|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/resize.h" | 
|  | #include "av1/common/tile_common.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  |  | 
|  | void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) { | 
|  | av1_tile_set_row(tile, cm, row); | 
|  | av1_tile_set_col(tile, cm, col); | 
|  | } | 
|  |  | 
|  | // Find smallest k>=0 such that (blk_size << k) >= target | 
|  | static int tile_log2(int blk_size, int target) { | 
|  | int k; | 
|  | for (k = 0; (blk_size << k) < target; k++) { | 
|  | } | 
|  | return k; | 
|  | } | 
|  |  | 
|  | void av1_get_tile_limits(AV1_COMMON *const cm) { | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | CommonTileParams *const tiles = &cm->tiles; | 
|  | const int mi_cols = | 
|  | ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2); | 
|  | const int mi_rows = | 
|  | ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2); | 
|  | const int sb_cols = mi_cols >> seq_params->mib_size_log2; | 
|  | const int sb_rows = mi_rows >> seq_params->mib_size_log2; | 
|  |  | 
|  | const int sb_size_log2 = seq_params->mib_size_log2 + MI_SIZE_LOG2; | 
|  | tiles->max_width_sb = MAX_TILE_WIDTH >> sb_size_log2; | 
|  | const int max_tile_area_sb = MAX_TILE_AREA >> (2 * sb_size_log2); | 
|  |  | 
|  | tiles->min_log2_cols = tile_log2(tiles->max_width_sb, sb_cols); | 
|  | tiles->max_log2_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS)); | 
|  | tiles->max_log2_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS)); | 
|  | tiles->min_log2 = tile_log2(max_tile_area_sb, sb_cols * sb_rows); | 
|  | tiles->min_log2 = AOMMAX(tiles->min_log2, tiles->min_log2_cols); | 
|  | } | 
|  |  | 
|  | void av1_calculate_tile_cols(const SequenceHeader *const seq_params, | 
|  | int cm_mi_rows, int cm_mi_cols, | 
|  | CommonTileParams *const tiles) { | 
|  | int mi_cols = ALIGN_POWER_OF_TWO(cm_mi_cols, seq_params->mib_size_log2); | 
|  | int mi_rows = ALIGN_POWER_OF_TWO(cm_mi_rows, seq_params->mib_size_log2); | 
|  | int sb_cols = mi_cols >> seq_params->mib_size_log2; | 
|  | int sb_rows = mi_rows >> seq_params->mib_size_log2; | 
|  | int i; | 
|  |  | 
|  | // This will be overridden if there is at least two columns of tiles | 
|  | // (otherwise there is no inner tile width) | 
|  | tiles->min_inner_width = -1; | 
|  |  | 
|  | if (tiles->uniform_spacing) { | 
|  | int start_sb; | 
|  | int size_sb = ALIGN_POWER_OF_TWO(sb_cols, tiles->log2_cols); | 
|  | size_sb >>= tiles->log2_cols; | 
|  | assert(size_sb > 0); | 
|  | for (i = 0, start_sb = 0; start_sb < sb_cols; i++) { | 
|  | tiles->col_start_sb[i] = start_sb; | 
|  | start_sb += size_sb; | 
|  | } | 
|  | tiles->cols = i; | 
|  | tiles->col_start_sb[i] = sb_cols; | 
|  | tiles->min_log2_rows = AOMMAX(tiles->min_log2 - tiles->log2_cols, 0); | 
|  | tiles->max_height_sb = sb_rows >> tiles->min_log2_rows; | 
|  |  | 
|  | tiles->width = size_sb << seq_params->mib_size_log2; | 
|  | tiles->width = AOMMIN(tiles->width, cm_mi_cols); | 
|  | if (tiles->cols > 1) { | 
|  | tiles->min_inner_width = tiles->width; | 
|  | } | 
|  | } else { | 
|  | int max_tile_area_sb = (sb_rows * sb_cols); | 
