PC_WIENER_FEATURES; ++j) { | 
|  | aom_free(buffers->feature_sum_buffers[j]); | 
|  | buffers->feature_sum_buffers[j] = NULL; | 
|  | } | 
|  | aom_free(buffers->tskip_sum_buffer); | 
|  | buffers->tskip_sum_buffer = NULL; | 
|  | buffers->buffer_width = 0; | 
|  | } | 
|  |  | 
|  | static void clear_line_buffers(PcwienerBuffers *buffers) { | 
|  | for (int k = 0; k < NUM_FEATURE_LINE_BUFFERS; ++k) | 
|  | memset(buffers->feature_line_buffers[k], 0, | 
|  | sizeof(*buffers->feature_line_buffers[k]) * buffers->buffer_width); | 
|  | for (int k = 0; k < NUM_PC_WIENER_FEATURES; ++k) | 
|  | memset(buffers->feature_sum_buffers[k], 0, | 
|  | sizeof(*buffers->feature_sum_buffers[k]) * buffers->buffer_width); | 
|  | memset(buffers->tskip_sum_buffer, 0, | 
|  | sizeof(*buffers->tskip_sum_buffer) * buffers->buffer_width); | 
|  | } | 
|  |  | 
|  | // Does the initialization of feature accumulator for column 0. | 
|  | static void init_directional_feature_accumulator(int col, int feature_lead, | 
|  | int feature_lag, | 
|  | PcwienerBuffers *buffers) { | 
|  | assert(col == 0); | 
|  | for (int col_offset = -feature_lead; col_offset < feature_lag; ++col_offset) { | 
|  | const int col_base = col + col_offset + feature_lead; | 
|  | for (int k = 0; k < NUM_PC_WIENER_FEATURES; k++) { | 
|  | assert(col_base >= 0); | 
|  | buffers->directional_feature_accumulator[k][0] += | 
|  | buffers->feature_sum_buffers[k][col_base]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_tskip_feature_accumulator(int col, int tskip_lead, | 
|  | int tskip_lag, | 
|  | PcwienerBuffers *buffers) { | 
|  | assert(col == 0); | 
|  | for (int col_offset = -tskip_lead; col_offset < tskip_lag; ++col_offset) { | 
|  | // Add tskip_lead to ensure buffer access is from >=0. | 
|  | const int col_base = col + col_offset + tskip_lead; | 
|  | buffers->tskip_feature_accumulator[0] += | 
|  | buffers->tskip_sum_buffer[col_base]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initializes the accumulators. | 
|  | static void initialize_feature_accumulators(int feature_lead, int feature_lag, | 
|  | int tskip_lead, int tskip_lag, | 
|  | PcwienerBuffers *buffers) { | 
|  | av1_zero(buffers->directional_feature_accumulator); | 
|  | av1_zero(buffers->tskip_feature_accumulator); | 
|  | // Initialize accumulators on the leftmost portion of the line. | 
|  | init_directional_feature_accumulator(0, feature_lead, feature_lag, buffers); | 
|  | init_tskip_feature_accumulator(0, tskip_lead, tskip_lag, buffers); | 
|  | } | 
|  |  | 
|  | // Updates the accumulators. | 
|  | static void update_accumulators(int feature_lead, int feature_lag, | 
|  | int tskip_lead, int tskip_lag, int width, | 
|  | PcwienerBuffers *buffers) { | 
|  | av1_fill_directional_feature_accumulators( | 
|  | buffers->directional_feature_accumulator, buffers->feature_sum_buffers, | 
|  | width, feature_lag, feature_lead, feature_lag); | 
|  | av1_fill_tskip_feature_accumulator(buffers->tskip_feature_accumulator, | 
|  | buffers->tskip_sum_buffer, width, | 
|  | tskip_lag, tskip_lead, tskip_lag); | 
|  | } | 
|  |  | 
|  | // Calculates the features needed for get_pcwiener_index. | 
|  | static void calculate_features(int32_t *feature_vector, int bit_depth, int col, | 
|  | PcwienerBuffers *buffers) { | 
|  | // Index derivation to retrieve the stored accumulated value. | 
|  | const int accum_index = col / PC_WIENER_BLOCK_SIZE; | 
|  | for (int f = 0; f < NUM_PC_WIENER_FEATURES; ++f) { | 
|  | feature_vector[f] = | 
|  | buffers->directional_feature_accumulator[f][accum_index] * | 
|  | buffers->feature_normalizers[f]; | 
|  | } | 
|  | const int bit_depth_shift = bit_depth - 8; | 
|  | if (bit_depth_shift) { | 
|  | for (int f = 0; f < NUM_PC_WIENER_FEATURES; ++f) | 
|  | feature_vector[f] = | 
|  | ROUND_POWER_OF_TWO_SIGNED(feature_vector[f], bit_depth_shift); | 
|  | } | 
|  | const int tskip_index = NUM_PC_WIENER_FEATURES; | 
|  | feature_vector[tskip_index] = | 
|  | buffers->tskip_feature_accumulator[accum_index] * | 
|  | buffers->feature_normalizers[tskip_index]; | 
|  | } | 
|  |  | 
|  | // Calculates the look-up-table of thresholds used in Wiener classification. The | 
|  | // classification uses an adjustment threshold value based on qindex and the | 
|  | // tskip feature. Since the tskip feature takes on a fixed set of values (0-255) | 
|  | // the thresholds can be precomputed rather than performing an online | 
|  | // calculation over each classified block. See CWG-C016 contribution for | 
|  | // details. | 
|  | static void fill_qval_given_tskip_lut(int base_qindex, int bit_depth, | 
|  | PcwienerBuffers *buffers) { | 
|  | int qstep_shift = 0; | 
|  | int qstep = get_qstep(base_qindex, bit_depth, &qstep_shift); | 
|  | qstep_shift += 8;  // normalization in tf | 
|  | const int bit_depth_shift = bit_depth - 8; | 
|  | if (bit_depth_shift) { | 
|  | qstep = ROUND_POWER_OF_TWO_SIGNED(qstep, bit_depth_shift); | 
|  | qstep_shift -= bit_depth_shift; | 
|  | } | 
|  |  | 
|  | // actual * 256 | 
|  | const int tskip_shift = 8; | 
|  | const int diff_shift = qstep_shift - tskip_shift; | 
|  | assert(diff_shift >= 0); | 
|  | for (int tskip = 0; tskip < 255; ++tskip) { | 
|  | const int tskip_shifted = tskip * (1 << diff_shift); | 
|  | const int tskip_qstep_prod = | 
|  | ROUND_POWER_OF_TWO_SIGNED(tskip * qstep, tskip_shift); | 
|  | const int total_shift = qstep_shift; | 
|  |  | 
|  | // Arithmetic ideas: tskip can be divided by 2, qstep can be scaled down. | 
|  | for (int i = 0; i < NUM_PC_WIENER_FEATURES; ++i) { | 
|  | int32_t qval = (mode_weights[i][0] * tskip_shifted) + | 
|  | (mode_weights[i][1] * qstep) + | 
|  | (mode_weights[i][2] * tskip_qstep_prod); | 
|  |  | 
|  | qval = ROUND_POWER_OF_TWO_SIGNED(qval, total_shift); | 
|  | qval += mode_offsets[i];  // actual * (1 << PC_WIENER_PREC_FEATURE) | 
|  |  | 
|  | buffers->qval_given_tskip_lut[tskip][i] = 255 * qval; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_feature_normalizers(PcwienerBuffers *buffers) { | 
|  | for (int i = 0; i < NUM_PC_WIENER_FEATURES; ++i) | 
|  | buffers->feature_normalizers[i] = feature_normalizers_luma[i]; | 
|  | buffers->feature_normalizers[NUM_PC_WIENER_FEATURES] = tskip_normalizer; | 
|  | } | 
|  |  | 
|  | static uint8_t get_pcwiener_index(int bit_depth, int32_t *multiplier, int col, | 
|  | PcwienerBuffers *buffers) { | 
|  | int32_t feature_vector[NUM_PC_WIENER_FEATURES + 1];  // 255 x actual | 
|  |  | 
|  | // Fill the feature vector. | 
|  | calculate_features(feature_vector, bit_depth, col, buffers); | 
|  |  | 
|  | // actual * 256 | 
|  | const int tskip_index = NUM_PC_WIENER_FEATURES; | 
|  | const int tskip = feature_vector[tskip_index]; | 
|  |  | 
|  | assert(tskip < 256); | 
|  | for (int i = 0; i < NUM_PC_WIENER_FEATURES; ++i) | 
|  | assert(feature_vector[i] >= 0); | 
|  |  | 
|  | for (int i = 0; i < NUM_PC_WIENER_FEATURES; ++i) { | 
|  | int32_t qval = ROUND_POWER_OF_TWO_SIGNED( | 
|  | feature_vector[i] + buffers->qval_given_tskip_lut[tskip][i], | 
|  | PC_WIENER_PREC_FEATURE); | 
|  |  | 
|  | // qval range is [0, 1] -> [0, 255] | 
|  | feature_vector[i] = clip_pixel(qval) >> pc_wiener_threshold_shift; | 
|  | } | 
|  |  | 
|  | int lut_input = 0; | 
|  | for (int i = 0; i < NUM_PC_WIENER_FEATURES; ++i) { | 
|  | lut_input += pc_wiener_thresholds[i] * feature_vector[i]; | 
|  | } | 
|  |  | 
|  | *multiplier = 1 << PC_WIENER_PREC_FEATURE; | 
|  | assert(lut_input == AOMMAX(AOMMIN(lut_input, PC_WIENER_LUT_SIZE - 1), 0)); | 
|  |  | 
|  | const uint8_t class_index = pc_wiener_lut_to_class_index[lut_input]; | 
|  | assert(class_index == | 
|  | AOMMAX(AOMMIN(class_index, NUM_PC_WIENER_LUT_CLASSES - 1), 0)); | 
|  | return class_index; | 
|  | } | 
|  |  | 
|  | void apply_pc_wiener_highbd( | 
|  | const uint16_t *dgd, int width, int height, int stride, uint16_t *dst, | 
|  | int dst_stride, const uint8_t *tskip, int tskip_stride, | 
|  | uint8_t *wiener_class_id, int wiener_class_id_stride, bool is_uv, | 
|  | int bit_depth, bool classify_only, | 
|  | const int16_t (*pcwiener_filters_luma)[NUM_PC_WIENER_TAPS_LUMA], | 
|  | const uint8_t *filter_selector, PcwienerBuffers *buffers) { | 
|  | (void)is_uv; | 
|  | const bool skip_filtering = classify_only; | 
|  | assert(!is_uv); | 
|  | const int pc_filter_num_taps = | 
|  | sizeof(pcwiener_tap_config_luma) / sizeof(pcwiener_tap_config_luma[0]); | 
|  | const NonsepFilterConfig pcfilter_config = { PC_WIENER_PREC_FILTER, | 
|  | pc_filter_num_taps, | 
|  | 0, | 
|  | pcwiener_tap_config_luma, | 
|  | NULL, | 
|  | 0, | 
|  | 0 }; | 
|  |  | 
|  | const NonsepFilterConfig *filter_config = &pcfilter_config; | 
|  | #if !USE_CONVOLVE_SYM | 
|  | const int singleton_tap_index = | 
|  | filter_config->config[filter_config->num_pixels - 1][NONSEP_BUF_POS]; | 
|  | const int num_sym_taps = (2 * NUM_PC_WIENER_TAPS_LUMA - 1) / 2; | 
|  | assert(num_sym_taps == (filter_config->num_pixels - 1) / 2); | 
|  | assert(num_sym_taps <= 24); | 
|  | int16_t compute_buffer[24]; | 
|  | int pixel_offset_diffs[24]; | 
|  | int filter_pos[24]; | 
|  | for (int k = 0; k < num_sym_taps; ++k) { | 
