|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include "aom/aom_codec.h" | 
|  | #include "aom_ports/system_state.h" | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/common_data.h" | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/reconintra.h" | 
|  |  | 
|  | #include "av1/encoder/aq_complexity.h" | 
|  | #include "av1/encoder/aq_variance.h" | 
|  | #include "av1/encoder/block.h" | 
|  | #include "av1/encoder/context_tree.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/encodeframe.h" | 
|  | #include "av1/encoder/encodeframe_utils.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/motion_search_facade.h" | 
|  | #include "av1/encoder/partition_search.h" | 
|  | #include "av1/encoder/partition_strategy.h" | 
|  | #include "av1/encoder/reconinter_enc.h" | 
|  | #include "av1/encoder/tokenize.h" | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | #include "av1/common/reconinter.h" | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | #include "av1/encoder/erp_tflite.h" | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #include "aom_util/debug_util.h" | 
|  |  | 
|  | #if CONFIG_TUNE_VMAF | 
|  | #include "av1/encoder/tune_vmaf.h" | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | static void update_partition_cdfs_and_counts(MACROBLOCKD *xd, int blk_col, | 
|  | int blk_row, TX_SIZE max_tx_size, | 
|  | int allow_update_cdf, | 
|  | FRAME_COUNTS *counts) { | 
|  | (void)counts; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | const int txb_size_index = | 
|  | is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; | 
|  | const int is_rect = is_rect_tx(max_tx_size); | 
|  | const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index]; | 
|  | const int allow_horz = allow_tx_horz_split(max_tx_size); | 
|  | const int allow_vert = allow_tx_vert_split(max_tx_size); | 
|  | if (allow_horz && allow_vert) { | 
|  | const TX_PARTITION_TYPE split4_partition = get_split4_partition(partition); | 
|  | const int split4_ctx = | 
|  | is_inter ? txfm_partition_split4_inter_context( | 
|  | xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, bsize, max_tx_size) | 
|  | : get_tx_size_context(xd); | 
|  | aom_cdf_prob *split4_cdf = | 
|  | is_inter | 
|  | ? xd->tile_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx] | 
|  | : xd->tile_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx]; | 
|  | if (allow_update_cdf) { | 
|  | update_cdf(split4_cdf, split4_partition, 4); | 
|  | } | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | if (is_inter) | 
|  | ++counts | 
|  | ->inter_4way_txfm_partition[is_rect][split4_ctx][split4_partition]; | 
|  | else | 
|  | ++counts | 
|  | ->intra_4way_txfm_partition[is_rect][split4_ctx][split4_partition]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } else if (allow_horz || allow_vert) { | 
|  | const int has_first_split = partition != TX_PARTITION_NONE; | 
|  | if (allow_update_cdf) { | 
|  | aom_cdf_prob *split2_cdf = | 
|  | is_inter ? xd->tile_ctx->inter_2way_txfm_partition_cdf | 
|  | : xd->tile_ctx->intra_2way_txfm_partition_cdf; | 
|  | update_cdf(split2_cdf, has_first_split, 2); | 
|  | } | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | if (is_inter) | 
|  | ++counts->inter_2way_txfm_partition[has_first_split]; | 
|  | else | 
|  | ++counts->intra_2way_txfm_partition[has_first_split]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  |  | 
|  | } else { | 
|  | assert(!allow_horz && !allow_vert); | 
|  | assert(partition == PARTITION_NONE); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  |  | 
|  | static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, | 
|  | FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, | 
|  | int blk_row, int blk_col, | 
|  | uint8_t allow_update_cdf) { | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | const int max_blocks_high = max_block_high(xd, bsize, 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
|  | const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  | assert(tx_size > TX_4X4); | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | (void)depth; | 
|  | TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; | 
|  | get_tx_partition_sizes(mbmi->tx_partition_type[txb_size_index], tx_size, | 
|  | sub_txs); | 
|  | // TODO(sarahparker) This assumes all of the tx sizes in the partition scheme | 
|  | // are the same size. This will need to be adjusted to deal with the case | 
|  | // where they can be different. | 
|  | TX_SIZE this_size = sub_txs[0]; | 
|  | assert(mbmi->inter_tx_size[txb_size_index] == this_size); | 
|  | if (mbmi->tx_partition_type[txb_size_index] != TX_PARTITION_NONE) | 
|  | ++x->txfm_search_info.txb_split_count; | 
|  |  | 
|  | update_partition_cdfs_and_counts(xd, blk_col, blk_row, tx_size, | 
|  | allow_update_cdf, counts); | 
|  | mbmi->tx_size = this_size; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, this_size, tx_size); | 
|  | #else  // CONFIG_NEW_TX_PARTITION | 
|  | int ctx = txfm_partition_context( | 
|  | xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART], tx_size); | 
|  | const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; | 
|  | if (depth == MAX_VARTX_DEPTH) { | 
|  | // Don't add to counts in this case | 
|  | mbmi->tx_size = tx_size; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tx_size == plane_tx_size) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->txfm_partition[ctx][0]; | 
|  | #endif | 
|  | if (allow_update_cdf) | 
|  | update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); | 
|  | mbmi->tx_size = tx_size; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | } else { | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->txfm_partition[ctx][1]; | 
|  | #endif | 
|  | if (allow_update_cdf) | 
|  | update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); | 
|  | ++x->txfm_search_info.txb_split_count; | 
|  |  | 
|  | if (sub_txs == TX_4X4) { | 
|  | mbmi->inter_tx_size[txb_size_index] = TX_4X4; | 
|  | mbmi->tx_size = TX_4X4; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, TX_4X4, tx_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { | 
|  | for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
|  | int offsetr = row; | 
|  | int offsetc = col; | 
|  |  | 
|  | update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, | 
|  | blk_col + offsetc, allow_update_cdf); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  | } | 
|  |  | 
|  | static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, | 
|  | BLOCK_SIZE plane_bsize, | 
|  | FRAME_COUNTS *td_counts, | 
|  | uint8_t allow_update_cdf) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const int mi_width = mi_size_wide[plane_bsize]; | 
|  | const int mi_height = mi_size_high[plane_bsize]; | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); | 
|  | const int bh = tx_size_high_unit[max_tx_size]; | 
|  | const int bw = tx_size_wide_unit[max_tx_size]; | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | for (int idy = 0; idy < mi_height; idy += bh) { | 
|  | for (int idx = 0; idx < mi_width; idx += bw) { | 
|  | update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, | 
|  | allow_update_cdf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, | 
|  | int blk_col) { | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | const int max_blocks_high = max_block_high(xd, bsize, 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
|  | const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); | 
|  | const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | if (tx_size == plane_tx_size) { | 
|  | mbmi->tx_size = tx_size; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  |  | 
|  | } else { | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; | 
|  | const int index = av1_get_txb_size_index(bsize, blk_row, blk_col); | 
|  | get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs); | 
|  | int cur_partition = 0; | 
|  | int bsw = 0, bsh = 0; | 
|  | for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { | 
|  | for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { | 
|  | const TX_SIZE sub_tx = sub_txs[cur_partition]; | 
|  | bsw = tx_size_wide_unit[sub_tx]; | 
|  | bsh = tx_size_high_unit[sub_tx]; | 
|  | const int offsetr = blk_row + r; | 
|  | const int offsetc = blk_col + c; | 
|  | if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
|  | mbmi->tx_size = sub_tx; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, sub_tx, sub_tx); | 
|  | cur_partition++; | 
|  | } | 
|  | } | 
|  | #else | 
|  | if (tx_size == TX_8X8) { | 
|  | mbmi->inter_tx_size[txb_size_index] = TX_4X4; | 
|  | mbmi->tx_size = TX_4X4; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, TX_4X4, tx_size); | 
|  | return; | 
|  | } | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  | for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { | 
|  | for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
|  | const int offsetr = blk_row + row; | 
|  | const int offsetc = blk_col + col; | 
|  | if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
|  | set_txfm_context(xd, sub_txs, offsetr, offsetc); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tx_partition_set_contexts(const AV1_COMMON *const cm, | 
|  | MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { | 
|  | const int mi_width = mi_size_wide[plane_bsize]; | 
|  | const int mi_height = mi_size_high[plane_bsize]; | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); | 
|  | const int bh = tx_size_high_unit[max_tx_size]; | 
|  | const int bw = tx_size_wide_unit[max_tx_size]; | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | for (int idy = 0; idy < mi_height; idy += bh) { | 
|  | for (int idx = 0; idx < mi_width; idx += bw) { | 
|  | set_txfm_context(xd, max_tx_size, idy, idx); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | ThreadData *td, TokenExtra **t, RUN_TYPE dry_run, | 
|  | BLOCK_SIZE bsize, int plane_start, int plane_end, | 
|  | int *rate) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO **mi_4x4 = xd->mi; | 
|  | MB_MODE_INFO *mbmi = mi_4x4[0]; | 
|  | const int seg_skip = | 
|  | segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); | 
|  | const int mis = cm->mi_params.mi_stride; | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  |  | 
|  | // Initialize tx_mode and tx_size_search_method | 
|  | TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | set_tx_size_search_method( | 
|  | cm, &cpi->winner_mode_params, txfm_params, | 
|  | cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1 | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | , | 
|  | x, cpi->sf.tx_sf.use_largest_tx_size_for_small_bsize | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | ); | 
|  |  | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | if (!is_inter) { | 
|  | if (xd->tree_type != LUMA_PART) { | 
|  | xd->cfl.store_y = store_cfl_required(cm, xd); | 
|  | } | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 1; | 
|  | for (int plane = plane_start; plane < plane_end; ++plane) { | 
|  | #if CONFIG_CROSS_CHROMA_TX | 
|  | if (plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)) | 
|  | av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, | 
|  | cpi->optimize_seg_arr[mbmi->segment_id]); | 
|  | else if (plane == AOM_PLANE_U) | 
|  | av1_encode_intra_block_joint_uv( | 
|  | cpi, x, bsize, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]); | 
|  | #else | 
|  | av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, | 
|  | cpi->optimize_seg_arr[mbmi->segment_id]); | 
|  | #endif  // CONFIG_CROSS_CHROMA_TX | 
|  | } | 
|  |  | 
|  | // If there is at least one lossless segment, force the skip for intra | 
|  | // block to be 0, in order to avoid the segment_id to be changed by in | 
|  | // write_segment_id(). | 
|  | if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && | 
|  | cpi->enc_seg.has_lossless_segment) | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0; | 
|  |  | 
|  | xd->cfl.store_y = 0; | 
|  | if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { | 
|  | for (int plane = plane_start; plane < AOMMIN(2, plane_end); ++plane) { | 
|  | if (mbmi->palette_mode_info.palette_size[plane] > 0) { | 
|  | if (!dry_run) { | 
|  | av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, | 
|  | PALETTE_MAP, tile_data->allow_update_cdf, | 
|  | td->counts); | 
|  | } else if (dry_run == DRY_RUN_COSTCOEFFS) { | 
|  | rate += | 
|  | av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize, | 
|  | tile_data->allow_update_cdf); | 
|  | } else { | 
|  | int ref; | 
|  | const int is_compound = has_second_ref(mbmi); | 
|  |  | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | for (ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | const YV12_BUFFER_CONFIG *cfg = | 
|  | get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]); | 
|  | assert(IMPLIES(!is_intrabc_block(mbmi, xd->tree_type), cfg)); | 
|  | av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, | 
|  | xd->block_ref_scale_factors[ref], num_planes, | 
|  | &mbmi->chroma_ref_info); | 
|  | } | 
|  | int start_plane = 0; | 
|  | #if CONFIG_BAWP | 
|  | struct macroblockd_plane *p = xd->plane; | 
|  | const BUFFER_SET orig_dst = { | 
|  | { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, | 
|  | { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, | 
|  | }; | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, | 
|  | #else | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, | 
|  | #endif | 
|  | start_plane, av1_num_planes(cm) - 1); | 
|  | if (mbmi->motion_mode == OBMC_CAUSAL) { | 
|  | #if CONFIG_EXTENDED_WARP_PREDICTION | 
|  | assert(cm->features.enabled_motion_modes & (1 << OBMC_CAUSAL)); | 
|  | #else | 
|  | assert(cpi->oxcf.motion_mode_cfg.enable_obmc); | 
|  | #endif | 
|  | av1_build_obmc_inter_predictors_sb(cm, xd); | 
|  | } | 
|  |  | 
|  | #if CONFIG_MISMATCH_DEBUG | 
|  | if (dry_run == OUTPUT_ENABLED) { | 
|  | for (int plane = plane_start; plane < plane_end; ++plane) { | 
|  | const struct macroblockd_plane *pd = &xd->plane[plane]; | 
|  | int pixel_c, pixel_r; | 
|  | if (plane && !xd->is_chroma_ref) continue; | 
|  | if (plane) { | 
|  | mi_to_pixel_loc(&pixel_c, &pixel_r, | 
|  | mbmi->chroma_ref_info.mi_col_chroma_base, | 
|  | mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0, | 
|  | pd->subsampling_x, pd->subsampling_y); | 
|  | } else { | 
|  | mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, | 
|  | pd->subsampling_x, pd->subsampling_y); | 
|  | } | 
|  | mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, | 
|  | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | cm->current_frame.display_order_hint, | 
|  | #else | 
|  | cm->current_frame.order_hint, | 
|  | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | plane, pixel_c, pixel_r, pd->width, | 
|  | pd->height); | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)num_planes; | 
|  | #endif  // CONFIG_MISMATCH_DEBUG | 
|  |  | 
|  | av1_encode_sb(cpi, x, bsize, dry_run, plane_start, plane_end); | 
|  | av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate, | 
|  | tile_data->allow_update_cdf, plane_start, plane_end); | 
|  | } | 
|  |  | 
|  | if (!dry_run) { | 
|  | if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi, xd->tree_type)) | 
|  | td->intrabc_used = 1; | 
|  | if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && | 
|  | !xd->lossless[mbmi->segment_id] && | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART] > BLOCK_4X4 && | 
|  | !(is_inter && | 
|  | (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip))) { | 
|  | if (is_inter) { | 
|  | tx_partition_count_update(cm, x, bsize, td->counts, | 
|  | tile_data->allow_update_cdf); | 
|  | } else { | 
|  | if (mbmi->tx_size != max_txsize_rect_lookup[bsize] && | 
|  | xd->tree_type != CHROMA_PART) | 
|  | ++x->txfm_search_info.txb_split_count; | 
|  | if (block_signals_txsize(bsize) && xd->tree_type != CHROMA_PART) { | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; | 
|  | update_partition_cdfs_and_counts( | 
|  | xd, 0, 0, max_tx_size, tile_data->allow_update_cdf, td->counts); | 
|  | #else  // CONFIG_NEW_TX_PARTITION | 
|  | const int tx_size_ctx = get_tx_size_context(xd); | 
|  | const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); | 
|  | const int depth = tx_size_to_depth(mbmi->tx_size, bsize); | 
|  | const int max_depths = bsize_to_max_depth(bsize); | 
|  | if (tile_data->allow_update_cdf) | 
|  | update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], | 
|  | depth, max_depths + 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; | 
|  | #endif | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  | } | 
|  | } | 
|  | if (xd->tree_type != CHROMA_PART) | 
|  | assert( | 
|  | IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); | 
|  | } else { | 
|  | int i, j; | 
|  | TX_SIZE intra_tx_size; | 
|  | // The new intra coding scheme requires no change of transform size | 
|  | if (is_inter) { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | intra_tx_size = TX_4X4; | 
|  | } else { | 
|  | intra_tx_size = | 
|  | tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); | 
|  | } | 
|  | } else { | 
|  | intra_tx_size = mbmi->tx_size; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < mi_height; j++) | 
|  | for (i = 0; i < mi_width; i++) | 
|  | if (mi_col + i < cm->mi_params.mi_cols && | 
|  | mi_row + j < cm->mi_params.mi_rows) | 
|  | mi_4x4[mis * j + i]->tx_size = intra_tx_size; | 
|  |  | 
|  | if (intra_tx_size != max_txsize_rect_lookup[bsize]) | 
|  | ++x->txfm_search_info.txb_split_count; | 
|  | } | 
|  | #if CONFIG_REF_MV_BANK && !CONFIG_MVP_IMPROVEMENT | 
|  | #if CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT | 
|  | if (cm->seq_params.enable_refmvbank && is_inter && | 
|  | !is_intrabc_block(mbmi, xd->tree_type)) | 
|  | #else | 
|  | if (cm->seq_params.enable_refmvbank && is_inter) | 
|  | #endif  // CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT | 
|  | av1_update_ref_mv_bank(cm, xd, mbmi); | 
|  | #endif  // CONFIG_REF_MV_BANK && !CONFIG_MVP_IMPROVEMENT | 
|  |  | 
|  | #if CONFIG_WARP_REF_LIST && !WARP_CU_BANK | 
|  | if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi); | 
|  | #endif  // CONFIG_WARP_REF_LIST && !WARP_CU_BANK | 
|  | } | 
|  | if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && | 
|  | block_signals_txsize(mbmi->sb_type[xd->tree_type == CHROMA_PART]) && | 
|  | is_inter && | 
|  | !(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) && | 
|  | !xd->lossless[mbmi->segment_id]) { | 
|  | if (dry_run) tx_partition_set_contexts(cm, xd, bsize); | 
|  | } else { | 
|  | TX_SIZE tx_size = mbmi->tx_size; | 
|  | // The new intra coding scheme requires no change of transform size | 
|  | if (is_inter) { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | tx_size = TX_4X4; | 
|  | } else { | 
|  | tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); | 
|  | } | 
|  | } else { | 
|  | tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; | 
|  | } | 
|  | mbmi->tx_size = tx_size; | 
|  | set_txfm_ctxs(tx_size, xd->width, xd->height, | 
|  | (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) && | 
|  | is_inter_block(mbmi, xd->tree_type), | 
|  | xd); | 
|  | } | 
|  |  | 
|  | if (is_inter_block(mbmi, xd->tree_type) && !xd->is_chroma_ref && | 
|  | is_cfl_allowed(xd)) { | 
|  | #if CONFIG_ADAPTIVE_DS_FILTER | 
|  | cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART], | 
|  | mbmi->tx_size, cm->seq_params.enable_cfl_ds_filter); | 
|  | #else | 
|  | cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART], | 
|  | mbmi->tx_size); | 
|  | #endif  // CONFIG_ADAPTIVE_DS_FILTER | 
|  | } | 
|  | if (xd->tree_type == LUMA_PART) { | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | for (int y = 0; y < mi_height; y++) { | 
|  | for (int x_idx = 0; x_idx < mi_width; x_idx++) { | 
|  | if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && | 
|  | (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { | 
|  | if (y == 0 && x_idx == 0) continue; | 
|  | const int mi_idx = | 
|  | get_alloc_mi_idx(mi_params, mi_row + y, mi_col + x_idx); | 
|  | xd->mi[x_idx + y * mis] = &mi_params->mi_alloc[mi_idx]; | 
|  | xd->mi[x_idx + y * mis]->skip_txfm[PLANE_TYPE_Y] = | 
|  | xd->mi[0]->skip_txfm[PLANE_TYPE_Y]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_mark_block_as_coded(xd, bsize, cm->seq_params.sb_size); | 
|  | } | 
|  |  | 
|  | void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | AQ_MODE aq_mode, MB_MODE_INFO *mbmi) { | 
|  | x->rdmult = cpi->rd.RDMULT; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | if (aq_mode != NO_AQ && xd->tree_type == SHARED_PART) { | 
|  | assert(mbmi != NULL); | 
|  | if (aq_mode == VARIANCE_AQ) { | 
|  | if (cpi->vaq_refresh) { | 
|  | const int energy = bsize <= BLOCK_16X16 | 
|  | ? x->mb_energy | 
|  | : av1_log_block_var(cpi, x, bsize); | 
|  | mbmi->segment_id = energy; | 
|  | } | 
|  | x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); | 
|  | } else if (aq_mode == COMPLEXITY_AQ) { | 
|  | x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); | 
|  | } else if (aq_mode == CYCLIC_REFRESH_AQ) { | 
|  | // If segment is boosted, use rdmult for that segment. | 
|  | if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) | 
|  | x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); | 
|  | } | 
|  | } | 
|  |  | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | if (cm->delta_q_info.delta_q_present_flag) { | 
|  | x->rdmult = | 
|  | av1_get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult); | 
|  | } | 
|  |  | 
|  | if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) { | 
|  | av1_set_ssim_rdmult(cpi, &x->mv_costs, bsize, mi_row, mi_col, &x->rdmult); | 
|  | } | 
|  | #if CONFIG_TUNE_VMAF | 
|  | if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || | 
|  | cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN || | 
|  | cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { | 
|  | av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void av1_set_offsets_without_segment_id( | 
|  | const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | const CHROMA_REF_INFO *chroma_ref_info) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  |  | 
|  | set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, | 
|  | mi_row, mi_col | 
|  | #if CONFIG_C071_SUBBLK_WARPMV | 
|  | , | 
|  | mi_width, mi_height | 
|  | #endif  // CONFIG_C071_SUBBLK_WARPMV | 
|  | ); | 
|  |  | 
|  | set_entropy_context(xd, mi_row, mi_col, num_planes, chroma_ref_info); | 
|  | xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | // Set up destination pointers. | 
|  | av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, | 
|  | num_planes, chroma_ref_info); | 
|  |  | 
|  | // Set up limit values for MV components. | 
|  | // Mv beyond the range do not produce new/different prediction block. | 
|  | av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height, | 
|  | mi_width, cpi->oxcf.border_in_pixels); | 
|  |  | 
|  | set_plane_n4(xd, mi_width, mi_height, num_planes, chroma_ref_info); | 
|  |  | 
|  | // Set up distance of MB to edge of frame in 1/8th pel units. | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, | 
|  | cm->mi_params.mi_rows, cm->mi_params.mi_cols, chroma_ref_info); | 
|  |  | 
|  | // Set up source buffers. | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, | 
|  | chroma_ref_info); | 
|  |  | 
|  | // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() | 
|  | xd->tile = *tile; | 
|  | } | 
|  |  | 
|  | void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, | 
|  | MACROBLOCK *const x, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize, const CHROMA_REF_INFO *chroma_ref_info) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi; | 
|  |  | 
|  | av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize, | 
|  | chroma_ref_info); | 
|  |  | 
|  | // Setup segment ID. | 
|  | mbmi = xd->mi[0]; | 
|  | mbmi->segment_id = 0; | 
|  | if (seg->enabled) { | 
|  | if (seg->enabled && !cpi->vaq_refresh) { | 
|  | const uint8_t *const map = | 
|  | seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; | 
|  | mbmi->segment_id = | 
|  | map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0; | 
|  | } | 
|  | av1_init_plane_quantizers(cpi, x, mbmi->segment_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief Interface for AV1 mode search for an individual coding block | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Searches prediction modes, transform, and coefficient coding modes for an | 
|  | * individual coding block. This function is the top-level interface that | 
|  | * directs the encoder to the proper mode search function, among these | 
|  | * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment. | 
|  | * | 
|  | * \param[in]    cpi            Top-level encoder structure | 
|  | * \param[in]    tile_data      Pointer to struct holding adaptive | 
|  | *                              data/contexts/models for the tile during | 
|  | *                              encoding | 
|  | * \param[in]    x              Pointer to structure holding all the data for | 
|  | *                              the current macroblock | 
|  | * \param[in]    mi_row         Row coordinate of the block in a step size of | 
|  | *                              MI_SIZE | 
|  | * \param[in]    mi_col         Column coordinate of the block in a step size of | 
|  | *                              MI_SIZE | 
|  | * \param[in]    rd_cost        Pointer to structure holding rate and distortion | 
|  | *                              stats for the current block | 
|  | * \param[in]    partition      Partition mode of the parent block | 
|  | * \param[in]    bsize          Current block size | 
|  | * \param[in]    ctx            Pointer to structure holding coding contexts and | 
|  | *                              chosen modes for the current block | 
|  | * \param[in]    best_rd        Upper bound of rd cost of a valid partition | 
|  | * | 
|  | * Nothing is returned. Instead, the chosen modes and contexts necessary | 
|  | * for reconstruction are stored in ctx, the rate-distortion stats are stored in | 
|  | * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be | 
|  | * signalled by an INT64_MAX rd_cost->rdcost. | 
|  | */ | 
|  | static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | MACROBLOCK *const x, int mi_row, int mi_col, | 
|  | RD_STATS *rd_cost, PARTITION_TYPE partition, | 
|  | BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, | 
|  | RD_STATS best_rd) { | 
|  | if (best_rd.rdcost < 0) { | 
|  | ctx->rd_stats.rdcost = INT64_MAX; | 
|  | ctx->rd_stats.skip_txfm = 0; | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | return; | 
|  | } | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int plane_type = (xd->tree_type == CHROMA_PART); | 
|  | assert(is_bsize_geq(bsize, cpi->common.mi_params.mi_alloc_bsize)); | 
|  |  | 
|  | av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize, | 
|  | &ctx->chroma_ref_info); | 
|  |  | 
|  | if (ctx->rd_mode_is_ready) { | 
|  | assert(ctx->mic.sb_type[plane_type] == bsize); | 
|  | assert(ctx->mic.partition == partition); | 
|  | rd_cost->rate = ctx->rd_stats.rate; | 
|  | rd_cost->dist = ctx->rd_stats.dist; | 
|  | rd_cost->rdcost = ctx->rd_stats.rdcost; | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | const int is_inter = is_inter_block(&ctx->mic, xd->tree_type); | 
|  | #if CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT | 
|  | if (cm->seq_params.enable_refmvbank && is_inter && | 
|  | !is_intrabc_block(&ctx->mic, xd->tree_type)) | 
|  | #else | 
|  | if (cm->seq_params.enable_refmvbank && is_inter) | 
|  | #endif  // CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT | 
|  | av1_update_ref_mv_bank(cm, xd, &ctx->mic); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  | #if WARP_CU_BANK | 
|  | if (is_inter) av1_update_warp_param_bank(cm, xd, &ctx->mic); | 
|  | #endif  // WARP_CU_BANK | 
|  | return; | 
|  | } | 
|  |  | 
|  | MB_MODE_INFO *mbmi; | 
|  | struct macroblock_plane *const p = x->plane; | 
|  | struct macroblockd_plane *const pd = xd->plane; | 
|  | const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, rd_pick_sb_modes_time); | 
|  | #endif | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | mbmi = xd->mi[0]; | 
|  | mbmi->sb_type[plane_type] = bsize; | 
|  | if (xd->tree_type == SHARED_PART) mbmi->sb_type[PLANE_TYPE_UV] = bsize; | 
|  | mbmi->partition = partition; | 
|  | mbmi->chroma_ref_info = ctx->chroma_ref_info; | 
|  |  | 
|  | #if CONFIG_RD_DEBUG | 
|  | mbmi->mi_row = mi_row; | 
|  | mbmi->mi_col = mi_col; | 
|  | #endif | 
|  |  | 
|  | // Sets up the tx_type_map buffer in MACROBLOCKD. | 
|  | xd->tx_type_map = txfm_info->tx_type_map_; | 
|  | xd->tx_type_map_stride = mi_size_wide[bsize]; | 
|  | #if CONFIG_CROSS_CHROMA_TX | 
|  | xd->cctx_type_map = txfm_info->cctx_type_map_; | 
|  | xd->cctx_type_map_stride = mi_size_wide[bsize]; | 
|  | #endif  // CONFIG_CROSS_CHROMA_TX | 
|  |  | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | p[i].coeff = ctx->coeff[i]; | 
|  | p[i].qcoeff = ctx->qcoeff[i]; | 
|  | p[i].dqcoeff = ctx->dqcoeff[i]; | 
|  | p[i].eobs = ctx->eobs[i]; | 
|  | #if CONFIG_ATC_DCTX_ALIGNED | 
|  | p[i].bobs = ctx->bobs[i]; | 
|  | #endif  // CONFIG_ATC_DCTX_ALIGNED | 
|  | p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; | 
|  |  | 
|  | ctx->skippable = 0; | 
|  | // Set to zero to make sure we do not use the previous encoded frame stats | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0; | 
|  | // Reset skip mode flag. | 
|  | mbmi->skip_mode = 0; | 
|  |  | 
|  | x->source_variance = | 
|  | av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize, xd->bd); | 
|  |  | 
|  | // Initialize default mode evaluation params | 
|  | set_mode_eval_params(cpi, x, DEFAULT_EVAL); | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); | 
|  | // Set error per bit for current rdmult | 
|  | av1_set_error_per_bit(&x->mv_costs, x->rdmult); | 
|  | av1_rd_cost_update(x->rdmult, &best_rd); | 
|  |  | 
|  | // Find best coding mode & reconstruct the MB so it is available | 
|  | // as a predictor for MBs that follow in the SB | 
|  | if (frame_is_intra_only(cm)) { | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, av1_rd_pick_intra_mode_sb_time); | 
|  | #endif | 
|  | av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, av1_rd_pick_intra_mode_sb_time); | 
|  | #endif | 
|  | } else { | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, av1_rd_pick_inter_mode_sb_time); | 
|  | #endif | 
|  | if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, | 
|  | rd_cost, bsize, ctx, best_rd.rdcost); | 
|  | } else { | 
|  | av1_rd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx, | 
|  | best_rd.rdcost); | 
|  | } | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, av1_rd_pick_inter_mode_sb_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | #if CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT | 
|  | if (cm->seq_params.enable_refmvbank && is_inter && | 
|  | !is_intrabc_block(mbmi, xd->tree_type)) | 
|  | #else | 
|  | if (cm->seq_params.enable_refmvbank && is_inter) | 
|  | #endif  // CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT | 
|  | av1_update_ref_mv_bank(cm, xd, mbmi); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  |  | 
|  | #if WARP_CU_BANK | 
|  | if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi); | 
|  | #endif  // WARP_CU_BANK | 
|  |  | 
|  | // Examine the resulting rate and for AQ mode 2 make a segment choice. | 
|  | if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ && | 
|  | bsize >= BLOCK_16X16) { | 
|  | av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); | 
|  | } | 
|  |  | 
|  | x->rdmult = orig_rdmult; | 
|  |  | 
|  | // TODO(jingning) The rate-distortion optimization flow needs to be | 
|  | // refactored to provide proper exit/return handle. | 
|  | if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; | 
|  |  | 
|  | ctx->rd_stats.rate = rd_cost->rate; | 
|  | ctx->rd_stats.dist = rd_cost->dist; | 
|  | ctx->rd_stats.rdcost = rd_cost->rdcost; | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, rd_pick_sb_modes_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void update_drl_index_stats(int max_drl_bits, const int16_t mode_ctx, | 
|  | FRAME_CONTEXT *fc, FRAME_COUNTS *counts, | 
|  | const MB_MODE_INFO *mbmi, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext) { | 
|  | #if !CONFIG_ENTROPY_STATS | 
|  | (void)counts; | 
|  | #endif  // !CONFIG_ENTROPY_STATS | 
|  | assert(have_drl_index(mbmi->mode)); | 
|  | #if CONFIG_WARPMV | 
|  | assert(IMPLIES(mbmi->mode == WARPMV, 0)); | 
|  | #endif  // CONFIG_WARPMV | 
|  | #if IMPROVED_AMVD | 
|  | if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1); | 
|  | #endif  // IMPROVED_AMVD | 
|  | uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | assert(mbmi->ref_mv_idx[0] < max_drl_bits + 1); | 
|  | assert(mbmi->ref_mv_idx[1] < max_drl_bits + 1); | 
|  | for (int ref = 0; ref < 1 + has_second_drl(mbmi); ++ref) { | 
|  | for (int idx = 0; idx < max_drl_bits; ++idx) { | 
|  | const uint16_t *weight = has_second_drl(mbmi) | 
|  | ? mbmi_ext->weight[mbmi->ref_frame[ref]] | 
|  | : mbmi_ext->weight[ref_frame_type]; | 
|  | aom_cdf_prob *drl_cdf = av1_get_drl_cdf(fc, weight, mode_ctx, idx); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | int drl_ctx = av1_drl_ctx(mode_ctx); | 
|  | switch (idx) { | 
|  | case 0: | 
|  | counts->drl_mode[0][drl_ctx][mbmi->ref_mv_idx[ref] != idx]++; | 
|  | break; | 
|  | case 1: | 
|  | counts->drl_mode[1][drl_ctx][mbmi->ref_mv_idx[ref] != idx]++; | 
|  | break; | 
|  | default: | 
|  | counts->drl_mode[2][drl_ctx][mbmi->ref_mv_idx[ref] != idx]++; | 
|  | break; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(drl_cdf, mbmi->ref_mv_idx[ref] != idx, 2); | 
|  | if (mbmi->ref_mv_idx[ref] == idx) break; | 
|  | } | 
|  | } | 
|  | #else | 
|  | assert(mbmi->ref_mv_idx < max_drl_bits + 1); | 
|  | for (int idx = 0; idx < max_drl_bits; ++idx) { | 
|  | aom_cdf_prob *drl_cdf = | 
|  | av1_get_drl_cdf(fc, mbmi_ext->weight[ref_frame_type], mode_ctx, idx); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | int drl_ctx = av1_drl_ctx(mode_ctx); | 
|  | switch (idx) { | 
|  | case 0: counts->drl_mode[0][drl_ctx][mbmi->ref_mv_idx != idx]++; break; | 
|  | case 1: counts->drl_mode[1][drl_ctx][mbmi->ref_mv_idx != idx]++; break; | 
|  | default: counts->drl_mode[2][drl_ctx][mbmi->ref_mv_idx != idx]++; break; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2); | 
