| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_MV_H_ |
| #define AOM_AV1_COMMON_MV_H_ |
| |
| #include <stdlib.h> |
| |
| #include "av1/common/common.h" |
| #include "av1/common/common_data.h" |
| #include "aom_dsp/aom_filter.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define INVALID_MV 0x80008000 |
| |
| typedef struct mv { |
| int16_t row; |
| int16_t col; |
| } MV; |
| |
| static const MV kZeroMv = { 0, 0 }; |
| |
| typedef union int_mv { |
| uint32_t as_int; |
| MV as_mv; |
| } int_mv; /* facilitates faster equality tests and copies */ |
| |
| typedef struct mv32 { |
| int32_t row; |
| int32_t col; |
| } MV32; |
| |
| enum { |
| MV_SUBPEL_NONE = 0, |
| MV_SUBPEL_HALF_PRECISION = 1, |
| MV_SUBPEL_QTR_PRECISION = 2, |
| MV_SUBPEL_EIGHTH_PRECISION = 3, |
| MV_SUBPEL_PRECISIONS, |
| } SENUM1BYTE(MvSubpelPrecision); |
| |
| // DISALLOW_ONE_DOWN_FLEX_MVRES 0 => allow all possible down precisions |
| // DISALLOW_ONE_DOWN_FLEX_MVRES 1 => allow all possible down precisions except 1 |
| // DISALLOW_ONE_DOWN_FLEX_MVRES 2 => allow only 0 and 2 down precisions |
| #if CONFIG_FLEX_MVRES |
| #define DISALLOW_ONE_DOWN_FLEX_MVRES 2 // Choose one of the above |
| #define MV_PREC_DOWN_CONTEXTS 2 |
| #else |
| #define DISALLOW_ONE_DOWN_FLEX_MVRES 0 |
| #endif // CONFIG_FLEX_MVRES |
| #define FLEX_MV_COSTS_SIZE \ |
| ((MV_SUBPEL_PRECISIONS) - (DISALLOW_ONE_DOWN_FLEX_MVRES)) |
| #define NUM_PB_FLEX_QUALIFIED_MAX_PREC \ |
| ((MV_SUBPEL_PRECISIONS) - (MV_SUBPEL_QTR_PRECISION)) |
| |
| // Whether to adapt at the sb level |
| #if CONFIG_SB_FLEX_MVRES |
| #define ENABLE_SB_RES 1 |
| #else |
| #define ENABLE_SB_RES 0 |
| #endif // CONFIG_SB_FLEX_MVRES |
| // Whether to adapt at the pb level |
| #if CONFIG_PB_FLEX_MVRES |
| #define ENABLE_PB_RES 1 |
| #else |
| #define ENABLE_PB_RES 0 |
| #endif |
| |
| #if CONFIG_COMPANDED_MV |
| #define COMPANDED_INTMV_THRESH_QTR 96 |
| #define COMPANDED_INTMV_THRESH_HALF 256 |
| #endif // CONFIG_COMPANDED_MV |
| |
| // Bits of precision used for the model |
| #define WARPEDMODEL_PREC_BITS 16 |
| #define WARPEDMODEL_ROW3HOMO_PREC_BITS 16 |
| |
| #define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS) |
| #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3)) |
| #define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 2)) |
| |
| // Bits of subpel precision for warped interpolation |
| #define WARPEDPIXEL_PREC_BITS 6 |
| #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS) |
| |
| #define WARP_PARAM_REDUCE_BITS 6 |
| |
| #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS) |
| |
| /* clang-format off */ |
| enum { |
| IDENTITY = 0, // identity transformation, 0-parameter |
| TRANSLATION = 1, // translational motion 2-parameter |
| ROTZOOM = 2, // simplified affine with rotation + zoom only, 4-parameter |
| AFFINE = 3, // affine, 6-parameter |
| TRANS_TYPES, |
| } UENUM1BYTE(TransformationType); |
| /* clang-format on */ |
| |
| // Number of types used for global motion (must be >= 3 and <= TRANS_TYPES) |
| // The following can be useful: |
| // GLOBAL_TRANS_TYPES 3 - up to rotation-zoom |
| // GLOBAL_TRANS_TYPES 4 - up to affine |
| // GLOBAL_TRANS_TYPES 6 - up to hor/ver trapezoids |
| // GLOBAL_TRANS_TYPES 7 - up to full homography |
| #define GLOBAL_TRANS_TYPES 4 |
| |
| typedef struct { |
| int global_warp_allowed; |
| int local_warp_allowed; |
| } WarpTypesAllowed; |
| |
| // number of parameters used by each transformation in TransformationTypes |
| static const int trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 }; |
| |
| // The order of values in the wmmat matrix below is best described |
| // by the homography: |
| // [x' (m2 m3 m0 [x |