|  | const int r = filter_config->config[2 * k][NONSEP_ROW_ID]; | 
|  | const int c = filter_config->config[2 * k][NONSEP_COL_ID]; | 
|  | const int diff = r * stride + c; | 
|  | pixel_offset_diffs[k] = diff; | 
|  | filter_pos[k] = filter_config->config[2 * k][NONSEP_BUF_POS]; | 
|  | } | 
|  | int16_t max_pixel_value = 255; | 
|  | switch (bit_depth) { | 
|  | case 10: max_pixel_value = 1023; break; | 
|  | case 12: max_pixel_value = 4095; break; | 
|  | } | 
|  | #endif  // !USE_CONVOLVE_SYM | 
|  |  | 
|  | assert(filter_config->strict_bounds == false); | 
|  | const bool tskip_strict = true; | 
|  | const int feature_lead = PC_WIENER_FEATURE_LEAD_LUMA; | 
|  | const int feature_lag = PC_WIENER_FEATURE_LAG_LUMA; | 
|  | const int feature_length = feature_lead + feature_lag + 1; | 
|  | const int tskip_lead = PC_WIENER_TSKIP_LEAD_LUMA; | 
|  | const int tskip_lag = PC_WIENER_TSKIP_LAG_LUMA; | 
|  | const int tskip_length = tskip_lead + tskip_lag + 1; | 
|  |  | 
|  | // Class-id is allocated over blocks of size (1 << MI_SIZE_LOG2). | 
|  | assert((1 << MI_SIZE_LOG2) == PC_WIENER_BLOCK_SIZE); | 
|  | set_feature_normalizers(buffers); | 
|  | clear_line_buffers(buffers); | 
|  |  | 
|  | // Currently, code support when 'strict_bounds' (i.e. dir_strict) is true is | 
|  | // yet to be added in 'fill_directional_feature_buffers_highbd()' function. | 
|  | // Hence, not prefered to pass this variable as an argument to this function | 
|  | // to avoid build failure. | 
|  | for (int row = 0; row < feature_length - 1; ++row) { | 
|  | fill_directional_feature_buffers_highbd( | 
|  | buffers->feature_sum_buffers, buffers->feature_line_buffers, | 
|  | row - feature_lead, row, dgd, stride, width, feature_lead, feature_lag); | 
|  | } | 
|  | for (int row = 0; row < tskip_length - 1; ++row) { | 
|  | av1_fill_tskip_sum_buffer(row - tskip_lead, tskip, tskip_stride, | 
|  | buffers->tskip_sum_buffer, width, height, | 
|  | tskip_lead, tskip_lag, tskip_strict); | 
|  | } | 
|  | for (int i = 0; i < height; ++i) { | 
|  | // Ensure window is three pixels or a potential issue with odd-sized frames. | 
|  | const int row_to_process = AOMMIN(i + feature_lag, height + 3 - 2); | 
|  | fill_directional_feature_buffers_highbd( | 
|  | buffers->feature_sum_buffers, buffers->feature_line_buffers, | 
|  | row_to_process, feature_length - 1, dgd, stride, width, feature_lead, | 
|  | feature_lag); | 
|  |  | 
|  | av1_fill_tskip_sum_buffer(i + tskip_lag, tskip, tskip_stride, | 
|  | buffers->tskip_sum_buffer, width, height, | 
|  | tskip_lead, tskip_lag, tskip_strict); | 
|  | #if PC_WIENER_BLOCK_SIZE > 1 | 
|  | bool skip_row_compute = | 
|  | i % PC_WIENER_BLOCK_SIZE != PC_WIENER_BLOCK_ROW_OFFSET; | 
|  | #else | 
|  | bool skip_row_compute = false; | 
|  | #endif  // PC_WIENER_BLOCK_SIZE > 1 | 
|  | if (!skip_row_compute) { | 
|  | // Initialize accumulators on the leftmost portion of the line. | 
|  | initialize_feature_accumulators(feature_lead, feature_lag, tskip_lead, | 
|  | tskip_lag, buffers); | 
|  | // Fill accumulators for processing width. | 
|  | update_accumulators(feature_lead, feature_lag, tskip_lead, tskip_lag, | 
|  | width, buffers); | 
|  | } | 
|  | for (int j = 0; j < width; ++j) { | 
|  | #if PC_WIENER_BLOCK_SIZE > 1 | 
|  | if (skip_row_compute || | 
|  | j % PC_WIENER_BLOCK_SIZE != PC_WIENER_BLOCK_COL_OFFSET) | 
|  | continue; | 
|  | #endif  // PC_WIENER_BLOCK_SIZE > 1 | 
|  |  | 
|  | int32_t multiplier = 0; | 
|  | const uint8_t class_index = | 
|  | get_pcwiener_index(bit_depth, &multiplier, j, buffers); | 
|  |  | 
|  | // Store classification. | 
|  | wiener_class_id[(i >> MI_SIZE_LOG2) * wiener_class_id_stride + | 
|  | (j >> MI_SIZE_LOG2)] = class_index; | 
|  | if (skip_filtering) { | 
|  | continue; | 
|  | } | 
|  | const uint8_t filter_index = filter_selector[class_index]; | 
|  |  | 
|  | const int16_t *filter = pcwiener_filters_luma[filter_index]; | 
|  |  | 
|  | #if PC_WIENER_BLOCK_SIZE > 1 | 
|  | const int block_row_begin = i - PC_WIENER_BLOCK_ROW_OFFSET; | 
|  | int block_row_end = | 
|  | AOMMIN(block_row_begin + PC_WIENER_BLOCK_SIZE, height); | 
|  | if (i + PC_WIENER_BLOCK_SIZE >= height) block_row_end = height; | 
|  | const int block_col_begin = j - PC_WIENER_BLOCK_COL_OFFSET; | 
|  | int block_col_end = AOMMIN(block_col_begin + PC_WIENER_BLOCK_SIZE, width); | 
|  |  | 
|  | // Extend block if the next time we will calculate classification will be | 
|  | // out of bounds. | 
|  | if (j + PC_WIENER_BLOCK_SIZE >= width) block_col_end = width; | 
|  | #else | 
|  | const int block_row_begin = i; | 
|  | const int block_row_end = i + 1; | 
|  | const int block_col_begin = j; | 
|  | const int block_col_end = j + 1; | 
|  | #endif  // PC_WIENER_BLOCK_SIZE > 1 | 
|  |  | 
|  | #if USE_CONVOLVE_SYM | 
|  | av1_convolve_symmetric_highbd( | 
|  | dgd, stride, filter_config, filter, dst, dst_stride, bit_depth, | 
|  | block_row_begin, block_row_end, block_col_begin, block_col_end); | 
|  | #else | 
|  | const int16_t singleton_tap = | 
|  | filter[singleton_tap_index] + (1 << filter_config->prec_bits); | 
|  | for (int r = block_row_begin; r < block_row_end; ++r) { | 
|  | for (int c = block_col_begin; c < block_col_end; ++c) { | 
|  | int dgd_id = r * stride + c; | 
|  |  | 
|  | // Two loops for a potential data cache miss. | 
|  | for (int k = 0; k < num_sym_taps; ++k) { | 
|  | const int diff = pixel_offset_diffs[k]; | 
|  | const int16_t tmp_sum = dgd[dgd_id - diff]; | 
|  | compute_buffer[k] = tmp_sum; | 
|  | } | 
|  | for (int k = 0; k < num_sym_taps; ++k) { | 
|  | const int diff = pixel_offset_diffs[k]; | 
|  | const int16_t tmp_sum = dgd[dgd_id + diff]; | 
|  | compute_buffer[k] += tmp_sum; | 
|  | } | 
|  |  | 
|  | // Handle singleton tap. | 
|  | int32_t tmp = singleton_tap * dgd[dgd_id]; | 
|  | for (int k = 0; k < num_sym_taps; ++k) { | 
|  | const int pos = filter_pos[k]; | 
|  | tmp += filter[pos] * compute_buffer[k]; | 
|  | } | 
|  |  | 
|  | tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, filter_config->prec_bits); | 
|  | int dst_id = r * dst_stride + c; | 
|  | dst[dst_id] = (tmp > max_pixel_value) ? max_pixel_value | 
|  | : (tmp < 0)             ? 0 | 
|  | : tmp; | 
|  | } | 
|  | } | 
|  | #endif  // USE_CONVOLVE_SYM | 
|  | } | 
|  |  | 
|  | rotate_feature_line_buffers(feature_length, buffers); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setup_qval_tskip_lut(int qindex, int bit_depth, | 
|  | PcwienerBuffers *buffers) { | 
|  | if (qindex == buffers->prev_qindex && bit_depth == buffers->prev_bit_depth) { | 
|  | return; | 
|  | } | 
|  | fill_qval_given_tskip_lut(qindex, bit_depth, buffers); | 
|  | buffers->prev_qindex = qindex; | 
|  | buffers->prev_bit_depth = bit_depth; | 
|  | } | 
|  |  | 
|  | // Imeplements the LR stripe function akin to wiener_filter_stripe_highbd, | 
|  | // sgrproj_filter_stripe_highbd, etc., that accomplishes processing of RUs | 
|  | // labeled RESTORE_PC_WIENER. | 
|  | static void pc_wiener_stripe_highbd(const RestorationUnitInfo *rui, | 
|  | int stripe_width, int stripe_height, | 
|  | int procunit_width, const uint16_t *src, | 
|  | int src_stride, uint16_t *dst, | 
|  | int dst_stride, int32_t *tmpbuf, | 
|  | int bit_depth) { | 
|  | if (rui->plane != AOM_PLANE_Y) { | 
|  | assert(0); | 
|  | return; | 
|  | } | 
|  | (void)tmpbuf; | 
|  | (void)bit_depth; | 
|  | const int set_index = | 
|  | get_filter_set_index(rui->base_qindex + rui->qindex_offset); | 
|  | const int16_t(*pcwiener_filters_luma)[NUM_PC_WIENER_TAPS_LUMA] = | 
|  | get_filter_set(set_index); | 
|  | const uint8_t *filter_selector = get_filter_selector(set_index); | 
|  | assert(rui->pcwiener_buffers->buffer_width > 0); | 
|  |  | 
|  | setup_qval_tskip_lut(rui->base_qindex + rui->qindex_offset, bit_depth, | 
|  | rui->pcwiener_buffers); | 
|  | for (int j = 0; j < stripe_width; j += procunit_width) { | 
|  | int w = AOMMIN(procunit_width, stripe_width - j); | 
|  | // The function update_accumulator() is used to compute the accumulated | 
|  | // result of tx_skip and feature direction filtering output at | 
|  | // PC_WIENER_BLOCk_SIZE samples. The SIMD for the same is implemented with | 
|  | // an assumption of PC_WIENER_BLOCK_SIZE as 4x4 and procunit_width as 32 | 
|  | // or 64. | 
|  | apply_pc_wiener_highbd( | 
|  | src + j, w, stripe_height, src_stride, dst + j, dst_stride, | 
|  | rui->tskip + (j >> MI_SIZE_LOG2), rui->tskip_stride, | 
|  | rui->wiener_class_id + (j >> MI_SIZE_LOG2), rui->wiener_class_id_stride, | 
|  | rui->plane != AOM_PLANE_Y, bit_depth, false, pcwiener_filters_luma, | 
|  | filter_selector, rui->pcwiener_buffers); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_PC_WIENER | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP | 
|  |  | 
|  | // Enables running of wienerns filters without the subtract-center option. | 
|  | #define ADD_CENTER_TAP_TO_WIENERNS 1 | 
|  | #define ADD_CENTER_TAP_TO_WIENERNS_CHROMA 1 | 
|  | #define ADD_CENTER_TAP_TO_WIENERNS_CROSS 1 | 
|  |  | 
|  | #if ADD_CENTER_TAP_TO_WIENERNS | 
|  | // Adjust wienerns config and filters to use the non-subtract-center path. | 