|  | if (mbmi->ref_mv_idx == idx) break; | 
|  | } | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | } | 
|  |  | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT | 
|  | static void update_intrabc_drl_idx_stats(int max_ref_bv_num, FRAME_CONTEXT *fc, | 
|  | FRAME_COUNTS *counts, | 
|  | const MB_MODE_INFO *mbmi) { | 
|  | #if !CONFIG_ENTROPY_STATS | 
|  | (void)counts; | 
|  | #endif  // !CONFIG_ENTROPY_STATS | 
|  | assert(mbmi->intrabc_drl_idx < max_ref_bv_num); | 
|  | int bit_cnt = 0; | 
|  | for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->intrabc_drl_idx[bit_cnt][mbmi->intrabc_drl_idx != idx]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->intrabc_drl_idx_cdf[bit_cnt], mbmi->intrabc_drl_idx != idx, | 
|  | 2); | 
|  | if (mbmi->intrabc_drl_idx == idx) break; | 
|  | ++bit_cnt; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
|  |  | 
|  | #if CONFIG_CWP | 
|  | // Update the stats for compound weighted prediction | 
|  | static void update_cwp_idx_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, | 
|  | const AV1_COMMON *const cm, MACROBLOCKD *xd) { | 
|  | #if !CONFIG_ENTROPY_STATS | 
|  | (void)counts; | 
|  | #endif  // !CONFIG_ENTROPY_STATS | 
|  | const MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  |  | 
|  | assert(mbmi->cwp_idx >= CWP_MIN && mbmi->cwp_idx <= CWP_MAX); | 
|  | int bit_cnt = 0; | 
|  | const int ctx = 0; | 
|  |  | 
|  | int8_t final_idx = get_cwp_coding_idx(mbmi->cwp_idx, 1, cm, mbmi); | 
|  | for (int idx = 0; idx < MAX_CWP_NUM - 1; ++idx) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->cwp_idx[bit_cnt][final_idx != idx]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->cwp_idx_cdf[ctx][bit_cnt], final_idx != idx, 2); | 
|  | if (final_idx == idx) break; | 
|  | ++bit_cnt; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_CWP | 
|  |  | 
|  | #if CONFIG_EXTENDED_WARP_PREDICTION | 
|  | static void update_warp_delta_param_stats(int index, int value, | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | FRAME_COUNTS *counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | FRAME_CONTEXT *fc) { | 
|  | assert(2 <= index && index <= 5); | 
|  | int index_type = (index == 2 || index == 5) ? 0 : 1; | 
|  | int coded_value = (value / WARP_DELTA_STEP) + WARP_DELTA_CODED_MAX; | 
|  | assert(0 <= coded_value && coded_value < WARP_DELTA_NUM_SYMBOLS); | 
|  |  | 
|  | update_cdf(fc->warp_delta_param_cdf[index_type], coded_value, | 
|  | WARP_DELTA_NUM_SYMBOLS); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->warp_delta_param[index_type][coded_value]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  |  | 
|  | static void update_warp_delta_stats(const AV1_COMMON *cm, | 
|  | #if !CONFIG_WARP_REF_LIST | 
|  | const MACROBLOCKD *xd, | 
|  | #endif  //! CONFIG_WARP_REF_LIST | 
|  | const MB_MODE_INFO *mbmi, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext, | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | FRAME_COUNTS *counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | FRAME_CONTEXT *fc) { | 
|  |  | 
|  | #if CONFIG_WARP_REF_LIST | 
|  | if (mbmi->max_num_warp_candidates > 1) { | 
|  | assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates); | 
|  | int max_idx_bits = mbmi->max_num_warp_candidates - 1; | 
|  | for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) { | 
|  | aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(fc, bit_idx); | 
|  | update_cdf(warp_ref_idx_cdf, mbmi->warp_ref_idx != bit_idx, 2); | 
|  | if (mbmi->warp_ref_idx == bit_idx) break; | 
|  | } | 
|  | } | 
|  | if (allow_warp_parameter_signaling( | 
|  | #if CONFIG_CWG_D067_IMPROVED_WARP | 
|  | cm, | 
|  | #endif  // CONFIG_CWG_D067_IMPROVED_WARP | 
|  | mbmi)) { | 
|  | #endif  // CONFIG_WARP_REF_LIST | 
|  | const WarpedMotionParams *params = &mbmi->wm_params[0]; | 
|  | WarpedMotionParams base_params; | 
|  | av1_get_warp_base_params( | 
|  | cm, | 
|  | #if !CONFIG_WARP_REF_LIST | 
|  | xd, | 
|  | #endif  //! CONFIG_WARP_REF_LIST | 
|  | mbmi, | 
|  | #if !CONFIG_WARP_REF_LIST | 
|  | mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], | 
|  | #endif  //! CONFIG_WARP_REF_LIST | 
|  | &base_params, NULL | 
|  | #if CONFIG_WARP_REF_LIST | 
|  | , | 
|  | mbmi_ext->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)] | 
|  | #endif  // CONFIG_WARP_REF_LIST | 
|  |  | 
|  | ); | 
|  |  | 
|  | // The RDO stage should not give us a model which is not warpable. | 
|  | // Such models can still be signalled, but are effectively useless | 
|  | // as we'll just fall back to translational motion | 
|  | assert(!params->invalid); | 
|  |  | 
|  | // TODO(rachelbarker): Allow signaling warp type? | 
|  | update_warp_delta_param_stats(2, params->wmmat[2] - base_params.wmmat[2], | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | fc); | 
|  | update_warp_delta_param_stats(3, params->wmmat[3] - base_params.wmmat[3], | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | fc); | 
|  | #if CONFIG_WARP_REF_LIST | 
|  | } | 
|  | #endif  // CONFIG_WARP_REF_LIST | 
|  | } | 
|  | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | static void update_skip_drl_index_stats(int max_drl_bits, FRAME_CONTEXT *fc, | 
|  | FRAME_COUNTS *counts, | 
|  | const MB_MODE_INFO *mbmi) { | 
|  | #if !CONFIG_ENTROPY_STATS | 
|  | (void)counts; | 
|  | #endif  // !CONFIG_ENTROPY_STATS | 
|  | assert(have_drl_index(mbmi->mode)); | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | assert(get_ref_mv_idx(mbmi, 0) < max_drl_bits + 1); | 
|  | assert(get_ref_mv_idx(mbmi, 1) < max_drl_bits + 1); | 
|  | #else | 
|  | assert(mbmi->ref_mv_idx < max_drl_bits + 1); | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | for (int idx = 0; idx < max_drl_bits; ++idx) { | 
|  | aom_cdf_prob *drl_cdf = fc->skip_drl_cdf[AOMMIN(idx, 2)]; | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | update_cdf(drl_cdf, mbmi->ref_mv_idx[0] != idx, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | switch (idx) { | 
|  | case 0: counts->skip_drl_mode[idx][mbmi->ref_mv_idx[0] != idx]++; break; | 
|  | case 1: counts->skip_drl_mode[idx][mbmi->ref_mv_idx[0] != idx]++; break; | 
|  | default: counts->skip_drl_mode[2][mbmi->ref_mv_idx[0] != idx]++; break; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (mbmi->ref_mv_idx[0] == idx) break; | 
|  | #else | 
|  | update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | switch (idx) { | 
|  | case 0: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break; | 
|  | case 1: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break; | 
|  | default: counts->skip_drl_mode[2][mbmi->ref_mv_idx != idx]++; break; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (mbmi->ref_mv_idx == idx) break; | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  |  | 
|  | static void update_stats(const AV1_COMMON *const cm, ThreadData *td) { | 
|  | MACROBLOCK *x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | FRAME_CONTEXT *fc = xd->tile_ctx; | 
|  | const int inter_block = mbmi->ref_frame[0] != INTRA_FRAME; | 
|  | const int seg_ref_active = 0; | 
|  |  | 
|  | if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active && | 
|  | is_comp_ref_allowed(bsize)) { | 
|  | const int skip_mode_ctx = av1_get_skip_mode_context(xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; | 
|  | #endif | 
|  | update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); | 
|  | } | 
|  |  | 
|  | #if CONFIG_SKIP_TXFM_OPT | 
|  | const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); | 
|  | if (!seg_ref_active) { | 
|  | if (!mbmi->skip_mode && !frame_is_intra_only(cm)) { | 
|  | const int intra_inter_ctx = av1_get_intra_inter_context(xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts->intra_inter[intra_inter_ctx][inter_block]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->intra_inter_cdf[intra_inter_ctx], inter_block, 2); | 
|  | } | 
|  |  | 
|  | if (!inter_block && av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) { | 
|  | #if CONFIG_NEW_CONTEXT_MODELING | 
|  | const int intrabc_ctx = get_intrabc_ctx(xd); | 
|  | update_cdf(fc->intrabc_cdf[intrabc_ctx], use_intrabc, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intrabc[intrabc_ctx][use_intrabc]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | #else | 
|  | update_cdf(fc->intrabc_cdf, use_intrabc, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intrabc[use_intrabc]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | #endif  // CONFIG_NEW_CONTEXT_MODELING | 
|  | } | 
|  |  | 
|  | if (inter_block || (!inter_block && use_intrabc)) { | 
|  | #if !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | if (!mbmi->skip_mode) { | 
|  | #endif  // !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts->skip_txfm[skip_ctx] | 
|  | [mbmi->skip_txfm[xd->tree_type == CHROMA_PART]]++; | 
|  | #endif | 
|  | update_cdf(fc->skip_txfm_cdfs[skip_ctx], | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART], 2); | 
|  | #if !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | } | 
|  | #endif  // !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | } | 
|  | } | 
|  | #else | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | if (!seg_ref_active) { | 
|  | #else | 
|  | if (!mbmi->skip_mode && !seg_ref_active) { | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts | 
|  | ->skip_txfm[skip_ctx][mbmi->skip_txfm[xd->tree_type == CHROMA_PART]]++; | 
|  | #endif | 
|  | update_cdf(fc->skip_txfm_cdfs[skip_ctx], | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART], 2); | 
|  | } | 
|  | #endif  // CONFIG_SKIP_TXFM_OPT | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | // delta quant applies to both intra and inter | 
|  | const int super_block_upper_left = | 
|  | ((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) && | 
|  | ((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0); | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | if (delta_q_info->delta_q_present_flag && | 
|  | (bsize != cm->seq_params.sb_size || | 
|  | !mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) && | 
|  | super_block_upper_left) { | 
|  | const int dq = (mbmi->current_qindex - xd->current_base_qindex) / | 
|  | delta_q_info->delta_q_res; | 
|  | const int absdq = abs(dq); | 
|  | for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { | 
|  | td->counts->delta_q[i][1]++; | 
|  | } | 
|  | if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; | 
|  | if (delta_q_info->delta_lf_present_flag) { | 
|  | if (delta_q_info->delta_lf_multi) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / | 
|  | delta_q_info->delta_lf_res; | 
|  | const int abs_delta_lf = abs(delta_lf); | 
|  | for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { | 
|  | td->counts->delta_lf_multi[lf_id][i][1]++; | 
|  | } | 
|  | if (abs_delta_lf < DELTA_LF_SMALL) | 
|  | td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; | 
|  | } | 
|  | } else { | 
|  | const int delta_lf = | 
|  | (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / | 
|  | delta_q_info->delta_lf_res; | 
|  | const int abs_delta_lf = abs(delta_lf); | 
|  | for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { | 
|  | td->counts->delta_lf[i][1]++; | 
|  | } | 
|  | if (abs_delta_lf < DELTA_LF_SMALL) | 
|  | td->counts->delta_lf[abs_delta_lf][0]++; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (!is_inter_block(mbmi, xd->tree_type)) { | 
|  | av1_sum_intra_stats(cm, td->counts, xd, mbmi); | 
|  | } | 
|  | if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) { | 
|  | #if !CONFIG_SKIP_TXFM_OPT | 
|  | const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); | 
|  | #if CONFIG_NEW_CONTEXT_MODELING | 
|  | const int intrabc_ctx = get_intrabc_ctx(xd); | 
|  | update_cdf(fc->intrabc_cdf[intrabc_ctx], use_intrabc, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intrabc[intrabc_ctx][use_intrabc]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | #else | 
|  | update_cdf(fc->intrabc_cdf, use_intrabc, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intrabc[use_intrabc]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | #endif  // CONFIG_NEW_CONTEXT_MODELING | 
|  | #endif  // !CONFIG_SKIP_TXFM_OPT | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT | 
|  | if (use_intrabc) { | 
|  | const int_mv ref_mv = mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv; | 
|  | #if CONFIG_FLEX_MVRES | 
|  | av1_update_mv_stats(mbmi->mv[0].as_mv, ref_mv.as_mv, &fc->ndvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | 0, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | MV_PRECISION_ONE_PEL); | 
|  | } | 
|  | #else | 
|  | av1_update_mv_stats(&mbmi->mv[0].as_mv, &ref_mv.as_mv, &fc->ndvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | 0, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | MV_SUBPEL_NONE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT | 
|  | if (use_intrabc) { | 
|  | update_cdf(fc->intrabc_mode_cdf, mbmi->intrabc_mode, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intrabc_mode[mbmi->intrabc_mode]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_intrabc_drl_idx_stats(MAX_REF_BV_STACK_SIZE, fc, td->counts, mbmi); | 
|  | } | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
|  | } | 
|  |  | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | if (mbmi->skip_mode && have_drl_index(mbmi->mode)) { | 
|  | FRAME_COUNTS *const counts = td->counts; | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | update_skip_drl_index_stats(cm->features.max_drl_bits, fc, counts, mbmi); | 
|  | #else | 
|  | const int16_t mode_ctx_pristine = | 
|  | av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame); | 
|  | update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc, | 
|  | counts, mbmi, mbmi_ext); | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | } | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | if (mbmi->skip_mode && switchable_refinemv_flag(cm, mbmi)) { | 
|  | const int refinemv_ctx = av1_get_refinemv_context(cm, xd, bsize); | 
|  | update_cdf(fc->refinemv_flag_cdf[refinemv_ctx], mbmi->refinemv_flag, | 
|  | REFINEMV_NUM_MODES); | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | if (frame_is_intra_only(cm) || mbmi->skip_mode) return; | 
|  |  | 
|  | FRAME_COUNTS *const counts = td->counts; | 
|  |  | 
|  | if (!seg_ref_active) { | 
|  | #if !CONFIG_SKIP_TXFM_OPT | 
|  | #if CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION | 
|  | counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION | 
|  | #if CONFIG_CONTEXT_DERIVATION | 
|  | const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART]; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->intra_inter[skip_txfm][av1_get_intra_inter_context(xd)] | 
|  | [inter_block]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->intra_inter_cdf[skip_txfm][av1_get_intra_inter_context(xd)], | 
|  | inter_block, 2); | 
|  | #else | 
|  | update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], | 
|  | inter_block, 2); | 
|  | #endif  // CONFIG_CONTEXT_DERIVATION | 
|  | #endif  // !CONFIG_SKIP_TXFM_OPT | 
|  | // If the segment reference feature is enabled we have only a single | 
|  | // reference frame allowed for the segment so exclude it from | 
|  | // the reference frame counts used to work out probabilities. | 
|  | if (inter_block) { | 
|  | const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; | 
|  | const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; | 
|  |  | 
|  | #if CONFIG_TIP | 
|  | if (cm->features.tip_frame_mode && | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_tip_allowed_bsize(mbmi)) { | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_tip_allowed_bsize(bsize)) { | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int tip_ctx = get_tip_ctx(xd); | 
|  | update_cdf(fc->tip_cdf[tip_ctx], is_tip_ref_frame(ref0), 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->tip_ref[tip_ctx][is_tip_ref_frame(ref0)]; | 
|  | #endif | 
|  | } | 
|  | #endif  // CONFIG_TIP | 
|  |  | 
|  | if (current_frame->reference_mode == REFERENCE_MODE_SELECT | 
|  | #if CONFIG_TIP | 
|  | && !is_tip_ref_frame(ref0) | 
|  | #endif  // CONFIG_TIP | 
|  | ) { | 
|  | if (is_comp_ref_allowed(bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_inter[av1_get_reference_mode_context(cm, xd)] | 
|  | [has_second_ref(mbmi)]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(av1_get_reference_mode_cdf(cm, xd), has_second_ref(mbmi), | 
|  | 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_second_ref(mbmi)) { | 
|  | const int n_refs = cm->ref_frames_info.num_total_refs; | 
|  | int n_bits = 0; | 
|  | #if CONFIG_ALLOW_SAME_REF_COMPOUND | 
|  | assert(ref0 <= ref1); | 
|  | for (int i = 0; i < n_refs - 1 && n_bits < 2; i++) { | 
|  | const int bit = | 
|  | ((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i)); | 
|  | #else | 
|  | assert(ref0 < ref1); | 
|  | for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) { | 
|  | const int bit = ref0 == i || ref1 == i; | 
|  | #endif  // CONFIG_ALLOW_SAME_REF_COMPOUND | 
|  | const int bit_type = n_bits == 0 ? -1 | 
|  | : av1_get_compound_ref_bit_type( | 
|  | &cm->ref_frames_info, ref0, i); | 
|  | if (n_bits > 0 || i < RANKED_REF0_TO_PRUNE - 1) | 
|  | update_cdf( | 
|  | av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs), | 
|  | bit, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | if (n_bits == 0) { | 
|  | if (i < RANKED_REF0_TO_PRUNE - 1) | 
|  | counts->comp_ref0[av1_get_ref_pred_context(xd, i, n_refs)][i] | 
|  | [bit]++; | 
|  | } else { | 
|  | counts->comp_ref1[av1_get_ref_pred_context(xd, i, n_refs)][bit_type] | 
|  | [i - 1][bit]++; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | n_bits += bit; | 
|  | #if CONFIG_ALLOW_SAME_REF_COMPOUND | 
|  | if (i < cm->ref_frames_info.num_same_ref_compound) i -= bit; | 
|  | #endif  // CONFIG_ALLOW_SAME_REF_COMPOUND | 
|  | } | 
|  | #if CONFIG_TIP | 
|  | } else if (!is_tip_ref_frame(ref0)) { | 
|  | #else | 
|  | } else { | 
|  | #endif  // CONFIG_TIP | 
|  | const int n_refs = cm->ref_frames_info.num_total_refs; | 
|  | const MV_REFERENCE_FRAME ref0_nrs = mbmi->ref_frame[0]; | 
|  | for (int i = 0; i < n_refs - 1; i++) { | 
|  | const int bit = ref0_nrs == i; | 
|  | update_cdf(av1_get_pred_cdf_single_ref(xd, i, n_refs), bit, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->single_ref[av1_get_ref_pred_context(xd, i, n_refs)][i][bit]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (bit) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_BAWP | 
|  | if (cm->features.enable_bawp && | 
|  | av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) { | 
|  | update_cdf(fc->bawp_cdf, mbmi->bawp_flag == 1, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->bawp[mbmi->bawp_flag == 1]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | #endif  // CONFIG_BAWP | 
|  | #if CONFIG_EXTENDED_WARP_PREDICTION | 
|  | const int allowed_motion_modes = motion_mode_allowed( | 
|  | cm, xd, mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi); | 
|  | MOTION_MODE motion_mode = mbmi->motion_mode; | 
|  |  | 
|  | #if CONFIG_WARPMV | 
|  | if (mbmi->mode == WARPMV) { | 
|  | if (allowed_motion_modes & (1 << WARPED_CAUSAL)) { | 
|  | update_cdf(fc->warped_causal_warpmv_cdf[bsize], | 
|  | motion_mode == WARPED_CAUSAL, 2); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_WARPMV | 
|  |  | 
|  | bool continue_motion_mode_signaling = | 
|  | #if CONFIG_WARPMV | 
|  | (mbmi->mode == WARPMV) ? false : | 
|  | #endif  // CONFIG_WARPMV | 
|  | true; | 
|  |  | 
|  | #if CONFIG_WARPMV | 
|  | assert(IMPLIES(mbmi->mode == WARPMV, | 
|  | mbmi->motion_mode == WARP_DELTA || | 
|  | mbmi->motion_mode == WARPED_CAUSAL)); | 
|  | #endif  // CONFIG_WARPMV | 
|  |  | 
|  | if (continue_motion_mode_signaling && | 
|  | (allowed_motion_modes & (1 << INTERINTRA))) { | 
|  | const int bsize_group = size_group_lookup[bsize]; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra[bsize_group][motion_mode == INTERINTRA]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_cdf[bsize_group], motion_mode == INTERINTRA, | 
|  | 2); | 
|  |  | 
|  | if (motion_mode == INTERINTRA) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_mode_cdf[bsize_group], | 
|  | mbmi->interintra_mode, INTERINTRA_MODES); | 
|  | if (av1_is_wedge_used(bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_interintra_cdf[bsize], | 
|  | mbmi->use_wedge_interintra, 2); | 
|  | if (mbmi->use_wedge_interintra) { | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | , | 
|  | counts | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | ); | 
|  | #else | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, | 
|  | 16); | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  | } | 
|  | } | 
|  | continue_motion_mode_signaling = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (continue_motion_mode_signaling && | 
|  | (allowed_motion_modes & (1 << OBMC_CAUSAL))) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->obmc[bsize][motion_mode == OBMC_CAUSAL]++; | 
|  | #endif | 
|  | update_cdf(fc->obmc_cdf[bsize], motion_mode == OBMC_CAUSAL, 2); | 
|  | if (motion_mode == OBMC_CAUSAL) { | 
|  | continue_motion_mode_signaling = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (continue_motion_mode_signaling && | 
|  | allowed_motion_modes & (1 << WARP_EXTEND)) { | 
|  | const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi); | 
|  | const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->warp_extend[ctx1][ctx2][mbmi->motion_mode == WARP_EXTEND]++; | 
|  | #endif | 
|  | update_cdf(fc->warp_extend_cdf[ctx1][ctx2], | 
|  | mbmi->motion_mode == WARP_EXTEND, 2); | 
|  | if (motion_mode == WARP_EXTEND) { | 
|  | continue_motion_mode_signaling = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (continue_motion_mode_signaling && | 
|  | (allowed_motion_modes & (1 << WARPED_CAUSAL))) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->warped_causal[bsize][motion_mode == WARPED_CAUSAL]++; | 
|  | #endif | 
|  | update_cdf(fc->warped_causal_cdf[bsize], motion_mode == WARPED_CAUSAL, | 
|  | 2); | 
|  | if (motion_mode == WARPED_CAUSAL) { | 
|  | continue_motion_mode_signaling = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (continue_motion_mode_signaling && | 
|  | (allowed_motion_modes & (1 << WARP_DELTA))) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->warp_delta[bsize][motion_mode == WARP_DELTA]++; | 
|  | #endif | 
|  | update_cdf(fc->warp_delta_cdf[bsize], motion_mode == WARP_DELTA, 2); | 
|  | } | 
|  |  | 
|  | if (motion_mode == WARP_DELTA | 
|  | #if CONFIG_WARPMV | 
|  | || (motion_mode == WARPED_CAUSAL && mbmi->mode == WARPMV) | 
|  | #endif  // CONFIG_WARPMV | 
|  | ) { | 
|  | update_warp_delta_stats(cm, | 
|  | #if !CONFIG_WARP_REF_LIST | 
|  | xd, | 
|  | #endif  //! CONFIG_WARP_REF_LIST | 
|  | mbmi, mbmi_ext, | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | fc); | 
|  | // The following line is commented out to remove a spurious | 
|  | // static analysis warning. Uncomment when adding a new motion mode | 
|  | // continue_motion_mode_signaling = false; | 
|  | } | 
|  |  | 
|  | #else | 
|  | if (cm->seq_params.enable_interintra_compound && | 
|  | is_interintra_allowed(mbmi)) { | 
|  | const int bsize_group = size_group_lookup[bsize]; | 
|  | if (mbmi->ref_frame[1] == INTRA_FRAME) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra[bsize_group][1]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_cdf[bsize_group], 1, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_mode_cdf[bsize_group], | 
|  | mbmi->interintra_mode, INTERINTRA_MODES); | 
|  | if (av1_is_wedge_used(bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_interintra_cdf[bsize], | 
|  | mbmi->use_wedge_interintra, 2); | 
|  | if (mbmi->use_wedge_interintra) { | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | , | 
|  | counts | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | ); | 
|  | #else | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, | 
|  | 16); | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  | } | 
|  | } | 
|  | } else { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra[bsize_group][0]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_cdf[bsize_group], 0, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi); | 
|  | if (mbmi->ref_frame[1] != INTRA_FRAME) { | 
|  | if (motion_allowed == WARPED_CAUSAL) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->motion_mode[bsize][mbmi->motion_mode]++; | 
|  | #endif | 
|  | update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, | 
|  | MOTION_MODES); | 
|  | } else if (motion_allowed == OBMC_CAUSAL) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; | 
|  | #endif | 
|  | update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
|  |  | 
|  | #if CONFIG_CWG_D067_IMPROVED_WARP | 
|  | if (allow_warpmv_with_mvd_coding(cm, mbmi)) { | 
|  | update_cdf(fc->warpmv_with_mvd_flag_cdf[mbmi->sb_type[PLANE_TYPE_Y]], | 
|  | mbmi->warpmv_with_mvd_flag, 2); | 
|  | } else { | 
|  | assert(mbmi->warpmv_with_mvd_flag == 0); | 
|  | } | 
|  | #endif  // CONFIG_CWG_D067_IMPROVED_WARP | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | int is_refinemv_signaled = switchable_refinemv_flag(cm, mbmi); | 
|  | if (!mbmi->skip_mode && is_refinemv_signaled) { | 
|  | const int refinemv_ctx = av1_get_refinemv_context(cm, xd, bsize); | 
|  | update_cdf(fc->refinemv_flag_cdf[refinemv_ctx], mbmi->refinemv_flag, | 
|  | REFINEMV_NUM_MODES); | 
|  | } | 
|  | assert(IMPLIES(mbmi->refinemv_flag && is_refinemv_signaled, | 
|  | mbmi->comp_group_idx == 0 && | 
|  | mbmi->interinter_comp.type == COMPOUND_AVERAGE)); | 
|  | #endif  // CONFIG_REFINEMV | 
|  | if (has_second_ref(mbmi) | 
|  | #if CONFIG_OPTFLOW_REFINEMENT | 
|  | && mbmi->mode < NEAR_NEARMV_OPTFLOW | 
|  | #endif  // CONFIG_OPTFLOW_REFINEMENT | 
|  | #if CONFIG_REFINEMV | 
|  | && (!mbmi->refinemv_flag || !is_refinemv_signaled) | 
|  | #endif  // CONFIG_REFINEMV | 
|  | #if IMPROVED_AMVD && CONFIG_JOINT_MVD | 
|  | && !is_joint_amvd_coding_mode(mbmi->mode) | 
|  | #endif  // IMPROVED_AMVD && CONFIG_JOINT_MVD | 
|  | ) { | 
|  | assert(current_frame->reference_mode != SINGLE_REFERENCE && | 
|  | is_inter_compound_mode(mbmi->mode) && | 
|  | mbmi->motion_mode == SIMPLE_TRANSLATION); | 
|  |  | 
|  | const int masked_compound_used = is_any_masked_compound_used(bsize) && | 
|  | cm->seq_params.enable_masked_compound; | 
|  | if (masked_compound_used) { | 
|  | const int comp_group_idx_ctx = get_comp_group_idx_context(cm, xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; | 
|  | #endif | 
|  | update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], | 
|  | mbmi->comp_group_idx, 2); | 
|  | } | 
|  |  | 
|  | if (mbmi->comp_group_idx == 1) { | 
|  | assert(masked_compound_used); | 
|  | if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->compound_type[bsize][mbmi->interinter_comp.type - | 
|  | COMPOUND_WEDGE]; | 
|  | #endif | 
|  | update_cdf(fc->compound_type_cdf[bsize], | 
|  | mbmi->interinter_comp.type - COMPOUND_WEDGE, | 
|  | MASKED_COMPOUND_TYPES); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { | 
|  | if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | update_wedge_mode_cdf(fc, bsize, mbmi->interinter_comp.wedge_index | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | , | 
|  | counts | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | ); | 
|  | #else | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_idx_cdf[bsize], | 
|  | mbmi->interinter_comp.wedge_index, 16); | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_CWP | 
|  | if (cm->features.enable_cwp && is_cwp_allowed(mbmi) && !mbmi->skip_mode) { | 
|  | update_cwp_idx_stats(fc, td->counts, cm, xd); | 
|  | } | 
|  | #endif  // CONFIG_CWP | 
|  | } | 
|  | } | 
|  |  | 
|  | if (inter_block && cm->features.interp_filter == SWITCHABLE && | 
|  | !is_warp_mode(mbmi->motion_mode) && !is_nontrans_global_motion(xd, mbmi) | 
|  | #if CONFIG_REFINEMV | 
|  | && !(mbmi->refinemv_flag || mbmi->mode >= NEAR_NEARMV_OPTFLOW) | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ) { | 
|  | update_filter_type_cdf(xd, mbmi); | 
|  | } | 
|  | if (inter_block && | 
|  | !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | const PREDICTION_MODE mode = mbmi->mode; | 
|  | const int16_t mode_ctx = | 
|  | av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); | 
|  | if (has_second_ref(mbmi)) { | 
|  | #if CONFIG_OPTFLOW_REFINEMENT | 
|  | if (cm->features.opfl_refine_type == REFINE_SWITCHABLE && | 
|  | is_opfl_refine_allowed(cm, mbmi)) { | 
|  | const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->use_optflow[mode_ctx][use_optical_flow]; | 
|  | #endif | 
|  | update_cdf(fc->use_optflow_cdf[mode_ctx], use_optical_flow, 2); | 
|  | } | 
|  | const int comp_mode_idx = opfl_get_comp_idx(mode); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->inter_compound_mode[mode_ctx][comp_mode_idx]; | 
|  | #endif | 
|  | update_cdf(fc->inter_compound_mode_cdf[mode_ctx], comp_mode_idx, | 
|  | INTER_COMPOUND_REF_TYPES); | 
|  | #else | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; | 
|  | #endif | 
|  | update_cdf(fc->inter_compound_mode_cdf[mode_ctx], | 
|  | INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); | 
|  | #endif  // CONFIG_OPTFLOW_REFINEMENT | 
|  | #if CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD | 
|  | if (is_joint_mvd_coding_mode(mbmi->mode)) { | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode); | 
|  | aom_cdf_prob *jmvd_scale_mode_cdf = is_joint_amvd_mode | 
|  | ? fc->jmvd_amvd_scale_mode_cdf | 
|  | : fc->jmvd_scale_mode_cdf; | 
|  | const int jmvd_scale_cnt = is_joint_amvd_mode | 
|  | ? JOINT_AMVD_SCALE_FACTOR_CNT | 
|  | : JOINT_NEWMV_SCALE_FACTOR_CNT; | 
|  | update_cdf(jmvd_scale_mode_cdf, mbmi->jmvd_scale_mode, jmvd_scale_cnt); | 
|  | #else | 
|  | update_cdf(fc->jmvd_scale_mode_cdf, mbmi->jmvd_scale_mode, | 
|  | JOINT_NEWMV_SCALE_FACTOR_CNT); | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | } | 
|  |  | 
|  | #endif  // CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD | 
|  | } else { | 
|  | av1_update_inter_mode_stats(fc, counts, mode, mode_ctx | 
|  | #if CONFIG_WARPMV | 
|  | , | 
|  | cm, xd, mbmi, bsize | 
|  | #endif  // CONFIG_WARPMV | 
|  |  | 
|  | ); | 
|  | } | 
|  |  | 
|  | const int new_mv = have_newmv_in_each_reference(mbmi->mode); | 
|  | #if CONFIG_JOINT_MVD | 
|  | const int jmvd_base_ref_list = is_joint_mvd_coding_mode(mbmi->mode) | 
|  | ? get_joint_mvd_base_ref_list(cm, mbmi) | 
|  | : 0; | 
|  | #endif  // CONFIG_JOINT_MVD | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi); | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | if (have_drl_index(mbmi->mode)) { | 
|  | const int16_t mode_ctx_pristine = | 
|  | av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame); | 
|  | update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc, | 
|  | counts, mbmi, mbmi_ext); | 
|  | } | 
|  |  | 
|  | #if CONFIG_CWG_D067_IMPROVED_WARP | 
|  | if (xd->tree_type != CHROMA_PART && mbmi->mode == WARPMV) { | 
|  | if (mbmi->warpmv_with_mvd_flag) { | 
|  | WarpedMotionParams ref_warp_model = | 
|  | mbmi_ext | 
|  | ->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)] | 
|  | [mbmi->warp_ref_idx] | 
|  | .wm_params; | 
|  | const int_mv ref_mv = | 
|  | get_mv_from_wrl(xd, &ref_warp_model, mbmi->pb_mv_precision, bsize, | 
|  | xd->mi_col, xd->mi_row); | 
|  | assert(is_adaptive_mvd == 0); | 
|  |  | 
|  | #if CONFIG_FLEX_MVRES | 
|  | av1_update_mv_stats(mbmi->mv[0].as_mv, ref_mv.as_mv, &fc->nmvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | is_adaptive_mvd, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | mbmi->pb_mv_precision); | 
|  | #else | 
|  | av1_update_mv_stats(&mbmi->mv[0].as_mv, &ref_mv.as_mv, &fc->nmvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | is_adaptive_mvd, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | allow_hp); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | } else { | 
|  | #endif  // CONFIG_CWG_D067_IMPROVED_WARP | 
|  |  | 
|  | if (have_newmv_in_inter_mode(mbmi->mode) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | #if CONFIG_FLEX_MVRES | 
|  | const int pb_mv_precision = mbmi->pb_mv_precision; | 
|  | assert(IMPLIES(cm->features.cur_frame_force_integer_mv, | 
|  | pb_mv_precision == MV_PRECISION_ONE_PEL)); | 
|  | #else | 
|  | const int allow_hp = cm->features.cur_frame_force_integer_mv | 
|  | ? MV_SUBPEL_NONE | 
|  | : cm->features.allow_high_precision_mv; | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_FLEX_MVRES | 
|  | if (is_pb_mv_precision_active(cm, mbmi, bsize)) { | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | assert(!is_adaptive_mvd); | 
|  | #endif | 
|  | assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision); | 
|  | const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd); | 
|  | const int mpp_flag = | 
|  | (mbmi->pb_mv_precision == mbmi->most_probable_pb_mv_precision); | 
|  | update_cdf(fc->pb_mv_mpp_flag_cdf[mpp_flag_context], mpp_flag, 2); | 
|  |  | 
|  | if (!mpp_flag) { | 
|  | const PRECISION_SET *precision_def = | 
|  | &av1_mv_precision_sets[mbmi->mb_precision_set]; | 
|  | int down = av1_get_pb_mv_precision_index(mbmi); | 
|  | int nsymbs = precision_def->num_precisions - 1; | 
|  |  | 
|  | const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd); | 
|  |  | 
|  | update_cdf( | 
|  | fc->pb_mv_precision_cdf[down_ctx][mbmi->max_mv_precision - | 
|  | MV_PRECISION_HALF_PEL], | 
|  | down, nsymbs); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_FLEX_MVRES | 
|  |  | 
|  | if (new_mv) { | 
|  | for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { | 
|  | const int_mv ref_mv = av1_get_ref_mv(x, ref); | 
|  |  | 
|  | #if CONFIG_FLEX_MVRES | 
|  | av1_update_mv_stats(mbmi->mv[ref].as_mv, ref_mv.as_mv, &fc->nmvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | is_adaptive_mvd, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | pb_mv_precision); | 
|  | #else | 
|  | av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | is_adaptive_mvd, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | allow_hp); | 
|  | #endif | 
|  | } | 
|  | } else if (have_nearmv_newmv_in_inter_mode(mbmi->mode)) { | 
|  | const int ref = | 
|  | #if CONFIG_OPTFLOW_REFINEMENT | 
|  | mbmi->mode == NEAR_NEWMV_OPTFLOW || | 
|  | #endif  // CONFIG_OPTFLOW_REFINEMENT | 
|  | #if CONFIG_JOINT_MVD | 
|  | jmvd_base_ref_list || | 
|  | #endif  // CONFIG_JOINT_MVD | 
|  | mbmi->mode == NEAR_NEWMV; | 
|  | const int_mv ref_mv = av1_get_ref_mv(x, ref); | 