| // z . y' = m4 m5 m1 * y |
| // 1] m6 m7 1) 1] |
| typedef struct { |
| int32_t wmmat[8]; |
| int16_t alpha, beta, gamma, delta; |
| TransformationType wmtype; |
| int8_t invalid; |
| } WarpedMotionParams; |
| |
| /* clang-format off */ |
| static const WarpedMotionParams default_warp_params = { |
| { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, |
| 0 }, |
| 0, 0, 0, 0, |
| IDENTITY, |
| 0, |
| }; |
| /* clang-format on */ |
| |
| // The following constants describe the various precisions |
| // of different parameters in the global motion experiment. |
| // |
| // Given the general homography: |
| // [x' (a b c [x |
| // z . y' = d e f * y |
| // 1] g h i) 1] |
| // |
| // Constants using the name ALPHA here are related to parameters |
| // a, b, d, e. Constants using the name TRANS are related |
| // to parameters c and f. |
| // |
| // Anything ending in PREC_BITS is the number of bits of precision |
| // to maintain when converting from double to integer. |
| // |
| // The ABS parameters are used to create an upper and lower bound |
| // for each parameter. In other words, after a parameter is integerized |
| // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS). |
| // |
| // XXX_PREC_DIFF and XXX_DECODE_FACTOR |
| // are computed once here to prevent repetitive |
| // computation on the decoder side. These are |
| // to allow the global motion parameters to be encoded in a lower |
| // precision than the warped model precision. This means that they |
| // need to be changed to warped precision when they are decoded. |
| // |
| // XX_MIN, XX_MAX are also computed to avoid repeated computation |
| |
| #define SUBEXPFIN_K 3 |
| #define GM_TRANS_PREC_BITS 6 |
| #define GM_ABS_TRANS_BITS 12 |
| #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) |
| #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) |
| #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) |
| #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) |
| #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) |
| |
| #define GM_ALPHA_PREC_BITS 15 |
| #define GM_ABS_ALPHA_BITS 12 |
| #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) |
| #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) |
| |
| #define GM_ROW3HOMO_PREC_BITS 16 |
| #define GM_ABS_ROW3HOMO_BITS 11 |
| #define GM_ROW3HOMO_PREC_DIFF \ |
| (WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS) |
| #define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF) |
| |
| #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS) |
| #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS) |
| #define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS) |
| |
| #define GM_TRANS_MIN -GM_TRANS_MAX |
| #define GM_ALPHA_MIN -GM_ALPHA_MAX |
| #define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX |
| |
| static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) { |
| const int bw = block_size_wide[bs]; |
| return mi_col * MI_SIZE + bw / 2 - 1; |
| } |
| |
| static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) { |
| const int bh = block_size_high[bs]; |
| return mi_row * MI_SIZE + bh / 2 - 1; |
| } |
| |
| static INLINE int convert_to_trans_prec(MvSubpelPrecision precision, int coor) { |
| if (precision > MV_SUBPEL_QTR_PRECISION) |
| return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3); |
| else |
| return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2; |
| } |
| |
| static INLINE void lower_mv_precision(MV *mv, MvSubpelPrecision precision) { |
| const int radix = (1 << (MV_SUBPEL_EIGHTH_PRECISION - precision)); |
| if (radix == 1) return; |
| int mod = (mv->row % radix); |
| if (mod != 0) { |
| mv->row -= mod; |
| if (abs(mod) > radix / 2) { |