|  | static void adjust_filter_and_config(const NonsepFilterConfig *nsfilter_config, | 
|  | const WienerNonsepInfo *wienerns_info, | 
|  | int is_uv, | 
|  | NonsepFilterConfig *adjusted_config, | 
|  | WienerNonsepInfo *adjusted_info) { | 
|  | *adjusted_config = *nsfilter_config; | 
|  | *adjusted_info = *wienerns_info; | 
|  |  | 
|  | // Add the center tap. | 
|  | adjusted_config->num_pixels += 1; | 
|  | if (adjusted_config->num_pixels2) { | 
|  | adjusted_config->num_pixels2 += 1; | 
|  | } | 
|  |  | 
|  | adjusted_config->subtract_center = 0; | 
|  | // Non-subtract-center SIMD has hard-coded pcwiener_tap_config_luma for luma. | 
|  | adjusted_config->config = | 
|  | is_uv ? wienerns_wout_subtract_center_config_uv_from_uv | 
|  | : pcwiener_tap_config_luma; | 
|  | adjusted_config->config2 = NULL; | 
|  |  | 
|  | // Handle luma -> luma or chroma -> chroma case. | 
|  | // Add a center tap at the end of the filter that is the minus the sum of the | 
|  | // taps. | 
|  | const int num_sym_taps = nsfilter_config->num_pixels / 2; | 
|  | const int center_tap_index = num_sym_taps; | 
|  | const int num_classes = wienerns_info->num_classes; | 
|  | for (int wiener_class_id = 0; wiener_class_id < num_classes; | 
|  | ++wiener_class_id) { | 
|  | int16_t *adjusted_filter = nsfilter_taps(adjusted_info, wiener_class_id); | 
|  | const int16_t *orig_filter = | 
|  | const_nsfilter_taps(wienerns_info, wiener_class_id); | 
|  | int sum = 0; | 
|  | for (int i = 0; i < num_sym_taps; ++i) { | 
|  | sum += orig_filter[i]; | 
|  | if (!is_uv) { | 
|  | // Non-subtract center SIMD code has hard-coded a config. Map filters to | 
|  | // that config. | 
|  | const int filter_pos_row = nsfilter_config->config[2 * i][0]; | 
|  | const int filter_pos_col = nsfilter_config->config[2 * i][1]; | 
|  | int found_index = -1; | 
|  | for (int j = 0; j < 2 * num_sym_taps; ++j) { | 
|  | if (adjusted_config->config[j][0] == filter_pos_row && | 
|  | adjusted_config->config[j][1] == filter_pos_col) { | 
|  | found_index = j; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(found_index != -1); | 
|  | adjusted_filter[adjusted_config->config[found_index][2]] = | 
|  | orig_filter[i]; | 
|  | } | 
|  | } | 
|  | adjusted_filter[center_tap_index] = -2 * sum; | 
|  | } | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | if (is_uv) { | 
|  | adjusted_config->config2 = wienerns_wout_subtract_center_config_uv_from_y; | 
|  | const int num_sym_taps_dual = nsfilter_config->num_pixels2 / 2; | 
|  | const int begin_idx = num_sym_taps; | 
|  | const int end_idx = begin_idx + num_sym_taps_dual; | 
|  | const int center_tap_index_dual = end_idx + 1; | 
|  |  | 
|  | // luma -> chroma part of the dual filter. This case needs a shift of the | 
|  | // filter since we added a tap to the chroma -> chroma part above. | 
|  | for (int wiener_class_id = 0; wiener_class_id < num_classes; | 
|  | ++wiener_class_id) { | 
|  | const int16_t *dual_filter = | 
|  | const_nsfilter_taps(wienerns_info, wiener_class_id); | 
|  | int16_t *adjusted_filter = nsfilter_taps(adjusted_info, wiener_class_id); | 
|  | int sum = 0; | 
|  | for (int i = begin_idx; i < end_idx; ++i) { | 
|  | sum += dual_filter[i]; | 
|  | // Shift the filter by one to account for the center tap above. | 
|  | adjusted_filter[i + 1] = dual_filter[i]; | 
|  | } | 
|  | // Add the center tap at the end. | 
|  | adjusted_filter[center_tap_index_dual] = -2 * sum; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif  // ADD_CENTER_TAP_TO_WIENERNS | 
|  |  | 
|  | void apply_wienerns_class_id_highbd(const uint16_t *dgd, int width, int height, | 
|  | int stride, | 
|  | const WienerNonsepInfo *wienerns_info, | 
|  | const NonsepFilterConfig *nsfilter_config, | 
|  | uint16_t *dst, int dst_stride, int plane, | 
|  | const uint16_t *luma, int luma_stride, | 
|  | int bit_depth) { | 
|  | (void)luma; | 
|  | (void)luma_stride; | 
|  | (void)plane; | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | int is_uv = (plane != AOM_PLANE_Y); | 
|  | if (is_uv && nsfilter_config->num_pixels2 != 0) { | 
|  | assert(wienerns_info->num_classes == 1); | 
|  | const int16_t *filter = const_nsfilter_taps(wienerns_info, 0); | 
|  |  | 
|  | const int block_size = 4; | 
|  | for (int r = 0; r < height; r += block_size) { | 
|  | const int h = AOMMIN(block_size, height - r); | 
|  | const uint16_t *dgd_row = dgd + r * stride; | 
|  | const uint16_t *luma_row = luma + r * luma_stride; | 
|  | uint16_t *dst_row = dst + r * dst_stride; | 
|  |  | 
|  | for (int c = 0; c < width; c += block_size) { | 
|  | const int w = AOMMIN(block_size, width - c); | 
|  | av1_convolve_nonsep_dual_highbd(dgd_row + c, w, h, stride, luma_row + c, | 
|  | luma_stride, nsfilter_config, filter, | 
|  | dst_row + c, dst_stride, bit_depth); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  |  | 
|  | const int block_size = 4; | 
|  |  | 
|  | for (int r = 0; r < height; r += block_size) { | 
|  | const int h = AOMMIN(block_size, height - r); | 
|  | const uint16_t *dgd_row = dgd + r * stride; | 
|  | uint16_t *dst_row = dst + r * dst_stride; | 
|  | for (int c = 0; c < width; c += block_size) { | 
|  | const int w = AOMMIN(block_size, width - c); | 
|  |  | 
|  | int sub_class_id = 0; | 
|  | const int16_t *block_filter = | 
|  | const_nsfilter_taps(wienerns_info, sub_class_id); | 
|  | av1_convolve_nonsep_highbd(dgd_row + c, w, h, stride, nsfilter_config, | 
|  | block_filter, dst_row + c, dst_stride, | 
|  | bit_depth); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void wiener_nsfilter_stripe_highbd(const RestorationUnitInfo *rui, | 
|  | int stripe_width, int stripe_height, | 
|  | int procunit_width, | 
|  | const uint16_t *src, int src_stride, | 
|  | uint16_t *dst, int dst_stride, | 
|  | int32_t *tmpbuf, int bit_depth) { | 
|  | (void)tmpbuf; | 
|  | (void)bit_depth; | 
|  | assert(rui->wienerns_info.num_classes == 1); | 
|  |  | 
|  | int is_uv = rui->plane != AOM_PLANE_Y; | 
|  | const NonsepFilterConfig *orig_config = | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | get_wienerns_config(rui->base_qindex, is_uv, 0); | 
|  | #else | 
|  | get_wienerns_config(rui->base_qindex, is_uv); | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | #if ADD_CENTER_TAP_TO_WIENERNS | 
|  | NonsepFilterConfig adjusted_config; | 
|  | WienerNonsepInfo adjusted_info; | 
|  | adjust_filter_and_config(orig_config, &rui->wienerns_info, is_uv, | 
|  | &adjusted_config, &adjusted_info); | 
|  | const NonsepFilterConfig *nsfilter_config = &adjusted_config; | 
|  | const WienerNonsepInfo *nsfilter_info = &adjusted_info; | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | if (is_uv && !ADD_CENTER_TAP_TO_WIENERNS_CROSS) { | 
|  | nsfilter_config = orig_config; | 
|  | nsfilter_info = &rui->wienerns_info; | 
|  | } | 
|  | #else | 
|  | if (is_uv && !ADD_CENTER_TAP_TO_WIENERNS_CHROMA) { | 
|  | nsfilter_config = orig_config; | 
|  | nsfilter_info = &rui->wienerns_info; | 
|  | } | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | #else | 
|  | const NonsepFilterConfig *nsfilter_config = orig_config; | 
|  | const WienerNonsepInfo *nsfilter_info = &rui->wienerns_info; | 
|  | #endif  // ADD_CENTER_TAP_TO_WIENERNS | 
|  |  | 
|  | for (int j = 0; j < stripe_width; j += procunit_width) { | 
|  | int w = AOMMIN(procunit_width, stripe_width - j); | 
|  | apply_wienerns_class_id_highbd( | 
|  | src + j, w, stripe_height, src_stride, nsfilter_info, nsfilter_config, | 
|  | dst + j, dst_stride, rui->plane, | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | rui->luma ? rui->luma + j : NULL, rui->luma_stride, | 
|  | #else | 
|  | NULL, -1, | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | bit_depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | // Convolving process of cross-component wiener filter for a 4x4 unit | 
|  | void av1_convolve_nonsep_cross_highbd_c(const uint16_t *dgd, int width, | 
|  | int height, int stride, | 
|  | const uint16_t *dgd2, int stride2, | 
|  | const NonsepFilterConfig *config, | 
|  | const int16_t *filter, uint16_t *dst, | 
|  | int dst_stride, int bit_depth) { | 
|  | (void)dgd; | 
|  | (void)stride; | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int dgd2_id = i * stride2 + j; | 
|  | const int dst_id = i * dst_stride + j; | 
|  | int32_t tmp = (int32_t)dst[dst_id] * (1 << config->prec_bits); | 
|  |  | 
|  | for (int k = 0; k < config->num_pixels; ++k) { | 
|  | const int pos = config->config[k][NONSEP_BUF_POS]; | 
|  | const int r = config->config[k][NONSEP_ROW_ID]; | 
|  | const int c = config->config[k][NONSEP_COL_ID]; | 
|  | const int ir = config->strict_bounds | 
|  | ? AOMMAX(AOMMIN(i + r, height - 1), 0) | 
|  | : i + r; | 
|  | const int jc = | 
|  | config->strict_bounds ? AOMMAX(AOMMIN(j + c, width - 1), 0) : j + c; | 
|  | int16_t diff = | 
|  | clip_base(dgd2[(ir)*stride2 + (jc)] - dgd2[dgd2_id], bit_depth); | 
|  | diff = k % 2 ? -diff : diff; | 
|  | tmp += filter[pos] * diff; | 
|  | } | 
|  | tmp = ROUND_POWER_OF_TWO_SIGNED(tmp, config->prec_bits); | 
|  | dst[dst_id] = clip_pixel_highbd(tmp, bit_depth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Cross-component wiener filtering for a process unit | 