|  | #if CONFIG_FLEX_MVRES | 
|  | av1_update_mv_stats(mbmi->mv[ref].as_mv, ref_mv.as_mv, &fc->nmvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | is_adaptive_mvd, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | pb_mv_precision); | 
|  | #else | 
|  | av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, | 
|  | #if CONFIG_ADAPTIVE_MVD | 
|  | is_adaptive_mvd, | 
|  | #endif  // CONFIG_ADAPTIVE_MVD | 
|  | allow_hp); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_CWG_D067_IMPROVED_WARP | 
|  | } | 
|  | #endif  // CONFIG_CWG_D067_IMPROVED_WARP | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief Reconstructs an individual coding block | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Reconstructs an individual coding block by applying the chosen modes stored | 
|  | * in ctx, also updates mode counts and entropy models. | 
|  | * | 
|  | * This function works on planes determined by get_partition_plane_start() and | 
|  | * get_partition_plane_end() based on xd->tree_type. | 
|  | * | 
|  | * \param[in]    cpi       Top-level encoder structure | 
|  | * \param[in]    tile_data Pointer to struct holding adaptive | 
|  | *                         data/contexts/models for the tile during encoding | 
|  | * \param[in]    td        Pointer to thread data | 
|  | * \param[in]    tp        Pointer to the starting token | 
|  | * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE | 
|  | * \param[in]    mi_col    Column coordinate of the block in a step size of | 
|  | *                         MI_SIZE | 
|  | * \param[in]    dry_run   A code indicating whether it is part of the final | 
|  | *                         pass for reconstructing the superblock | 
|  | * \param[in]    bsize     Current block size | 
|  | * \param[in]    partition Partition mode of the parent block | 
|  | * \param[in]    ctx       Pointer to structure holding coding contexts and the | 
|  | *                         chosen modes for the current block | 
|  | * \param[in]    rate      Pointer to the total rate for the current block | 
|  | * | 
|  | * Nothing is returned. Instead, reconstructions (w/o in-loop filters) | 
|  | * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes | 
|  | * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0]. | 
|  | */ | 
|  | static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | ThreadData *td, TokenExtra **tp, int mi_row, int mi_col, | 
|  | RUN_TYPE dry_run, BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition, | 
|  | const PICK_MODE_CONTEXT *const ctx, int *rate) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | TileInfo *const tile = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  |  | 
|  | av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize, | 
|  | &ctx->chroma_ref_info); | 
|  | const int origin_mult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | mbmi->partition = partition; | 
|  | av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const int plane_start = (xd->tree_type == CHROMA_PART); | 
|  | const int plane_end = (xd->tree_type == LUMA_PART) ? 1 : num_planes; | 
|  |  | 
|  | if (!dry_run) { | 
|  | for (int plane = plane_start; plane < plane_end; plane++) { | 
|  | x->mbmi_ext_frame->cb_offset[plane] = x->cb_offset[plane]; | 
|  | assert(x->cb_offset[plane] < | 
|  | (1 << num_pels_log2_lookup[cpi->common.seq_params.sb_size])); | 
|  | } | 
|  | #if CONFIG_PC_WIENER | 
|  | av1_init_txk_skip_array(&cpi->common, mi_row, mi_col, bsize, 0, | 
|  | xd->tree_type, &mbmi->chroma_ref_info, plane_start, | 
|  | plane_end); | 
|  | #endif  // CONFIG_PC_WIENER | 
|  | } | 
|  |  | 
|  | encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, plane_start, | 
|  | plane_end, rate); | 
|  |  | 
|  | if (!dry_run) { | 
|  | for (int plane = plane_start; plane < plane_end; ++plane) { | 
|  | if (plane == 0) { | 
|  | x->cb_offset[plane] += block_size_wide[bsize] * block_size_high[bsize]; | 
|  | } else if (xd->is_chroma_ref) { | 
|  | const BLOCK_SIZE bsize_base = mbmi->chroma_ref_info.bsize_base; | 
|  | x->cb_offset[plane] += | 
|  | block_size_wide[bsize_base] * block_size_high[bsize_base]; | 
|  | } | 
|  | } | 
|  | if (bsize == cpi->common.seq_params.sb_size && | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 1 && | 
|  | cm->delta_q_info.delta_lf_present_flag) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) | 
|  | mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; | 
|  | mbmi->delta_lf_from_base = xd->delta_lf_from_base; | 
|  | } | 
|  | if (has_second_ref(mbmi)) { | 
|  | if (mbmi->interinter_comp.type == COMPOUND_AVERAGE) | 
|  | mbmi->comp_group_idx = 0; | 
|  | else | 
|  | mbmi->comp_group_idx = 1; | 
|  | } | 
|  |  | 
|  | // delta quant applies to both intra and inter | 
|  | const int super_block_upper_left = | 
|  | ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && | 
|  | ((mi_col & (cm->seq_params.mib_size - 1)) == 0); | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | if (delta_q_info->delta_q_present_flag && | 
|  | (bsize != cm->seq_params.sb_size || | 
|  | !mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) && | 
|  | super_block_upper_left) { | 
|  | xd->current_base_qindex = mbmi->current_qindex; | 
|  | if (delta_q_info->delta_lf_present_flag) { | 
|  | if (delta_q_info->delta_lf_multi) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; | 
|  | } | 
|  | } else { | 
|  | xd->delta_lf_from_base = mbmi->delta_lf_from_base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RD_COUNTS *rdc = &td->rd_counts; | 
|  | if (mbmi->skip_mode) { | 
|  | assert(!frame_is_intra_only(cm)); | 
|  | rdc->skip_mode_used_flag = 1; | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { | 
|  | #if !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | assert(has_second_ref(mbmi)); | 
|  | #endif  // !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | rdc->compound_ref_used_flag = 1; | 
|  | } | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | } else { | 
|  | const int seg_ref_active = 0; | 
|  | if (!seg_ref_active) { | 
|  | // If the segment reference feature is enabled we have only a single | 
|  | // reference frame allowed for the segment so exclude it from | 
|  | // the reference frame counts used to work out probabilities. | 
|  | if (is_inter_block(mbmi, xd->tree_type)) { | 
|  | av1_collect_neighbors_ref_counts(xd); | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { | 
|  | if (has_second_ref(mbmi)) { | 
|  | // This flag is also updated for 4x4 blocks | 
|  | rdc->compound_ref_used_flag = 1; | 
|  | } | 
|  | } | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); | 
|  |  | 
|  | // Gather obmc and warped motion count to update the probability. | 
|  | if ((!cpi->sf.inter_sf.disable_obmc && | 
|  | cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) || | 
|  | #if CONFIG_EXTENDED_WARP_PREDICTION | 
|  | cpi->sf.inter_sf.prune_warped_prob_thresh > 0 | 
|  | #if CONFIG_CWG_D067_IMPROVED_WARP | 
|  | || cpi->sf.inter_sf.prune_warpmv_prob_thresh > 0 | 
|  | #endif  // CONFIG_CWG_D067_IMPROVED_WARP | 
|  | ) { | 
|  | #else | 
|  | (cm->features.allow_warped_motion && | 
|  | cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) { | 
|  | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
|  | const int inter_block = is_inter_block(mbmi, xd->tree_type); | 
|  | const int seg_ref_active = 0; | 
|  | if (!seg_ref_active && inter_block) { | 
|  | #if CONFIG_EXTENDED_WARP_PREDICTION | 
|  | const int allowed_motion_modes = motion_mode_allowed( | 
|  | cm, xd, x->mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi); | 
|  | if (mbmi->motion_mode != INTERINTRA) { | 
|  | if (allowed_motion_modes & (1 << OBMC_CAUSAL)) { | 
|  | td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; | 
|  | } | 
|  | #if CONFIG_CWG_D067_IMPROVED_WARP | 
|  | int is_warp_allowed = (allowed_motion_modes & (1 << WARPED_CAUSAL)) || | 
|  | (allowed_motion_modes & (1 << WARP_DELTA)) || | 
|  | (allowed_motion_modes & (1 << WARP_EXTEND)); | 
|  | if (is_warp_allowed) { | 
|  | td->rd_counts.warped_used[mbmi->motion_mode >= WARPED_CAUSAL]++; | 
|  | } | 
|  | #else | 
|  | if (allowed_motion_modes & (1 << WARPED_CAUSAL)) { | 
|  | td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++; | 
|  | } | 
|  | #endif  // CONFIG_CWG_D067_IMPROVED_WARP | 
|  | // TODO(rachelbarker): Add counts and pruning for WARP_DELTA and | 
|  | // WARP_EXTEND | 
|  | } | 
|  | #else | 
|  | const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi); | 
|  |  | 
|  | if (mbmi->ref_frame[1] != INTRA_FRAME) { | 
|  | if (motion_allowed >= OBMC_CAUSAL) { | 
|  | td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; | 
|  | } | 
|  | if (motion_allowed == WARPED_CAUSAL) { | 
|  | td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXTENDED_WARP_PREDICTION | 
|  | } | 
|  | } | 
|  | } | 
|  | // TODO(Ravi/Remya): Move this copy function to a better logical place | 
|  | // This function will copy the best mode information from block | 
|  | // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This | 
|  | // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during | 
|  | // bitstream preparation. | 
|  | if (xd->tree_type != CHROMA_PART) | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | { | 
|  | if (mbmi->skip_mode) { | 
|  | const SkipModeInfo *const skip_mode_info = | 
|  | &cpi->common.current_frame.skip_mode_info; | 
|  |  | 
|  | MV_REFERENCE_FRAME rf[2]; | 
|  | rf[0] = skip_mode_info->ref_frame_idx_0; | 
|  | rf[1] = skip_mode_info->ref_frame_idx_1; | 
|  | MV_REFERENCE_FRAME ref_frame_type = av1_ref_frame_type(rf); | 
|  |  | 
|  | av1_find_mv_refs(&cpi->common, xd, mbmi, ref_frame_type, | 
|  | x->mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, | 
|  | NULL, NULL | 
|  | #if !CONFIG_C076_INTER_MOD_CTX | 
|  | , | 
|  | NULL | 
|  | #endif  //! CONFIG_C076_INTER_MOD_CTX | 
|  | #if CONFIG_WARP_REF_LIST | 
|  | , | 
|  | NULL, 0, NULL | 
|  | #endif  // CONFIG_WARP_REF_LIST | 
|  | ); | 
|  | // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and | 
|  | // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. | 
|  | av1_copy_usable_ref_mv_stack_and_weight(xd, x->mbmi_ext, ref_frame_type); | 
|  | } | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  |  | 
|  | av1_copy_mbmi_ext_to_mbmi_ext_frame( | 
|  | x->mbmi_ext_frame, x->mbmi_ext, | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | mbmi, | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | mbmi->skip_mode, | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | av1_ref_frame_type(xd->mi[0]->ref_frame)); | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | } | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | x->rdmult = origin_mult; | 
|  | } | 
|  |  | 
|  | static void update_partition_stats(MACROBLOCKD *const xd, | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | FRAME_COUNTS *counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | int allow_update_cdf, | 
|  | const CommonModeInfoParams *const mi_params, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | int disable_ext_part, | 
|  | PARTITION_TREE const *ptree_luma, | 
|  | const CHROMA_REF_INFO *chroma_ref_info, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | PARTITION_TYPE partition, const int mi_row, | 
|  | const int mi_col, BLOCK_SIZE bsize, | 
|  | const int ctx) { | 
|  | const int plane_index = xd->tree_type == CHROMA_PART; | 
|  | FRAME_CONTEXT *fc = xd->tile_ctx; | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (!is_partition_point(bsize)) { | 
|  | return; | 
|  | } | 
|  | if (xd->tree_type == CHROMA_PART && bsize == BLOCK_8X8) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  | if (is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize)) { | 
|  | PARTITION_TYPE derived_partition_mode = | 
|  | sdp_chroma_part_from_luma(bsize, ptree_luma->partition, ss_x, ss_y); | 
|  | assert(partition == derived_partition_mode && | 
|  | "Chroma partition does not match the derived mode."); | 
|  | (void)derived_partition_mode; | 
|  | return; | 
|  | } | 
|  |  | 
|  | PARTITION_TYPE implied_partition; | 
|  | const bool is_part_implied = is_partition_implied_at_boundary( | 
|  | mi_params, xd->tree_type, ss_x, ss_y, mi_row, mi_col, bsize, | 
|  | chroma_ref_info, &implied_partition); | 
|  | if (is_part_implied) { | 
|  | assert(partition == implied_partition && | 
|  | "Partition doesn't match the implied partition at boundary."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const bool do_split = partition != PARTITION_NONE; | 
|  | if (allow_update_cdf) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->do_split[plane_index][ctx][do_split]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->do_split_cdf[plane_index][ctx], do_split, 2); | 
|  | } | 
|  | if (!do_split) { | 
|  | return; | 
|  | } | 
|  | RECT_PART_TYPE rect_type = get_rect_part_type(partition); | 
|  | if (rect_type_implied_by_bsize(bsize, xd->tree_type) == RECT_INVALID) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->rect_type[plane_index][ctx][rect_type]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->rect_type_cdf[plane_index][ctx], rect_type, 2); | 
|  | } | 
|  | const bool ext_partition_allowed = | 
|  | !disable_ext_part && | 
|  | is_ext_partition_allowed(bsize, rect_type, xd->tree_type); | 
|  | if (ext_partition_allowed) { | 
|  | const bool do_ext_partition = (partition >= PARTITION_HORZ_3); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->do_ext_partition[plane_index][rect_type][ctx][do_ext_partition]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->do_ext_partition_cdf[plane_index][rect_type][ctx], | 
|  | do_ext_partition, 2); | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | if (do_ext_partition) { | 
|  | const bool uneven_4way_partition_allowed = | 
|  | is_uneven_4way_partition_allowed(bsize, rect_type, xd->tree_type); | 
|  | if (uneven_4way_partition_allowed) { | 
|  | const bool do_uneven_4way_partition = (partition >= PARTITION_HORZ_4A); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->do_uneven_4way_partition[plane_index][rect_type][ctx] | 
|  | [do_uneven_4way_partition]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf( | 
|  | fc->do_uneven_4way_partition_cdf[plane_index][rect_type][ctx], | 
|  | do_uneven_4way_partition, 2); | 
|  | if (do_uneven_4way_partition) { | 
|  | const UNEVEN_4WAY_PART_TYPE uneven_4way_type = | 
|  | (partition == PARTITION_HORZ_4A || partition == PARTITION_VERT_4A) | 
|  | ? UNEVEN_4A | 
|  | : UNEVEN_4B; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->uneven_4way_partition_type[plane_index][rect_type][ctx] | 
|  | [uneven_4way_type]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf( | 
|  | fc->uneven_4way_partition_type_cdf[plane_index][rect_type][ctx], | 
|  | uneven_4way_type, NUM_UNEVEN_4WAY_PARTS); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | } | 
|  | #else  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int hbs_w = mi_size_wide[bsize] / 2; | 
|  | const int hbs_h = mi_size_high[bsize] / 2; | 
|  | const int has_rows = (mi_row + hbs_h) < mi_params->mi_rows; | 
|  | const int has_cols = (mi_col + hbs_w) < mi_params->mi_cols; | 
|  | if (has_rows && has_cols) { | 
|  | int luma_split_flag = 0; | 
|  | int parent_block_width = block_size_wide[bsize]; | 
|  | if (xd->tree_type == CHROMA_PART && | 
|  | parent_block_width >= SHARED_PART_SIZE) { | 
|  | luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); | 
|  | } | 
|  | if (luma_split_flag <= 3) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->partition[plane_index][ctx][partition]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (allow_update_cdf) { | 
|  | update_cdf(fc->partition_cdf[plane_index][ctx], partition, | 
|  | partition_cdf_length(bsize)); | 
|  | } | 
|  | } else { | 
|  | // if luma blocks uses smaller blocks, then chroma will also split | 
|  | assert(partition == PARTITION_SPLIT); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | /*!\brief Reconstructs a partition (may contain multiple coding blocks) | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Reconstructs a sub-partition of the superblock by applying the chosen modes | 
|  | * and partition trees stored in pc_tree. | 
|  | * | 
|  | * \param[in]    cpi        Top-level encoder structure | 
|  | * \param[in]    td         Pointer to thread data | 
|  | * \param[in]    tile_data  Pointer to struct holding adaptive | 
|  | *                          data/contexts/models for the tile during encoding | 
|  | * \param[in]    tp         Pointer to the starting token | 
|  | * \param[in]    mi_row     Row coordinate of the block in a step size of | 
|  | *                          MI_SIZE | 
|  | * \param[in]    mi_col     Column coordinate of the block in a step size of | 
|  | *                          MI_SIZE | 
|  | * \param[in]    dry_run    A code indicating whether it is part of the final | 
|  | *                          pass for reconstructing the superblock | 
|  | * \param[in]    bsize      Current block size | 
|  | * \param[in]    pc_tree    Pointer to the PC_TREE node storing the picked | 
|  | *                          partitions and mode info for the current block | 
|  | * \param[in]    ptree      Pointer to the PARTITION_TREE node holding the | 
|  | *                          partition info for the current node and all of its | 
|  | *                          descendants. | 
|  | * \param[in]    ptree_luma Pointer to the luma partition tree so that the | 
|  | *                          encoder to estimate the | 
|  | *                          partition type for chroma. | 
|  | * \param[in]     rate      Pointer to the total rate for the current block | 
|  | * | 
|  | * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) | 
|  | * will be updated in the pixel buffers in td->mb.e_mbd. | 
|  | */ | 
|  | static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int mi_row, | 
|  | int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, | 
|  | const PC_TREE *pc_tree, PARTITION_TREE *ptree, | 
|  | PARTITION_TREE *ptree_luma, int *rate) { | 
|  | #else | 
|  | /*!\brief Reconstructs a partition (may contain multiple coding blocks) | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Reconstructs a sub-partition of the superblock by applying the chosen modes | 
|  | * and partition trees stored in pc_tree. | 
|  | * | 
|  | * This function works on planes determined by get_partition_plane_start() and | 
|  | * get_partition_plane_end() based on xd->tree_type. | 
|  | * | 
|  | * \param[in]    cpi       Top-level encoder structure | 
|  | * \param[in]    td        Pointer to thread data | 
|  | * \param[in]    tile_data Pointer to struct holding adaptive | 
|  | *                         data/contexts/models for the tile during encoding | 
|  | * \param[in]    tp        Pointer to the starting token | 
|  | * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE | 
|  | * \param[in]    mi_col    Column coordinate of the block in a step size of | 
|  | *                         MI_SIZE | 
|  | * \param[in]    dry_run   A code indicating whether it is part of the final | 
|  | *                         pass for reconstructing the superblock | 
|  | * \param[in]    bsize     Current block size | 
|  | * \param[in]    pc_tree   Pointer to the PC_TREE node storing the picked | 
|  | *                         partitions and mode info for the current block | 
|  | * \param[in]    ptree     Pointer to the PARTITION_TREE node holding the | 
|  | *                         partition info for the current node and all of its | 
|  | *                         descendants. | 
|  | * \param[in]    rate      Pointer to the total rate for the current block | 
|  | * | 
|  | * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) | 
|  | * will be updated in the pixel buffers in td->mb.e_mbd. | 
|  | */ | 
|  | static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int mi_row, | 
|  | int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, | 
|  | const PC_TREE *pc_tree, PARTITION_TREE *ptree, | 
|  | int *rate) { | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int hbs_w = mi_size_wide[bsize] / 2; | 
|  | const int hbs_h = mi_size_high[bsize] / 2; | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | const int ebs_w = mi_size_wide[bsize] / 8; | 
|  | const int ebs_h = mi_size_high[bsize] / 8; | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int qbs_w = mi_size_wide[bsize] / 4; | 
|  | const int qbs_h = mi_size_high[bsize] / 4; | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int is_partition_root = is_partition_point(bsize); | 
|  | const int ctx = is_partition_root | 
|  | ? partition_plane_context(xd, mi_row, mi_col, bsize) | 
|  | : -1; | 
|  | const PARTITION_TYPE partition = pc_tree->partitioning; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const bool disable_ext_part = !cm->seq_params.enable_ext_partitions; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | const BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | if (subsize == BLOCK_INVALID) return; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(partition != PARTITION_SPLIT); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | if (!dry_run && ctx >= 0) | 
|  | update_partition_stats(xd, | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | tile_data->allow_update_cdf, mi_params, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | disable_ext_part, ptree_luma, | 
|  | &pc_tree->chroma_ref_info, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | partition, mi_row, mi_col, bsize, ctx); | 
|  |  | 
|  | PARTITION_TREE *sub_tree[4] = { NULL, NULL, NULL, NULL }; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | // If two pass partition tree is enable, then store the partition types in | 
|  | // ptree even if it's dry run. | 
|  | if (!dry_run || (cpi->sf.part_sf.two_pass_partition_search && ptree)) { | 
|  | #else | 
|  | if (!dry_run) { | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(ptree); | 
|  |  | 
|  | ptree->partition = partition; | 
|  | ptree->bsize = bsize; | 
|  | ptree->mi_row = mi_row; | 
|  | ptree->mi_col = mi_col; | 
|  | PARTITION_TREE *parent = ptree->parent; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  | set_chroma_ref_info( | 
|  | xd->tree_type, mi_row, mi_col, ptree->index, bsize, | 
|  | &ptree->chroma_ref_info, parent ? &parent->chroma_ref_info : NULL, | 
|  | parent ? parent->bsize : BLOCK_INVALID, | 
|  | parent ? parent->partition : PARTITION_NONE, ss_x, ss_y); | 
|  |  | 
|  | switch (partition) { | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | case PARTITION_HORZ_4A: | 
|  | case PARTITION_HORZ_4B: | 
|  | case PARTITION_VERT_4A: | 
|  | case PARTITION_VERT_4B: | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | case PARTITION_SPLIT: | 
|  | ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
|  | ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
|  | ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); | 
|  | ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); | 
|  | break; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | case PARTITION_HORZ: | 
|  | case PARTITION_VERT: | 
|  | ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
|  | ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
|  | break; | 
|  | case PARTITION_HORZ_3: | 
|  | case PARTITION_VERT_3: | 
|  | ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
|  | ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
|  | ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); | 
|  | ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); | 
|  | break; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | default: break; | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) sub_tree[i] = ptree->sub_tree[i]; | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int track_ptree_luma = | 
|  | is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize); | 
|  |  | 
|  | if (track_ptree_luma && partition != PARTITION_NONE) { | 
|  | assert(ptree_luma); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->none, rate); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->vertical[0], sub_tree[0], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); | 
|  | if (mi_col + hbs_w < cm->mi_params.mi_cols) { | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs_w, dry_run, | 
|  | subsize, pc_tree->vertical[1], sub_tree[1], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); | 
|  | } | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->vertical[0], rate); | 
|  | if (mi_col + hbs_w < mi_params->mi_cols) { | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, | 
|  | subsize, partition, pc_tree->vertical[1], rate); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->horizontal[0], sub_tree[0], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); | 
|  | if (mi_row + hbs_h < cm->mi_params.mi_rows) { | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col, dry_run, | 
|  | subsize, pc_tree->horizontal[1], sub_tree[1], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); | 
|  | } | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontal[0], rate); | 
|  | if (mi_row + hbs_h < mi_params->mi_rows) { | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, | 
|  | subsize, partition, pc_tree->horizontal[1], rate); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | break; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | case PARTITION_HORZ_4A: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_HORZ); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_HORZ)); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->horizontal4a[0], sub_tree[0], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); | 
|  | if (mi_row + ebs_h >= cm->mi_params.mi_rows) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + ebs_h, mi_col, dry_run, | 
|  | bsize_med, pc_tree->horizontal4a[1], sub_tree[1], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); | 
|  | if (mi_row + 3 * ebs_h >= cm->mi_params.mi_rows) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + 3 * ebs_h, mi_col, dry_run, | 
|  | bsize_big, pc_tree->horizontal4a[2], sub_tree[2], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate); | 
|  | if (mi_row + 7 * ebs_h >= cm->mi_params.mi_rows) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + 7 * ebs_h, mi_col, dry_run, | 
|  | subsize, pc_tree->horizontal4a[3], sub_tree[3], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[3] : NULL, rate); | 
|  | break; | 
|  | } | 
|  | case PARTITION_HORZ_4B: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_HORZ); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_HORZ)); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->horizontal4b[0], sub_tree[0], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); | 
|  | if (mi_row + ebs_h >= cm->mi_params.mi_rows) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + ebs_h, mi_col, dry_run, | 
|  | bsize_big, pc_tree->horizontal4b[1], sub_tree[1], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); | 
|  | if (mi_row + 5 * ebs_h >= cm->mi_params.mi_rows) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + 5 * ebs_h, mi_col, dry_run, | 
|  | bsize_med, pc_tree->horizontal4b[2], sub_tree[2], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate); | 
|  | if (mi_row + 7 * ebs_h >= cm->mi_params.mi_rows) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + 7 * ebs_h, mi_col, dry_run, | 
|  | subsize, pc_tree->horizontal4b[3], sub_tree[3], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[3] : NULL, rate); | 
|  | break; | 
|  | } | 
|  | case PARTITION_VERT_4A: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_VERT); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_VERT)); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->vertical4a[0], sub_tree[0], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); | 
|  | if (mi_col + ebs_w >= cm->mi_params.mi_cols) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + ebs_w, dry_run, | 
|  | bsize_med, pc_tree->vertical4a[1], sub_tree[1], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); | 
|  | if (mi_col + 3 * ebs_w >= cm->mi_params.mi_cols) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + 3 * ebs_w, dry_run, | 
|  | bsize_big, pc_tree->vertical4a[2], sub_tree[2], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate); | 
|  | if (mi_col + 7 * ebs_w >= cm->mi_params.mi_cols) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + 7 * ebs_w, dry_run, | 
|  | subsize, pc_tree->vertical4a[3], sub_tree[3], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[3] : NULL, rate); | 
|  | break; | 
|  | } | 
|  | case PARTITION_VERT_4B: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_VERT); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_VERT)); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->vertical4b[0], sub_tree[0], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); | 
|  | if (mi_col + ebs_w >= cm->mi_params.mi_cols) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + ebs_w, dry_run, | 
|  | bsize_big, pc_tree->vertical4b[1], sub_tree[1], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); | 
|  | if (mi_col + 5 * ebs_w >= cm->mi_params.mi_cols) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + 5 * ebs_w, dry_run, | 
|  | bsize_med, pc_tree->vertical4b[2], sub_tree[2], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate); | 
|  | if (mi_col + 7 * ebs_w >= cm->mi_params.mi_cols) break; | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + 7 * ebs_w, dry_run, | 
|  | subsize, pc_tree->vertical4b[3], sub_tree[3], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[3] : NULL, rate); | 
|  | break; | 
|  | } | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | case PARTITION_HORZ_3: | 
|  | case PARTITION_VERT_3: { | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const BLOCK_SIZE this_bsize = | 
|  | get_h_partition_subsize(bsize, i, partition); | 
|  | const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition); | 
|  | const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition); | 
|  | const int this_mi_row = mi_row + offset_r; | 
|  | const int this_mi_col = mi_col + offset_c; | 
|  | PC_TREE *this_pc_tree = partition == PARTITION_HORZ_3 | 
|  | ? pc_tree->horizontal3[i] | 
|  | : pc_tree->vertical3[i]; | 
|  |  | 
|  | if (partition == PARTITION_HORZ_3) { | 
|  | if (this_mi_row >= cm->mi_params.mi_rows) break; | 
|  | } else { | 
|  | if (this_mi_col >= cm->mi_params.mi_cols) break; | 
|  | } | 
|  | encode_sb(cpi, td, tile_data, tp, this_mi_row, this_mi_col, dry_run, | 
|  | this_bsize, this_pc_tree, sub_tree[i], | 
|  | track_ptree_luma ? ptree_luma->sub_tree[i] : NULL, rate); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | case PARTITION_SPLIT: | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->split[0], sub_tree[0], rate); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs_w, dry_run, | 
|  | subsize, pc_tree->split[1], sub_tree[1], rate); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col, dry_run, | 
|  | subsize, pc_tree->split[2], sub_tree[2], rate); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run, | 
|  | subsize, pc_tree->split[3], sub_tree[3], rate); | 
|  | break; | 
|  | case PARTITION_HORZ_A: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->horizontala[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, bsize2, | 
|  | partition, pc_tree->horizontala[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontala[2], rate); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontalb[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->horizontalb[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run, | 
|  | bsize2, partition, pc_tree->horizontalb[2], rate); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->verticala[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->verticala[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, subsize, | 
|  | partition, pc_tree->verticala[2], rate); | 
|  |  | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->verticalb[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, bsize2, | 
|  | partition, pc_tree->verticalb[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run, | 
|  | bsize2, partition, pc_tree->verticalb[2], rate); | 
|  | break; | 
|  | case PARTITION_HORZ_4: | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | int this_mi_row = mi_row + i * qbs_h; | 
|  | if (i > 0 && this_mi_row >= mi_params->mi_rows) break; | 
|  |  | 
|  | encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontal4[i], rate); | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_4: | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | int this_mi_col = mi_col + i * qbs_w; | 
|  | if (i > 0 && this_mi_col >= mi_params->mi_cols) break; | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, | 
|  | partition, pc_tree->vertical4[i], rate); | 
|  | } | 
|  | break; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | default: assert(0 && "Invalid partition type."); break; | 
|  | } | 
|  |  | 
|  | if (ptree) ptree->is_settled = 1; | 
|  | update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | static void build_one_split_tree(AV1_COMMON *const cm, TREE_TYPE tree_type, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | BLOCK_SIZE final_bsize, | 
|  | PARTITION_TREE *ptree) { | 
|  | assert(block_size_high[bsize] == block_size_wide[bsize]); | 
|  | if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) | 
|  | return; | 
|  |  | 
|  | const int ss_x = cm->seq_params.subsampling_x; | 
|  | const int ss_y = cm->seq_params.subsampling_y; | 
|  |  | 
|  | PARTITION_TREE *parent = ptree->parent; | 
|  | set_chroma_ref_info(tree_type, mi_row, mi_col, ptree->index, bsize, | 
|  | &ptree->chroma_ref_info, | 
|  | parent ? &parent->chroma_ref_info : NULL, | 
|  | parent ? parent->bsize : BLOCK_INVALID, | 
|  | parent ? parent->partition : PARTITION_NONE, ss_x, ss_y); | 
|  |  | 
|  | if (bsize == BLOCK_4X4) { | 
|  | ptree->partition = PARTITION_NONE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const CHROMA_REF_INFO *chroma_ref_info = &ptree->chroma_ref_info; | 
|  |  | 
|  | // Handle boundary for first partition. | 
|  | PARTITION_TYPE implied_first_partition; | 
|  | const bool is_first_part_implied = is_partition_implied_at_boundary( | 
|  | &cm->mi_params, tree_type, ss_x, ss_y, mi_row, mi_col, bsize, | 
|  | chroma_ref_info, &implied_first_partition); | 
|  |  | 
|  | if (!is_first_part_implied && | 
|  | (block_size_wide[bsize] <= block_size_wide[final_bsize]) && | 