|  | int widest_tile_sb = 1; | 
|  | int narrowest_inner_tile_sb = 65536; | 
|  | tiles->log2_cols = tile_log2(1, tiles->cols); | 
|  | for (i = 0; i < tiles->cols; i++) { | 
|  | int size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i]; | 
|  | widest_tile_sb = AOMMAX(widest_tile_sb, size_sb); | 
|  | // ignore the rightmost tile in frame for determining the narrowest | 
|  | if (i < tiles->cols - 1) | 
|  | narrowest_inner_tile_sb = AOMMIN(narrowest_inner_tile_sb, size_sb); | 
|  | } | 
|  | if (tiles->min_log2) { | 
|  | max_tile_area_sb >>= (tiles->min_log2 + 1); | 
|  | } | 
|  | tiles->max_height_sb = AOMMAX(max_tile_area_sb / widest_tile_sb, 1); | 
|  | if (tiles->cols > 1) { | 
|  | tiles->min_inner_width = narrowest_inner_tile_sb | 
|  | << seq_params->mib_size_log2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_calculate_tile_rows(const SequenceHeader *const seq_params, | 
|  | int cm_mi_rows, CommonTileParams *const tiles) { | 
|  | int mi_rows = ALIGN_POWER_OF_TWO(cm_mi_rows, seq_params->mib_size_log2); | 
|  | int sb_rows = mi_rows >> seq_params->mib_size_log2; | 
|  | int start_sb, size_sb, i; | 
|  |  | 
|  | if (tiles->uniform_spacing) { | 
|  | size_sb = ALIGN_POWER_OF_TWO(sb_rows, tiles->log2_rows); | 
|  | size_sb >>= tiles->log2_rows; | 
|  | assert(size_sb > 0); | 
|  | for (i = 0, start_sb = 0; start_sb < sb_rows; i++) { | 
|  | tiles->row_start_sb[i] = start_sb; | 
|  | start_sb += size_sb; | 
|  | } | 
|  | tiles->rows = i; | 
|  | tiles->row_start_sb[i] = sb_rows; | 
|  |  | 
|  | tiles->height = size_sb << seq_params->mib_size_log2; | 
|  | tiles->height = AOMMIN(tiles->height, cm_mi_rows); | 
|  | } else { | 
|  | tiles->log2_rows = tile_log2(1, tiles->rows); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) { | 
|  | assert(row < cm->tiles.rows); | 
|  | int mi_row_start = cm->tiles.row_start_sb[row] | 
|  | << cm->seq_params.mib_size_log2; | 
|  | int mi_row_end = cm->tiles.row_start_sb[row + 1] | 
|  | << cm->seq_params.mib_size_log2; | 
|  | tile->tile_row = row; | 
|  | tile->mi_row_start = mi_row_start; | 
|  | tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_params.mi_rows); | 
|  | assert(tile->mi_row_end > tile->mi_row_start); | 
|  | } | 
|  |  | 
|  | void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) { | 
|  | assert(col < cm->tiles.cols); | 
|  | int mi_col_start = cm->tiles.col_start_sb[col] | 
|  | << cm->seq_params.mib_size_log2; | 
|  | int mi_col_end = cm->tiles.col_start_sb[col + 1] | 
|  | << cm->seq_params.mib_size_log2; | 
|  | tile->tile_col = col; | 
|  | tile->mi_col_start = mi_col_start; | 
|  | tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_params.mi_cols); | 
|  | assert(tile->mi_col_end > tile->mi_col_start); | 
|  | } | 
|  |  | 
|  | int av1_get_sb_rows_in_tile(AV1_COMMON *cm, TileInfo tile) { | 
|  | int mi_rows_aligned_to_sb = ALIGN_POWER_OF_TWO( | 
|  | tile.mi_row_end - tile.mi_row_start, cm->seq_params.mib_size_log2); | 
|  | int sb_rows = mi_rows_aligned_to_sb >> cm->seq_params.mib_size_log2; | 
|  |  | 
|  | return sb_rows; | 
|  | } | 
|  |  | 