|  | void apply_cross_wienerns_class_id_highbd( | 
|  | const uint16_t *dgd, int width, int height, int stride, | 
|  | const WienerNonsepInfo *wienerns_info, | 
|  | const NonsepFilterConfig *nsfilter_config, uint16_t *dst, int dst_stride, | 
|  | int plane, const uint16_t *luma, int luma_stride, int bit_depth) { | 
|  | assert(plane != AOM_PLANE_Y); | 
|  | (void)plane; | 
|  | assert(nsfilter_config->num_pixels2 == 0); | 
|  | assert(wienerns_info->num_classes == 1); | 
|  |  | 
|  | const int16_t *filter = const_nsfilter_taps(wienerns_info, 0); | 
|  |  | 
|  | const int block_size = 4; | 
|  | for (int r = 0; r < height; r += block_size) { | 
|  | const int h = AOMMIN(block_size, height - r); | 
|  | const uint16_t *dgd_row = dgd + r * stride; | 
|  | const uint16_t *luma_row = luma + r * luma_stride; | 
|  | uint16_t *dst_row = dst + r * dst_stride; | 
|  |  | 
|  | for (int c = 0; c < width; c += block_size) { | 
|  | const int w = AOMMIN(block_size, width - c); | 
|  | av1_convolve_nonsep_cross_highbd_c( | 
|  | dgd_row + c, w, h, stride, luma_row + c, luma_stride, nsfilter_config, | 
|  | filter, dst_row + c, dst_stride, bit_depth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Cross-component wiener filtering for  a stripe of process units | 
|  | static void wiener_ns_cross_filter_stripe_highbd( | 
|  | const RestorationUnitInfo *rui, int stripe_width, int stripe_height, | 
|  | int procunit_width, const uint16_t *src, int src_stride, uint16_t *dst, | 
|  | int dst_stride, int32_t *tmpbuf, int bit_depth) { | 
|  | (void)tmpbuf; | 
|  | (void)bit_depth; | 
|  |  | 
|  | assert(rui->wienerns_cross_info.num_classes == 1); | 
|  |  | 
|  | int is_uv = rui->plane != AOM_PLANE_Y; | 
|  |  | 
|  | assert(is_uv); | 
|  | const NonsepFilterConfig *orig_config = | 
|  | get_wienerns_config(rui->base_qindex, is_uv, 1); | 
|  |  | 
|  | const NonsepFilterConfig *nsfilter_config = orig_config; | 
|  | const WienerNonsepInfo *nsfilter_info = &rui->wienerns_cross_info; | 
|  |  | 
|  | for (int j = 0; j < stripe_width; j += procunit_width) { | 
|  | int w = AOMMIN(procunit_width, stripe_width - j); | 
|  | apply_cross_wienerns_class_id_highbd( | 
|  | src + j, w, stripe_height, src_stride, nsfilter_info, nsfilter_config, | 
|  | dst + j, dst_stride, rui->plane, rui->luma + j, rui->luma_stride, | 
|  | bit_depth); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | uint16_t *wienerns_copy_luma_highbd(const uint16_t *dgd, int height_y, | 
|  | int width_y, int in_stride, | 
|  | uint16_t **luma_hbd, int height_uv, | 
|  | int width_uv, int border, int out_stride, | 
|  | int bd | 
|  | #if WIENERNS_CROSS_FILT_LUMA_TYPE == 2 | 
|  | , | 
|  | int ds_type | 
|  | #endif | 
|  | ) { | 
|  | (void)bd; | 
|  | uint16_t *aug_luma = (uint16_t *)malloc( | 
|  | sizeof(uint16_t) * (width_uv + 2 * border) * (height_uv + 2 * border)); | 
|  | memset( | 
|  | aug_luma, 0, | 
|  | sizeof(*aug_luma) * (width_uv + 2 * border) * (height_uv + 2 * border)); | 
|  | uint16_t *luma[1]; | 
|  | *luma = aug_luma + border * out_stride + border; | 
|  | *luma_hbd = *luma; | 
|  | #if WIENERNS_CROSS_FILT_LUMA_TYPE == 0 | 
|  | const int ss_x = (((width_y + 1) >> 1) == width_uv); | 
|  | const int ss_y = (((height_y + 1) >> 1) == height_uv); | 
|  | for (int r = 0; r < height_uv; ++r) { | 
|  | for (int c = 0; c < width_uv; ++c) { | 
|  | (*luma)[r * out_stride + c] = | 
|  | dgd[(1 + ss_y) * r * in_stride + (1 + ss_x) * c]; | 
|  | } | 
|  | } | 
|  | #elif WIENERNS_CROSS_FILT_LUMA_TYPE == 1 | 
|  | const int ss_x = (((width_y + 1) >> 1) == width_uv); | 
|  | const int ss_y = (((height_y + 1) >> 1) == height_uv); | 
|  | if (ss_x && ss_y) {  // 420 | 
|  | int r; | 
|  | for (r = 0; r < height_y / 2; ++r) { | 
|  | int c; | 
|  | for (c = 0; c < width_y / 2; ++c) { | 
|  | (*luma)[r * out_stride + c] = | 
|  | (dgd[2 * r * in_stride + 2 * c] + | 
|  | dgd[2 * r * in_stride + 2 * c + 1] + | 
|  | dgd[(2 * r + 1) * in_stride + 2 * c] + | 
|  | dgd[(2 * r + 1) * in_stride + 2 * c + 1] + 2) >> | 
|  | 2; | 
|  | } | 
|  | // handle odd width_y | 
|  | for (; c < width_uv; ++c) { | 
|  | (*luma)[r * out_stride + c] = | 
|  | (dgd[2 * r * in_stride + 2 * c] + | 
|  | dgd[(2 * r + 1) * in_stride + 2 * c] + 1) >> | 
|  | 1; | 
|  | } | 
|  | } | 
|  | // handle odd height_y | 
|  | for (; r < height_uv; ++r) { | 
|  | int c; | 
|  | for (c = 0; c < width_y / 2; ++c) { | 
|  | (*luma)[r * out_stride + c] = | 
|  | (dgd[2 * r * in_stride + 2 * c] + | 
|  | dgd[2 * r * in_stride + 2 * c + 1] + 1) >> | 
|  | 1; | 
|  | } | 
|  | // handle odd height_y and width_y | 
|  | for (; c < width_uv; ++c) { | 
|  | (*luma)[r * out_stride + c] = dgd[2 * r * in_stride + 2 * c]; | 
|  | } | 
|  | } | 
|  | } else if (ss_x && !ss_y) {  // 422 | 
|  | for (int r = 0; r < height_uv; ++r) { | 
|  | int c; | 
|  | for (c = 0; c < width_y / 2; ++c) { | 
|  | (*luma)[r * out_stride + c] = | 
|  | (dgd[r * in_stride + 2 * c] + dgd[r * in_stride + 2 * c + 1] + 1) >> | 
|  | 1; | 
|  | } | 
|  | // handle odd width_y | 
|  | for (; c < width_uv; ++c) { | 
|  | (*luma)[r * out_stride + c] = dgd[r * in_stride + 2 * c]; | 
|  | } | 
|  | } | 
|  | } else if (!ss_x && !ss_y) {  // 444 | 
|  | for (int r = 0; r < height_uv; ++r) { | 
|  | for (int c = 0; c < width_uv; ++c) { | 
|  | (*luma)[r * out_stride + c] = dgd[r * in_stride + c]; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | assert(0 && "Invalid dimensions"); | 
|  | } | 
|  | #elif WIENERNS_CROSS_FILT_LUMA_TYPE == 2 | 
|  | const int ss_x = (((width_y + 1) >> 1) == width_uv); | 
|  | const int ss_y = (((height_y + 1) >> 1) == height_uv); | 
|  | if (ss_x && ss_y && ds_type == 1) { | 
|  | for (int r = 0; r < height_uv; ++r) { | 
|  | for (int c = 0; c < width_uv; ++c) { | 
|  | (*luma)[r * out_stride + c] = (dgd[2 * r * in_stride + 2 * c] + | 
|  | dgd[(2 * r + 1) * in_stride + 2 * c]) / | 
|  | 2; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (int r = 0; r < height_uv; ++r) { | 
|  | for (int c = 0; c < width_uv; ++c) { | 
|  | (*luma)[r * out_stride + c] = | 
|  | dgd[(1 + ss_y) * r * in_stride + (1 + ss_x) * c]; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | av1_highbd_resize_plane(dgd, height_y, width_y, in_stride, *luma, height_uv, | 
|  | width_uv, out_stride, bd); | 
|  | #endif  // WIENERNS_CROSS_FILT_LUMA_TYPE | 
|  | // extend border by replication | 
|  | for (int r = 0; r < height_uv; ++r) { | 
|  | for (int c = -border; c < 0; ++c) | 
|  | (*luma)[r * out_stride + c] = (*luma)[r * out_stride]; | 
|  | for (int c = 0; c < border; ++c) | 
|  | (*luma)[r * out_stride + width_uv + c] = | 
|  | (*luma)[r * out_stride + width_uv - 1]; | 
|  | } | 
|  | for (int r = -border; r < 0; ++r) { | 
|  | memcpy(&(*luma)[r * out_stride - border], &(*luma)[-border], | 
|  | (width_uv + 2 * border) * sizeof((*luma)[0])); | 
|  | } | 
|  | for (int r = 0; r < border; ++r) | 
|  | memcpy(&(*luma)[(height_uv + r) * out_stride - border], | 
|  | &(*luma)[(height_uv - 1) * out_stride - border], | 
|  | (width_uv + 2 * border) * sizeof((*luma)[0])); | 
|  | return aug_luma; | 
|  | } | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | #endif  // CONFIG_WIENER_NONSEP | 
|  |  | 
|  | static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui, | 
|  | int stripe_width, int stripe_height, | 
|  | int procunit_width, const uint16_t *src, | 
|  | int src_stride, uint16_t *dst, | 
|  | int dst_stride, int32_t *tmpbuf, | 
|  | int bit_depth) { | 
|  | (void)tmpbuf; | 
|  | const ConvolveParams conv_params = get_conv_params_wiener(bit_depth); | 
|  |  | 
|  | for (int j = 0; j < stripe_width; j += procunit_width) { | 
|  | int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15); | 
|  | const uint16_t *src_p = src + j; | 
|  | uint16_t *dst_p = dst + j; | 
|  | av1_highbd_wiener_convolve_add_src(src_p, src_stride, dst_p, dst_stride, | 
|  | rui->wiener_info.hfilter, 16, | 
|  | rui->wiener_info.vfilter, 16, w, | 
|  | stripe_height, &conv_params, bit_depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui, | 
|  | int stripe_width, int stripe_height, | 
|  | int procunit_width, | 
|  | const uint16_t *src, int src_stride, | 
|  | uint16_t *dst, int dst_stride, | 
|  | int32_t *tmpbuf, int bit_depth) { | 
|  | for (int j = 0; j < stripe_width; j += procunit_width) { | 
|  | int w = AOMMIN(procunit_width, stripe_width - j); | 
|  | av1_apply_selfguided_restoration( | 
|  | src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep, | 
|  | rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui, | 
|  | int stripe_width, int stripe_height, | 
|  | int procunit_width, const uint16_t *src, | 
|  | int src_stride, uint16_t *dst, int dst_stride, | 
|  | int32_t *tmpbuf, int bit_depth); | 
|  | #if CONFIG_WIENER_NONSEP && CONFIG_PC_WIENER | 
|  | #define NUM_STRIPE_FILTERS 4 | 
|  |  | 
|  | static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = { | 
|  | wiener_filter_stripe_highbd, sgrproj_filter_stripe_highbd, | 
|  | pc_wiener_stripe_highbd, wiener_nsfilter_stripe_highbd | 
|  | }; | 
|  | #elif CONFIG_WIENER_NONSEP | 
|  | #define NUM_STRIPE_FILTERS 3 | 
|  |  | 