|  | (block_size_high[bsize] <= block_size_high[final_bsize])) { | 
|  | ptree->partition = PARTITION_NONE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // In general, we simulate SPLIT partition as HORZ followed by VERT partition. | 
|  | // But in case first partition is implied to be VERT, we are forced to use | 
|  | // VERT followed by HORZ. | 
|  | PARTITION_TYPE first_partition = PARTITION_INVALID; | 
|  | if (is_first_part_implied) { | 
|  | first_partition = implied_first_partition; | 
|  | } else if (check_is_chroma_size_valid(tree_type, PARTITION_HORZ, bsize, | 
|  | mi_row, mi_col, ss_x, ss_y, | 
|  | chroma_ref_info)) { | 
|  | first_partition = PARTITION_HORZ; | 
|  | } else if (check_is_chroma_size_valid(tree_type, PARTITION_VERT, bsize, | 
|  | mi_row, mi_col, ss_x, ss_y, | 
|  | chroma_ref_info)) { | 
|  | first_partition = PARTITION_VERT; | 
|  | } | 
|  | assert(first_partition != PARTITION_INVALID); | 
|  | const PARTITION_TYPE second_partition = | 
|  | (first_partition == PARTITION_HORZ) ? PARTITION_VERT : PARTITION_HORZ; | 
|  |  | 
|  | const int hbs_w = mi_size_wide[bsize] >> 1; | 
|  | const int hbs_h = mi_size_high[bsize] >> 1; | 
|  |  | 
|  | const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; | 
|  |  | 
|  | ptree->partition = first_partition; | 
|  | ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
|  | ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Boundary sanity checks for 2nd partitions. | 
|  | { | 
|  | PARTITION_TYPE implied_second_first_partition; | 
|  | const bool is_second_first_part_implied = is_partition_implied_at_boundary( | 
|  | &cm->mi_params, tree_type, ss_x, ss_y, mi_row, mi_col, | 
|  | subsize_lookup[first_partition][bsize], | 
|  | &ptree->sub_tree[0]->chroma_ref_info, &implied_second_first_partition); | 
|  | assert(IMPLIES(is_second_first_part_implied, | 
|  | implied_second_first_partition == second_partition)); | 
|  | } | 
|  |  | 
|  | { | 
|  | const int mi_row_second_second = | 
|  | (second_partition == PARTITION_HORZ) ? mi_row + hbs_h : mi_row; | 
|  | const int mi_col_second_second = | 
|  | (second_partition == PARTITION_VERT) ? mi_col + hbs_w : mi_col; | 
|  | PARTITION_TYPE implied_second_second_partition; | 
|  | const bool is_second_second_part_implied = is_partition_implied_at_boundary( | 
|  | &cm->mi_params, tree_type, ss_x, ss_y, mi_row_second_second, | 
|  | mi_col_second_second, subsize_lookup[first_partition][bsize], | 
|  | &ptree->sub_tree[0]->chroma_ref_info, &implied_second_second_partition); | 
|  | assert(IMPLIES(is_second_second_part_implied, | 
|  | implied_second_second_partition == second_partition)); | 
|  | } | 
|  | #endif  // NDEBUG | 
|  |  | 
|  | ptree->sub_tree[0]->partition = second_partition; | 
|  | ptree->sub_tree[0]->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
|  | ptree->sub_tree[0]->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
|  |  | 
|  | ptree->sub_tree[1]->partition = second_partition; | 
|  | ptree->sub_tree[1]->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
|  | ptree->sub_tree[1]->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
|  |  | 
|  | if (first_partition == PARTITION_HORZ) { | 
|  | assert(second_partition == PARTITION_VERT); | 
|  | build_one_split_tree(cm, tree_type, mi_row, mi_col, subsize, final_bsize, | 
|  | ptree->sub_tree[0]->sub_tree[0]); | 
|  | build_one_split_tree(cm, tree_type, mi_row, mi_col + hbs_w, subsize, | 
|  | final_bsize, ptree->sub_tree[0]->sub_tree[1]); | 
|  | build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col, subsize, | 
|  | final_bsize, ptree->sub_tree[1]->sub_tree[0]); | 
|  | build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col + hbs_w, subsize, | 
|  | final_bsize, ptree->sub_tree[1]->sub_tree[1]); | 
|  | } else { | 
|  | assert(first_partition == PARTITION_VERT); | 
|  | assert(second_partition == PARTITION_HORZ); | 
|  | build_one_split_tree(cm, tree_type, mi_row, mi_col, subsize, final_bsize, | 
|  | ptree->sub_tree[0]->sub_tree[0]); | 
|  | build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col, subsize, | 
|  | final_bsize, ptree->sub_tree[0]->sub_tree[1]); | 
|  | build_one_split_tree(cm, tree_type, mi_row, mi_col + hbs_w, subsize, | 
|  | final_bsize, ptree->sub_tree[1]->sub_tree[0]); | 
|  | build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col + hbs_w, subsize, | 
|  | final_bsize, ptree->sub_tree[1]->sub_tree[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_build_partition_tree_fixed_partitioning(AV1_COMMON *const cm, | 
|  | TREE_TYPE tree_type, | 
|  | int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize, | 
|  | PARTITION_TREE *ptree) { | 
|  | const BLOCK_SIZE sb_size = cm->seq_params.sb_size; | 
|  |  | 
|  | build_one_split_tree(cm, tree_type, mi_row, mi_col, sb_size, bsize, ptree); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | static PARTITION_TYPE get_preset_partition(const AV1_COMMON *cm, | 
|  | TREE_TYPE tree_type, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, | 
|  | PARTITION_TREE *ptree) { | 
|  | if (ptree) { | 
|  | #ifndef NDEBUG | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const bool ssx = cm->cur_frame->buf.subsampling_x; | 
|  | const bool ssy = cm->cur_frame->buf.subsampling_y; | 
|  | PARTITION_TYPE implied_partition; | 
|  | const bool is_part_implied = is_partition_implied_at_boundary( | 
|  | &cm->mi_params, tree_type, ssx, ssy, mi_row, mi_col, bsize, | 
|  | &ptree->chroma_ref_info, &implied_partition); | 
|  | assert(IMPLIES(is_part_implied, ptree->partition == implied_partition)); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #endif  // NDEBUG | 
|  | return ptree->partition; | 
|  | } | 
|  | if (bsize >= BLOCK_8X8) { | 
|  | const int plane_type = (tree_type == CHROMA_PART); | 
|  | return get_partition(cm, plane_type, mi_row, mi_col, bsize); | 
|  | } | 
|  | return PARTITION_NONE; | 
|  | } | 
|  |  | 
|  | /*!\brief AV1 block partition search (partition estimation and partial search). | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Encode the block by applying pre-calculated partition patterns that are | 
|  | * represented by coding block sizes stored in the mbmi array. Minor partition | 
|  | * adjustments are tested and applied if they lead to lower rd costs. The | 
|  | * partition types are limited to a basic set: none, horz, vert, and split. | 
|  | * | 
|  | * \param[in]    cpi       Top-level encoder structure | 
|  | * \param[in]    td        Pointer to thread data | 
|  | * \param[in]    tile_data Pointer to struct holding adaptive | 
|  | data/contexts/models for the tile during encoding | 
|  | * \param[in]    mib       Array representing MB_MODE_INFO pointers for mi | 
|  | blocks starting from the first pixel of the current | 
|  | block | 
|  | * \param[in]    tp        Pointer to the starting token | 
|  | * \param[in]    mi_row    Row coordinate of the block in a step size of | 
|  | MI_SIZE | 
|  | * \param[in]    mi_col    Column coordinate of the block in a step size of | 
|  | MI_SIZE | 
|  | * \param[in]    bsize     Current block size | 
|  | * \param[in]    rate      Pointer to the final rate for encoding the current | 
|  | block | 
|  | * \param[in]    dist      Pointer to the final distortion of the current block | 
|  | * \param[in]    do_recon  Whether the reconstruction function needs to be run, | 
|  | either for finalizing a superblock or providing | 
|  | reference for future sub-partitions | 
|  | * \param[in]    ptree     Pointer to the PARTITION_TREE node holding the | 
|  | pre-calculated partition tree (if any) for the current block | 
|  | * \param[in]    pc_tree   Pointer to the PC_TREE node holding the picked | 
|  | partitions and mode info for the current block | 
|  | * | 
|  | * Nothing is returned. The pc_tree struct is modified to store the | 
|  | * picked partition and modes. The rate and dist are also updated with those | 
|  | * corresponding to the best partition found. | 
|  | */ | 
|  | void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | MB_MODE_INFO **mib, TokenExtra **tp, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, int *rate, | 
|  | int64_t *dist, int do_recon, PARTITION_TREE *ptree, | 
|  | PC_TREE *pc_tree) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int bs = mi_size_wide[bsize]; | 
|  | const int hbs = bs / 2; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int hbh = mi_size_high[bsize] / 2; | 
|  | const int hbw = mi_size_wide[bsize] / 2; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int pl = (bsize >= BLOCK_8X8) | 
|  | ? partition_plane_context(xd, mi_row, mi_col, bsize) | 
|  | : 0; | 
|  | const int plane_type = (xd->tree_type == CHROMA_PART); | 
|  | const int plane_start = get_partition_plane_start(xd->tree_type); | 
|  | const int plane_end = get_partition_plane_end(xd->tree_type, num_planes); | 
|  | const PARTITION_TYPE partition = | 
|  | get_preset_partition(cm, plane_type, mi_row, mi_col, bsize, ptree); | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | RD_STATS last_part_rdc, invalid_rdc; | 
|  |  | 
|  | if (pc_tree->none == NULL) { | 
|  | pc_tree->none = | 
|  | av1_alloc_pmc(cm, xd->tree_type, mi_row, mi_col, bsize, pc_tree, | 
|  | PARTITION_NONE, 0, ss_x, ss_y, &td->shared_coeff_buf); | 
|  | } | 
|  | PICK_MODE_CONTEXT *ctx_none = pc_tree->none; | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | av1_invalid_rd_stats(&invalid_rdc); | 
|  |  | 
|  | pc_tree->partitioning = partition; | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize, | 
|  | &pc_tree->chroma_ref_info); | 
|  | x->mb_energy = av1_log_block_var(cpi, x, bsize); | 
|  | } | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | const BLOCK_SIZE split_subsize = | 
|  | get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | pc_tree->split[i] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, mi_row + y_idx, mi_col + x_idx, split_subsize, pc_tree, | 
|  | PARTITION_SPLIT, i, i == 3, ss_x, ss_y); | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, | 
|  | PARTITION_NONE, bsize, ctx_none, invalid_rdc); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree->horizontal[0] = | 
|  | av1_alloc_pc_tree_node(xd->tree_type, mi_row, mi_col, subsize, | 
|  | pc_tree, PARTITION_HORZ, 0, 0, ss_x, ss_y); | 
|  | pc_tree->horizontal[1] = | 
|  | av1_alloc_pc_tree_node(xd->tree_type, mi_row + hbh, mi_col, subsize, | 
|  | pc_tree, PARTITION_HORZ, 1, 1, ss_x, ss_y); | 
|  | av1_rd_use_partition(cpi, td, tile_data, mib, tp, mi_row, mi_col, subsize, | 
|  | &last_part_rdc.rate, &last_part_rdc.dist, 1, | 
|  | ptree ? ptree->sub_tree[0] : NULL, | 
|  | pc_tree->horizontal[0]); | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (pc_tree->horizontal[i] == NULL) { | 
|  | pc_tree->horizontal[i] = av1_alloc_pmc( | 
|  | cm, xd->tree_type, mi_row + hbs * i, mi_col, subsize, pc_tree, | 
|  | PARTITION_HORZ, i, ss_x, ss_y, &td->shared_coeff_buf); | 
|  | } | 
|  | } | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, | 
|  | PARTITION_HORZ, subsize, pc_tree->horizontal[0], | 
|  | invalid_rdc); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && | 
|  | mi_row + hbs < mi_params->mi_rows) { | 
|  | RD_STATS tmp_rdc; | 
|  | av1_init_rd_stats(&tmp_rdc); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | av1_rd_use_partition( | 
|  | cpi, td, tile_data, mib + hbh * mi_params->mi_stride, tp, | 
|  | mi_row + hbh, mi_col, subsize, &tmp_rdc.rate, &tmp_rdc.dist, 0, | 
|  | ptree ? ptree->sub_tree[1] : NULL, pc_tree->horizontal[1]); | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0]; | 
|  | av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, | 
|  | plane_start, plane_end, NULL); | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, | 
|  | PARTITION_HORZ, subsize, pc_tree->horizontal[1], | 
|  | invalid_rdc); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  | last_part_rdc.rate += tmp_rdc.rate; | 
|  | last_part_rdc.dist += tmp_rdc.dist; | 
|  | last_part_rdc.rdcost += tmp_rdc.rdcost; | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree->vertical[0] = | 
|  | av1_alloc_pc_tree_node(xd->tree_type, mi_row, mi_col, subsize, | 
|  | pc_tree, PARTITION_VERT, 0, 0, ss_x, ss_y); | 
|  | pc_tree->vertical[1] = | 
|  | av1_alloc_pc_tree_node(xd->tree_type, mi_row, mi_col + hbw, subsize, | 
|  | pc_tree, PARTITION_VERT, 1, 1, ss_x, ss_y); | 
|  | av1_rd_use_partition(cpi, td, tile_data, mib, tp, mi_row, mi_col, subsize, | 
|  | &last_part_rdc.rate, &last_part_rdc.dist, 1, | 
|  | ptree ? ptree->sub_tree[0] : NULL, | 
|  | pc_tree->vertical[0]); | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (pc_tree->vertical[i] == NULL) { | 
|  | pc_tree->vertical[i] = av1_alloc_pmc( | 
|  | cm, xd->tree_type, mi_row, mi_col + hbs * i, subsize, pc_tree, | 
|  | PARTITION_VERT, i, ss_x, ss_y, &td->shared_coeff_buf); | 
|  | } | 
|  | } | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, | 
|  | PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && | 
|  | mi_col + hbs < mi_params->mi_cols) { | 
|  | RD_STATS tmp_rdc; | 
|  | av1_init_rd_stats(&tmp_rdc); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | av1_rd_use_partition( | 
|  | cpi, td, tile_data, mib + hbw, tp, mi_row, mi_col + hbw, subsize, | 
|  | &tmp_rdc.rate, &tmp_rdc.dist, 0, ptree ? ptree->sub_tree[1] : NULL, | 
|  | pc_tree->vertical[1]); | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0]; | 
|  | av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, | 
|  | plane_start, plane_end, NULL); | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, | 
|  | PARTITION_VERT, subsize, | 
|  | pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  | last_part_rdc.rate += tmp_rdc.rate; | 
|  | last_part_rdc.dist += tmp_rdc.dist; | 
|  | last_part_rdc.rdcost += tmp_rdc.rdcost; | 
|  | } | 
|  | break; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | case PARTITION_HORZ_4A: | 
|  | case PARTITION_HORZ_4B: | 
|  | case PARTITION_VERT_4A: | 
|  | case PARTITION_VERT_4B: | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | case PARTITION_HORZ_3: | 
|  | case PARTITION_VERT_3: | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | case PARTITION_SPLIT: | 
|  | last_part_rdc.rate = 0; | 
|  | last_part_rdc.dist = 0; | 
|  | last_part_rdc.rdcost = 0; | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | int jj = i >> 1, ii = i & 0x01; | 
|  | RD_STATS tmp_rdc; | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) | 
|  | continue; | 
|  |  | 
|  | av1_init_rd_stats(&tmp_rdc); | 
|  | av1_rd_use_partition(cpi, td, tile_data, | 
|  | mib + jj * hbs * mi_params->mi_stride + ii * hbs, | 
|  | tp, mi_row + y_idx, mi_col + x_idx, subsize, | 
|  | &tmp_rdc.rate, &tmp_rdc.dist, | 
|  | i != (SUB_PARTITIONS_SPLIT - 1), NULL, | 
|  | pc_tree->split[i]); | 
|  | if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  | last_part_rdc.rate += tmp_rdc.rate; | 
|  | last_part_rdc.dist += tmp_rdc.dist; | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | case PARTITION_VERT_B: | 
|  | case PARTITION_HORZ_A: | 
|  | case PARTITION_HORZ_B: | 
|  | case PARTITION_HORZ_4: | 
|  | case PARTITION_VERT_4: | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(0 && "Cannot handle extended partition types"); | 
|  | default: assert(0); break; | 
|  | } | 
|  |  | 
|  | if (last_part_rdc.rate < INT_MAX) { | 
|  | last_part_rdc.rate += | 
|  | mode_costs->partition_cost[xd->tree_type == CHROMA_PART][pl][partition]; | 
|  | last_part_rdc.rdcost = | 
|  | RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); | 
|  | } | 
|  |  | 
|  | // If last_part is better set the partitioning to that. | 
|  | mib[0]->sb_type[plane_type] = bsize; | 
|  | if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; | 
|  |  | 
|  | av1_restore_context(cm, x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | // We must have chosen a partitioning and encoding or we'll fail later on. | 
|  | // No other opportunities for success. | 
|  | if (bsize == cm->seq_params.sb_size) | 
|  | assert(last_part_rdc.rate < INT_MAX && last_part_rdc.dist < INT64_MAX); | 
|  |  | 
|  | if (do_recon) { | 
|  | if (bsize == cm->seq_params.sb_size) { | 
|  | // NOTE: To get estimate for rate due to the tokens, use: | 
|  | // int rate_coeffs = 0; | 
|  | // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, | 
|  | //           bsize, pc_tree, &rate_coeffs); | 
|  | for (int plane = plane_start; plane < plane_end; plane++) { | 
|  | x->cb_offset[plane] = 0; | 
|  | } | 
|  | av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, | 
|  | pc_tree, xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL); | 
|  | } else { | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, | 
|  | pc_tree, NULL, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | *rate = last_part_rdc.rate; | 
|  | *dist = last_part_rdc.dist; | 
|  | x->rdmult = orig_rdmult; | 
|  | } | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | /*! \brief Contains level banks used for rdopt.*/ | 
|  | typedef struct LevelBanksRDO { | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | //! The current level bank, used to restore the level bank in MACROBLOCKD. | 
|  | REF_MV_BANK curr_level_bank; | 
|  | //! The best level bank from the rdopt process. | 
|  | REF_MV_BANK best_level_bank; | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  | #if WARP_CU_BANK | 
|  | //! The current warp, level bank, used to restore the warp level bank in | 
|  | //! MACROBLOCKD. | 
|  | WARP_PARAM_BANK curr_level_warp_bank; | 
|  | //! The best warp level bank from the rdopt process. | 
|  | WARP_PARAM_BANK best_level_warp_bank; | 
|  | #endif  // WARP_CU_BANK | 
|  | } LevelBanksRDO; | 
|  |  | 
|  | static AOM_INLINE void update_best_level_banks(LevelBanksRDO *level_banks, | 
|  | const MACROBLOCKD *xd) { | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | level_banks->best_level_bank = xd->ref_mv_bank; | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  | #if WARP_CU_BANK | 
|  | level_banks->best_level_warp_bank = xd->warp_param_bank; | 
|  | #endif  // WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void restore_level_banks(MACROBLOCKD *xd, | 
|  | const LevelBanksRDO *level_banks) { | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | xd->ref_mv_bank = level_banks->curr_level_bank; | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  | #if WARP_CU_BANK | 
|  | xd->warp_param_bank = level_banks->curr_level_warp_bank; | 
|  | #endif  // WARP_CU_BANK | 
|  | } | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Try searching for an encoding for the given subblock. Returns zero if the | 
|  | // rdcost is already too high (to tell the caller not to bother searching for | 
|  | // encodings of further subblocks). | 
|  | static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int is_last, | 
|  | int mi_row, int mi_col, BLOCK_SIZE subsize, | 
|  | RD_STATS best_rdcost, RD_STATS *sum_rdc, | 
|  | PARTITION_TYPE partition, | 
|  | PICK_MODE_CONTEXT *this_ctx) { | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int orig_mult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL); | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &best_rdcost); | 
|  |  | 
|  | RD_STATS rdcost_remaining; | 
|  | av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining); | 
|  | RD_STATS this_rdc; | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition, | 
|  | subsize, this_ctx, rdcost_remaining); | 
|  |  | 
|  | if (this_rdc.rate == INT_MAX) { | 
|  | sum_rdc->rdcost = INT64_MAX; | 
|  | } else { | 
|  | sum_rdc->rate += this_rdc.rate; | 
|  | sum_rdc->dist += this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, sum_rdc); | 
|  | } | 
|  |  | 
|  | if (sum_rdc->rdcost >= best_rdcost.rdcost) { | 
|  | x->rdmult = orig_mult; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int plane_start = get_partition_plane_start(xd->tree_type); | 
|  | const int plane_end = | 
|  | get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); | 
|  |  | 
|  | if (!is_last) { | 
|  | av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, | 
|  | plane_start, plane_end, NULL); | 
|  | } | 
|  |  | 
|  | x->rdmult = orig_mult; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Tests an AB partition, and updates the encoder status, the pick mode | 
|  | // contexts, the best rdcost, and the best partition. | 
|  | static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | PC_TREE *pc_tree, RD_STATS *best_rdc, | 
|  | PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB], | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition, | 
|  | const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], | 
|  | const int ab_mi_pos[SUB_PARTITIONS_AB][2] | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | LevelBanksRDO *level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ) { | 
|  | const MACROBLOCK *const x = &td->mb; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | sum_rdc.rate = | 
|  | x->mode_costs.partition_cost[xd->tree_type == CHROMA_PART][pl][partition]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  | // Loop over sub-partitions in AB partition type. | 
|  | for (int i = 0; i < SUB_PARTITIONS_AB; i++) { | 
|  | assert(ab_subsize[i] != BLOCK_INVALID); | 
|  | if (!rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1, | 
|  | ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i], | 
|  | *best_rdc, &sum_rdc, partition, ctxs[i])) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | if (sum_rdc.rdcost >= best_rdc->rdcost) return false; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); | 
|  | if (sum_rdc.rdcost >= best_rdc->rdcost) return false; | 
|  |  | 
|  | *best_rdc = sum_rdc; | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | pc_tree->partitioning = partition; | 
|  | return true; | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | static AOM_INLINE PARTITION_TYPE get_forced_partition_type( | 
|  | const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, | 
|  | const CHROMA_REF_INFO *chroma_ref_info) { | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = cm->seq_params.subsampling_x; | 
|  | const int ss_y = cm->seq_params.subsampling_y; | 
|  |  | 
|  | // Partition types forced by bitstream syntax. | 
|  | if (is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize)) { | 
|  | return sdp_chroma_part_from_luma(bsize, ptree_luma->partition, ss_x, ss_y); | 
|  | } | 
|  |  | 
|  | PARTITION_TYPE implied_partition; | 
|  | const bool is_part_implied = is_partition_implied_at_boundary( | 
|  | &cm->mi_params, xd->tree_type, ss_x, ss_y, mi_row, mi_col, bsize, | 
|  | chroma_ref_info, &implied_partition); | 
|  | if (is_part_implied) return implied_partition; | 
|  |  | 
|  | // Partition types forced by speed_features. | 
|  | if (template_tree) { | 
|  | return template_tree->partition; | 
|  | } | 
|  |  | 
|  | if (should_reuse_mode(x, REUSE_PARTITION_MODE_FLAG)) { | 
|  | return av1_get_prev_partition(x, mi_row, mi_col, bsize, | 
|  | cm->seq_params.sb_size); | 
|  | } | 
|  | return PARTITION_INVALID; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void init_allowed_partitions( | 
|  | PartitionSearchState *part_search_state, const PartitionCfg *part_cfg, | 
|  | const CHROMA_REF_INFO *chroma_ref_info, TREE_TYPE tree_type) { | 
|  | const PartitionBlkParams *blk_params = &part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row; | 
|  | const int mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  | const bool has_rows = blk_params->has_rows; | 
|  | const bool has_cols = blk_params->has_cols; | 
|  | const bool ss_x = part_search_state->ss_x; | 
|  | const bool ss_y = part_search_state->ss_y; | 
|  |  | 
|  | part_search_state->do_rectangular_split = part_cfg->enable_rect_partitions; | 
|  |  | 
|  | const BLOCK_SIZE horz_subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE vert_subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const int is_horz_size_valid = | 
|  | is_partition_valid(bsize, PARTITION_HORZ) && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_HORZ, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info); | 
|  |  | 
|  | const int is_vert_size_valid = | 
|  | is_partition_valid(bsize, PARTITION_VERT) && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_VERT, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info); | 
|  |  | 
|  | // Initialize allowed partition types for the partition block. | 
|  | part_search_state->is_block_splittable = is_partition_point(bsize); | 
|  | part_search_state->partition_none_allowed = | 
|  | (tree_type == CHROMA_PART && bsize == BLOCK_8X8) || | 
|  | (has_rows && has_cols && | 
|  | is_bsize_geq(blk_params->bsize, blk_params->min_partition_size)); | 
|  | part_search_state->partition_rect_allowed[HORZ] = | 
|  | part_cfg->enable_rect_partitions && | 
|  | is_bsize_geq(horz_subsize, blk_params->min_partition_size) && | 
|  | is_horz_size_valid; | 
|  | part_search_state->partition_rect_allowed[VERT] = | 
|  | part_cfg->enable_rect_partitions && | 
|  | is_bsize_geq(vert_subsize, blk_params->min_partition_size) && | 
|  | is_vert_size_valid; | 
|  |  | 
|  | const int ext_partition_allowed = part_search_state->ext_partition_allowed = | 
|  | part_cfg->enable_ext_partitions && | 
|  | is_ext_partition_allowed_at_bsize(bsize, tree_type); | 
|  |  | 
|  | part_search_state->partition_3_allowed[HORZ] = | 
|  | ext_partition_allowed && | 
|  | get_partition_subsize(bsize, PARTITION_HORZ_3) != BLOCK_INVALID && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_HORZ_3, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info) && | 
|  | is_bsize_geq(get_partition_subsize(bsize, PARTITION_HORZ_3), | 
|  | blk_params->min_partition_size); | 
|  |  | 
|  | part_search_state->partition_3_allowed[VERT] = | 
|  | ext_partition_allowed && | 
|  | get_partition_subsize(bsize, PARTITION_VERT_3) != BLOCK_INVALID && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_VERT_3, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info) && | 
|  | is_bsize_geq(get_partition_subsize(bsize, PARTITION_VERT_3), | 
|  | blk_params->min_partition_size); | 
|  |  | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | part_search_state->partition_4a_allowed[HORZ] = | 
|  | ext_partition_allowed && | 
|  | get_partition_subsize(bsize, PARTITION_HORZ_4A) != BLOCK_INVALID && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_HORZ_4A, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info) && | 
|  | is_bsize_geq(get_partition_subsize(bsize, PARTITION_HORZ_4A), | 
|  | blk_params->min_partition_size) && | 
|  | IMPLIES(have_nz_chroma_ref_offset(bsize, PARTITION_HORZ_4A, ss_x, ss_y), | 
|  | blk_params->has_7_8th_rows); | 
|  |  | 
|  | part_search_state->partition_4b_allowed[HORZ] = | 
|  | ext_partition_allowed && | 
|  | get_partition_subsize(bsize, PARTITION_HORZ_4B) != BLOCK_INVALID && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_HORZ_4B, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info) && | 
|  | is_bsize_geq(get_partition_subsize(bsize, PARTITION_HORZ_4B), | 
|  | blk_params->min_partition_size) && | 
|  | IMPLIES(have_nz_chroma_ref_offset(bsize, PARTITION_HORZ_4B, ss_x, ss_y), | 
|  | blk_params->has_7_8th_rows); | 
|  |  | 
|  | part_search_state->partition_4a_allowed[VERT] = | 
|  | ext_partition_allowed && | 
|  | get_partition_subsize(bsize, PARTITION_VERT_4A) != BLOCK_INVALID && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_VERT_4A, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info) && | 
|  | is_bsize_geq(get_partition_subsize(bsize, PARTITION_VERT_4A), | 
|  | blk_params->min_partition_size) && | 
|  | IMPLIES(have_nz_chroma_ref_offset(bsize, PARTITION_VERT_4A, ss_x, ss_y), | 
|  | blk_params->has_7_8th_cols); | 
|  |  | 
|  | part_search_state->partition_4b_allowed[VERT] = | 
|  | ext_partition_allowed && | 
|  | get_partition_subsize(bsize, PARTITION_VERT_4B) != BLOCK_INVALID && | 
|  | check_is_chroma_size_valid(tree_type, PARTITION_VERT_4B, bsize, mi_row, | 
|  | mi_col, ss_x, ss_y, chroma_ref_info) && | 
|  | is_bsize_geq(get_partition_subsize(bsize, PARTITION_VERT_4B), | 
|  | blk_params->min_partition_size) && | 
|  | IMPLIES(have_nz_chroma_ref_offset(bsize, PARTITION_VERT_4B, ss_x, ss_y), | 
|  | blk_params->has_7_8th_cols); | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  |  | 
|  | // Reset the flag indicating whether a partition leading to a rdcost lower | 
|  | // than the bound best_rdc has been found. | 
|  | part_search_state->found_best_partition = false; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Initialize state variables of partition search used in | 
|  | // av1_rd_pick_partition(). | 
|  | static void init_partition_search_state_params( | 
|  | MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, int max_recursion_depth, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams *blk_params = &part_search_state->part_blk_params; | 
|  | const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; | 
|  |  | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | // Initialization of block size related parameters. | 
|  | blk_params->mi_step = mi_size_wide[bsize] / 2; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->mi_step_h = mi_size_high[bsize] / 2; | 
|  | blk_params->mi_step_w = mi_size_wide[bsize] / 2; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->mi_row = mi_row; | 
|  | blk_params->mi_col = mi_col; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->mi_row_edge = mi_row + blk_params->mi_step_h; | 
|  | blk_params->mi_col_edge = mi_col + blk_params->mi_step_w; | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->mi_row_edge = mi_row + blk_params->mi_step; | 
|  | blk_params->mi_col_edge = mi_col + blk_params->mi_step; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->width = block_size_wide[bsize]; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->min_partition_size = x->sb_enc.min_partition_size; | 
|  | #else | 
|  | blk_params->min_partition_size_1d = | 
|  | block_size_wide[x->sb_enc.min_partition_size]; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | blk_params->split_bsize2 = blk_params->subsize; | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | blk_params->bsize = bsize; | 
|  |  | 
|  | // Check if the partition corresponds to edge block. | 
|  | blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows); | 
|  | blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols); | 
|  |  | 
|  | const int ebw = mi_size_wide[bsize] / 8; | 
|  | const int ebh = mi_size_high[bsize] / 8; | 
|  | blk_params->has_7_8th_rows = (mi_row + 7 * ebh < mi_params->mi_rows); | 
|  | blk_params->has_7_8th_cols = (mi_col + 7 * ebw < mi_params->mi_cols); | 
|  |  | 
|  | // Update intra partitioning related info. | 
|  | part_search_state->intra_part_info = &x->part_search_info; | 
|  | // Prepare for segmentation CNN-based partitioning for intra-frame. | 
|  | if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { | 
|  | part_search_state->intra_part_info->quad_tree_idx = 0; | 
|  | part_search_state->intra_part_info->cnn_output_valid = 0; | 
|  | } | 
|  |  | 
|  | // Set partition plane context index. | 
|  | part_search_state->pl_ctx_idx = | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_partition_point(bsize) | 
|  | #else | 
|  | blk_params->bsize_at_least_8x8 | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | ? partition_plane_context(xd, mi_row, mi_col, bsize) | 
|  | : 0; | 
|  |  | 
|  | // Partition cost buffer update | 
|  | ModeCosts *mode_costs = &x->mode_costs; | 
|  | part_search_state->partition_cost = | 
|  | mode_costs->partition_cost[xd->tree_type == CHROMA_PART] | 
|  | [part_search_state->pl_ctx_idx]; | 
|  |  | 
|  | // Initialize HORZ and VERT win flags as true for all split partitions. | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true; | 
|  | part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true; | 
|  | } | 
|  |  | 
|  | // Initialize the rd cost. | 
|  | av1_init_rd_stats(&part_search_state->this_rdc); | 
|  |  | 
|  | // Initialize RD costs for partition types to 0. | 
|  | part_search_state->none_rd = 0; | 
|  | av1_zero(part_search_state->split_rd); | 
|  | av1_zero(part_search_state->rect_part_rd); | 
|  |  | 
|  | // Initialize SPLIT partition to be not ready. | 
|  | av1_zero(part_search_state->is_split_ctx_is_ready); | 
|  | // Initialize HORZ and VERT partitions to be not ready. | 
|  | av1_zero(part_search_state->is_rect_ctx_is_ready); | 
|  |  | 
|  | // Chroma subsampling. | 
|  | part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x; | 
|  | part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y; | 
|  |  | 
|  | // Initialize partition search flags to defaults. | 
|  | part_search_state->terminate_partition_search = 0; | 
|  |  | 
|  | av1_zero(part_search_state->prune_rect_part); | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | part_search_state->partition_boundaries = NULL; | 
|  | part_search_state->prune_partition_none = false; | 
|  | av1_zero(part_search_state->prune_partition_3); | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | av1_zero(part_search_state->prune_partition_4a); | 
|  | av1_zero(part_search_state->prune_partition_4b); | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  |  | 
|  | part_search_state->forced_partition = | 
|  | get_forced_partition_type(cm, x, mi_row, mi_col, bsize, ptree_luma, | 
|  | template_tree, &pc_tree->chroma_ref_info); | 
|  |  | 
|  | init_allowed_partitions(part_search_state, &cpi->oxcf.part_cfg, | 
|  | &pc_tree->chroma_ref_info, xd->tree_type); | 
|  |  | 
|  | if (max_recursion_depth == 0) { | 
|  | part_search_state->prune_rect_part[HORZ] = | 
|  | part_search_state->prune_rect_part[VERT] = true; | 
|  | part_search_state->prune_partition_3[HORZ] = | 
|  | part_search_state->prune_partition_3[VERT] = true; | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | part_search_state->prune_partition_4a[HORZ] = | 
|  | part_search_state->prune_partition_4a[VERT] = true; | 
|  | part_search_state->prune_partition_4b[HORZ] = | 
|  | part_search_state->prune_partition_4b[VERT] = true; | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | } | 
|  | #else | 
|  | part_search_state->do_square_split = | 
|  | blk_params->bsize_at_least_8x8 && | 
|  | (xd->tree_type != CHROMA_PART || bsize > BLOCK_8X8); | 
|  | part_search_state->do_rectangular_split = | 
|  | cpi->oxcf.part_cfg.enable_rect_partitions && | 
|  | (xd->tree_type != CHROMA_PART || bsize > BLOCK_8X8); | 
|  |  | 