|  | int av1_get_sb_cols_in_tile(AV1_COMMON *cm, TileInfo tile) { | 
|  | int mi_cols_aligned_to_sb = ALIGN_POWER_OF_TWO( | 
|  | tile.mi_col_end - tile.mi_col_start, cm->seq_params.mib_size_log2); | 
|  | int sb_cols = mi_cols_aligned_to_sb >> cm->seq_params.mib_size_log2; | 
|  |  | 
|  | return sb_cols; | 
|  | } | 
|  |  | 
|  | AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm, | 
|  | int is_uv) { | 
|  | AV1PixelRect r; | 
|  |  | 
|  | // Calculate position in the Y plane | 
|  | r.left = tile_info->mi_col_start * MI_SIZE; | 
|  | r.right = tile_info->mi_col_end * MI_SIZE; | 
|  | r.top = tile_info->mi_row_start * MI_SIZE; | 
|  | r.bottom = tile_info->mi_row_end * MI_SIZE; | 
|  |  | 
|  | // If upscaling is enabled, the tile limits need scaling to match the | 
|  | // upscaled frame where the restoration units live. To do this, scale up the | 
|  | // top-left and bottom-right of the tile. | 
|  | if (av1_superres_scaled(cm)) { | 
|  | av1_calculate_unscaled_superres_size(&r.left, &r.top, | 
|  | cm->superres_scale_denominator); | 
|  | av1_calculate_unscaled_superres_size(&r.right, &r.bottom, | 
|  | cm->superres_scale_denominator); | 
|  | } | 
|  |  | 
|  | const int frame_w = cm->superres_upscaled_width; | 
|  | const int frame_h = cm->superres_upscaled_height; | 
|  |  | 
|  | // Make sure we don't fall off the bottom-right of the frame. | 
|  | r.right = AOMMIN(r.right, frame_w); | 
|  | r.bottom = AOMMIN(r.bottom, frame_h); | 
|  |  | 
|  | // Convert to coordinates in the appropriate plane | 
|  | const int ss_x = is_uv && cm->seq_params.subsampling_x; | 
|  | const int ss_y = is_uv && cm->seq_params.subsampling_y; | 
|  |  | 
|  | r.left = ROUND_POWER_OF_TWO(r.left, ss_x); | 
|  | r.right = ROUND_POWER_OF_TWO(r.right, ss_x); | 
|  | r.top = ROUND_POWER_OF_TWO(r.top, ss_y); | 
|  | r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void av1_get_uniform_tile_size(const AV1_COMMON *cm, int *w, int *h) { | 
|  | const CommonTileParams *const tiles = &cm->tiles; | 
|  | if (tiles->uniform_spacing) { | 
|  | *w = tiles->width; | 
|  | *h = tiles->height; | 
|  | } else { | 
|  | for (int i = 0; i < tiles->cols; ++i) { | 
|  | const int tile_width_sb = | 
|  | tiles->col_start_sb[i + 1] - tiles->col_start_sb[i]; | 
|  | const int tile_w = tile_width_sb * cm->seq_params.mib_size; | 
|  | assert(i == 0 || tile_w == *w);  // ensure all tiles have same dimension | 
|  | *w = tile_w; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < tiles->rows; ++i) { | 
|  | const int tile_height_sb = | 
|  | tiles->row_start_sb[i + 1] - tiles->row_start_sb[i]; | 
|  | const int tile_h = tile_height_sb * cm->seq_params.mib_size; | 
|  | assert(i == 0 || tile_h == *h);  // ensure all tiles have same dimension | 
|  | *h = tile_h; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_is_min_tile_width_satisfied(const AV1_COMMON *cm) { | 
|  | // Disable check if there is a single tile col in the frame | 
|  | if (cm->tiles.cols == 1) return 1; | 
|  |  | 
|  | return ((cm->tiles.min_inner_width << MI_SIZE_LOG2) >= | 
|  | (64 << av1_superres_scaled(cm))); | 
|  | } |