|  | static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = { | 
|  | wiener_filter_stripe_highbd, sgrproj_filter_stripe_highbd, | 
|  | wiener_nsfilter_stripe_highbd | 
|  | }; | 
|  | #elif CONFIG_PC_WIENER | 
|  | #define NUM_STRIPE_FILTERS 3 | 
|  |  | 
|  | static const stripe_filter_fun | 
|  | stripe_filters[NUM_STRIPE_FILTERS] = { | 
|  | wiener_filter_stripe_highbd, | 
|  | sgrproj_filter_stripe_highbd, | 
|  | pc_wiener_stripe_highbd, | 
|  | }; | 
|  | #else | 
|  | #define NUM_STRIPE_FILTERS 2 | 
|  | static const stripe_filter_fun | 
|  | stripe_filters[NUM_STRIPE_FILTERS] = { | 
|  | wiener_filter_stripe_highbd, sgrproj_filter_stripe_highbd | 
|  | }; | 
|  | #endif  // CONFIG_WIENER_NONSEP && CONFIG_PC_WIENER | 
|  |  | 
|  | // Filter one restoration unit | 
|  | void av1_loop_restoration_filter_unit( | 
|  | const RestorationTileLimits *limits, const RestorationUnitInfo *rui, | 
|  | const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs, | 
|  | const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y, | 
|  | int bit_depth, uint16_t *data, int stride, uint16_t *dst, int dst_stride, | 
|  | int32_t *tmpbuf, int optimized_lr) { | 
|  | RestorationType unit_rtype = rui->restoration_type; | 
|  |  | 
|  | int unit_h = limits->v_end - limits->v_start; | 
|  | int unit_w = limits->h_end - limits->h_start; | 
|  | uint16_t *data_tl = data + limits->v_start * stride + limits->h_start; | 
|  | uint16_t *dst_tl = dst + limits->v_start * dst_stride + limits->h_start; | 
|  |  | 
|  | if (unit_rtype == RESTORE_NONE) { | 
|  | copy_tile(unit_w, unit_h, data_tl, stride, dst_tl, dst_stride); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int filter_idx = (int)unit_rtype - 1; | 
|  | assert(filter_idx < NUM_STRIPE_FILTERS); | 
|  | const stripe_filter_fun stripe_filter = stripe_filters[filter_idx]; | 
|  |  | 
|  | const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT || CONFIG_PC_WIENER | 
|  | // rui is a pointer to a const but we modify its contents when calling | 
|  | // stripe_filter(). Use a temporary. | 
|  | RestorationUnitInfo rui_contents = *rui; | 
|  | RestorationUnitInfo *tmp_rui = &rui_contents; | 
|  | #else | 
|  | const RestorationUnitInfo *tmp_rui = rui; | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT || CONFIG_PC_WIENER | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | const uint16_t *luma_in_ru = NULL; | 
|  | const int enable_cross_buffers = | 
|  | unit_rtype == RESTORE_WIENER_NONSEP && rui->plane != AOM_PLANE_Y; | 
|  |  | 
|  | if (enable_cross_buffers) | 
|  | luma_in_ru = | 
|  | rui->luma + limits->v_start * rui->luma_stride + limits->h_start; | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  |  | 
|  | #if CONFIG_PC_WIENER | 
|  | const int enable_pcwiener_buffers = unit_rtype == RESTORE_PC_WIENER | 
|  | #if CONFIG_WIENER_NONSEP | 
|  | || unit_rtype == RESTORE_WIENER_NONSEP | 
|  | #endif  // CONFIG_WIENER_NONSEP | 
|  | ; | 
|  | PcwienerBuffers pc_wiener_buffers = { 0 }; | 
|  | tmp_rui->pcwiener_buffers = &pc_wiener_buffers; | 
|  | const uint8_t *tskip_in_ru = NULL; | 
|  | uint8_t *wiener_class_id_in_ru = NULL; | 
|  | if (enable_pcwiener_buffers) { | 
|  | tskip_in_ru = rui->tskip + | 
|  | (limits->v_start >> MI_SIZE_LOG2) * rui->tskip_stride + | 
|  | (limits->h_start >> MI_SIZE_LOG2); | 
|  | wiener_class_id_in_ru = | 
|  | rui->wiener_class_id + | 
|  | (limits->v_start >> MI_SIZE_LOG2) * rui->wiener_class_id_stride + | 
|  | (limits->h_start >> MI_SIZE_LOG2); | 
|  | allocate_pcwiener_line_buffers(procunit_width, tmp_rui->pcwiener_buffers); | 
|  | } | 
|  | #endif  // CONFIG_PC_WIENER | 
|  |  | 
|  | // Convolve the whole tile one stripe at a time | 
|  | RestorationTileLimits remaining_stripes = *limits; | 
|  | int i = 0; | 
|  | while (i < unit_h) { | 
|  | int copy_above, copy_below; | 
|  | remaining_stripes.v_start = limits->v_start + i; | 
|  |  | 
|  | get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, ©_above, | 
|  | ©_below); | 
|  |  | 
|  | const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; | 
|  | const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  |  | 
|  | // Work out where this stripe's boundaries are within | 
|  | // rsb->stripe_boundary_{above,below} | 
|  | const int tile_stripe = | 
|  | (remaining_stripes.v_start - tile_rect->top + runit_offset) / | 
|  | full_stripe_height; | 
|  | const int frame_stripe = tile_stripe0 + tile_stripe; | 
|  | const int rsb_row = RESTORATION_CTX_VERT * frame_stripe; | 
|  |  | 
|  | // Calculate this stripe's height, based on two rules: | 
|  | // * The topmost stripe in each tile is 8 luma pixels shorter than usual. | 
|  | // * We can't extend past the end of the current restoration unit | 
|  | const int nominal_stripe_height = | 
|  | full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0); | 
|  | const int h = AOMMIN(nominal_stripe_height, | 
|  | remaining_stripes.v_end - remaining_stripes.v_start); | 
|  |  | 
|  | setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, h, data, | 
|  | stride, rlbs, copy_above, copy_below, | 
|  | optimized_lr); | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | tmp_rui->luma = | 
|  | enable_cross_buffers ? luma_in_ru + i * rui->luma_stride : NULL; | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | #if CONFIG_PC_WIENER | 
|  | tmp_rui->tskip = enable_pcwiener_buffers | 
|  | ? tskip_in_ru + (i >> MI_SIZE_LOG2) * rui->tskip_stride | 
|  | : NULL; | 
|  | tmp_rui->wiener_class_id = | 
|  | enable_pcwiener_buffers | 
|  | ? wiener_class_id_in_ru + | 
|  | (i >> MI_SIZE_LOG2) * rui->wiener_class_id_stride | 
|  | : NULL; | 
|  | #endif  // CONFIG_PC_WIENER | 
|  |  | 
|  | stripe_filter(tmp_rui, unit_w, h, procunit_width, data_tl + i * stride, | 
|  | stride, dst_tl + i * dst_stride, dst_stride, tmpbuf, | 
|  | bit_depth); | 
|  |  | 
|  | restore_processing_stripe_boundary(&remaining_stripes, rlbs, h, data, | 
|  | stride, copy_above, copy_below, | 
|  | optimized_lr); | 
|  |  | 
|  | i += h; | 
|  | } | 
|  | #if CONFIG_PC_WIENER | 
|  | if (enable_pcwiener_buffers) | 
|  | free_pcwiener_line_buffers(tmp_rui->pcwiener_buffers); | 
|  | #endif  // CONFIG_PC_WIENER | 
|  | } | 
|  |  | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | // Cross-component fFiltering for one restoration unit | 
|  | void av1_wiener_ns_cross_filter_unit( | 
|  | const RestorationTileLimits *limits, const RestorationUnitInfo *rui, | 
|  | const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs, | 
|  | const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y, | 
|  | int bit_depth, uint16_t *data, int stride, uint16_t *dst, int dst_stride, | 
|  | int32_t *tmpbuf, int optimized_lr) { | 
|  | (void)rsb; | 
|  | (void)rlbs; | 
|  | (void)optimized_lr; | 
|  | (void)tile_stripe0; | 
|  |  | 
|  | RestorationType unit_cross_rtype = rui->cross_restoration_type; | 
|  |  | 
|  | const int unit_h = limits->v_end - limits->v_start; | 
|  | const int unit_w = limits->h_end - limits->h_start; | 
|  | uint16_t *data_tl = data + limits->v_start * stride + limits->h_start; | 
|  | uint16_t *dst_tl = dst + limits->v_start * dst_stride + limits->h_start; | 
|  |  | 
|  | if (unit_cross_rtype == RESTORE_NONE) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(unit_cross_rtype == RESTORE_WIENER_NONSEP); | 
|  |  | 
|  | const stripe_filter_fun stripe_filter = wiener_ns_cross_filter_stripe_highbd; | 
|  |  | 
|  | const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; | 
|  |  | 
|  | // rui is a pointer to a const but we modify its contents when calling | 
|  | // stripe_filter(). Use a temporary for now and refactor the datastructure | 
|  | // later. | 
|  | RestorationUnitInfo rui_contents = *rui; | 
|  | RestorationUnitInfo *tmp_rui = &rui_contents; | 
|  |  | 
|  | const uint16_t *luma_in_plane = rui->luma; | 
|  | const uint16_t *luma_in_ru = | 
|  | luma_in_plane + limits->v_start * rui->luma_stride + limits->h_start; | 
|  |  | 
|  | // Convolve the whole tile one stripe at a time | 
|  | RestorationTileLimits remaining_stripes = *limits; | 
|  | int i = 0; | 
|  | while (i < unit_h) { | 
|  | int copy_above, copy_below; | 
|  | remaining_stripes.v_start = limits->v_start + i; | 
|  |  | 
|  | get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, ©_above, | 
|  | ©_below); | 
|  |  | 
|  | const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; | 
|  | const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  |  | 
|  | // Work out where this stripe's boundaries are within | 
|  | // rsb->stripe_boundary_{above,below} | 
|  | const int tile_stripe = | 
|  | (remaining_stripes.v_start - tile_rect->top + runit_offset) / | 
|  | full_stripe_height; | 
|  | //    const int frame_stripe = tile_stripe0 + tile_stripe; | 
|  | //    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe; | 
|  |  | 
|  | // Calculate this stripe's height, based on two rules: | 
|  | // * The topmost stripe in each tile is 8 luma pixels shorter than usual. | 
|  | // * We can't extend past the end of the current restoration unit | 
|  | const int nominal_stripe_height = | 
|  | full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0); | 