|  | const BLOCK_SIZE horz_subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE vert_subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const int is_horz_size_valid = | 
|  | horz_subsize != BLOCK_INVALID && | 
|  | get_plane_block_size(horz_subsize, part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  | const int is_vert_size_valid = | 
|  | vert_subsize != BLOCK_INVALID && | 
|  | get_plane_block_size(vert_subsize, part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  | const bool no_sub_16_chroma_part = | 
|  | xd->tree_type != CHROMA_PART || | 
|  | (block_size_wide[bsize] > 8 && block_size_high[bsize] > 8); | 
|  |  | 
|  | // Initialize allowed partition types for the partition block. | 
|  | part_search_state->is_block_splittable = is_partition_point(bsize); | 
|  | part_search_state->partition_none_allowed = | 
|  | blk_params->has_rows && blk_params->has_cols; | 
|  | part_search_state->partition_rect_allowed[HORZ] = | 
|  | blk_params->has_cols && blk_params->bsize_at_least_8x8 && | 
|  | no_sub_16_chroma_part && cpi->oxcf.part_cfg.enable_rect_partitions && | 
|  | is_horz_size_valid; | 
|  | part_search_state->partition_rect_allowed[VERT] = | 
|  | blk_params->has_rows && blk_params->bsize_at_least_8x8 && | 
|  | no_sub_16_chroma_part && cpi->oxcf.part_cfg.enable_rect_partitions && | 
|  | is_vert_size_valid; | 
|  |  | 
|  | // Reset the flag indicating whether a partition leading to a rdcost lower | 
|  | // than the bound best_rdc has been found. | 
|  | part_search_state->found_best_partition = false; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | } | 
|  |  | 
|  | // Override partition cost buffer for the edge blocks. | 
|  | static void set_partition_cost_for_edge_blk( | 
|  | AV1_COMMON const *cm, MACROBLOCKD *const xd, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const CHROMA_REF_INFO *chroma_ref_info, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | PartitionSearchState *part_search_state) { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const PartitionBlkParams *blk_params = &part_search_state->part_blk_params; | 
|  | const bool is_part_implied = is_partition_implied_at_boundary( | 
|  | &cm->mi_params, xd->tree_type, part_search_state->ss_x, | 
|  | part_search_state->ss_y, blk_params->mi_row, blk_params->mi_col, | 
|  | blk_params->bsize, chroma_ref_info, NULL); | 
|  | if (is_part_implied) { | 
|  | for (int i = 0; i < PARTITION_TYPES; ++i) { | 
|  | part_search_state->tmp_partition_cost[i] = 0; | 
|  | } | 
|  | part_search_state->partition_cost = part_search_state->tmp_partition_cost; | 
|  | } | 
|  | (void)xd; | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0); | 
|  | const int plane = xd->tree_type == CHROMA_PART; | 
|  | const aom_cdf_prob *partition_cdf = | 
|  | cm->fc->partition_cdf[plane][part_search_state->pl_ctx_idx]; | 
|  | const int max_cost = av1_cost_symbol(0); | 
|  | for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i) | 
|  | part_search_state->tmp_partition_cost[i] = max_cost; | 
|  | if (blk_params.has_cols) { | 
|  | // At the bottom, the two possibilities are HORZ and SPLIT. | 
|  | aom_cdf_prob bot_cdf[2]; | 
|  | partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize); | 
|  | static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; | 
|  | av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf, | 
|  | bot_inv_map); | 
|  | } else if (blk_params.has_rows) { | 
|  | // At the right, the two possibilities are VERT and SPLIT. | 
|  | aom_cdf_prob rhs_cdf[2]; | 
|  | partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize); | 
|  | static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; | 
|  | av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf, | 
|  | rhs_inv_map); | 
|  | } else { | 
|  | // At the bottom right, we always split. | 
|  | part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0; | 
|  | } | 
|  | // Override the partition cost buffer. | 
|  | part_search_state->partition_cost = part_search_state->tmp_partition_cost; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | } | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Reset the partition search state flags when | 
|  | // must_find_valid_partition is equal to 1. | 
|  | static AOM_INLINE void reset_part_limitations( | 
|  | AV1_COMP *const cpi, PartitionSearchState *part_search_state) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | part_search_state->do_square_split = | 
|  | blk_params.bsize_at_least_8x8 && | 
|  | (blk_params.width > blk_params.min_partition_size_1d); | 
|  | part_search_state->partition_none_allowed = | 
|  | blk_params.has_rows && blk_params.has_cols && | 
|  | (blk_params.width >= blk_params.min_partition_size_1d); | 
|  |  | 
|  | // Initialize allowed partition types for the partition block. | 
|  | part_search_state->partition_rect_allowed[HORZ] = | 
|  | blk_params.has_cols && | 
|  | is_partition_valid(blk_params.bsize, PARTITION_HORZ) && | 
|  | get_plane_block_size( | 
|  | get_partition_subsize(blk_params.bsize, PARTITION_HORZ), | 
|  | part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID && | 
|  | (blk_params.width > blk_params.min_partition_size_1d) && | 
|  | cpi->oxcf.part_cfg.enable_rect_partitions; | 
|  | part_search_state->partition_rect_allowed[VERT] = | 
|  | blk_params.has_rows && | 
|  | is_partition_valid(blk_params.bsize, PARTITION_VERT) && | 
|  | get_plane_block_size( | 
|  | get_partition_subsize(blk_params.bsize, PARTITION_VERT), | 
|  | part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID && | 
|  | (blk_params.width > blk_params.min_partition_size_1d) && | 
|  | cpi->oxcf.part_cfg.enable_rect_partitions; | 
|  | part_search_state->terminate_partition_search = 0; | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | static const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ, | 
|  | PARTITION_VERT }; | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Rectangular partitions evaluation at sub-block level. | 
|  | static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | MACROBLOCK *x, | 
|  | PICK_MODE_CONTEXT *cur_partition_ctx, | 
|  | PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_rdc, const int idx, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition_type) { | 
|  | // Obtain the remainder from the best rd cost | 
|  | // for further processing of partition. | 
|  | RD_STATS best_remain_rdcost; | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc, | 
|  | &best_remain_rdcost); | 
|  |  | 
|  | // Obtain the best mode for the partition sub-block. | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc, | 
|  | partition_type, bsize, cur_partition_ctx, best_remain_rdcost); | 
|  | av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc); | 
|  |  | 
|  | // Update the partition rd cost with the current sub-block rd. | 
|  | if (part_search_state->this_rdc.rate == INT_MAX) { | 
|  | part_search_state->sum_rdc.rdcost = INT64_MAX; | 
|  | } else { | 
|  | part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate; | 
|  | part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); | 
|  | } | 
|  | const RECT_PART_TYPE rect_part = | 
|  | partition_type == PARTITION_HORZ ? HORZ : VERT; | 
|  | part_search_state->rect_part_rd[rect_part][idx] = | 
|  | part_search_state->this_rdc.rdcost; | 
|  | } | 
|  | #else | 
|  | static void rd_pick_rect_partition( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | PartitionSearchState *part_search_state, const RD_STATS *best_rdc, | 
|  | RECT_PART_TYPE rect_type, | 
|  | const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2], | 
|  | BLOCK_SIZE bsize, const int is_not_edge_block[NUM_RECT_PARTS], | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, bool *both_blocks_skippable, | 
|  | int max_recursion_depth) { | 
|  | const PARTITION_TYPE partition_type = rect_partition_type[rect_type]; | 
|  | RD_STATS *sum_rdc = &part_search_state->sum_rdc; | 
|  |  | 
|  | sum_rdc->rate = part_search_state->partition_cost[partition_type]; | 
|  | sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0); | 
|  |  | 
|  | RD_STATS this_rdc; | 
|  | RD_STATS best_remain_rdcost; | 
|  | PC_TREE **sub_tree = | 
|  | (rect_type == HORZ) ? pc_tree->horizontal : pc_tree->vertical; | 
|  | *both_blocks_skippable = true; | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, sum_rdc, &best_remain_rdcost); | 
|  | bool partition_found = av1_rd_pick_partition( | 
|  | cpi, td, tile_data, tp, mi_pos_rect[rect_type][0][0], | 
|  | mi_pos_rect[rect_type][0][1], bsize, &this_rdc, best_remain_rdcost, | 
|  | sub_tree[0], get_partition_subtree_const(ptree_luma, 0), | 
|  | get_partition_subtree_const(template_tree, 0), max_recursion_depth, NULL, | 
|  | NULL, multi_pass_mode, NULL); | 
|  | av1_rd_cost_update(x->rdmult, &this_rdc); | 
|  | if (!partition_found) { | 
|  | av1_invalid_rd_stats(sum_rdc); | 
|  | return; | 
|  | } else { | 
|  | *both_blocks_skippable &= sub_tree[0]->skippable; | 
|  | sum_rdc->rate += this_rdc.rate; | 
|  | sum_rdc->dist += this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, sum_rdc); | 
|  | } | 
|  | part_search_state->rect_part_rd[rect_type][0] = this_rdc.rdcost; | 
|  |  | 
|  | if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[rect_type]) { | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, sum_rdc, &best_remain_rdcost); | 
|  | partition_found = av1_rd_pick_partition( | 
|  | cpi, td, tile_data, tp, mi_pos_rect[rect_type][1][0], | 
|  | mi_pos_rect[rect_type][1][1], bsize, &this_rdc, best_remain_rdcost, | 
|  | sub_tree[1], get_partition_subtree_const(ptree_luma, 1), | 
|  | get_partition_subtree_const(template_tree, 1), max_recursion_depth, | 
|  | NULL, NULL, multi_pass_mode, NULL); | 
|  | av1_rd_cost_update(x->rdmult, &this_rdc); | 
|  | part_search_state->rect_part_rd[rect_type][1] = this_rdc.rdcost; | 
|  |  | 
|  | if (!partition_found) { | 
|  | av1_invalid_rd_stats(sum_rdc); | 
|  | return; | 
|  | } else { | 
|  | *both_blocks_skippable &= sub_tree[1]->skippable; | 
|  | sum_rdc->rate += this_rdc.rate; | 
|  | sum_rdc->dist += this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, sum_rdc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE bool is_part_pruned_by_forced_partition( | 
|  | const PartitionSearchState *part_state, PARTITION_TYPE partition) { | 
|  | const PARTITION_TYPE forced_partition = part_state->forced_partition; | 
|  | return forced_partition != PARTITION_INVALID && forced_partition != partition; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step); | 
|  |  | 
|  | // Checks if HORZ / VERT partition search is allowed. | 
|  | static AOM_INLINE int is_rect_part_allowed( | 
|  | const AV1_COMP *cpi, PartitionSearchState *part_search_state, | 
|  | active_edge_info *active_edge, RECT_PART_TYPE rect_part, const int mi_pos) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int mi_step = | 
|  | (rect_part == HORZ) ? blk_params.mi_step_h : blk_params.mi_step_w; | 
|  | #else | 
|  | const int mi_step = blk_params.mi_step; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int is_part_allowed = | 
|  | (!part_search_state->terminate_partition_search && | 
|  | part_search_state->partition_rect_allowed[rect_part] && | 
|  | !part_search_state->prune_rect_part[rect_part] && | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_partition_valid(blk_params.bsize, rect_partition_type[rect_part]) && | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | (part_search_state->do_rectangular_split || | 
|  | active_edge[rect_part](cpi, mi_pos, mi_step))); | 
|  | return is_part_allowed; | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | static AOM_INLINE void prune_rect_with_none_rd( | 
|  | PartitionSearchState *part_search_state, BLOCK_SIZE bsize, int q_index, | 
|  | int rdmult, int64_t part_none_rd, const int *is_not_edge_block) { | 
|  | for (RECT_PART_TYPE rect = 0; rect < NUM_RECT_PARTS; rect++) { | 
|  | // Disable pruning on the boundary | 
|  | if (!is_not_edge_block[rect]) { | 
|  | continue; | 
|  | } | 
|  | const PARTITION_TYPE partition_type = rect_partition_type[rect]; | 
|  | float discount_factor = 1.1f; | 
|  | const int q_thresh = 180; | 
|  | if (q_index < q_thresh) { | 
|  | discount_factor -= 0.025f; | 
|  | } | 
|  | if (AOMMAX(block_size_wide[bsize], block_size_high[bsize]) < 16) { | 
|  | discount_factor -= 0.02f; | 
|  | } | 
|  | const int part_rate = part_search_state->partition_cost[partition_type]; | 
|  | const int64_t est_rd = (int64_t)(part_none_rd / discount_factor) + | 
|  | RDCOST(rdmult, part_rate, 0); | 
|  | if (est_rd > part_none_rd) { | 
|  | part_search_state->prune_rect_part[rect] = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Rectangular partition types search function. | 
|  | static void rectangular_partition_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, int max_recursion_depth, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | RD_RECT_PART_WIN_INFO *rect_part_win_info, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | LevelBanksRDO *level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | int64_t part_none_rd) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | RD_STATS *sum_rdc = &part_search_state->sum_rdc; | 
|  |  | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const int plane_start = get_partition_plane_start(xd->tree_type); | 
|  | const int plane_end = | 
|  | get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); | 
|  | (void)plane_start; | 
|  | (void)plane_end; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  | #else   // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | (void)part_none_rd; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of | 
|  | //                                           HORZ and VERT partition types. | 
|  | // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of | 
|  | //                                           HORZ and VERT partition types. | 
|  | const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = { | 
|  | { { blk_params.mi_row, blk_params.mi_col }, | 
|  | { blk_params.mi_row_edge, blk_params.mi_col } }, | 
|  | { { blk_params.mi_row, blk_params.mi_col }, | 
|  | { blk_params.mi_row, blk_params.mi_col_edge } } | 
|  | }; | 
|  |  | 
|  | // Initialize active edge_type function pointer | 
|  | // for HOZR and VERT partition types. | 
|  | active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge, | 
|  | av1_active_v_edge }; | 
|  |  | 
|  | // Indicates edge blocks for HORZ and VERT partition types. | 
|  | const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows, | 
|  | blk_params.has_cols }; | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Initialize pc tree context for HORZ and VERT partition types. | 
|  | PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = { | 
|  | { &pc_tree->horizontal[0], &pc_tree->horizontal[1] }, | 
|  | { &pc_tree->vertical[0], &pc_tree->vertical[1] } | 
|  | }; | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | const bool is_whole_block_inside = | 
|  | (blk_params.mi_row + mi_size_high[bsize] < mi_params->mi_rows) && | 
|  | (blk_params.mi_col + mi_size_wide[bsize] < mi_params->mi_cols); | 
|  | const bool try_prune_with_ml = | 
|  | cpi->sf.part_sf.prune_rect_with_ml && !frame_is_intra_only(cm) && | 
|  | part_search_state->forced_partition == PARTITION_INVALID && | 
|  | is_whole_block_inside && part_none_rd < INT64_MAX && | 
|  | (is_rect_part_allowed(cpi, part_search_state, active_edge_type, HORZ, | 
|  | mi_pos_rect[HORZ][0][HORZ]) || | 
|  | is_rect_part_allowed(cpi, part_search_state, active_edge_type, VERT, | 
|  | mi_pos_rect[VERT][0][VERT])); | 
|  |  | 
|  | if (try_prune_with_ml && bsize != BLOCK_4X8 && bsize != BLOCK_8X4 && | 
|  | is_partition_point(bsize)) { | 
|  | float ml_features[19]; | 
|  | av1_gather_erp_rect_features(ml_features, cpi, x, &tile_data->tile_info, | 
|  | pc_tree, part_search_state, part_none_rd, | 
|  | mi_pos_rect); | 
|  | const bool is_hd = AOMMIN(cm->width, cm->height) >= 1080; | 
|  |  | 
|  | av1_erp_prune_rect(bsize, is_hd, ml_features, | 
|  | &part_search_state->prune_rect_part[HORZ], | 
|  | &part_search_state->prune_rect_part[VERT]); | 
|  | } | 
|  | if (cpi->sf.part_sf.prune_rect_with_none_rd && | 
|  | part_search_state->forced_partition == PARTITION_INVALID && | 
|  | !frame_is_intra_only(cm) && part_none_rd < INT64_MAX) { | 
|  | prune_rect_with_none_rd(part_search_state, bsize, x->qindex, x->rdmult, | 
|  | part_none_rd, is_not_edge_block); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Loop over rectangular partition types. | 
|  | for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) { | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part_search_state->partition_rect_allowed[i])); | 
|  |  | 
|  | // Check if the HORZ / VERT partition search is to be performed. | 
|  | if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i, | 
|  | mi_pos_rect[i][0][i])) | 
|  | continue; | 
|  |  | 
|  | // Sub-partition idx. | 
|  | const PARTITION_TYPE partition_type = rect_partition_type[i]; | 
|  | blk_params.subsize = | 
|  | get_partition_subsize(blk_params.bsize, partition_type); | 
|  | const int part_hv_rate = part_search_state->partition_cost[partition_type]; | 
|  | if (part_hv_rate == INT_MAX || | 
|  | RDCOST(x->rdmult, part_hv_rate, 0) >= best_rdc->rdcost) { | 
|  | continue; | 
|  | } | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(blk_params.subsize <= BLOCK_LARGEST); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | av1_init_rd_stats(sum_rdc); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, partition_type)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | PC_TREE **sub_tree = (i == HORZ) ? pc_tree->horizontal : pc_tree->vertical; | 
|  | assert(sub_tree); | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | for (int idx = 0; idx < SUB_PARTITIONS_RECT; idx++) { | 
|  | if (sub_tree[idx]) { | 
|  | av1_free_pc_tree_recursive(sub_tree[idx], num_planes, 0, 0); | 
|  | sub_tree[idx] = NULL; | 
|  | } | 
|  | } | 
|  | sub_tree[0] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, mi_pos_rect[i][0][0], mi_pos_rect[i][0][1], | 
|  | blk_params.subsize, pc_tree, partition_type, 0, 0, ss_x, ss_y); | 
|  | sub_tree[1] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, mi_pos_rect[i][1][0], mi_pos_rect[i][1][1], | 
|  | blk_params.subsize, pc_tree, partition_type, 1, 1, ss_x, ss_y); | 
|  |  | 
|  | bool both_blocks_skippable = true; | 
|  | const bool track_ptree_luma = | 
|  | is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize); | 
|  |  | 
|  | rd_pick_rect_partition( | 
|  | cpi, td, tile_data, tp, x, pc_tree, part_search_state, best_rdc, i, | 
|  | mi_pos_rect, blk_params.subsize, is_not_edge_block, multi_pass_mode, | 
|  | track_ptree_luma ? ptree_luma : NULL, template_tree, | 
|  | &both_blocks_skippable, max_recursion_depth); | 
|  | #else | 
|  | int sub_part_idx = 0; | 
|  | for (int j = 0; j < SUB_PARTITIONS_RECT; j++) { | 
|  | assert(cur_ctx[i][j] != NULL); | 
|  | if (cur_ctx[i][j][0] == NULL) { | 
|  | cur_ctx[i][j][0] = | 
|  | av1_alloc_pmc(cm, xd->tree_type, mi_pos_rect[i][j][0], | 
|  | mi_pos_rect[i][j][1], blk_params.subsize, pc_tree, | 
|  | partition_type, j, part_search_state->ss_x, | 
|  | part_search_state->ss_y, &td->shared_coeff_buf); | 
|  | } | 
|  | } | 
|  | sum_rdc->rate = part_search_state->partition_cost[partition_type]; | 
|  | sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0); | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (best_rdc.rdcost - sum_rdc->rdcost >= 0) { | 
|  | partition_attempts[partition_type] += 1; | 
|  | aom_usec_timer_start(&partition_timer); | 
|  | partition_timer_on = 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // First sub-partition evaluation in HORZ / VERT partition type. | 
|  | rd_pick_rect_partition( | 
|  | cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, | 
|  | best_rdc, 0, mi_pos_rect[i][sub_part_idx][0], | 
|  | mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); | 
|  |  | 
|  | // Start of second sub-partition evaluation. | 
|  | // Evaluate second sub-partition if the first sub-partition cost | 
|  | // is less than the best cost and if it is not an edge block. | 
|  | if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) { | 
|  | const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic; | 
|  | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | // Neither palette mode nor cfl predicted. | 
|  | if (pmi->palette_size[PLANE_TYPE_Y] == 0 && | 
|  | pmi->palette_size[PLANE_TYPE_UV] == 0) { | 
|  | if (mbmi->uv_mode != UV_CFL_PRED) | 
|  | part_search_state->is_rect_ctx_is_ready[i] = 1; | 
|  | } | 
|  | av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row, | 
|  | blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, | 
|  | blk_params.subsize, plane_start, plane_end, NULL); | 
|  |  | 
|  | // Second sub-partition evaluation in HORZ / VERT partition type. | 
|  | sub_part_idx = 1; | 
|  | rd_pick_rect_partition( | 
|  | cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, | 
|  | best_rdc, 1, mi_pos_rect[i][sub_part_idx][0], | 
|  | mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (partition_timer_on) { | 
|  | aom_usec_timer_mark(&partition_timer); | 
|  | int64_t time = aom_usec_timer_elapsed(&partition_timer); | 
|  | partition_times[partition_type] += time; | 
|  | partition_timer_on = 0; | 
|  | } | 
|  | #endif | 
|  | // Update HORZ / VERT best partition. | 
|  | if (sum_rdc->rdcost < best_rdc->rdcost) { | 
|  | sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist); | 
|  | if (sum_rdc->rdcost < best_rdc->rdcost) { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree->skippable = both_blocks_skippable; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | *best_rdc = *sum_rdc; | 
|  |  | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | part_search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = partition_type; | 
|  | } | 
|  | } else { | 
|  | // Update HORZ / VERT win flag. | 
|  | if (rect_part_win_info != NULL) | 
|  | rect_part_win_info->rect_part_win[i] = false; | 
|  | } | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | av1_restore_context(cm, x, x_ctx, blk_params.mi_row, blk_params.mi_col, | 
|  | blk_params.bsize, av1_num_planes(cm)); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (sum_rdc->rdcost < INT64_MAX && both_blocks_skippable && | 
|  | !frame_is_intra_only(cm)) { | 
|  | const int64_t dist_breakout_thr = | 
|  | (int64_t)(cpi->sf.part_sf.partition_search_breakout_dist_thr / 4) >> | 
|  | ((2 * (MAX_SB_SIZE_LOG2 - 2)) - | 
|  | (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); | 
|  | const int rate_breakout_thr = | 
|  | (int64_t)25 * cpi->sf.part_sf.partition_search_breakout_rate_thr * | 
|  | num_pels_log2_lookup[bsize]; | 
|  | if (sum_rdc->dist < dist_breakout_thr && | 
|  | sum_rdc->rate < rate_breakout_thr) { | 
|  | part_search_state->terminate_partition_search = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // AB partition type evaluation. | 
|  | static void rd_pick_ab_part( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB], | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], | 
|  | const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | LevelBanksRDO *level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const int bsize = blk_params.bsize; | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | { | 
|  | RD_STATS tmp_sum_rdc; | 
|  | av1_init_rd_stats(&tmp_sum_rdc); | 
|  | tmp_sum_rdc.rate = | 
|  | x->partition_cost[part_search_state->pl_ctx_idx][part_type]; | 
|  | tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); | 
|  | if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) { | 
|  | partition_attempts[part_type] += 1; | 
|  | aom_usec_timer_start(&partition_timer); | 
|  | partition_timer_on = 1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Test this partition and update the best partition. | 
|  | part_search_state->found_best_partition |= | 
|  | rd_test_partition3(cpi, td, tile_data, tp, pc_tree, best_rdc, dst_ctxs, | 
|  | mi_row, mi_col, bsize, part_type, ab_subsize, ab_mi_pos | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (partition_timer_on) { | 
|  | aom_usec_timer_mark(&partition_timer); | 
|  | int64_t time = aom_usec_timer_elapsed(&partition_timer); | 
|  | partition_times[part_type] += time; | 
|  | partition_timer_on = 0; | 
|  | } | 
|  | #endif | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); | 
|  | } | 
|  |  | 
|  | // Check if AB partitions search is allowed. | 
|  | static AOM_INLINE int is_ab_part_allowed( | 
|  | PartitionSearchState *part_search_state, | 
|  | const int ab_partitions_allowed[NUM_AB_PARTS], const int ab_part_type) { | 
|  | const int is_horz_ab = (ab_part_type >> 1); | 
|  | const int is_part_allowed = | 
|  | (!part_search_state->terminate_partition_search && | 
|  | part_search_state->partition_rect_allowed[is_horz_ab] && | 
|  | ab_partitions_allowed[ab_part_type]); | 
|  | return is_part_allowed; | 
|  | } | 
|  |  | 
|  | // Set mode search context. | 
|  | static AOM_INLINE void set_mode_search_ctx( | 
|  | PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2], | 
|  | PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) { | 
|  | mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0]; | 
|  | mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0]; | 
|  |  | 
|  | if (is_ctx_ready[HORZ_A][0]) | 
|  | mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none; | 
|  |  | 
|  | if (is_ctx_ready[VERT_A][0]) | 
|  | mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none; | 
|  |  | 
|  | if (is_ctx_ready[HORZ_A][1]) | 
|  | mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none; | 
|  | } | 
|  |  | 
|  | // AB Partitions type search. | 
|  | static void ab_partitions_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PC_TREE *pc_tree, PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info, | 
|  | int pb_source_variance, int ext_partition_allowed | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | LevelBanksRDO *level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const int bsize = blk_params.bsize; | 
|  |  | 
|  | int ab_partitions_allowed[NUM_AB_PARTS] = { 1, 1, 1, 1 }; | 
|  | // Prune AB partitions | 
|  | av1_prune_ab_partitions( | 
|  | cpi, x, pc_tree, bsize, pb_source_variance, best_rdc->rdcost, | 
|  | part_search_state->rect_part_rd, part_search_state->split_rd, | 
|  | rect_part_win_info, ext_partition_allowed, | 
|  | part_search_state->partition_rect_allowed[HORZ], | 
|  | part_search_state->partition_rect_allowed[VERT], | 
|  | &ab_partitions_allowed[HORZ_A], &ab_partitions_allowed[HORZ_B], | 
|  | &ab_partitions_allowed[VERT_A], &ab_partitions_allowed[VERT_B]); | 
|  |  | 
|  | // Flags to indicate whether the mode search is done. | 
|  | const int is_ctx_ready[NUM_AB_PARTS][2] = { | 
|  | { part_search_state->is_split_ctx_is_ready[0], | 
|  | part_search_state->is_split_ctx_is_ready[1] }, | 
|  | { part_search_state->is_rect_ctx_is_ready[HORZ], 0 }, | 
|  | { part_search_state->is_split_ctx_is_ready[0], 0 }, | 
|  | { part_search_state->is_rect_ctx_is_ready[VERT], 0 } | 
|  | }; | 
|  |  | 
|  | // Current partition context. | 
|  | PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala, | 
|  | pc_tree->horizontalb, | 
|  | pc_tree->verticala, | 
|  | pc_tree->verticalb }; | 
|  |  | 
|  | // Context of already evaluted partition types. | 
|  | PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]; | 
|  | // Set context of already evaluted partition types. | 
|  | set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx); | 
|  |  | 
|  | // Array of sub-partition size of AB partition types. | 
|  | const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = { | 
|  | { blk_params.split_bsize2, blk_params.split_bsize2, | 
|  | get_partition_subsize(bsize, PARTITION_HORZ_A) }, | 
|  | { get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2, | 
|  | blk_params.split_bsize2 }, | 
|  | { blk_params.split_bsize2, blk_params.split_bsize2, | 
|  | get_partition_subsize(bsize, PARTITION_VERT_A) }, | 
|  | { get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2, | 
|  | blk_params.split_bsize2 } | 
|  | }; | 
|  |  | 
|  | // Array of mi_row, mi_col positions corresponds to each sub-partition in AB | 
|  | // partition types. | 
|  | const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = { | 
|  | { { mi_row, mi_col }, | 
|  | { mi_row, blk_params.mi_col_edge }, | 
|  | { blk_params.mi_row_edge, mi_col } }, | 
|  | { { mi_row, mi_col }, | 
|  | { blk_params.mi_row_edge, mi_col }, | 
|  | { blk_params.mi_row_edge, blk_params.mi_col_edge } }, | 
|  | { { mi_row, mi_col }, | 
|  | { blk_params.mi_row_edge, mi_col }, | 
|  | { mi_row, blk_params.mi_col_edge } }, | 
|  | { { mi_row, mi_col }, | 
|  | { mi_row, blk_params.mi_col_edge }, | 
|  | { blk_params.mi_row_edge, blk_params.mi_col_edge } } | 
|  | }; | 
|  |  | 
|  | // Loop over AB partition types. | 
|  | for (AB_PART_TYPE ab_part_type = 0; ab_part_type < NUM_AB_PARTS; | 
|  | ab_part_type++) { | 
|  | const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A; | 
|  |  | 
|  | // Check if the AB partition search is to be performed. | 
|  | if (!is_ab_part_allowed(part_search_state, ab_partitions_allowed, | 
|  | ab_part_type)) | 
|  | continue; | 
|  |  | 
|  | blk_params.subsize = get_partition_subsize(bsize, part_type); | 
|  | for (int i = 0; i < SUB_PARTITIONS_AB; i++) { | 
|  | assert(cur_part_ctxs[ab_part_type] != NULL); | 
|  | // Set AB partition context. | 
|  | if (cur_part_ctxs[ab_part_type][i] == NULL) | 
|  | cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc( | 
|  | cm, x->e_mbd.tree_type, ab_mi_pos[ab_part_type][i][0], | 
|  | ab_mi_pos[ab_part_type][i][1], ab_subsize[ab_part_type][i], pc_tree, | 
|  | part_type, i, part_search_state->ss_x, part_search_state->ss_y, | 
|  | &td->shared_coeff_buf); | 
|  | // Set mode as not ready. | 
|  | cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0; | 
|  | } | 
|  |  | 
|  | // Copy of mode search results if the ctx is ready. | 
|  | if (is_ctx_ready[ab_part_type][0]) { | 
|  | av1_copy_tree_context(cur_part_ctxs[ab_part_type][0], | 
|  | mode_srch_ctx[ab_part_type][0][0]); | 
|  | cur_part_ctxs[ab_part_type][0]->mic.partition = part_type; | 
|  | cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1; | 
|  | if (is_ctx_ready[ab_part_type][1]) { | 
|  | av1_copy_tree_context(cur_part_ctxs[ab_part_type][1], | 
|  | mode_srch_ctx[ab_part_type][1][0]); | 
|  | cur_part_ctxs[ab_part_type][1]->mic.partition = part_type; | 
|  | cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Evaluation of AB partition type. | 
|  | rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree, | 
|  | cur_part_ctxs[ab_part_type], part_search_state, best_rdc, | 
|  | ab_subsize[ab_part_type], ab_mi_pos[ab_part_type], part_type | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set mi positions for HORZ4 / VERT4 sub-block partitions. | 
|  | static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES], | 
|  | int mi_pos[SUB_PARTITIONS_PART4][2], | 
|  | const int mi_row, const int mi_col) { | 
|  | for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) { | 
|  | mi_pos[i][0] = mi_row + i * inc_step[HORZ4]; | 
|  | mi_pos[i][1] = mi_col + i * inc_step[VERT4]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set context and RD cost for HORZ4 / VERT4 partition types. | 
|  | static void set_4_part_ctx_and_rdcost( | 
|  | MACROBLOCK *x, const AV1_COMMON *const cm, ThreadData *td, | 
|  | PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], | 
|  | PartitionSearchState *part_search_state, PARTITION_TYPE partition_type, | 
|  | BLOCK_SIZE bsize, int mi_pos[SUB_PARTITIONS_PART4][2], PC_TREE *pc_tree) { | 
|  | // Initialize sum_rdc RD cost structure. | 
|  | av1_init_rd_stats(&part_search_state->sum_rdc); | 
|  | const int subsize = get_partition_subsize(bsize, partition_type); | 
|  | part_search_state->sum_rdc.rate = | 
|  | part_search_state->partition_cost[partition_type]; | 
|  | part_search_state->sum_rdc.rdcost = | 
|  | RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0); | 
|  | for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | if (cur_part_ctx[i] == NULL) | 
|  | cur_part_ctx[i] = av1_alloc_pmc( | 
|  | cm, x->e_mbd.tree_type, mi_pos[i][0], mi_pos[i][1], subsize, pc_tree, | 
|  | partition_type, i, part_search_state->ss_x, part_search_state->ss_y, | 
|  | &td->shared_coeff_buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Partition search of HORZ4 / VERT4 partition types. | 
|  | static void rd_pick_4partition( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | LevelBanksRDO *level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | // mi positions needed for HORZ4 and VERT4 partition types. | 
|  | int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows, | 
|  | cm->mi_params.mi_cols }; | 
|  | const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4); | 
|  | int mi_pos[SUB_PARTITIONS_PART4][2]; | 
|  |  | 
|  | blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type); | 
|  | // Set mi positions for sub-block sizes. | 
|  | set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col); | 
|  | // Set partition context and RD cost. | 
|  | set_4_part_ctx_and_rdcost(x, cm, td, cur_part_ctx, part_search_state, | 
|  | partition_type, blk_params.bsize, mi_pos, pc_tree); | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (best_rdc.rdcost - part_search_state->sum_rdc.rdcost >= 0) { | 
|  | partition_attempts[partition_type] += 1; | 
|  | aom_usec_timer_start(&partition_timer); | 
|  | partition_timer_on = 1; | 
|  | } | 
|  | #endif | 
|  | // Loop over sub-block partitions. | 
|  | for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break; | 
|  |  | 
|  | // Sub-block evaluation of Horz4 / Vert4 partition type. | 
|  | cur_part_ctx[i]->rd_mode_is_ready = 0; | 
|  | if (!rd_try_subblock( | 
|  | cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1), | 
|  | mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc, | 
|  | &part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) { | 
|  | av1_invalid_rd_stats(&part_search_state->sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the total cost and update the best partition. | 
|  | av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); | 
|  | if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = part_search_state->sum_rdc; | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | part_search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = partition_type; | 