|  | const int h = AOMMIN(nominal_stripe_height, | 
|  | remaining_stripes.v_end - remaining_stripes.v_start); | 
|  |  | 
|  | tmp_rui->luma = luma_in_ru + i * rui->luma_stride; | 
|  |  | 
|  | stripe_filter(tmp_rui, unit_w, h, procunit_width, data_tl + i * stride, | 
|  | stride, dst_tl + i * dst_stride, dst_stride, tmpbuf, | 
|  | bit_depth); | 
|  |  | 
|  | i += h; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  |  | 
|  | static void filter_frame_on_unit(const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, | 
|  | int rest_unit_idx, int rest_unit_idx_seq, | 
|  | void *priv, int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)rest_unit_idx_seq; | 
|  | FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv; | 
|  | const RestorationInfo *rsi = ctxt->rsi; | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP || CONFIG_PC_WIENER | 
|  | rsi->unit_info[rest_unit_idx].plane = ctxt->plane; | 
|  | rsi->unit_info[rest_unit_idx].base_qindex = ctxt->base_qindex; | 
|  | #endif  // CONFIG_WIENER_NONSEP || CONFIG_PC_WIENER | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | rsi->unit_info[rest_unit_idx].luma = ctxt->luma; | 
|  | rsi->unit_info[rest_unit_idx].luma_stride = ctxt->luma_stride; | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | #if CONFIG_PC_WIENER | 
|  | rsi->unit_info[rest_unit_idx].tskip = ctxt->tskip; | 
|  | rsi->unit_info[rest_unit_idx].tskip_stride = ctxt->tskip_stride; | 
|  | rsi->unit_info[rest_unit_idx].wiener_class_id = ctxt->wiener_class_id; | 
|  | rsi->unit_info[rest_unit_idx].wiener_class_id_stride = | 
|  | ctxt->wiener_class_id_stride; | 
|  | rsi->unit_info[rest_unit_idx].qindex_offset = ctxt->qindex_offset; | 
|  | rsi->unit_info[rest_unit_idx].wiener_class_id_restrict = -1; | 
|  | #endif  // CONFIG_PC_WIENER | 
|  |  | 
|  | av1_loop_restoration_filter_unit( | 
|  | limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect, | 
|  | ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->bit_depth, ctxt->data8, | 
|  | ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf, | 
|  | rsi->optimized_lr); | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | const int is_uv = (ctxt->plane != AOM_PLANE_Y); | 
|  | if (is_uv) | 
|  | av1_wiener_ns_cross_filter_unit( | 
|  | limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, | 
|  | tile_rect, ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->bit_depth, | 
|  | ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf, | 
|  | rsi->optimized_lr); | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | } | 
|  |  | 
|  | void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt, | 
|  | YV12_BUFFER_CONFIG *frame, | 
|  | AV1_COMMON *cm, int optimized_lr, | 
|  | int num_planes) { | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | const int bit_depth = seq_params->bit_depth; | 
|  | lr_ctxt->dst = &cm->rst_frame; | 
|  |  | 
|  | const int frame_width = frame->crop_widths[0]; | 
|  | const int frame_height = frame->crop_heights[0]; | 
|  | if (aom_realloc_frame_buffer( | 
|  | lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x, | 
|  | seq_params->subsampling_y, AOM_RESTORATION_FRAME_BORDER, | 
|  | cm->features.byte_alignment, NULL, NULL, NULL) < 0) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate restoration dst buffer"); | 
|  |  | 
|  | lr_ctxt->on_rest_unit = filter_frame_on_unit; | 
|  | lr_ctxt->frame = frame; | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | RestorationType rtype = rsi->frame_restoration_type; | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | RestorationType cross_rtype = rsi->frame_cross_restoration_type; | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | rsi->optimized_lr = optimized_lr; | 
|  |  | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | if (rtype == RESTORE_NONE && cross_rtype == RESTORE_NONE) { | 
|  | #else | 
|  | if (rtype == RESTORE_NONE) { | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const int is_uv = plane > 0; | 
|  | const int plane_width = frame->crop_widths[is_uv]; | 
|  | const int plane_height = frame->crop_heights[is_uv]; | 
|  | FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane]; | 
|  |  | 
|  | av1_extend_frame(frame->buffers[plane], plane_width, plane_height, | 
|  | frame->strides[is_uv], RESTORATION_BORDER, | 
|  | RESTORATION_BORDER); | 
|  |  | 
|  | lr_plane_ctxt->rsi = rsi; | 
|  | lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x; | 
|  | lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y; | 
|  | lr_plane_ctxt->bit_depth = bit_depth; | 
|  | lr_plane_ctxt->data8 = frame->buffers[plane]; | 
|  | lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane]; | 
|  | lr_plane_ctxt->data_stride = frame->strides[is_uv]; | 
|  | lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv]; | 
|  | lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | lr_plane_ctxt->tile_stripe0 = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt, | 
|  | AV1_COMMON *cm, int num_planes) { | 
|  | typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, | 
|  | YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, | 
|  | int vstart, int vend); | 
|  | static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y, | 
|  | aom_yv12_partial_coloc_copy_u, | 
|  | aom_yv12_partial_coloc_copy_v }; | 
|  | assert(num_planes <= 3); | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | && cm->rst_info[plane].frame_cross_restoration_type == RESTORE_NONE | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | ) | 
|  | continue; | 
|  |  | 
|  | AV1PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect; | 
|  | copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left, | 
|  | tile_rect.right, tile_rect.top, tile_rect.bottom); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm, | 
|  | int num_planes) { | 
|  | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | uint16_t *luma = NULL; | 
|  | uint16_t *luma_buf; | 
|  | const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; | 
|  | int luma_stride = dgd->crop_widths[1] + 2 * WIENERNS_UV_BRD; | 
|  | luma_buf = wienerns_copy_luma_highbd( | 
|  | dgd->buffers[AOM_PLANE_Y], dgd->crop_heights[AOM_PLANE_Y], | 
|  | dgd->crop_widths[AOM_PLANE_Y], dgd->strides[AOM_PLANE_Y], &luma, | 
|  | dgd->crop_heights[1], dgd->crop_widths[1], WIENERNS_UV_BRD, luma_stride, | 
|  | cm->seq_params.bit_depth | 
|  | #if WIENERNS_CROSS_FILT_LUMA_TYPE == 2 | 
|  | , | 
|  | cm->seq_params.enable_cfl_ds_filter == 1 | 
|  | #endif | 
|  | ); | 
|  | assert(luma_buf != NULL); | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE | 
|  | #if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | && cm->rst_info[plane].frame_cross_restoration_type == RESTORE_NONE | 
|  | #endif  // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER | 
|  | ) | 
|  | continue; | 
|  |  | 
|  | #if CONFIG_WIENER_NONSEP || CONFIG_PC_WIENER | 
|  | ctxt[plane].plane = plane; | 
|  | ctxt[plane].base_qindex = cm->quant_params.base_qindex; | 
|  | #endif  // CONFIG_WIENER_NONSEP || CONFIG_PC_WIENER | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | const int is_uv = (plane != AOM_PLANE_Y); | 
|  | ctxt[plane].luma = is_uv ? luma : NULL; | 
|  | ctxt[plane].luma_stride = is_uv ? luma_stride : -1; | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | #if CONFIG_PC_WIENER | 
|  | ctxt[plane].tskip = cm->mi_params.tx_skip[plane]; | 
|  | ctxt[plane].tskip_stride = cm->mi_params.tx_skip_stride[plane]; | 
|  | if (plane != AOM_PLANE_Y) | 
|  | ctxt[plane].qindex_offset = plane == AOM_PLANE_U | 
|  | ? cm->quant_params.u_dc_delta_q | 
|  | : cm->quant_params.v_dc_delta_q; | 
|  | else | 
|  | ctxt[plane].qindex_offset = cm->quant_params.y_dc_delta_q; | 
|  | ctxt[plane].wiener_class_id = cm->mi_params.wiener_class_id[plane]; | 
|  | ctxt[plane].wiener_class_id_stride = | 
|  | cm->mi_params.wiener_class_id_stride[plane]; | 
|  | #endif  // CONFIG_PC_WIENER | 
|  |  | 
|  | av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, | 
|  | &ctxt[plane], &ctxt[plane].tile_rect, | 
|  | cm->rst_tmpbuf, cm->rlbs); | 
|  | } | 
|  | #if CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | free(luma_buf); | 
|  | #endif  // CONFIG_WIENER_NONSEP_CROSS_FILT | 
|  | } | 
|  |  | 
|  | void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame, | 
|  | AV1_COMMON *cm, int optimized_lr, | 
|  | void *lr_ctxt) { | 
|  | assert(!cm->features.all_lossless); | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; | 
|  |  | 
|  | av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, | 
|  | optimized_lr, num_planes); | 
|  |  | 
|  | foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes); | 
|  |  | 
|  | av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes); | 
|  | } | 
|  |  | 
|  | void av1_foreach_rest_unit_in_row( | 
|  | RestorationTileLimits *limits, const AV1PixelRect *tile_rect, | 
|  | rest_unit_visitor_t on_rest_unit, int row_number, int unit_size, | 
|  | int unit_idx0, int hunits_per_tile, int vunits_per_tile, int unit_stride, | 
|  | int plane, void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs, | 
|  | sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write, | 
|  | struct AV1LrSyncData *const lr_sync, int *processed) { | 
|  | const int tile_w = tile_rect->right - tile_rect->left; | 
|  | const int ext_size = unit_size * 3 / 2; | 
|  | int x0 = 0, j = 0; | 
|  | while (x0 < tile_w) { | 
|  | int remaining_w = tile_w - x0; | 
|  | int w = (remaining_w < ext_size) ? remaining_w : unit_size; | 
|  |  | 
|  | limits->h_start = tile_rect->left + x0; | 
|  | limits->h_end = tile_rect->left + x0 + w; | 
|  | assert(limits->h_end <= tile_rect->right); | 
|  |  | 
|  | // Note that the hunits_per_tile is for the number of horz RUs in the | 
|  | // rutile, but unit_stride is the stride for RU info for the full frame. | 
|  | // If the tile is the full frame, then unit_stride will be the same as | 
|  | // hunits_per_tile, but not always. | 
|  | const int unit_idx = unit_idx0 + row_number * unit_stride + j; | 
|  |  | 
|  | // No sync for even numbered rows | 
|  | // For odd numbered rows, Loop Restoration of current block requires the LR | 
|  | // of top-right and bottom-right blocks to be completed | 
|  |  | 
|  | // top-right sync | 
|  | on_sync_read(lr_sync, row_number, j, plane); | 
|  | if ((row_number + 1) < vunits_per_tile) | 
|  | // bottom-right sync | 
|  | on_sync_read(lr_sync, row_number + 2, j, plane); | 
|  |  | 
|  | // Note *processed is an index that if provided, is passed down to the | 
|  | // visitor function on_rest_unit(), and is then incremented by 1. | 
|  | // This can be used by the visitor function as a sequential index. | 
|  | on_rest_unit(limits, tile_rect, unit_idx, (processed ? *processed : -1), | 
|  | priv, tmpbuf, rlbs); | 
|  | if (processed) (*processed)++; | 
|  |  | 
|  | on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane); | 
|  |  | 
|  | x0 += w; | 
|  | ++j; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) { | 
|  | (void)lr_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)plane; | 
|  | } | 
|  |  | 
|  | void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c, | 
|  | const int sb_cols, int plane) { | 
|  | (void)lr_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)sb_cols; | 
|  | (void)plane; | 
|  | } | 
|  |  | 
|  | // This is meant to be called when the RUs in an entire coded tile are to | 
|  | // be processed. The tile_rect passed in is the RU-domain rectangle covering | 
|  | // all the RUs that are signaled as part of  coded tile. The first RU row is | 
|  | // expected to be offset. In AV1 syntax, the offsetting only happens for the | 
|  | // first row in the frame and all other tile boundaries are ignored for the | 
|  | // purpose of filtering. So whenever this is called make sure that the | 
|  | // tile_rect passed in is for the entire frame or at least a vertical tile in | 
|  | // the frame. However we still preserve the generic functionality here in this | 
|  | // function. In the future if we allow filtering to be conducted independently | 
|  | // within each tile, this function could be more useful. | 
|  | void av1_foreach_rest_unit_in_tile(const AV1PixelRect *tile_rect, int unit_idx0, | 
|  | int hunits_per_tile, int vunits_per_tile, | 
|  | int unit_stride, int unit_size, int ss_y, | 
|  | int plane, rest_unit_visitor_t on_rest_unit, | 
|  | void *priv, int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs, | 
|  | int *processed) { | 
|  | const int tile_h = tile_rect->bottom - tile_rect->top; | 
|  | const int ext_size = unit_size * 3 / 2; | 
|  |  | 
|  | int y0 = 0, i = 0; | 
|  | while (y0 < tile_h) { | 
|  | int remaining_h = tile_h - y0; | 
|  | int h = (remaining_h < ext_size) ? remaining_h : unit_size; | 
|  |  | 
|  | RestorationTileLimits limits; | 
|  | limits.v_start = tile_rect->top + y0; | 
|  | limits.v_end = tile_rect->top + y0 + h; | 
|  | assert(limits.v_end <= tile_rect->bottom); | 
|  | // Offset the tile upwards to align with the restoration processing stripe | 
|  | const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  | limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset); | 
|  | if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset; | 
|  |  | 
|  | assert(i < vunits_per_tile); | 
|  | av1_foreach_rest_unit_in_row( | 
|  | &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0, | 
|  | hunits_per_tile, vunits_per_tile, unit_stride, plane, priv, tmpbuf, | 
|  | rlbs, av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL, processed); | 
|  |  | 
|  | y0 += h; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is meant to be called when the RUs in a single coded SB are to be | 
|  | // processed. The tile_rect passed in is the RU-domain rectangle covering | 
|  | // all the RUs that are signaled as part of  coded SB. The first RU row is | 
|  | // expected to be offset only if the tile_rect starts at row 0. Note that | 
|  | // this is a simple variation of the function above and could have been | 
|  | // combined, but they are kept distinct to avoid confusion in the future. | 
|  | void av1_foreach_rest_unit_in_sb(const AV1PixelRect *tile_rect, int unit_idx0, | 
|  | int hunits_per_tile, int vunits_per_tile, | 
|  | int unit_stride, int unit_size, int ss_y, | 
|  | int plane, rest_unit_visitor_t on_rest_unit, | 
|  | void *priv, int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs, int *processed) { | 
|  | const int tile_h = tile_rect->bottom - tile_rect->top; | 
|  | const int ext_size = unit_size * 3 / 2 + RESTORATION_UNIT_OFFSET; | 
|  |  | 
|  | int y0 = 0, i = 0; | 
|  | while (y0 < tile_h) { | 
|  | int remaining_h = tile_h - y0; | 
|  | int h = (remaining_h < ext_size) ? remaining_h : unit_size; | 
|  |  | 
|  | RestorationTileLimits limits; | 
|  | limits.v_start = tile_rect->top + y0; | 
|  | limits.v_end = tile_rect->top + y0 + h; | 
|  | assert(limits.v_end <= tile_rect->bottom); | 
|  | // Offset the tile upwards to align with the restoration processing stripe | 
|  | // if the SB that iuncludes the RUs in this group are the top row | 
|  | if (tile_rect->top == 0) { | 
|  | const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  | limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset); | 
|  | if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset; | 
|  | h = limits.v_end - limits.v_start; | 
|  | } | 
|  |  | 
|  | assert(i < vunits_per_tile); | 
|  | av1_foreach_rest_unit_in_row( | 
|  | &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0, | 
|  | hunits_per_tile, vunits_per_tile, unit_stride, plane, priv, tmpbuf, | 
|  | rlbs, av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL, processed); | 
|  |  | 
|  | y0 += h; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane, | 
|  | rest_unit_visitor_t on_rest_unit, | 
|  | void *priv, AV1PixelRect *tile_rect, | 
|  | int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | const int is_uv = plane > 0; | 
|  | const int ss_y = is_uv && cm->seq_params.subsampling_y; | 
|  |  | 
|  | const RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  |  | 
|  | const int unit_idx0 = | 
|  | (LR_TILE_ROW * LR_TILE_COLS + LR_TILE_COL) * rsi->units_per_tile; | 
|  | int processed = 0; | 
|  | av1_foreach_rest_unit_in_tile( | 
|  | tile_rect, unit_idx0, rsi->horz_units_per_tile, rsi->vert_units_per_tile, | 
|  | rsi->horz_units_per_tile, rsi->restoration_unit_size, ss_y, plane, | 
|  | on_rest_unit, priv, tmpbuf, rlbs, &processed); | 
|  | } | 
|  |  | 
|  | int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | int *rcol0, int *rcol1, int *rrow0, | 
|  | int *rrow1) { | 
|  | assert(rcol0 && rcol1 && rrow0 && rrow1); | 
|  |  | 
|  | if (bsize != cm->seq_params.sb_size) return 0; | 
|  |  | 
|  | assert(!cm->features.all_lossless); | 
|  |  | 
|  | const int is_uv = plane > 0; | 
|  |  | 
|  | const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | const int tile_w = tile_rect.right - tile_rect.left; | 
|  | const int tile_h = tile_rect.bottom - tile_rect.top; | 
|  |  | 
|  | const int mi_top = 0; | 
|  | const int mi_left = 0; | 
|  |  | 
|  | // Compute the mi-unit corners of the superblock relative to the top-left of | 
|  | // the tile | 
|  | const int mi_rel_row0 = mi_row - mi_top; | 
|  | const int mi_rel_col0 = mi_col - mi_left; | 
|  | const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize]; | 
|  | const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize]; | 
|  |  | 
|  | const RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | const int size = rsi->restoration_unit_size; | 
|  |  | 
|  | // Calculate the number of restoration units in this tile (which might be | 
|  | // strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile) | 
|  | const int horz_units = av1_lr_count_units_in_tile(size, tile_w); | 
|  | const int vert_units = av1_lr_count_units_in_tile(size, tile_h); | 
|  |  | 
|  | // The size of an MI-unit on this plane of the image | 
|  | const int ss_x = is_uv && cm->seq_params.subsampling_x; | 
|  | const int ss_y = is_uv && cm->seq_params.subsampling_y; | 
|  | const int mi_size_x = MI_SIZE >> ss_x; | 
|  | const int mi_size_y = MI_SIZE >> ss_y; | 
|  |  | 
|  | // Write m for the relative mi column or row, D for the superres denominator | 