|  | } | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (partition_timer_on) { | 
|  | aom_usec_timer_mark(&partition_timer); | 
|  | int64_t time = aom_usec_timer_elapsed(&partition_timer); | 
|  | partition_times[partition_type] += time; | 
|  | partition_timer_on = 0; | 
|  | } | 
|  | #endif | 
|  | av1_restore_context(cm, x, x_ctx, blk_params.mi_row, blk_params.mi_col, | 
|  | blk_params.bsize, av1_num_planes(cm)); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | // Prune 4-way partitions based on the number of horz/vert wins | 
|  | // in the current block and sub-blocks in PARTITION_SPLIT. | 
|  | static void prune_4_partition_using_split_info( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state, | 
|  | int part4_search_allowed[NUM_PART4_TYPES]) { | 
|  | PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 }; | 
|  | // Count of child blocks in which HORZ or VERT partition has won | 
|  | int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 }; | 
|  | // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of | 
|  | // split partiitons. | 
|  | // Conservative pruning for high quantizers. | 
|  | const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3); | 
|  |  | 
|  | for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) { | 
|  | if (!(cpi->sf.part_sf.prune_4_partition_using_split_info && | 
|  | part4_search_allowed[cur_part[i]])) | 
|  | continue; | 
|  | // Loop over split partitions. | 
|  | // Get reactnagular partitions winner info of split partitions. | 
|  | for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++) | 
|  | num_child_rect_win[i] += | 
|  | (part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1 | 
|  | : 0; | 
|  | if (num_child_rect_win[i] < num_win_thresh) { | 
|  | part4_search_allowed[cur_part[i]] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune 4-way partition search. | 
|  | static void prune_4_way_partition_search( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | int pb_source_variance, int ext_partition_allowed, | 
|  | int part4_search_allowed[NUM_PART4_TYPES]) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const int bsize = blk_params.bsize; | 
|  | PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4, | 
|  | PARTITION_VERT_4 }; | 
|  | const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; | 
|  | // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or | 
|  | // PARTITION_VERT_4 for this block. This is almost the same as | 
|  | // ext_partition_allowed, except that we don't allow 128x32 or 32x128 | 
|  | // blocks, so we require that bsize is not BLOCK_128X128. | 
|  | const int partition4_allowed = part_cfg->enable_1to4_partitions && | 
|  | ext_partition_allowed && | 
|  | bsize != BLOCK_128X128; | 
|  |  | 
|  | for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) { | 
|  | part4_search_allowed[i] = | 
|  | partition4_allowed && part_search_state->partition_rect_allowed[i] && | 
|  | get_plane_block_size(get_partition_subsize(bsize, cur_part[i]), | 
|  | part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  | } | 
|  | // Pruning: pruning out 4-way partitions based on the current best | 
|  | // partition. | 
|  | if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) { | 
|  | part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ || | 
|  | pc_tree->partitioning == PARTITION_HORZ_A || | 
|  | pc_tree->partitioning == PARTITION_HORZ_B || | 
|  | pc_tree->partitioning == PARTITION_SPLIT || | 
|  | pc_tree->partitioning == PARTITION_NONE); | 
|  | part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT || | 
|  | pc_tree->partitioning == PARTITION_VERT_A || | 
|  | pc_tree->partitioning == PARTITION_VERT_B || | 
|  | pc_tree->partitioning == PARTITION_SPLIT || | 
|  | pc_tree->partitioning == PARTITION_NONE); | 
|  | } | 
|  |  | 
|  | // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of | 
|  | // sub-blocks from basic partition types. | 
|  | if (cpi->sf.part_sf.ml_prune_4_partition && partition4_allowed && | 
|  | part_search_state->partition_rect_allowed[HORZ] && | 
|  | part_search_state->partition_rect_allowed[VERT]) { | 
|  | av1_ml_prune_4_partition( | 
|  | cpi, x, bsize, pc_tree->partitioning, best_rdc->rdcost, | 
|  | part_search_state->rect_part_rd, part_search_state->split_rd, | 
|  | &part4_search_allowed[HORZ4], &part4_search_allowed[VERT4], | 
|  | pb_source_variance, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | // Pruning: pruning out 4-way partitions based on the number of horz/vert | 
|  | // wins in the current block and sub-blocks in PARTITION_SPLIT. | 
|  | prune_4_partition_using_split_info(cpi, x, part_search_state, | 
|  | part4_search_allowed); | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Set PARTITION_NONE allowed flag. | 
|  | static AOM_INLINE void set_part_none_allowed_flag( | 
|  | const AV1_COMP *const cpi, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | TREE_TYPE tree_type, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | PartitionSearchState *part_search_state) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (tree_type == CHROMA_PART && blk_params.bsize == BLOCK_8X8) { | 
|  | part_search_state->partition_none_allowed = 1; | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (is_bsize_geq(blk_params.min_partition_size, blk_params.bsize) && | 
|  | blk_params.has_rows && blk_params.has_cols) | 
|  | #else | 
|  | if ((blk_params.width <= blk_params.min_partition_size_1d) && | 
|  | blk_params.has_rows && blk_params.has_cols) | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | part_search_state->partition_none_allowed = 1; | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (part_search_state->partition_none_allowed == BLOCK_INVALID) { | 
|  | part_search_state->partition_none_allowed = 0; | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Set PARTITION_NONE for screen content. | 
|  | if (cpi->is_screen_content_type) | 
|  | part_search_state->partition_none_allowed = | 
|  | blk_params.has_rows && blk_params.has_cols; | 
|  | } | 
|  |  | 
|  | // Set params needed for PARTITION_NONE search. | 
|  | static void set_none_partition_params(const AV1_COMMON *const cm, | 
|  | ThreadData *td, MACROBLOCK *x, | 
|  | PC_TREE *pc_tree, | 
|  | PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_remain_rdcost, | 
|  | RD_STATS *best_rdc, int *pt_cost) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | RD_STATS partition_rdcost; | 
|  | // Set PARTITION_NONE context. | 
|  | if (pc_tree->none == NULL) | 
|  | pc_tree->none = av1_alloc_pmc( | 
|  | cm, x->e_mbd.tree_type, blk_params.mi_row, blk_params.mi_col, | 
|  | blk_params.bsize, pc_tree, PARTITION_NONE, 0, part_search_state->ss_x, | 
|  | part_search_state->ss_y, &td->shared_coeff_buf); | 
|  |  | 
|  | // Set PARTITION_NONE type cost. | 
|  | if (part_search_state->partition_none_allowed) { | 
|  | if (part_search_state->is_block_splittable) { | 
|  | *pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX | 
|  | ? part_search_state->partition_cost[PARTITION_NONE] | 
|  | : 0; | 
|  | } | 
|  |  | 
|  | // Initialize the RD stats structure. | 
|  | av1_init_rd_stats(&partition_rdcost); | 
|  | partition_rdcost.rate = *pt_cost; | 
|  | av1_rd_cost_update(x->rdmult, &partition_rdcost); | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost, | 
|  | best_remain_rdcost); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip other partitions based on PARTITION_NONE rd cost. | 
|  | static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | PICK_MODE_CONTEXT *ctx_none, | 
|  | PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_rdc, | 
|  | unsigned int *pb_source_variance) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | RD_STATS *this_rdc = &part_search_state->this_rdc; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | (void)sms_tree; | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | if (!frame_is_intra_only(cm) && | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | part_search_state->do_rectangular_split && | 
|  | #else | 
|  | (part_search_state->do_square_split || | 
|  | part_search_state->do_rectangular_split) && | 
|  | #endif | 
|  | !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { | 
|  | const int use_ml_based_breakout = | 
|  | bsize <= cpi->sf.part_sf.use_square_partition_only_threshold && | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_square_block(bsize) && | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | bsize > BLOCK_4X4 && xd->bd == 8; | 
|  | if (use_ml_based_breakout) { | 
|  | if (av1_ml_predict_breakout(cpi, bsize, x, this_rdc, | 
|  | *pb_source_variance)) { | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | part_search_state->do_square_split = 0; | 
|  | #endif | 
|  | part_search_state->do_rectangular_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjust dist breakout threshold according to the partition size. | 
|  | const int64_t dist_breakout_thr = | 
|  | cpi->sf.part_sf.partition_search_breakout_dist_thr >> | 
|  | ((2 * (MAX_SB_SIZE_LOG2 - 2)) - | 
|  | (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); | 
|  | const int rate_breakout_thr = | 
|  | cpi->sf.part_sf.partition_search_breakout_rate_thr * | 
|  | num_pels_log2_lookup[bsize]; | 
|  | // If all y, u, v transform blocks in this partition are skippable, | 
|  | // and the dist & rate are within the thresholds, the partition | 
|  | // search is terminated for current branch of the partition search | 
|  | // tree. The dist & rate thresholds are set to 0 at speed 0 to | 
|  | // disable the early termination at that speed. | 
|  | if (best_rdc->dist < dist_breakout_thr && | 
|  | best_rdc->rate < rate_breakout_thr) { | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | part_search_state->do_square_split = 0; | 
|  | #endif | 
|  | part_search_state->do_rectangular_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Early termination: using simple_motion_search features and the | 
|  | // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a | 
|  | // decision on early terminating at PARTITION_NONE. | 
|  | bool is_early_term_allowed = | 
|  | cpi->sf.part_sf.simple_motion_search_early_term_none && | 
|  | !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 && | 
|  | blk_params.mi_row_edge < mi_params->mi_rows && | 
|  | blk_params.mi_col_edge < mi_params->mi_cols && | 
|  | this_rdc->rdcost < INT64_MAX && this_rdc->rdcost >= 0 && | 
|  | this_rdc->rate < INT_MAX && this_rdc->rate >= 0; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_early_term_allowed &= part_search_state->do_rectangular_split && sms_tree; | 
|  | #else | 
|  | is_early_term_allowed &= | 
|  | cm->show_frame && (part_search_state->do_square_split || | 
|  | part_search_state->do_rectangular_split); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (is_early_term_allowed) { | 
|  | av1_simple_motion_search_early_term_none( | 
|  | cpi, x, sms_tree, blk_params.mi_row, blk_params.mi_col, bsize, this_rdc, | 
|  | &part_search_state->terminate_partition_search); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Decide early termination and rectangular partition pruning | 
|  | // based on PARTITION_NONE and PARTITION_SPLIT costs. | 
|  | static void prune_partitions_after_split( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | int64_t part_none_rd, int64_t part_split_rd) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | (void)sms_tree; | 
|  | (void)part_none_rd; | 
|  | (void)part_split_rd; | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Early termination: using the rd costs of PARTITION_NONE and subblocks | 
|  | // from PARTITION_SPLIT to determine an early breakout. | 
|  | if (cpi->sf.part_sf.ml_early_term_after_part_split_level && | 
|  | !frame_is_intra_only(cm) && | 
|  | !part_search_state->terminate_partition_search && | 
|  | part_search_state->do_rectangular_split && | 
|  | (part_search_state->partition_rect_allowed[HORZ] || | 
|  | part_search_state->partition_rect_allowed[VERT])) { | 
|  | av1_ml_early_term_after_split( | 
|  | cpi, x, sms_tree, bsize, best_rdc->rdcost, part_none_rd, part_split_rd, | 
|  | part_search_state->split_rd, mi_row, mi_col, | 
|  | &part_search_state->terminate_partition_search); | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT | 
|  | // to prune out rectangular partitions in some directions. | 
|  | if (!cpi->sf.part_sf.ml_early_term_after_part_split_level && | 
|  | cpi->sf.part_sf.ml_prune_rect_partition && !frame_is_intra_only(cm) && | 
|  | (part_search_state->partition_rect_allowed[HORZ] || | 
|  | part_search_state->partition_rect_allowed[VERT]) && | 
|  | !(part_search_state->prune_rect_part[HORZ] || | 
|  | part_search_state->prune_rect_part[VERT]) && | 
|  | !part_search_state->terminate_partition_search) { | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm), | 
|  | NULL); | 
|  | av1_ml_prune_rect_partition( | 
|  | cpi, x, bsize, best_rdc->rdcost, part_search_state->none_rd, | 
|  | part_search_state->split_rd, &part_search_state->prune_rect_part[HORZ], | 
|  | &part_search_state->prune_rect_part[VERT]); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // PARTITION_NONE search. | 
|  | static void none_partition_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x, | 
|  | PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | LevelBanksRDO *level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | RD_STATS *this_rdc = &part_search_state->this_rdc; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, PARTITION_NONE)) { | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Set PARTITION_NONE allowed flag. | 
|  | set_part_none_allowed_flag(cpi, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | x->e_mbd.tree_type, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | part_search_state); | 
|  | if (!part_search_state->partition_none_allowed) { | 
|  | return; | 
|  | } | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (part_search_state->prune_partition_none) { | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | int pt_cost = 0; | 
|  | RD_STATS best_remain_rdcost; | 
|  |  | 
|  | // Set PARTITION_NONE context and cost. | 
|  | set_none_partition_params(cm, td, x, pc_tree, part_search_state, | 
|  | &best_remain_rdcost, best_rdc, &pt_cost); | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | // Timer start for partition None. | 
|  | if (best_remain_rdcost >= 0) { | 
|  | partition_attempts[PARTITION_NONE] += 1; | 
|  | aom_usec_timer_start(&partition_timer); | 
|  | partition_timer_on = 1; | 
|  | } | 
|  | #endif | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | SimpleMotionData *sms_data = av1_get_sms_data_entry( | 
|  | x->sms_bufs, mi_row, mi_col, bsize, cm->seq_params.sb_size); | 
|  | av1_set_best_mode_cache(x, sms_data->mode_cache); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // PARTITION_NONE evaluation and cost update. | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE, | 
|  | bsize, pc_tree->none, best_remain_rdcost); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | x->inter_mode_cache = NULL; | 
|  | if (this_rdc->rate != INT_MAX) { | 
|  | av1_add_mode_search_context_to_cache(sms_data, pc_tree->none); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | av1_rd_cost_update(x->rdmult, this_rdc); | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | // Timer end for partition None. | 
|  | if (partition_timer_on) { | 
|  | aom_usec_timer_mark(&partition_timer); | 
|  | int64_t time = aom_usec_timer_elapsed(&partition_timer); | 
|  | partition_times[PARTITION_NONE] += time; | 
|  | partition_timer_on = 0; | 
|  | } | 
|  | #endif | 
|  | *pb_source_variance = x->source_variance; | 
|  | if (none_rd) *none_rd = this_rdc->rdcost; | 
|  | part_search_state->none_rd = this_rdc->rdcost; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree->none_rd = *this_rdc; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (this_rdc->rate != INT_MAX) { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree->skippable = pc_tree->none->skippable; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Record picked ref frame to prune ref frames for other partition types. | 
|  | if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) { | 
|  | const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame); | 
|  | av1_update_picked_ref_frames_mask( | 
|  | x, ref_type, bsize, cm->seq_params.mib_size, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | // Calculate the total cost and update the best partition. | 
|  | if (part_search_state->is_block_splittable) { | 
|  | this_rdc->rate += pt_cost; | 
|  | this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist); | 
|  | } | 
|  | *part_none_rd = this_rdc->rdcost; | 
|  | if (this_rdc->rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = *this_rdc; | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | part_search_state->found_best_partition = true; | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (blk_params.bsize_at_least_8x8) { | 
|  | pc_tree->partitioning = PARTITION_NONE; | 
|  | } | 
|  | #else | 
|  | pc_tree->partitioning = PARTITION_NONE; | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Disable split and rectangular partition search | 
|  | // based on PARTITION_NONE cost. | 
|  | prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none, | 
|  | part_search_state, best_rdc, | 
|  | pb_source_variance); | 
|  | } | 
|  | } | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // PARTITION_SPLIT search. | 
|  | static void split_partition_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | LevelBanksRDO *level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const int bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | RD_STATS sum_rdc = part_search_state->sum_rdc; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  |  | 
|  | // Check if partition split is allowed. | 
|  | if (part_search_state->terminate_partition_search || | 
|  | !part_search_state->do_square_split) | 
|  | return; | 
|  |  | 
|  | // Initialization of this partition RD stats. | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | int idx; | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (best_rdc->rdcost - sum_rdc.rdcost >= 0) { | 
|  | partition_attempts[PARTITION_SPLIT] += 1; | 
|  | aom_usec_timer_start(&partition_timer); | 
|  | partition_timer_on = 1; | 
|  | } | 
|  | #endif | 
|  | // Recursive partition search on 4 sub-blocks. | 
|  | for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost; | 
|  | ++idx) { | 
|  | const int x_idx = (idx & 1) * blk_params.mi_step; | 
|  | const int y_idx = (idx >> 1) * blk_params.mi_step; | 
|  |  | 
|  | if (mi_row + y_idx >= mi_params->mi_rows || | 
|  | mi_col + x_idx >= mi_params->mi_cols) | 
|  | continue; | 
|  |  | 
|  | if (pc_tree->split[idx] == NULL) { | 
|  | pc_tree->split[idx] = av1_alloc_pc_tree_node( | 
|  | x->e_mbd.tree_type, mi_row + y_idx, mi_col + x_idx, subsize, pc_tree, | 
|  | PARTITION_SPLIT, idx, idx == 3, part_search_state->ss_x, | 
|  | part_search_state->ss_y); | 
|  | } | 
|  | int64_t *p_split_rd = &part_search_state->split_rd[idx]; | 
|  | RD_STATS best_remain_rdcost; | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc, | 
|  | &best_remain_rdcost); | 
|  |  | 
|  | int curr_quad_tree_idx = 0; | 
|  | if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { | 
|  | curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx; | 
|  | part_search_state->intra_part_info->quad_tree_idx = | 
|  | 4 * curr_quad_tree_idx + idx + 1; | 
|  | } | 
|  | // Split partition evaluation of corresponding idx. | 
|  | // If the RD cost exceeds the best cost then do not | 
|  | // evaluate other split sub-partitions. | 
|  | if (!av1_rd_pick_partition( | 
|  | cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, | 
|  | &part_search_state->this_rdc, best_remain_rdcost, | 
|  | pc_tree->split[idx], sms_tree->split[idx], p_split_rd, | 
|  | multi_pass_mode, &part_search_state->split_part_rect_win[idx])) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { | 
|  | part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx; | 
|  | } | 
|  |  | 
|  | sum_rdc.rate += part_search_state->this_rdc.rate; | 
|  | sum_rdc.dist += part_search_state->this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  |  | 
|  | // Set split ctx as ready for use. | 
|  | if (idx <= 1 && (bsize <= BLOCK_8X8 || | 
|  | pc_tree->split[idx]->partitioning == PARTITION_NONE)) { | 
|  | const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic; | 
|  | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | // Neither palette mode nor cfl predicted. | 
|  | if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { | 
|  | if (mbmi->uv_mode != UV_CFL_PRED) | 
|  | part_search_state->is_split_ctx_is_ready[idx] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (partition_timer_on) { | 
|  | aom_usec_timer_mark(&partition_timer); | 
|  | int64_t time = aom_usec_timer_elapsed(&partition_timer); | 
|  | partition_times[PARTITION_SPLIT] += time; | 
|  | partition_timer_on = 0; | 
|  | } | 
|  | #endif | 
|  | const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT); | 
|  |  | 
|  | // Calculate the total cost and update the best partition. | 
|  | *part_split_rd = sum_rdc.rdcost; | 
|  | if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = sum_rdc; | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | part_search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_SPLIT; | 
|  | } | 
|  | } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) { | 
|  | // Skip rectangular partition test when partition type none gives better | 
|  | // rd than partition type split. | 
|  | if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) { | 
|  | const int partition_none_valid = part_search_state->none_rd > 0; | 
|  | const int partition_none_better = | 
|  | part_search_state->none_rd < sum_rdc.rdcost; | 
|  | part_search_state->do_rectangular_split &= | 
|  | !(partition_none_valid && partition_none_better); | 
|  | } | 
|  | } | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | /*!\brief Stores some data used by rd_try_subblock_new to do rdopt. */ | 
|  | typedef struct SUBBLOCK_RDO_DATA { | 
|  | /*!\brief The encoder side partition tree. */ | 
|  | PC_TREE *pc_tree; | 
|  | /*!\brief The luma partition tree. Used by SDP on chroma planes. */ | 
|  | const PARTITION_TREE *ptree_luma; | 
|  | /*!\brief A "template" that the function will follow to skip the partition | 
|  | * selection process. */ | 
|  | const PARTITION_TREE *template_tree; | 
|  | /*!\brief The row coordinate of current block in units of mi. */ | 
|  | int mi_row; | 
|  | /*!\brief The col coordinate of current block in units of mi. */ | 
|  | int mi_col; | 
|  | /*!\brief The block_size of the current block. */ | 
|  | BLOCK_SIZE bsize; | 
|  | /*!\brief The partition type used to get the current block. */ | 
|  | PARTITION_TYPE partition; | 
|  | } SUBBLOCK_RDO_DATA; | 
|  |  | 
|  | /*!\brief Whether the current partition node uses horizontal type partitions. */ | 
|  | static AOM_INLINE bool node_uses_horz(const PC_TREE *pc_tree) { | 
|  | assert(pc_tree); | 
|  | return pc_tree->partitioning == PARTITION_HORZ | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | || pc_tree->partitioning == PARTITION_HORZ_4A || | 
|  | pc_tree->partitioning == PARTITION_HORZ_4B | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | || pc_tree->partitioning == PARTITION_HORZ_3; | 
|  | } | 
|  |  | 
|  | /*!\brief Whether the current partition node uses vertical type partitions. */ | 
|  | static AOM_INLINE bool node_uses_vert(const PC_TREE *pc_tree) { | 
|  | assert(pc_tree); | 
|  | return pc_tree->partitioning == PARTITION_VERT | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | || pc_tree->partitioning == PARTITION_VERT_4A || | 
|  | pc_tree->partitioning == PARTITION_VERT_4B | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | || pc_tree->partitioning == PARTITION_VERT_3; | 
|  | } | 
|  |  | 
|  | /*!\brief Try searching for an encoding for the given subblock. | 
|  | * | 
|  | * Returns zero if the rdcost is already too high (to tell the caller not to | 
|  | * bother searching for encodings of further subblocks). | 
|  | * */ | 
|  | static int rd_try_subblock_new(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | SUBBLOCK_RDO_DATA *rdo_data, | 
|  | RD_STATS best_rdcost, RD_STATS *sum_rdc, | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, | 
|  | bool *skippable, int max_recursion_depth) { | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int orig_mult = x->rdmult; | 
|  | const int mi_row = rdo_data->mi_row; | 
|  | const int mi_col = rdo_data->mi_col; | 
|  | const BLOCK_SIZE bsize = rdo_data->bsize; | 
|  |  | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &best_rdcost); | 
|  |  | 
|  | RD_STATS rdcost_remaining; | 
|  | av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining); | 
|  | RD_STATS this_rdc; | 
|  |  | 
|  | if (!av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, | 
|  | &this_rdc, rdcost_remaining, rdo_data->pc_tree, | 
|  | rdo_data->ptree_luma, rdo_data->template_tree, | 
|  | max_recursion_depth, NULL, NULL, multi_pass_mode, | 
|  | NULL)) { | 
|  | av1_invalid_rd_stats(sum_rdc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (this_rdc.rate == INT_MAX) { | 
|  | *skippable = false; | 
|  | sum_rdc->rdcost = INT64_MAX; | 
|  | } else { | 
|  | *skippable &= rdo_data->pc_tree->skippable; | 
|  | sum_rdc->rate += this_rdc.rate; | 
|  | sum_rdc->dist += this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, sum_rdc); | 
|  | } | 
|  |  | 
|  | if (sum_rdc->rdcost >= best_rdcost.rdcost) { | 
|  | x->rdmult = orig_mult; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | x->rdmult = orig_mult; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /*!\brief Trace out the partition boundaries using the structure in pc_tree. | 
|  | * | 
|  | * The results are stored in partition_boundaries. The array | 
|  | * partition_boundaries has a stride of MAX_MIB_SIZE, and the units are in mi. | 
|  | * The actual values stored is a bitmask, with 1 << HORZ means that there is a | 
|  | * horizontal boundary, and 1 << VERT means that there is a vertical boundary. | 
|  | * */ | 
|  | static AOM_INLINE void trace_partition_boundary(bool *partition_boundaries, | 
|  | const PC_TREE *pc_tree, | 
|  | int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | mi_row &= MAX_MIB_MASK; | 
|  | mi_col &= MAX_MIB_MASK; | 
|  | const PARTITION_TYPE partition = pc_tree->partitioning; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | const int ebs_w = mi_size_wide[bsize] / 8; | 
|  | const int ebs_h = mi_size_high[bsize] / 8; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | for (int col = 0; col < mi_width; col++) { | 
|  | partition_boundaries[(mi_row + mi_height - 1) * MAX_MIB_SIZE + | 
|  | (mi_col + col)] |= (1 << HORZ); | 
|  | } | 
|  | for (int row = 0; row < mi_height; row++) { | 
|  | partition_boundaries[(mi_row + row) * MAX_MIB_SIZE + mi_col + mi_width - | 
|  | 1] |= (1 << VERT); | 
|  | } | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal[0], | 
|  | mi_row, mi_col, | 
|  | get_partition_subsize(bsize, PARTITION_HORZ)); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal[1], | 
|  | mi_row + mi_height / 2, mi_col, | 
|  | get_partition_subsize(bsize, PARTITION_HORZ)); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical[0], | 
|  | mi_row, mi_col, | 
|  | get_partition_subsize(bsize, PARTITION_VERT)); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical[1], | 
|  | mi_row, mi_col + mi_width / 2, | 
|  | get_partition_subsize(bsize, PARTITION_VERT)); | 
|  | break; | 
|  | case PARTITION_HORZ_3: | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->horizontal3[0], mi_row, mi_col, | 
|  | get_h_partition_subsize(bsize, 0, PARTITION_HORZ_3)); | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->horizontal3[1], mi_row + mi_height / 4, | 
|  | mi_col, get_h_partition_subsize(bsize, 1, PARTITION_HORZ_3)); | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->horizontal3[2], mi_row + mi_height / 4, | 
|  | mi_col + mi_width / 2, | 
|  | get_h_partition_subsize(bsize, 1, PARTITION_HORZ_3)); | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->horizontal3[3], | 
|  | mi_row + 3 * mi_height / 4, mi_col, | 
|  | get_h_partition_subsize(bsize, 0, PARTITION_HORZ_3)); | 
|  | break; | 
|  | case PARTITION_VERT_3: | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->vertical3[0], mi_row, mi_col, | 
|  | get_h_partition_subsize(bsize, 0, PARTITION_VERT_3)); | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->vertical3[1], mi_row, | 
|  | mi_col + mi_width / 4, | 
|  | get_h_partition_subsize(bsize, 1, PARTITION_VERT_3)); | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->vertical3[2], mi_row + mi_height / 2, | 
|  | mi_col + mi_width / 4, | 
|  | get_h_partition_subsize(bsize, 1, PARTITION_VERT_3)); | 
|  | trace_partition_boundary( | 
|  | partition_boundaries, pc_tree->vertical3[3], mi_row, | 
|  | mi_col + 3 * mi_width / 4, | 
|  | get_h_partition_subsize(bsize, 0, PARTITION_VERT_3)); | 
|  | break; | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | case PARTITION_HORZ_4A: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_HORZ); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_HORZ)); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4a[0], | 
|  | mi_row, mi_col, subsize); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4a[1], | 
|  | mi_row + ebs_h, mi_col, bsize_med); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4a[2], | 
|  | mi_row + 3 * ebs_h, mi_col, bsize_big); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4a[3], | 
|  | mi_row + 7 * ebs_h, mi_col, subsize); | 
|  | break; | 
|  | } | 
|  | case PARTITION_HORZ_4B: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_HORZ); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_HORZ)); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4b[0], | 
|  | mi_row, mi_col, subsize); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4b[1], | 
|  | mi_row + ebs_h, mi_col, bsize_big); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4b[2], | 
|  | mi_row + 5 * ebs_h, mi_col, bsize_med); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->horizontal4b[3], | 
|  | mi_row + 7 * ebs_h, mi_col, subsize); | 
|  | break; | 
|  | } | 
|  | case PARTITION_VERT_4A: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_VERT); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_VERT)); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4a[0], | 
|  | mi_row, mi_col, subsize); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4a[1], | 
|  | mi_row, mi_col + ebs_w, bsize_med); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4a[2], | 
|  | mi_row, mi_col + 3 * ebs_w, bsize_big); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4a[3], | 
|  | mi_row, mi_col + 7 * ebs_w, subsize); | 
|  | break; | 
|  | } | 
|  | case PARTITION_VERT_4B: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE bsize_med = | 
|  | get_partition_subsize(bsize_big, PARTITION_VERT); | 
|  | assert(subsize == get_partition_subsize(bsize_med, PARTITION_VERT)); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4b[0], | 
|  | mi_row, mi_col, subsize); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4b[1], | 
|  | mi_row, mi_col + ebs_w, bsize_big); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4b[2], | 
|  | mi_row, mi_col + 5 * ebs_w, bsize_med); | 
|  | trace_partition_boundary(partition_boundaries, pc_tree->vertical4b[3], | 
|  | mi_row, mi_col + 7 * ebs_w, subsize); | 
|  | break; | 
|  | } | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  | default: assert(0 && "Invalid partition type in trace_partition_boundary!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief Prunes h partitions using the current best partition boundaries. | 
|  | * | 
|  | * If the H-shaped partitions don't have any overlap with the current best | 
|  | * partition boundaries, then they are pruned from the search. | 
|  | * */ | 
|  | static AOM_INLINE void prune_part_3_with_partition_boundary( | 
|  | PartitionSearchState *part_search_state, BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col, bool can_search_horz, bool can_search_vert) { | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | const int masked_mi_row = mi_row & MAX_MIB_MASK; | 
|  | const int masked_mi_col = mi_col & MAX_MIB_MASK; | 
|  | const bool *partition_boundaries = part_search_state->partition_boundaries; | 
|  | if (can_search_horz) { | 
|  | bool keep_horz_3 = false; | 
|  | for (int col = 0; col < mi_width; col++) { | 
|  | if (partition_boundaries[(masked_mi_row + mi_height / 4 - 1) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + col] & | 
|  | (1 << HORZ)) { | 
|  | keep_horz_3 = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!keep_horz_3) { | 
|  | for (int col = 0; col < mi_width; col++) { | 
|  | if (partition_boundaries[(masked_mi_row + 3 * mi_height / 4 - 1) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + col] & | 
|  | (1 << HORZ)) { | 
|  | keep_horz_3 = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!keep_horz_3) { | 
|  | for (int row = 0; row < mi_height / 2; row++) { | 
|  | if (partition_boundaries[(masked_mi_row + mi_height / 4 + row) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + mi_width / 2 - 1] & | 
|  | (1 << VERT)) { | 
|  | keep_horz_3 = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | part_search_state->prune_partition_3[HORZ] |= !keep_horz_3; | 
|  | } | 
|  | if (can_search_vert) { | 
|  | bool keep_vert_3 = false; | 
|  | for (int row = 0; row < mi_height; row++) { | 
|  | if (partition_boundaries[(masked_mi_row + row) * MAX_MIB_SIZE + | 
|  | masked_mi_col + mi_width / 4 - 1] & | 
|  | (1 << VERT)) { | 
|  | keep_vert_3 = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!keep_vert_3) { | 
|  | for (int row = 0; row < mi_height; row++) { | 
|  | if (partition_boundaries[(masked_mi_row + row) * MAX_MIB_SIZE + | 
|  | masked_mi_col + 3 * mi_width / 4 - 1] & | 
|  | (1 << VERT)) { | 
|  | keep_vert_3 = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!keep_vert_3) { | 
|  | for (int col = 0; col < mi_width / 2; col++) { | 
|  | if (partition_boundaries[(masked_mi_row + mi_height / 2 - 1) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + mi_width / 4 + col] & | 
|  | (1 << HORZ)) { | 
|  | keep_vert_3 = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | part_search_state->prune_partition_3[VERT] |= !keep_vert_3; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | /*!\brief Prunes 4-way partitions using the current best partition boundaries. | 