|  | // and N for the superres numerator. If u is the upscaled pixel offset then | 
|  | // we can write the downscaled pixel offset in two ways as: | 
|  | // | 
|  | //   MI_SIZE * m = N / D u | 
|  | // | 
|  | // from which we get u = D * MI_SIZE * m / N | 
|  | const int mi_to_num_x = av1_superres_scaled(cm) | 
|  | ? mi_size_x * cm->superres_scale_denominator | 
|  | : mi_size_x; | 
|  | const int mi_to_num_y = mi_size_y; | 
|  | const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size; | 
|  | const int denom_y = size; | 
|  |  | 
|  | const int rnd_x = denom_x - 1; | 
|  | const int rnd_y = denom_y - 1; | 
|  |  | 
|  | // rcol0/rrow0 should be the first column/row of restoration units (relative | 
|  | // to the top-left of the tile) that doesn't start left/below of | 
|  | // mi_col/mi_row. For this calculation, we need to round up the division (if | 
|  | // the sb starts at runit column 10.1, the first matching runit has column | 
|  | // index 11) | 
|  | *rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x; | 
|  | *rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y; | 
|  |  | 
|  | // rel_col1/rel_row1 is the equivalent calculation, but for the superblock | 
|  | // below-right. If we're at the bottom or right of the tile, this restoration | 
|  | // unit might not exist, in which case we'll clamp accordingly. | 
|  | *rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units); | 
|  | *rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units); | 
|  |  | 
|  | return *rcol0 < *rcol1 && *rrow0 < *rrow1; | 
|  | } | 
|  |  | 
|  | // Extend to left and right | 
|  | static void extend_lines(uint16_t *buf, int width, int height, int stride, | 
|  | int extend) { | 
|  | for (int i = 0; i < height; ++i) { | 
|  | aom_memset16(buf - extend, buf[0], extend); | 
|  | aom_memset16(buf + width, buf[width - 1], extend); | 
|  | buf += stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void save_deblock_boundary_lines( | 
|  | const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row, | 
|  | int stripe, int is_above, RestorationStripeBoundaries *boundaries) { | 
|  | const int is_uv = plane > 0; | 
|  | const uint16_t *src_buf = frame->buffers[plane]; | 
|  | const int src_stride = frame->strides[is_uv]; | 
|  | const uint16_t *src_rows = src_buf + row * src_stride; | 
|  |  | 
|  | uint16_t *bdry_buf = is_above ? boundaries->stripe_boundary_above | 
|  | : boundaries->stripe_boundary_below; | 
|  | uint16_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ); | 
|  | const int bdry_stride = boundaries->stripe_boundary_stride; | 
|  | uint16_t *bdry_rows = | 
|  | bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride; | 
|  |  | 
|  | // There is a rare case in which a processing stripe can end 1px above the | 
|  | // crop border. In this case, we do want to use deblocked pixels from below | 
|  | // the stripe (hence why we ended up in this function), but instead of | 
|  | // fetching 2 "below" rows we need to fetch one and duplicate it. | 
|  | // This is equivalent to clamping the sample locations against the crop border | 
|  | const int lines_to_save = | 
|  | AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row); | 
|  | assert(lines_to_save == 1 || lines_to_save == 2); | 
|  |  | 
|  | int upscaled_width; | 
|  | int line_bytes; | 
|  | if (av1_superres_scaled(cm)) { | 
|  | const int ss_x = is_uv && cm->seq_params.subsampling_x; | 
|  | upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x; | 
|  | line_bytes = upscaled_width << 1; | 
|  | av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows, | 
|  | boundaries->stripe_boundary_stride, plane, | 
|  | lines_to_save); | 
|  | } else { | 
|  | upscaled_width = frame->crop_widths[is_uv]; | 
|  | line_bytes = upscaled_width << 1; | 
|  | for (int i = 0; i < lines_to_save; i++) { | 
|  | memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride, | 
|  | line_bytes); | 
|  | } | 
|  | } | 
|  | // If we only saved one line, then copy it into the second line buffer | 
|  | if (lines_to_save == 1) | 
|  | memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes); | 
|  |  | 
|  | extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride, | 
|  | RESTORATION_EXTRA_HORZ); | 
|  | } | 
|  |  | 
|  | static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame, | 
|  | const AV1_COMMON *cm, int plane, int row, | 
|  | int stripe, int is_above, | 
|  | RestorationStripeBoundaries *boundaries) { | 
|  | const int is_uv = plane > 0; | 
|  | const uint16_t *src_buf = frame->buffers[plane]; | 
|  | const int src_stride = frame->strides[is_uv]; | 
|  | const uint16_t *src_rows = src_buf + row * src_stride; | 
|  |  | 
|  | uint16_t *bdry_buf = is_above ? boundaries->stripe_boundary_above | 
|  | : boundaries->stripe_boundary_below; | 
|  | uint16_t *bdry_start = bdry_buf + RESTORATION_EXTRA_HORZ; | 
|  | const int bdry_stride = boundaries->stripe_boundary_stride; | 
|  | uint16_t *bdry_rows = | 
|  | bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride; | 
|  | const int src_width = frame->crop_widths[is_uv]; | 
|  |  | 
|  | // At the point where this function is called, we've already applied | 
|  | // superres. So we don't need to extend the lines here, we can just | 
|  | // pull directly from the topmost row of the upscaled frame. | 
|  | const int ss_x = is_uv && cm->seq_params.subsampling_x; | 
|  | const int upscaled_width = av1_superres_scaled(cm) | 
|  | ? (cm->superres_upscaled_width + ss_x) >> ss_x | 
|  | : src_width; | 
|  | const int line_bytes = upscaled_width << 1; | 
|  | for (int i = 0; i < RESTORATION_CTX_VERT; i++) { | 
|  | // Copy the line at 'row' into both context lines. This is because | 
|  | // we want to (effectively) extend the outermost row of CDEF data | 
|  | // from this tile to produce a border, rather than using deblocked | 
|  | // pixels from the tile above/below. | 
|  | memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes); | 
|  | } | 
|  | extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride, | 
|  | RESTORATION_EXTRA_HORZ); | 
|  | } | 
|  |  | 
|  | static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame, | 
|  | int plane, AV1_COMMON *cm, | 
|  | int after_cdef) { | 
|  | const int is_uv = plane > 0; | 
|  | const int ss_y = is_uv && cm->seq_params.subsampling_y; | 
|  | const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; | 
|  | const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  |  | 
|  | // Get the tile rectangle, with height rounded up to the next multiple of 8 | 
|  | // luma pixels (only relevant for the bottom tile of the frame) | 
|  | const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | const int stripe0 = 0; | 
|  |  | 
|  | RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries; | 
|  |  | 
|  | const int plane_height = | 
|  | ROUND_POWER_OF_TWO(cm->superres_upscaled_height, ss_y); | 
|  |  | 
|  | int tile_stripe; | 
|  | for (tile_stripe = 0;; ++tile_stripe) { | 
|  | const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off); | 
|  | const int y0 = tile_rect.top + rel_y0; | 
|  | if (y0 >= tile_rect.bottom) break; | 
|  |  | 
|  | const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off; | 
|  | const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom); | 
|  |  | 
|  | const int frame_stripe = stripe0 + tile_stripe; | 
|  |  | 
|  | // In this case, we should only use CDEF pixels at the top | 
|  | // and bottom of the frame as a whole; internal tile boundaries | 
|  | // can use deblocked pixels from adjacent tiles for context. | 
|  | const int use_deblock_above = (frame_stripe > 0); | 
|  | const int use_deblock_below = (y1 < plane_height); | 
|  |  | 
|  | if (!after_cdef) { | 
|  | // Save deblocked context where needed. | 
|  | if (use_deblock_above) { | 
|  | save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT, | 
|  | frame_stripe, 1, boundaries); | 
|  | } | 
|  | if (use_deblock_below) { | 
|  | save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe, 0, | 
|  | boundaries); | 
|  | } | 
|  | } else { | 
|  | // Save CDEF context where needed. Note that we need to save the CDEF | 
|  | // context for a particular boundary iff we *didn't* save deblocked | 
|  | // context for that boundary. | 
|  | // | 
|  | // In addition, we need to save copies of the outermost line within | 
|  | // the tile, rather than using data from outside the tile. | 
|  | if (!use_deblock_above) { | 
|  | save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, 1, | 
|  | boundaries); | 
|  | } | 
|  | if (!use_deblock_below) { | 
|  | save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe, 0, | 
|  | boundaries); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan | 
|  | // lines to be used as boundary in the loop restoration process. The | 
|  | // lines are saved in rst_internal.stripe_boundary_lines | 
|  | void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame, | 
|  | AV1_COMMON *cm, int after_cdef) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | for (int p = 0; p < num_planes; ++p) { | 
|  | save_tile_row_boundary_lines(frame, p, cm, after_cdef); | 
|  | } | 
|  | } |