|  | * | 
|  | * If the 4-way partitions don't have any overlap with the current best | 
|  | * partition boundaries, then they are pruned from the search. | 
|  | */ | 
|  | static AOM_INLINE void prune_part_4_with_partition_boundary( | 
|  | PartitionSearchState *part_search_state, const bool *partition_boundaries, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col, bool can_search_horz_4a, | 
|  | bool can_search_horz_4b, bool can_search_vert_4a, bool can_search_vert_4b) { | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | const int masked_mi_row = mi_row & MAX_MIB_MASK; | 
|  | const int masked_mi_col = mi_col & MAX_MIB_MASK; | 
|  | bool keep_horz_4a = false, keep_horz_4b = false; | 
|  | bool keep_vert_4a = false, keep_vert_4b = false; | 
|  | if (can_search_horz_4a || can_search_horz_4b) { | 
|  | for (int col = 0; col < mi_width; col++) { | 
|  | if (partition_boundaries[(masked_mi_row + mi_height / 8 - 1) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + col] & | 
|  | (1 << HORZ)) { | 
|  | keep_horz_4a = true; | 
|  | keep_horz_4b = true; | 
|  | break; | 
|  | } | 
|  | if (partition_boundaries[(masked_mi_row + 7 * mi_height / 8 - 1) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + col] & | 
|  | (1 << HORZ)) { | 
|  | keep_horz_4a = true; | 
|  | keep_horz_4b = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (can_search_horz_4a && !keep_horz_4a) { | 
|  | for (int col = 0; col < mi_width; col++) { | 
|  | if (partition_boundaries[(masked_mi_row + 3 * mi_height / 8 - 1) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + col] & | 
|  | (1 << HORZ)) { | 
|  | keep_horz_4a = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (can_search_horz_4b && !keep_horz_4b) { | 
|  | for (int col = 0; col < mi_width; col++) { | 
|  | if (partition_boundaries[(masked_mi_row + 5 * mi_height / 8 - 1) * | 
|  | MAX_MIB_SIZE + | 
|  | masked_mi_col + col] & | 
|  | (1 << HORZ)) { | 
|  | keep_horz_4b = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | part_search_state->prune_partition_4a[HORZ] |= !keep_horz_4a; | 
|  | part_search_state->prune_partition_4b[HORZ] |= !keep_horz_4b; | 
|  | } | 
|  | if (can_search_vert_4a || can_search_vert_4b) { | 
|  | for (int row = 0; row < mi_height; row++) { | 
|  | if (partition_boundaries[(masked_mi_row + row) * MAX_MIB_SIZE + | 
|  | masked_mi_col + mi_width / 8 - 1] & | 
|  | (1 << VERT)) { | 
|  | keep_vert_4a = true; | 
|  | keep_vert_4b = true; | 
|  | break; | 
|  | } | 
|  | if (partition_boundaries[(masked_mi_row + row) * MAX_MIB_SIZE + | 
|  | masked_mi_col + 7 * mi_width / 8 - 1] & | 
|  | (1 << VERT)) { | 
|  | keep_vert_4a = true; | 
|  | keep_vert_4b = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (can_search_vert_4a && !keep_vert_4a) { | 
|  | for (int row = 0; row < mi_height; row++) { | 
|  | if (partition_boundaries[(masked_mi_row + row) * MAX_MIB_SIZE + | 
|  | masked_mi_col + 3 * mi_width / 8 - 1] & | 
|  | (1 << VERT)) { | 
|  | keep_vert_4a = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (can_search_vert_4b && !keep_vert_4b) { | 
|  | for (int row = 0; row < mi_height; row++) { | 
|  | if (partition_boundaries[(masked_mi_row + row) * MAX_MIB_SIZE + | 
|  | masked_mi_col + 5 * mi_width / 8 - 1] & | 
|  | (1 << VERT)) { | 
|  | keep_vert_4b = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | part_search_state->prune_partition_4a[VERT] |= !keep_vert_4a; | 
|  | part_search_state->prune_partition_4b[VERT] |= !keep_vert_4b; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  |  | 
|  | // Pruning logic for PARTITION_HORZ_3 and PARTITION_VERT_3. | 
|  | static AOM_INLINE void prune_ext_partitions_3way( | 
|  | AV1_COMP *const cpi, PC_TREE *pc_tree, | 
|  | PartitionSearchState *part_search_state, bool *partition_boundaries) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const PARTITION_SPEED_FEATURES *part_sf = &cpi->sf.part_sf; | 
|  | const PARTITION_TYPE forced_partition = part_search_state->forced_partition; | 
|  | if (part_search_state->forced_partition != PARTITION_INVALID) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Prune horz 3 with speed features | 
|  | if (part_search_state->partition_3_allowed[HORZ] && | 
|  | !frame_is_intra_only(cm) && forced_partition != PARTITION_HORZ_3) { | 
|  | if (part_sf->prune_ext_part_with_part_none && | 
|  | pc_tree->partitioning == PARTITION_NONE) { | 
|  | // Prune if the best partition does not split | 
|  | part_search_state->prune_partition_3[HORZ] = 1; | 
|  | } | 
|  | if (part_sf->prune_ext_part_with_part_rect) { | 
|  | // Prune if the best partition is rect but the subtrees did not further | 
|  | // split in horz | 
|  | if (pc_tree->partitioning == PARTITION_HORZ && | 
|  | !node_uses_horz(pc_tree->horizontal[0]) && | 
|  | !node_uses_horz(pc_tree->horizontal[1])) { | 
|  | part_search_state->prune_partition_3[HORZ] = 1; | 
|  | } | 
|  | if (pc_tree->partitioning == PARTITION_VERT && | 
|  | !node_uses_horz(pc_tree->vertical[0]) && | 
|  | !node_uses_horz(pc_tree->vertical[1])) { | 
|  | part_search_state->prune_partition_3[HORZ] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (part_search_state->partition_3_allowed[VERT] && | 
|  | !frame_is_intra_only(cm) && forced_partition != PARTITION_VERT_3) { | 
|  | if (part_sf->prune_ext_part_with_part_none && | 
|  | pc_tree->partitioning == PARTITION_NONE) { | 
|  | // Prune if the best partition does not split | 
|  | part_search_state->prune_partition_3[VERT] = 1; | 
|  | } | 
|  | if (part_sf->prune_ext_part_with_part_rect) { | 
|  | // Prune if the best partition is rect but the subtrees did not further | 
|  | // split in vert | 
|  | if (pc_tree->partitioning == PARTITION_VERT && | 
|  | !node_uses_vert(pc_tree->vertical[0]) && | 
|  | !node_uses_vert(pc_tree->vertical[1])) { | 
|  | part_search_state->prune_partition_3[VERT] = 1; | 
|  | } | 
|  | if (pc_tree->partitioning == PARTITION_HORZ && | 
|  | !node_uses_vert(pc_tree->horizontal[0]) && | 
|  | !node_uses_vert(pc_tree->horizontal[1])) { | 
|  | part_search_state->prune_partition_3[VERT] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const bool can_search_horz = part_search_state->partition_3_allowed[HORZ] && | 
|  | !part_search_state->prune_partition_3[HORZ]; | 
|  | const bool can_search_vert = part_search_state->partition_3_allowed[VERT] && | 
|  | !part_search_state->prune_partition_3[VERT]; | 
|  | const PartitionBlkParams *blk_params = &part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col, | 
|  | bsize = blk_params->bsize; | 
|  | if (part_sf->prune_part_h_with_partition_boundary && | 
|  | (can_search_horz || can_search_vert) && | 
|  | part_search_state->found_best_partition) { | 
|  | if (!part_search_state->partition_boundaries) { | 
|  | part_search_state->partition_boundaries = partition_boundaries; | 
|  | trace_partition_boundary(partition_boundaries, pc_tree, mi_row, mi_col, | 
|  | bsize); | 
|  | } | 
|  | prune_part_3_with_partition_boundary(part_search_state, bsize, mi_row, | 
|  | mi_col, can_search_horz, | 
|  | can_search_vert); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | // Pruning logic for PARTITION_HORZ_4A/B and PARTITION_VERT_4A/B. | 
|  | static AOM_INLINE void prune_ext_partitions_4way( | 
|  | AV1_COMP *const cpi, PC_TREE *pc_tree, | 
|  | PartitionSearchState *part_search_state, bool *partition_boundaries) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const PARTITION_SPEED_FEATURES *part_sf = &cpi->sf.part_sf; | 
|  | const PARTITION_TYPE forced_partition = part_search_state->forced_partition; | 
|  | if (part_search_state->partition_4a_allowed[HORZ] && | 
|  | forced_partition != PARTITION_HORZ_4A) { | 
|  | if (part_sf->prune_ext_part_with_part_none && | 
|  | pc_tree->partitioning == PARTITION_NONE) { | 
|  | // Prune if the best partition does not split | 
|  | part_search_state->prune_partition_4a[HORZ] = 1; | 
|  | } | 
|  | if (part_sf->prune_ext_part_with_part_rect && | 
|  | pc_tree->partitioning == PARTITION_HORZ && | 
|  | !node_uses_horz(pc_tree->horizontal[0]) && | 
|  | !node_uses_horz(pc_tree->horizontal[1])) { | 
|  | // Prune if the best partition is horz but horz did not further split in | 
|  | // horz | 
|  | part_search_state->prune_partition_4a[HORZ] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_with_part_3 && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_HORZ_3 && | 
|  | !node_uses_horz(pc_tree->horizontal3[0]) && | 
|  | !node_uses_horz(pc_tree->horizontal3[3])) { | 
|  | // Prune is best partition is horizontal H, but first and last | 
|  | // subpartitions did not further split in horizontal direction. | 
|  | part_search_state->prune_partition_4a[HORZ] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_horz_or_vert && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_VERT && | 
|  | part_search_state->partition_rect_allowed[HORZ]) { | 
|  | part_search_state->prune_partition_4a[HORZ] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune HORZ 4B with speed features | 
|  | if (part_search_state->partition_4b_allowed[HORZ] && | 
|  | forced_partition != PARTITION_HORZ_4B) { | 
|  | if (part_sf->prune_ext_part_with_part_none && | 
|  | pc_tree->partitioning == PARTITION_NONE) { | 
|  | // Prune if the best partition does not split | 
|  | part_search_state->prune_partition_4b[HORZ] = 1; | 
|  | } | 
|  | if (part_sf->prune_ext_part_with_part_rect && | 
|  | pc_tree->partitioning == PARTITION_HORZ && | 
|  | !node_uses_horz(pc_tree->horizontal[0]) && | 
|  | !node_uses_horz(pc_tree->horizontal[1])) { | 
|  | // Prune if the best partition is horz but horz did not further split in | 
|  | // horz | 
|  | part_search_state->prune_partition_4b[HORZ] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_with_part_3 && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_HORZ_3 && | 
|  | !node_uses_horz(pc_tree->horizontal3[0]) && | 
|  | !node_uses_horz(pc_tree->horizontal3[3])) { | 
|  | // Prune is best partition is horizontal H, but first and last | 
|  | // subpartitions did not further split in horizontal direction. | 
|  | part_search_state->prune_partition_4b[HORZ] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_horz_or_vert && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_VERT && | 
|  | part_search_state->partition_rect_allowed[HORZ]) { | 
|  | part_search_state->prune_partition_4b[HORZ] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune VERT_4A with speed features | 
|  | if (part_search_state->partition_4a_allowed[VERT] && | 
|  | forced_partition != PARTITION_VERT_4A) { | 
|  | if (part_sf->prune_ext_part_with_part_none && | 
|  | pc_tree->partitioning == PARTITION_NONE) { | 
|  | // Prune if the best partition does not split | 
|  | part_search_state->prune_partition_4a[VERT] = 1; | 
|  | } | 
|  | if (part_sf->prune_ext_part_with_part_rect && | 
|  | pc_tree->partitioning == PARTITION_VERT && | 
|  | !node_uses_vert(pc_tree->vertical[0]) && | 
|  | !node_uses_vert(pc_tree->vertical[1])) { | 
|  | // Prune if the best partition is vert but vert did not further split in | 
|  | // vert | 
|  | part_search_state->prune_partition_4a[VERT] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_with_part_3 && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_VERT_3 && | 
|  | !node_uses_vert(pc_tree->vertical3[0]) && | 
|  | !node_uses_vert(pc_tree->vertical3[3])) { | 
|  | // Prune is best partition is vertical H, but first and last | 
|  | // subpartitions did not further split in vertical direction. | 
|  | part_search_state->prune_partition_4a[VERT] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_horz_or_vert && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_HORZ && | 
|  | part_search_state->partition_rect_allowed[VERT]) { | 
|  | part_search_state->prune_partition_4a[VERT] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune VERT_4B with speed features | 
|  | if (part_search_state->partition_4b_allowed[VERT] && | 
|  | forced_partition != PARTITION_VERT_4B) { | 
|  | if (part_sf->prune_ext_part_with_part_none && | 
|  | pc_tree->partitioning == PARTITION_NONE) { | 
|  | // Prune if the best partition does not split | 
|  | part_search_state->prune_partition_4b[VERT] = 1; | 
|  | } | 
|  | if (part_sf->prune_ext_part_with_part_rect && | 
|  | pc_tree->partitioning == PARTITION_VERT && | 
|  | !node_uses_vert(pc_tree->vertical[0]) && | 
|  | !node_uses_vert(pc_tree->vertical[1])) { | 
|  | // Prune if the best partition is vert but vert did not further split in | 
|  | // vert | 
|  | part_search_state->prune_partition_4b[VERT] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_with_part_3 && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_VERT_3 && | 
|  | !node_uses_vert(pc_tree->vertical3[0]) && | 
|  | !node_uses_vert(pc_tree->vertical3[3])) { | 
|  | // Prune is best partition is vertical H, but first and last | 
|  | // subpartitions did not further split in vertical direction. | 
|  | part_search_state->prune_partition_4b[VERT] = 1; | 
|  | } | 
|  | if (part_sf->prune_part_4_horz_or_vert && !frame_is_intra_only(cm) && | 
|  | pc_tree->partitioning == PARTITION_HORZ && | 
|  | part_search_state->partition_rect_allowed[VERT]) { | 
|  | part_search_state->prune_partition_4b[VERT] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | const bool can_search_horz_4a = | 
|  | part_search_state->partition_4a_allowed[HORZ] && | 
|  | !part_search_state->prune_partition_4a[HORZ]; | 
|  | const bool can_search_horz_4b = | 
|  | part_search_state->partition_4b_allowed[HORZ] && | 
|  | !part_search_state->prune_partition_4b[HORZ]; | 
|  | const bool can_search_vert_4a = | 
|  | part_search_state->partition_4a_allowed[VERT] && | 
|  | !part_search_state->prune_partition_4a[VERT]; | 
|  | const bool can_search_vert_4b = | 
|  | part_search_state->partition_4b_allowed[VERT] && | 
|  | !part_search_state->prune_partition_4b[VERT]; | 
|  | const PartitionBlkParams *blk_params = &part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col, | 
|  | bsize = blk_params->bsize; | 
|  | if (part_sf->prune_part_4_with_partition_boundary && | 
|  | (can_search_horz_4a || can_search_vert_4a || can_search_horz_4b || | 
|  | can_search_vert_4b) && | 
|  | part_search_state->found_best_partition) { | 
|  | if (!part_search_state->partition_boundaries || | 
|  | pc_tree->partitioning == PARTITION_HORZ_3 || | 
|  | pc_tree->partitioning == PARTITION_VERT_3) { | 
|  | part_search_state->partition_boundaries = partition_boundaries; | 
|  | trace_partition_boundary(partition_boundaries, pc_tree, mi_row, mi_col, | 
|  | bsize); | 
|  | } | 
|  | prune_part_4_with_partition_boundary( | 
|  | part_search_state, partition_boundaries, bsize, mi_row, mi_col, | 
|  | can_search_horz_4a, can_search_horz_4b, can_search_vert_4a, | 
|  | can_search_vert_4b); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void search_partition_horz_4a( | 
|  | PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc, | 
|  | PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | const PartitionSearchState *part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | LevelBanksRDO *level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  |  | 
|  | const PartitionBlkParams *blk_params = &search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, | 
|  | PARTITION_HORZ_4A) || | 
|  | !part_search_state->partition_4a_allowed[HORZ] || | 
|  | part_search_state->prune_partition_4a[HORZ]) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (search_state->terminate_partition_search || !blk_params->has_rows || | 
|  | !is_partition_valid(bsize, PARTITION_HORZ_4A) || | 
|  | !(search_state->do_rectangular_split || | 
|  | av1_active_h_edge(cpi, mi_row, blk_params->mi_step_h))) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int part_h4a_rate = search_state->partition_cost[PARTITION_HORZ_4A]; | 
|  | if (part_h4a_rate == INT_MAX || | 
|  | RDCOST(x->rdmult, part_h4a_rate, 0) >= best_rdc->rdcost) { | 
|  | return; | 
|  | } | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | const int eighth_step = mi_size_high[bsize] / 8; | 
|  |  | 
|  | sum_rdc.rate = search_state->partition_cost[PARTITION_HORZ_4A]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | const BLOCK_SIZE sml_subsize = | 
|  | get_partition_subsize(bsize, PARTITION_HORZ_4A); | 
|  | const BLOCK_SIZE big_subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE med_subsize = | 
|  | get_partition_subsize(big_subsize, PARTITION_HORZ); | 
|  | assert(sml_subsize == get_partition_subsize(med_subsize, PARTITION_HORZ)); | 
|  |  | 
|  | const int cum_step_multipliers[4] = { 0, 1, 3, 7 }; | 
|  | const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, med_subsize, big_subsize, | 
|  | sml_subsize }; | 
|  |  | 
|  | for (int idx = 0; idx < 4; idx++) { | 
|  | if (pc_tree->horizontal4a[idx]) { | 
|  | av1_free_pc_tree_recursive(pc_tree->horizontal4a[idx], num_planes, 0, 0); | 
|  | pc_tree->horizontal4a[idx] = NULL; | 
|  | } | 
|  | const int this_mi_row = mi_row + eighth_step * cum_step_multipliers[idx]; | 
|  | pc_tree->horizontal4a[idx] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, this_mi_row, mi_col, subblock_sizes[idx], pc_tree, | 
|  | PARTITION_HORZ_4A, idx, idx == 3, ss_x, ss_y); | 
|  | } | 
|  |  | 
|  | bool skippable = true; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int this_mi_row = mi_row + eighth_step * cum_step_multipliers[i]; | 
|  |  | 
|  | if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break; | 
|  |  | 
|  | SUBBLOCK_RDO_DATA rdo_data = { pc_tree->horizontal4a[i], | 
|  | get_partition_subtree_const(ptree_luma, i), | 
|  | get_partition_subtree_const(template_tree, | 
|  | i), | 
|  | this_mi_row, | 
|  | mi_col, | 
|  | subblock_sizes[i], | 
|  | PARTITION_HORZ_4A }; | 
|  | if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc, | 
|  | &sum_rdc, multi_pass_mode, &skippable, | 
|  | max_recursion_depth)) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | *best_rdc = sum_rdc; | 
|  | search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_HORZ_4A; | 
|  | pc_tree->skippable = skippable; | 
|  | } | 
|  |  | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | static INLINE void search_partition_horz_4b( | 
|  | PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc, | 
|  | PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | const PartitionSearchState *part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | LevelBanksRDO *level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  |  | 
|  | const PartitionBlkParams *blk_params = &search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, | 
|  | PARTITION_HORZ_4B) || | 
|  | !part_search_state->partition_4b_allowed[HORZ] || | 
|  | part_search_state->prune_partition_4b[HORZ]) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (search_state->terminate_partition_search || !blk_params->has_rows || | 
|  | !is_partition_valid(bsize, PARTITION_HORZ_4B) || | 
|  | !(search_state->do_rectangular_split || | 
|  | av1_active_h_edge(cpi, mi_row, blk_params->mi_step_h))) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int part_h4b_rate = search_state->partition_cost[PARTITION_HORZ_4B]; | 
|  | if (part_h4b_rate == INT_MAX || | 
|  | RDCOST(x->rdmult, part_h4b_rate, 0) >= best_rdc->rdcost) { | 
|  | return; | 
|  | } | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | const int eighth_step = mi_size_high[bsize] / 8; | 
|  |  | 
|  | sum_rdc.rate = search_state->partition_cost[PARTITION_HORZ_4B]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | const BLOCK_SIZE sml_subsize = | 
|  | get_partition_subsize(bsize, PARTITION_HORZ_4B); | 
|  | const BLOCK_SIZE big_subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE med_subsize = | 
|  | get_partition_subsize(big_subsize, PARTITION_HORZ); | 
|  | assert(sml_subsize == get_partition_subsize(med_subsize, PARTITION_HORZ)); | 
|  |  | 
|  | const int cum_step_multipliers[4] = { 0, 1, 5, 7 }; | 
|  | const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, big_subsize, med_subsize, | 
|  | sml_subsize }; | 
|  |  | 
|  | for (int idx = 0; idx < 4; idx++) { | 
|  | if (pc_tree->horizontal4b[idx]) { | 
|  | av1_free_pc_tree_recursive(pc_tree->horizontal4b[idx], num_planes, 0, 0); | 
|  | pc_tree->horizontal4b[idx] = NULL; | 
|  | } | 
|  | const int this_mi_row = mi_row + eighth_step * cum_step_multipliers[idx]; | 
|  | pc_tree->horizontal4b[idx] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, this_mi_row, mi_col, subblock_sizes[idx], pc_tree, | 
|  | PARTITION_HORZ_4B, idx, idx == 3, ss_x, ss_y); | 
|  | } | 
|  |  | 
|  | bool skippable = true; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int this_mi_row = mi_row + eighth_step * cum_step_multipliers[i]; | 
|  |  | 
|  | if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break; | 
|  |  | 
|  | SUBBLOCK_RDO_DATA rdo_data = { pc_tree->horizontal4b[i], | 
|  | get_partition_subtree_const(ptree_luma, i), | 
|  | get_partition_subtree_const(template_tree, | 
|  | i), | 
|  | this_mi_row, | 
|  | mi_col, | 
|  | subblock_sizes[i], | 
|  | PARTITION_HORZ_4B }; | 
|  | if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc, | 
|  | &sum_rdc, multi_pass_mode, &skippable, | 
|  | max_recursion_depth)) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | *best_rdc = sum_rdc; | 
|  | search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_HORZ_4B; | 
|  | pc_tree->skippable = skippable; | 
|  | } | 
|  |  | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | static INLINE void search_partition_vert_4a( | 
|  | PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc, | 
|  | PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | const PartitionSearchState *part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | LevelBanksRDO *level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  |  | 
|  | const PartitionBlkParams *blk_params = &search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, | 
|  | PARTITION_VERT_4A) || | 
|  | !part_search_state->partition_4a_allowed[VERT] || | 
|  | part_search_state->prune_partition_4a[VERT]) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (search_state->terminate_partition_search || !blk_params->has_cols || | 
|  | !is_partition_valid(bsize, PARTITION_VERT_4A) || | 
|  | !(search_state->do_rectangular_split || | 
|  | av1_active_v_edge(cpi, mi_col, blk_params->mi_step_w))) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int part_v4a_rate = search_state->partition_cost[PARTITION_VERT_4A]; | 
|  | if (part_v4a_rate == INT_MAX || | 
|  | RDCOST(x->rdmult, part_v4a_rate, 0) >= best_rdc->rdcost) { | 
|  | return; | 
|  | } | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | const int eighth_step = mi_size_wide[bsize] / 8; | 
|  |  | 
|  | sum_rdc.rate = search_state->partition_cost[PARTITION_VERT_4A]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | const BLOCK_SIZE sml_subsize = | 
|  | get_partition_subsize(bsize, PARTITION_VERT_4A); | 
|  | const BLOCK_SIZE big_subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE med_subsize = | 
|  | get_partition_subsize(big_subsize, PARTITION_VERT); | 
|  | assert(sml_subsize == get_partition_subsize(med_subsize, PARTITION_VERT)); | 
|  |  | 
|  | const int cum_step_multipliers[4] = { 0, 1, 3, 7 }; | 
|  | const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, med_subsize, big_subsize, | 
|  | sml_subsize }; | 
|  |  | 
|  | for (int idx = 0; idx < 4; idx++) { | 
|  | if (pc_tree->vertical4a[idx]) { | 
|  | av1_free_pc_tree_recursive(pc_tree->vertical4a[idx], num_planes, 0, 0); | 
|  | pc_tree->vertical4a[idx] = NULL; | 
|  | } | 
|  | const int this_mi_col = mi_col + eighth_step * cum_step_multipliers[idx]; | 
|  | pc_tree->vertical4a[idx] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, mi_row, this_mi_col, subblock_sizes[idx], pc_tree, | 
|  | PARTITION_VERT_4A, idx, idx == 3, ss_x, ss_y); | 
|  | } | 
|  |  | 
|  | bool skippable = true; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int this_mi_col = mi_col + eighth_step * cum_step_multipliers[i]; | 
|  |  | 
|  | if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break; | 
|  |  | 
|  | SUBBLOCK_RDO_DATA rdo_data = { pc_tree->vertical4a[i], | 
|  | get_partition_subtree_const(ptree_luma, i), | 
|  | get_partition_subtree_const(template_tree, | 
|  | i), | 
|  | mi_row, | 
|  | this_mi_col, | 
|  | subblock_sizes[i], | 
|  | PARTITION_VERT_4A }; | 
|  | if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc, | 
|  | &sum_rdc, multi_pass_mode, &skippable, | 
|  | max_recursion_depth)) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | *best_rdc = sum_rdc; | 
|  | search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_VERT_4A; | 
|  | pc_tree->skippable = skippable; | 
|  | } | 
|  |  | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | static INLINE void search_partition_vert_4b( | 
|  | PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc, | 
|  | PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | const PartitionSearchState *part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | LevelBanksRDO *level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  |  | 
|  | const PartitionBlkParams *blk_params = &search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, | 
|  | PARTITION_VERT_4B) || | 
|  | !part_search_state->partition_4b_allowed[VERT] || | 
|  | part_search_state->prune_partition_4b[VERT]) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (search_state->terminate_partition_search || !blk_params->has_cols || | 
|  | !is_partition_valid(bsize, PARTITION_VERT_4B) || | 
|  | !(search_state->do_rectangular_split || | 
|  | av1_active_v_edge(cpi, mi_col, blk_params->mi_step_w))) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int part_v4b_rate = search_state->partition_cost[PARTITION_VERT_4B]; | 
|  | if (part_v4b_rate == INT_MAX || | 
|  | RDCOST(x->rdmult, part_v4b_rate, 0) >= best_rdc->rdcost) { | 
|  | return; | 
|  | } | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | const int eighth_step = mi_size_wide[bsize] / 8; | 
|  |  | 
|  | sum_rdc.rate = search_state->partition_cost[PARTITION_VERT_4B]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | const BLOCK_SIZE sml_subsize = | 
|  | get_partition_subsize(bsize, PARTITION_VERT_4B); | 
|  | const BLOCK_SIZE big_subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE med_subsize = | 
|  | get_partition_subsize(big_subsize, PARTITION_VERT); | 
|  | assert(sml_subsize == get_partition_subsize(med_subsize, PARTITION_VERT)); | 
|  |  | 
|  | const int cum_step_multipliers[4] = { 0, 1, 5, 7 }; | 
|  | const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, big_subsize, med_subsize, | 
|  | sml_subsize }; | 
|  |  | 
|  | for (int idx = 0; idx < 4; idx++) { | 
|  | if (pc_tree->vertical4b[idx]) { | 
|  | av1_free_pc_tree_recursive(pc_tree->vertical4b[idx], num_planes, 0, 0); | 
|  | pc_tree->vertical4b[idx] = NULL; | 
|  | } | 
|  | const int this_mi_col = mi_col + eighth_step * cum_step_multipliers[idx]; | 
|  | pc_tree->vertical4b[idx] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, mi_row, this_mi_col, subblock_sizes[idx], pc_tree, | 
|  | PARTITION_VERT_4B, idx, idx == 3, ss_x, ss_y); | 
|  | } | 
|  |  | 
|  | bool skippable = true; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int this_mi_col = mi_col + eighth_step * cum_step_multipliers[i]; | 
|  |  | 
|  | if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break; | 
|  |  | 
|  | SUBBLOCK_RDO_DATA rdo_data = { pc_tree->vertical4b[i], | 
|  | get_partition_subtree_const(ptree_luma, i), | 
|  | get_partition_subtree_const(template_tree, | 
|  | i), | 
|  | mi_row, | 
|  | this_mi_col, | 
|  | subblock_sizes[i], | 
|  | PARTITION_VERT_4B }; | 
|  | if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc, | 
|  | &sum_rdc, multi_pass_mode, &skippable, | 
|  | max_recursion_depth)) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | *best_rdc = sum_rdc; | 
|  | search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_VERT_4B; | 
|  | pc_tree->skippable = skippable; | 
|  | } | 
|  |  | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  |  | 
|  | /*!\brief Performs rdopt on PARTITION_HORZ_3. */ | 
|  | static INLINE void search_partition_horz_3( | 
|  | PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc, | 
|  | PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | const PartitionSearchState *part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | LevelBanksRDO *level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  |  | 
|  | const PartitionBlkParams *blk_params = &search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, PARTITION_HORZ_3) || | 
|  | !part_search_state->partition_3_allowed[HORZ] || | 
|  | part_search_state->prune_partition_3[HORZ]) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (search_state->terminate_partition_search || !blk_params->has_rows || | 
|  | !is_partition_valid(bsize, PARTITION_HORZ_3) || | 
|  | !(search_state->do_rectangular_split || | 
|  | av1_active_h_edge(cpi, mi_row, blk_params->mi_step_h))) { | 
|  | return; | 
|  | } | 
|  | // TODO(yuec): set default partition modes for the edge directly by ruling out | 
|  | // h partitions from the syntax if the 2nd middle block is not in the frame. | 
|  | if (mi_col + (mi_size_wide[bsize] >> 1) >= cm->mi_params.mi_cols) return; | 
|  |  | 
|  | const int part_h3_rate = search_state->partition_cost[PARTITION_HORZ_3]; | 
|  | if (part_h3_rate == INT_MAX || | 
|  | RDCOST(x->rdmult, part_h3_rate, 0) >= best_rdc->rdcost) { | 
|  | return; | 
|  | } | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | const int quarter_step = mi_size_high[bsize] / 4; | 
|  |  | 
|  | sum_rdc.rate = search_state->partition_cost[PARTITION_HORZ_3]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | const BLOCK_SIZE sml_subsize = | 
|  | get_h_partition_subsize(bsize, 0, PARTITION_HORZ_3); | 
|  | const BLOCK_SIZE big_subsize = | 
|  | get_h_partition_subsize(bsize, 1, PARTITION_HORZ_3); | 
|  | const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, big_subsize, big_subsize, | 
|  | sml_subsize }; | 
|  | const int offset_mr[4] = { 0, quarter_step, quarter_step, 3 * quarter_step }; | 
|  | const int offset_mc[4] = { 0, 0, mi_size_wide[bsize] / 2, 0 }; | 
|  |  | 
|  | for (int idx = 0; idx < 4; idx++) { | 
|  | if (pc_tree->horizontal3[idx]) { | 
|  | av1_free_pc_tree_recursive(pc_tree->horizontal3[idx], num_planes, 0, 0); | 
|  | pc_tree->horizontal3[idx] = NULL; | 
|  | } | 
|  |  | 
|  | pc_tree->horizontal3[idx] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, mi_row + offset_mr[idx], mi_col + offset_mc[idx], | 
|  | subblock_sizes[idx], pc_tree, PARTITION_HORZ_3, idx, idx == 3, ss_x, | 
|  | ss_y); | 
|  | } | 
|  |  | 
|  | bool skippable = true; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int this_mi_row = mi_row + offset_mr[i]; | 
|  | const int this_mi_col = mi_col + offset_mc[i]; | 
|  |  | 
|  | if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break; | 
|  |  | 
|  | SUBBLOCK_RDO_DATA rdo_data = { pc_tree->horizontal3[i], | 
|  | get_partition_subtree_const(ptree_luma, i), | 
|  | get_partition_subtree_const(template_tree, | 
|  | i), | 
|  | this_mi_row, | 
|  | this_mi_col, | 
|  | subblock_sizes[i], | 
|  | PARTITION_HORZ_3 }; | 
|  | if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc, | 
|  | &sum_rdc, multi_pass_mode, &skippable, | 
|  | max_recursion_depth)) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | *best_rdc = sum_rdc; | 
|  | search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_HORZ_3; | 
|  | pc_tree->skippable = skippable; | 
|  | } | 
|  |  | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | /*!\brief Performs rdopt on PARTITION_VERT_3. */ | 
|  | static INLINE void search_partition_vert_3( | 
|  | PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc, | 
|  | PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | const PartitionSearchState *part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | LevelBanksRDO *level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  |  | 
|  | const PartitionBlkParams *blk_params = &search_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (is_part_pruned_by_forced_partition(part_search_state, PARTITION_VERT_3) || | 
|  | !part_search_state->partition_3_allowed[VERT] || | 
|  | part_search_state->prune_partition_3[VERT]) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (search_state->terminate_partition_search || !blk_params->has_cols || | 
|  | !is_partition_valid(bsize, PARTITION_VERT_3) || | 
|  | !(search_state->do_rectangular_split || | 
|  | av1_active_v_edge(cpi, mi_col, blk_params->mi_step_w))) { | 
|  | return; | 
|  | } | 
|  | // TODO(yuec): set default partition modes for the edge directly by ruling out | 
|  | // h partitions from the syntax if the 2nd middle block is not in the frame. | 
|  | if (mi_row + (mi_size_high[bsize] >> 1) >= cm->mi_params.mi_rows) return; | 
|  |  | 
|  | const int part_v3_rate = search_state->partition_cost[PARTITION_VERT_3]; | 
|  | if (part_v3_rate == INT_MAX || | 
|  | RDCOST(x->rdmult, part_v3_rate, 0) >= best_rdc->rdcost) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | const int quarter_step = mi_size_wide[bsize] / 4; | 
|  |  | 
|  | sum_rdc.rate = search_state->partition_cost[PARTITION_VERT_3]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | const BLOCK_SIZE sml_subsize = | 
|  | get_h_partition_subsize(bsize, 0, PARTITION_VERT_3); | 
|  | const BLOCK_SIZE big_subsize = | 
|  | get_h_partition_subsize(bsize, 1, PARTITION_VERT_3); | 
|  | const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, big_subsize, big_subsize, | 
|  | sml_subsize }; | 
|  | const int offset_mr[4] = { 0, 0, mi_size_high[bsize] / 2, 0 }; | 
|  | const int offset_mc[4] = { 0, quarter_step, quarter_step, 3 * quarter_step }; | 
|  |  | 
|  | for (int idx = 0; idx < 4; idx++) { | 
|  | if (pc_tree->vertical3[idx]) { | 
|  | av1_free_pc_tree_recursive(pc_tree->vertical3[idx], num_planes, 0, 0); | 
|  | pc_tree->vertical3[idx] = NULL; | 
|  | } | 
|  |  | 
|  | pc_tree->vertical3[idx] = av1_alloc_pc_tree_node( | 
|  | xd->tree_type, mi_row + offset_mr[idx], mi_col + offset_mc[idx], | 
|  | subblock_sizes[idx], pc_tree, PARTITION_VERT_3, idx, idx == 3, ss_x, | 
|  | ss_y); | 
|  | } | 
|  |  | 
|  | bool skippable = true; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int this_mi_row = mi_row + offset_mr[i]; | 
|  | const int this_mi_col = mi_col + offset_mc[i]; | 
|  |  | 
|  | if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break; | 
|  |  | 
|  | SUBBLOCK_RDO_DATA rdo_data = { pc_tree->vertical3[i], | 
|  | get_partition_subtree_const(ptree_luma, i), | 
|  | get_partition_subtree_const(template_tree, | 
|  | i), | 
|  | this_mi_row, | 
|  | this_mi_col, | 
|  | subblock_sizes[i], | 
|  | PARTITION_VERT_3 }; | 
|  | if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc, | 
|  | &sum_rdc, multi_pass_mode, &skippable, | 
|  | max_recursion_depth)) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | update_best_level_banks(level_banks, &x->e_mbd); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | *best_rdc = sum_rdc; | 
|  | search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_VERT_3; | 
|  | pc_tree->skippable = skippable; | 
|  | } | 
|  | av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | restore_level_banks(&x->e_mbd, level_banks); | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | } | 
|  |  | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | static AOM_INLINE bool try_none_after_rect( | 
|  | const MACROBLOCKD *xd, const CommonModeInfoParams *mi_params, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col) { | 
|  | if (!is_partition_point(bsize)) { | 
|  | return false; | 
|  | } | 
|  | const int tree_idx = av1_get_sdp_idx(xd->tree_type); | 
|  | // This speed feature is not applicable if either the above or left block is | 
|  | // unavailable. | 
|  | if (tree_idx == 0 && !(xd->up_available && xd->left_available)) { | 
|  | return false; | 
|  | } | 
|  | if (tree_idx == 1 && | 
|  | !(xd->chroma_up_available && xd->chroma_left_available)) { | 
|  | return false; | 
|  | } | 
|  | // Scan for the maximum and minimum dimension of the above and left blocks. | 
|  | const int mi_stride = xd->mi_stride; | 
|  | int min_left_dim_log2 = INT_MAX, min_above_dim_log2 = INT_MAX; | 
|  | int max_left_dim_log2 = 0, max_above_dim_log2 = 0; | 
|  | const int mi_height = | 
|  | AOMMIN(mi_size_high[bsize], mi_params->mi_rows - mi_row); | 
|  | const int mi_width = AOMMIN(mi_size_wide[bsize], mi_params->mi_cols - mi_col); | 
|  | for (int row = 0; row < mi_height;) { | 
|  | const MB_MODE_INFO *mi = xd->mi[row * mi_stride - 1]; | 
|  | const BLOCK_SIZE left_bsize = mi->sb_type[tree_idx]; | 
|  |  | 
|  | min_left_dim_log2 = | 
|  | AOMMIN(min_left_dim_log2, mi_size_high_log2[left_bsize]); | 
|  | max_left_dim_log2 = | 
|  | AOMMAX(max_left_dim_log2, mi_size_high_log2[left_bsize]); | 
|  | const int row_step = | 
|  | tree_idx == 0 | 
|  | ? mi_size_high[left_bsize] - AOMMAX(mi_row - mi->mi_row_start, 0) | 
|  | : mi_size_high[left_bsize] - | 
|  | AOMMAX(mi_row - mi->chroma_mi_row_start, 0); | 
|  | row += row_step; | 
|  | assert(row_step > 0); | 
|  | } | 
|  | for (int col = 0; col < mi_width;) { | 
|  | const MB_MODE_INFO *mi = xd->mi[-1 * mi_stride + col]; | 
|  | const BLOCK_SIZE above_bsize = mi->sb_type[tree_idx]; | 
|  |  | 
|  | min_above_dim_log2 = | 
|  | AOMMIN(min_above_dim_log2, mi_size_wide_log2[above_bsize]); | 
|  | max_above_dim_log2 = | 
|  | AOMMAX(max_above_dim_log2, mi_size_wide_log2[above_bsize]); | 
|  | const int col_step = | 
|  | tree_idx == 0 | 
|  | ? mi_size_wide[above_bsize] - AOMMAX(mi_col - mi->mi_col_start, 0) | 
|  | : mi_size_wide[above_bsize] - | 
|  | AOMMAX(mi_col - mi->chroma_mi_col_start, 0); | 
|  | col += col_step; | 
|  | assert(col_step > 0); | 
|  | } | 
|  | // Delay the search for partition none if the above width and left height | 
|  | // are not bigger than the current block dimension AND at least one of the | 
|  | // dimensions if smaller than the current block by a factor of 4. | 
|  | if ((mi_size_high_log2[bsize] > max_left_dim_log2 + 1 && | 
|  | mi_size_wide_log2[bsize] >= min_above_dim_log2) || | 
|  | (mi_size_wide_log2[bsize] > max_above_dim_log2 + 1 && | 
|  | mi_size_high_log2[bsize] >= min_left_dim_log2)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /*!\brief Prune PARTITION_NONE search if rect partitions split deeper. | 
|  | */ | 
|  | static AOM_INLINE void prune_none_with_rect_results( | 
|  | PartitionSearchState *part_search_state, const PC_TREE *pc_tree) { | 
|  | if (!part_search_state->found_best_partition) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const PARTITION_TYPE cur_best_partition = pc_tree->partitioning; | 
|  | PC_TREE *const *tree = NULL; | 
|  | if (cur_best_partition == PARTITION_HORZ) { | 
|  | tree = pc_tree->horizontal; | 
|  | } else if (cur_best_partition == PARTITION_VERT) { | 
|  | tree = pc_tree->vertical; | 
|  | } else { | 
|  | assert(0 && | 
|  | "Unexpected best partition type in prune_none_with_rect_results."); | 
|  | } | 
|  | // Give up on PARTITION_NONE if either of the subtrees decided to split | 
|  | // further. | 
|  | part_search_state->prune_partition_none |= | 
|  | tree[0]->partitioning != PARTITION_NONE || | 
|  | tree[1]->partitioning != PARTITION_NONE; | 
|  | } | 
|  |  | 
|  | /*!\brief AV1 block partition search (full search). | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * Searches for the best partition pattern for a block based on the | 
|  | * rate-distortion cost, and returns a bool value to indicate whether a valid | 
|  | * partition pattern is found. The partition can recursively go down to the | 
|  | * smallest block size. | 
|  | * | 
|  | * \param[in]    cpi                Top-level encoder structure | 
|  | * \param[in]    td                 Pointer to thread data | 
|  | * \param[in]    tile_data          Pointer to struct holding adaptive | 
|  | data/contexts/models for the tile during | 
|  | encoding | 
|  | * \param[in]    tp                 Pointer to the starting token | 
|  | * \param[in]    mi_row             Row coordinate of the block in a step size | 
|  | of MI_SIZE | 
|  | * \param[in]    mi_col             Column coordinate of the block in a step | 
|  | size of MI_SIZE | 
|  | * \param[in]    bsize              Current block size | 
|  | * \param[in]    rd_cost            Pointer to the final rd cost of the block | 
|  | * \param[in]    best_rdc           Upper bound of rd cost of a valid partition | 
|  | * \param[in]    pc_tree            Pointer to the PC_TREE node storing the | 
|  | picked partitions and mode info for the | 
|  | current block | 
|  | * \param[in]    ptree_luma Pointer to the luma partition tree so that the | 
|  | *                          encoder to estimate the partition type for chroma. | 
|  | * \param[in]    template_tree      A partial tree that contains the partition | 
|  | *                                  structure to be used as a template. | 
|  | * \param[in]    max_recursion_depth The maximum level of recursion allowed | 
|  | * \param[in]    sms_tree           Pointer to struct holding simple motion | 
|  | search data for the current block | 
|  | * \param[in]    none_rd            Pointer to the rd cost in the case of not | 
|  | splitting the current block | 
|  | * \param[in]    multi_pass_mode    SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS | 
|  | * \param[in]    rect_part_win_info Pointer to struct storing whether horz/vert | 
|  | * partition outperforms previously tested partitions | 
|  | * | 
|  | * \return A bool value is returned indicating if a valid partition is found. | 
|  | * The pc_tree struct is modified to store the picked partition and modes. | 
|  | * The rd_cost struct is also updated with the RD stats corresponding to the | 
|  | * best partition found. | 
|  | */ | 
|  | #else | 
|  | /*!\brief AV1 block partition search (full search). | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * Searches for the best partition pattern for a block based on the | 
|  | * rate-distortion cost, and returns a bool value to indicate whether a valid | 
|  | * partition pattern is found. The partition can recursively go down to the | 
|  | * smallest block size. | 
|  | * | 
|  | * This function works on planes determined by get_partition_plane_start() and | 
|  | * get_partition_plane_end() based on xd->tree_type. | 
|  | * | 
|  | * \param[in]    cpi                Top-level encoder structure | 
|  | * \param[in]    td                 Pointer to thread data | 
|  | * \param[in]    tile_data          Pointer to struct holding adaptive | 
|  | data/contexts/models for the tile during | 
|  | encoding | 
|  | * \param[in]    tp                 Pointer to the starting token | 
|  | * \param[in]    mi_row             Row coordinate of the block in a step size | 
|  | of MI_SIZE | 
|  | * \param[in]    mi_col             Column coordinate of the block in a step | 
|  | size of MI_SIZE | 
|  | * \param[in]    bsize              Current block size | 
|  | * \param[in]    rd_cost            Pointer to the final rd cost of the block | 
|  | * \param[in]    best_rdc           Upper bound of rd cost of a valid partition | 
|  | * \param[in]    pc_tree            Pointer to the PC_TREE node storing the | 
|  | picked partitions and mode info for the | 
|  | current block | 
|  | * \param[in]    sms_tree           Pointer to struct holding simple motion | 
|  | search data for the current block | 
|  | * \param[in]    none_rd            Pointer to the rd cost in the case of not | 
|  | splitting the current block | 
|  | * \param[in]    multi_pass_mode    SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS | 
|  | * \param[in]    rect_part_win_info Pointer to struct storing whether horz/vert | 
|  | partition outperforms previously tested partitions | 
|  | * | 
|  | * \return A bool value is returned indicating if a valid partition is found. | 
|  | * The pc_tree struct is modified to store the picked partition and modes. | 
|  | * The rd_cost struct is also updated with the RD stats corresponding to the | 
|  | * best partition found. | 
|  | */ | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, | 
|  | RD_STATS best_rdc, PC_TREE *pc_tree, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const PARTITION_TREE *ptree_luma, | 
|  | const PARTITION_TREE *template_tree, | 
|  | int max_recursion_depth, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd, | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, | 
|  | RD_RECT_PART_WIN_INFO *rect_part_win_info) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | const TokenExtra *const tp_orig = *tp; | 
|  | PartitionSearchState part_search_state; | 
|  | // Initialization of state variables used in partition search. | 
|  | init_partition_search_state_params(x, cpi, &part_search_state, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree, ptree_luma, template_tree, | 
|  | max_recursion_depth, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | mi_row, mi_col, bsize); | 
|  | PartitionBlkParams blk_params = part_search_state.part_blk_params; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (sms_tree != NULL) | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | sms_tree->partitioning = PARTITION_NONE; | 
|  | if (best_rdc.rdcost < 0) { | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | return part_search_state.found_best_partition; | 
|  | } | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Check whether there is a counterpart pc_tree node with the same size | 
|  | // and the same neighboring context at the same location but from a | 
|  | // different partition path. If yes directly copy the RDO decision made for | 
|  | // the counterpart. | 
|  | PC_TREE *counterpart_block = av1_look_for_counterpart_block(pc_tree); | 
|  | if (counterpart_block) { | 
|  | if (counterpart_block->rd_cost.rate != INT_MAX) { | 
|  | av1_copy_pc_tree_recursive(cm, pc_tree, counterpart_block, | 
|  | part_search_state.ss_x, part_search_state.ss_y, | 
|  | &td->shared_coeff_buf, xd->tree_type, | 
|  | num_planes); | 
|  | *rd_cost = pc_tree->rd_cost; | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | x->e_mbd.ref_mv_bank = counterpart_block->ref_mv_bank; | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  | #if WARP_CU_BANK | 
|  | x->e_mbd.warp_param_bank = counterpart_block->warp_param_bank; | 
|  | #endif  // WARP_CU_BANK | 
|  | assert(bsize != cm->seq_params.sb_size); | 
|  | if (bsize == cm->seq_params.sb_size) exit(0); | 
|  |  | 
|  | if (!pc_tree->is_last_subblock) { | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, | 
|  | pc_tree, NULL, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL); | 
|  | } | 
|  | return true; | 
|  | } else { | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0; | 
|  |  | 
|  | // Override skipping rectangular partition operations for edge blocks. | 
|  | if (none_rd) *none_rd = 0; | 
|  | (void)*tp_orig; | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | int partition_decisions[EXT_PARTITION_TYPES] = { 0 }; | 
|  | int partition_attempts[EXT_PARTITION_TYPES] = { 0 }; | 
|  | int64_t partition_times[EXT_PARTITION_TYPES] = { 0 }; | 
|  | struct aom_usec_timer partition_timer = { 0 }; | 
|  | int partition_timer_on = 0; | 
|  | #if CONFIG_COLLECT_PARTITION_STATS == 2 | 
|  | PartitionStats *part_stats = &cpi->partition_stats; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | // Override partition costs at the edges of the frame in the same | 
|  | // way as in read_partition (see decodeframe.c). | 
|  | if (!(blk_params.has_rows && blk_params.has_cols)) | 
|  | set_partition_cost_for_edge_blk(cm, xd, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | &pc_tree->chroma_ref_info, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | &part_search_state); | 
|  |  | 
|  | // Disable rectangular partitions for inner blocks when the current block is | 
|  | // forced to only use square partitions. | 
|  | if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) { | 
|  | part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows; | 
|  | part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Nothing should rely on the default value of this array (which is just | 
|  | // leftover from encoding the previous block. Setting it to fixed pattern | 
|  | // when debugging. | 
|  | // bit 0, 1, 2 are blk_skip of each plane | 
|  | // bit 4, 5, 6 are initialization checking of each plane | 
|  | memset(x->txfm_search_info.blk_skip, 0x77, | 
|  | sizeof(x->txfm_search_info.blk_skip)); | 
|  | #endif  // NDEBUG | 
|  |  | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Set buffers and offsets. | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize, | 
|  | &pc_tree->chroma_ref_info); | 
|  |  | 
|  | bool search_none_after_rect = false; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (cpi->sf.part_sf.adaptive_partition_search_order && | 
|  | part_search_state.forced_partition == PARTITION_INVALID) { | 
|  | search_none_after_rect = | 
|  | try_none_after_rect(xd, &cm->mi_params, bsize, mi_row, mi_col); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  |  | 
|  | // Update rd cost of the bound using the current multiplier. | 
|  | av1_rd_cost_update(x->rdmult, &best_rdc); | 
|  |  | 
|  | if (bsize == BLOCK_16X16 && cpi->vaq_refresh) | 
|  | x->mb_energy = av1_log_block_var(cpi, x, bsize); | 
|  |  | 
|  | // Set the context. | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | LevelBanksRDO level_banks = { | 
|  | x->e_mbd.ref_mv_bank, /* curr_level_bank*/ | 
|  | x->e_mbd.ref_mv_bank, /* best_level_bank*/ | 
|  | #if WARP_CU_BANK | 
|  | x->e_mbd.warp_param_bank, /* curr_level_warp_bank*/ | 
|  | x->e_mbd.warp_param_bank, /* best_level_warp_bank*/ | 
|  | #endif                        // WARP_CU_BANK | 
|  | }; | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | { | 
|  | SimpleMotionData *sms_data = av1_get_sms_data_entry( | 
|  | x->sms_bufs, mi_row, mi_col, bsize, cm->seq_params.sb_size); | 
|  | sms_tree = sms_data->old_sms; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | int *partition_horz_allowed = &part_search_state.partition_rect_allowed[HORZ]; | 
|  | int *partition_vert_allowed = &part_search_state.partition_rect_allowed[VERT]; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (part_search_state.forced_partition == PARTITION_INVALID && | 
|  | is_bsize_gt(bsize, x->sb_enc.min_partition_size)) { | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | bool *prune_horz = &part_search_state.prune_rect_part[HORZ]; | 
|  | bool *prune_vert = &part_search_state.prune_rect_part[VERT]; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | int do_square_split = true; | 
|  | int *sqr_split_ptr = &do_square_split; | 
|  | #else | 
|  | int *sqr_split_ptr = &part_search_state.do_square_split; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Pruning: before searching any partition type, using source and simple | 
|  | // motion search results to prune out unlikely partitions. | 
|  | av1_prune_partitions_before_search( | 
|  | cpi, x, mi_row, mi_col, bsize, sms_tree, | 
|  | &part_search_state.partition_none_allowed, partition_horz_allowed, | 
|  | partition_vert_allowed, &part_search_state.do_rectangular_split, | 
|  | sqr_split_ptr, prune_horz, prune_vert, pc_tree); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | part_search_state.forced_partition = get_forced_partition_type( | 
|  | cm, x, blk_params.mi_row, blk_params.mi_col, blk_params.bsize, | 
|  | ptree_luma, template_tree, &pc_tree->chroma_ref_info); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Pruning: eliminating partition types leading to coding block sizes | 
|  | // outside the min and max bsize limitations set from the encoder. | 
|  | av1_prune_partitions_by_max_min_bsize( | 
|  | &x->sb_enc, bsize, blk_params.has_rows && blk_params.has_cols, | 
|  | &part_search_state.partition_none_allowed, partition_horz_allowed, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | partition_vert_allowed, NULL); | 
|  | #else | 
|  | partition_vert_allowed, &part_search_state.do_square_split); | 
|  | #endif | 
|  |  | 
|  | int luma_split_flag = 0; | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int parent_block_width = block_size_wide[bsize]; | 
|  | if (xd->tree_type == CHROMA_PART && parent_block_width >= SHARED_PART_SIZE) { | 
|  | luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); | 
|  | } | 
|  | // if luma blocks uses smaller blocks, then chroma will also split | 
|  | if (luma_split_flag > 3) { | 
|  | part_search_state.partition_none_allowed = BLOCK_INVALID; | 
|  | part_search_state.partition_rect_allowed[HORZ] = 0; | 
|  | part_search_state.partition_rect_allowed[VERT] = 0; | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Partition search | 
|  | BEGIN_PARTITION_SEARCH: | 
|  | // If a valid partition is required, usually when the first round cannot | 
|  | // find a valid one under the cost limit after pruning, reset the | 
|  | // limitations on partition types. | 
|  | if (x->must_find_valid_partition) { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | init_allowed_partitions(&part_search_state, &cpi->oxcf.part_cfg, | 
|  | &pc_tree->chroma_ref_info, xd->tree_type); | 
|  | #else | 
|  | reset_part_limitations(cpi, &part_search_state); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | } | 
|  |  | 
|  | // Partition block source pixel variance. | 
|  | unsigned int pb_source_variance = UINT_MAX; | 
|  |  | 
|  | // PARTITION_NONE search stage. | 
|  | int64_t part_none_rd = INT64_MAX; | 
|  | if (!search_none_after_rect) { | 
|  | none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, &pb_source_variance, | 
|  | none_rd, &part_none_rd | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | &level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (cpi->sf.part_sf.end_part_search_after_consec_failures && x->is_whole_sb && | 
|  | !frame_is_intra_only(cm) && | 
|  | part_search_state.forced_partition == PARTITION_INVALID && | 
|  | pc_tree->parent && pc_tree->parent->parent) { | 
|  | if (pc_tree->none_rd.rate == INT_MAX && | 
|  | pc_tree->parent->none_rd.rate == INT_MAX && | 
|  | pc_tree->parent->parent->none_rd.rate == INT_MAX && | 
|  | part_search_state.partition_none_allowed && | 
|  | best_rdc.rdcost < INT64_MAX) { | 
|  | part_search_state.terminate_partition_search = 1; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | // PARTITION_SPLIT search stage. | 
|  | int64_t part_split_rd = INT64_MAX; | 
|  | split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, multi_pass_mode, | 
|  | &part_split_rd | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | &level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  |  | 
|  | // Terminate partition search for child partition, | 
|  | // when NONE and SPLIT partition rd_costs are INT64_MAX. | 
|  | if (cpi->sf.part_sf.early_term_after_none_split && | 
|  | part_none_rd == INT64_MAX && part_split_rd == INT64_MAX && | 
|  | !x->must_find_valid_partition && (bsize != cm->seq_params.sb_size)) { | 
|  | part_search_state.terminate_partition_search = 1; | 
|  | } | 
|  |  | 
|  | // Prune partitions based on PARTITION_NONE and PARTITION_SPLIT. | 
|  | prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc, | 
|  | part_none_rd, part_split_rd); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // Rectangular partitions search stage. | 
|  | rectangular_partition_search( | 
|  | cpi, td, tile_data, tp, x, pc_tree, &x_ctx, &part_search_state, &best_rdc, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | multi_pass_mode, ptree_luma, template_tree, max_recursion_depth - 1, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | rect_part_win_info, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | &level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | part_none_rd); | 
|  |  | 
|  | if (pb_source_variance == UINT_MAX) { | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, NULL); | 
|  | pb_source_variance = av1_high_get_sby_perpixel_variance( | 
|  | cpi, &x->plane[0].src, bsize, xd->bd); | 
|  | } | 
|  |  | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part_search_state.do_rectangular_split)); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (search_none_after_rect) { | 
|  | prune_none_with_rect_results(&part_search_state, pc_tree); | 
|  | none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, &pb_source_variance, | 
|  | none_rd, &part_none_rd | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | &level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int ext_partition_allowed = | 
|  | part_search_state.do_rectangular_split && | 
|  | bsize > cpi->sf.part_sf.ext_partition_eval_thresh && | 
|  | blk_params.has_rows && blk_params.has_cols && ((luma_split_flag <= 3)); | 
|  |  | 
|  | // AB partitions search stage. | 
|  | ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | &part_search_state, &best_rdc, rect_part_win_info, | 
|  | pb_source_variance, ext_partition_allowed | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | &level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  |  | 
|  | // 4-way partitions search stage. | 
|  | int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 }; | 
|  |  | 
|  | // Disable 4-way partition search flags for width less than twice the | 
|  | // minimum width. | 
|  | if (blk_params.width < (blk_params.min_partition_size_1d << 2) || | 
|  | (xd->tree_type == CHROMA_PART && bsize <= BLOCK_16X16) || | 
|  | (luma_split_flag > 3)) { | 
|  | part4_search_allowed[HORZ4] = 0; | 
|  | part4_search_allowed[VERT4] = 0; | 
|  | } else { | 
|  | // Prune 4-way partition search. | 
|  | prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc, | 
|  | pb_source_variance, ext_partition_allowed, | 
|  | part4_search_allowed); | 
|  | } | 
|  |  | 
|  | // PARTITION_HORZ_4 | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part4_search_allowed[HORZ4])); | 
|  | if (!part_search_state.terminate_partition_search && | 
|  | part4_search_allowed[HORZ4] && blk_params.has_rows && | 
|  | (part_search_state.do_rectangular_split || | 
|  | av1_active_h_edge(cpi, mi_row, blk_params.mi_step))) { | 
|  | const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4, | 
|  | 0 }; | 
|  | // Evaluation of Horz4 partition type. | 
|  | rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | pc_tree->horizontal4, &part_search_state, &best_rdc, | 
|  | inc_step, PARTITION_HORZ_4 | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | &level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  | } | 
|  |  | 
|  | // PARTITION_VERT_4 | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part4_search_allowed[VERT4])); | 
|  | if (!part_search_state.terminate_partition_search && | 
|  | part4_search_allowed[VERT4] && blk_params.has_cols && | 
|  | (part_search_state.do_rectangular_split || | 
|  | av1_active_v_edge(cpi, mi_col, blk_params.mi_step))) { | 
|  | const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] / | 
|  | 4 }; | 
|  | // Evaluation of Vert4 partition type. | 
|  | rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | pc_tree->vertical4, &part_search_state, &best_rdc, | 
|  | inc_step, PARTITION_VERT_4 | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | , | 
|  | &level_banks | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | ); | 
|  | } | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | bool partition_boundaries[MAX_MIB_SQUARE] = { 0 }; | 
|  | prune_ext_partitions_3way(cpi, pc_tree, &part_search_state, | 
|  | partition_boundaries); | 
|  |  | 
|  | const int ext_recur_depth = | 
|  | AOMMIN(max_recursion_depth - 1, cpi->sf.part_sf.ext_recur_depth); | 
|  | const bool track_ptree_luma = | 
|  | is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize); | 
|  |  | 
|  | // PARTITION_HORZ_3 | 
|  | search_partition_horz_3(&part_search_state, cpi, td, tile_data, tp, &best_rdc, | 
|  | pc_tree, track_ptree_luma ? ptree_luma : NULL, | 
|  | template_tree, &x_ctx, &part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | &level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | multi_pass_mode, ext_recur_depth); | 
|  |  | 
|  | // PARTITION_VERT_3 | 
|  | search_partition_vert_3(&part_search_state, cpi, td, tile_data, tp, &best_rdc, | 
|  | pc_tree, track_ptree_luma ? ptree_luma : NULL, | 
|  | template_tree, &x_ctx, &part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | &level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | multi_pass_mode, ext_recur_depth); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if CONFIG_UNEVEN_4WAY | 
|  | prune_ext_partitions_4way(cpi, pc_tree, &part_search_state, | 
|  | partition_boundaries); | 
|  |  | 
|  | // PARTITION_HORZ_4A | 
|  | search_partition_horz_4a(&part_search_state, cpi, td, tile_data, tp, | 
|  | &best_rdc, pc_tree, | 
|  | track_ptree_luma ? ptree_luma : NULL, template_tree, | 
|  | &x_ctx, &part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | &level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | multi_pass_mode, ext_recur_depth); | 
|  |  | 
|  | // PARTITION_HORZ_4B | 
|  | search_partition_horz_4b(&part_search_state, cpi, td, tile_data, tp, | 
|  | &best_rdc, pc_tree, | 
|  | track_ptree_luma ? ptree_luma : NULL, template_tree, | 
|  | &x_ctx, &part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | &level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | multi_pass_mode, ext_recur_depth); | 
|  |  | 
|  | // PARTITION_VERT_4A | 
|  | search_partition_vert_4a(&part_search_state, cpi, td, tile_data, tp, | 
|  | &best_rdc, pc_tree, | 
|  | track_ptree_luma ? ptree_luma : NULL, template_tree, | 
|  | &x_ctx, &part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | &level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | multi_pass_mode, ext_recur_depth); | 
|  |  | 
|  | // PARTITION_VERT_4B | 
|  | search_partition_vert_4b(&part_search_state, cpi, td, tile_data, tp, | 
|  | &best_rdc, pc_tree, | 
|  | track_ptree_luma ? ptree_luma : NULL, template_tree, | 
|  | &x_ctx, &part_search_state, | 
|  | #if CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | &level_banks, | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT || WARP_CU_BANK | 
|  | multi_pass_mode, ext_recur_depth); | 
|  | #endif  // CONFIG_UNEVEN_4WAY | 
|  |  | 
|  | if (bsize == cm->seq_params.sb_size && | 
|  | !part_search_state.found_best_partition) { | 
|  | if (x->must_find_valid_partition) { | 
|  | aom_internal_error( | 
|  | &cpi->common.error, AOM_CODEC_ERROR, | 
|  | "The same superblock is recoded twice. Infinite loop detected?"); | 
|  | } | 
|  | // Did not find a valid partition, go back and search again, with less | 
|  | // constraint on which partition types to search. | 
|  | x->must_find_valid_partition = 1; | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS == 2 | 
|  | part_stats->partition_redo += 1; | 
|  | #endif | 
|  | goto BEGIN_PARTITION_SEARCH; | 
|  | } | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS && !defined(NDEBUG) | 
|  | if (template_tree && template_tree->partition != PARTITION_INVALID && | 
|  | pc_tree->partitioning != template_tree->partition) { | 
|  | assert(0); | 
|  | printf("Mismatch with template at fr: %d, mi: (%d, %d), BLOCK_%dX%d\n", | 
|  | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | cm->current_frame.display_order_hint, | 
|  | #else | 
|  | cm->current_frame.order_hint, | 
|  | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | mi_row, mi_col, block_size_wide[bsize], block_size_high[bsize]); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS && !defined(NDEBUG) | 
|  |  | 
|  | // Store the final rd cost | 
|  | *rd_cost = best_rdc; | 
|  | #if CONFIG_MVP_IMPROVEMENT | 
|  | x->e_mbd.ref_mv_bank = level_banks.best_level_bank; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree->ref_mv_bank = level_banks.best_level_bank; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #endif  // CONFIG_MVP_IMPROVEMENT | 
|  | #if WARP_CU_BANK | 
|  | x->e_mbd.warp_param_bank = level_banks.best_level_warp_bank; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | pc_tree->warp_param_bank = level_banks.best_level_warp_bank; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #endif  // WARP_CU_BANK | 
|  | pc_tree->rd_cost = best_rdc; | 
|  | if (!part_search_state.found_best_partition) { | 
|  | av1_invalid_rd_stats(&pc_tree->rd_cost); | 
|  | } else { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | av1_cache_best_partition(x->sms_bufs, mi_row, mi_col, bsize, | 
|  | cm->seq_params.sb_size, pc_tree->partitioning); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | } | 
|  |  | 
|  | // Also record the best partition in simple motion data tree because it is | 
|  | // necessary for the related speed features. | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (sms_tree) | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | sms_tree->partitioning = pc_tree->partitioning; | 
|  |  | 
|  | if (luma_split_flag > 3) { | 
|  | assert(pc_tree->partitioning == PARTITION_SPLIT); | 
|  | } | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) { | 
|  | partition_decisions[pc_tree->partitioning] += 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS == 1 | 
|  | // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each | 
|  | // prediction block. | 
|  | FILE *f = fopen("data.csv", "a"); | 
|  | fprintf(f, "%d,%d,%d,", bsize, cm->show_frame, frame_is_intra_only(cm)); | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%d,", partition_decisions[idx]); | 
|  | } | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%d,", partition_attempts[idx]); | 
|  | } | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%ld,", partition_times[idx]); | 
|  | } | 
|  | fprintf(f, "\n"); | 
|  | fclose(f); | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS == 2 | 
|  | // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats | 
|  | // for the whole clip. So we need to pass the information upstream to the | 
|  | // encoder. | 
|  | const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize); | 
|  | int *agg_attempts = part_stats->partition_attempts[bsize_idx]; | 
|  | int *agg_decisions = part_stats->partition_decisions[bsize_idx]; | 
|  | int64_t *agg_times = part_stats->partition_times[bsize_idx]; | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | agg_attempts[idx] += partition_attempts[idx]; | 
|  | agg_decisions[idx] += partition_decisions[idx]; | 
|  | agg_times[idx] += partition_times[idx]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Reset the PC_TREE deallocation flag. | 
|  | int pc_tree_dealloc = 0; | 
|  |  | 
|  | // If a valid partition is found and reconstruction is required for future | 
|  | // sub-blocks in the same group. | 
|  | if (part_search_state.found_best_partition && pc_tree->index != 3) { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(pc_tree->partitioning != PARTITION_SPLIT); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (bsize == cm->seq_params.sb_size) { | 
|  | // Encode the superblock. | 
|  | const int emit_output = multi_pass_mode != SB_DRY_PASS; | 
|  | const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL; | 
|  | const int plane_start = (xd->tree_type == CHROMA_PART); | 
|  | const int plane_end = (xd->tree_type == LUMA_PART) ? 1 : num_planes; | 
|  | for (int plane = plane_start; plane < plane_end; plane++) { | 
|  | x->cb_offset[plane] = 0; | 
|  | } | 
|  | av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize, | 
|  | pc_tree, xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | xd->tree_type == CHROMA_PART ? xd->sbi->ptree_root[0] : NULL, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL); | 
|  | // Dealloc the whole PC_TREE after a superblock is done. | 
|  | av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0); | 
|  | pc_tree_dealloc = 1; | 
|  | } else { | 
|  | // Encode the smaller blocks in DRY_RUN mode. | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, | 
|  | pc_tree, NULL, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | int keep_tree = 0; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | keep_tree = should_reuse_mode(x, REUSE_INTER_MODE_IN_INTERFRAME_FLAG | | 
|  | REUSE_INTRA_MODE_IN_INTERFRAME_FLAG); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | // If the tree still exists (non-superblock), dealloc most nodes, only keep | 
|  | // nodes for the best partition and PARTITION_NONE. | 
|  | if (!pc_tree_dealloc && !keep_tree) { | 
|  | av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1); | 
|  | } | 
|  |  | 
|  | if (bsize == cm->seq_params.sb_size) { | 
|  | assert(best_rdc.rate < INT_MAX); | 
|  | assert(best_rdc.dist < INT64_MAX); | 
|  | } else { | 
|  | assert(tp_orig == *tp); | 
|  | } | 
|  |  | 
|  | // Restore the rd multiplier. | 
|  | x->rdmult = orig_rdmult; | 
|  | return part_search_state.found_best_partition; | 
|  | } |