| if (mod > 0) { |
| mv->row += radix; |
| } else { |
| mv->row -= radix; |
| } |
| } |
| } |
| |
| mod = (mv->col % radix); |
| if (mod != 0) { |
| mv->col -= mod; |
| if (abs(mod) > radix / 2) { |
| if (mod > 0) { |
| mv->col += radix; |
| } else { |
| mv->col -= radix; |
| } |
| } |
| } |
| } |
| // Convert a global motion vector into a motion vector at the centre of the |
| // given block. |
| // |
| // The resulting motion vector will have three fractional bits of precision. If |
| // allow_hp is zero, the bottom bit will always be zero. If CONFIG_AMVR and |
| // is_integer is true, the bottom three bits will be zero (so the motion vector |
| // represents an integer) |
| static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm, |
| MvSubpelPrecision precision, |
| BLOCK_SIZE bsize, int mi_col, |
| int mi_row) { |
| int_mv res; |
| |
| if (gm->wmtype == IDENTITY) { |
| res.as_int = 0; |
| return res; |
| } |
| |
| const int32_t *mat = gm->wmmat; |
| int x, y, tx, ty; |
| |
| if (gm->wmtype == TRANSLATION) { |
| // All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16) |
| // bits of fractional precision. The offset for a translation is stored in |
| // entries 0 and 1. For translations, all but the top three (two if |
| // cm->fr_mv_precision is qtr) fractional bits are always zero. |
| // |
| // After the right shifts, there are 3 fractional bits of precision. If |
| // allow_hp is false, the bottom bit is always zero (so we don't need a |
| // call to convert_to_trans_prec here) |
| res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF; |
| res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF; |
| assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), |
| precision > MV_SUBPEL_QTR_PRECISION)); |
| lower_mv_precision(&res.as_mv, precision); |
| return res; |
| } |
| |
| x = block_center_x(mi_col, bsize); |
| y = block_center_y(mi_row, bsize); |
| |
| if (gm->wmtype == ROTZOOM) { |
| assert(gm->wmmat[5] == gm->wmmat[2]); |
| assert(gm->wmmat[4] == -gm->wmmat[3]); |
| } |
| |
| const int xc = |
| (mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0]; |
| const int yc = |
| mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1]; |
| tx = convert_to_trans_prec(precision, xc); |
| ty = convert_to_trans_prec(precision, yc); |
| |
| res.as_mv.row = ty; |
| res.as_mv.col = tx; |
| |
| lower_mv_precision(&res.as_mv, precision); |
| return res; |
| } |
| |
| static INLINE TransformationType get_wmtype(const WarpedMotionParams *gm) { |
| if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] && |
| gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) { |
| return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION); |
| } |
| if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4]) |
| return ROTZOOM; |
| else |
| return AFFINE; |
| } |
| |
| typedef struct candidate_mv { |
| int_mv this_mv; |
| int_mv comp_mv; |
| } CANDIDATE_MV; |
| |
| static INLINE int is_zero_mv(const MV *mv) { |
| return *((const uint32_t *)mv) == 0; |
| } |
| |
| static INLINE int is_equal_mv(const MV *a, const MV *b) { |
| return *((const uint32_t *)a) == *((const uint32_t *)b); |
| } |
| |
| static INLINE void clamp_mv(MV *mv, int min_col, int max_col, int min_row, |
| int max_row) { |
| mv->col = clamp(mv->col, min_col, max_col); |
| mv->row = clamp(mv->row, min_row, max_row); |
| } |
| |
| static INLINE MvSubpelPrecision get_mv_component_precision(int comp) { |
| if (comp & 1) |
| return MV_SUBPEL_EIGHTH_PRECISION; |
| else if (comp & 3) |
| return MV_SUBPEL_QTR_PRECISION; |
| #if CONFIG_FLEX_MVRES |
| else if (comp & 7) |
| return MV_SUBPEL_HALF_PRECISION; |
| #endif // CONFIG_FLEX_MVRES |
| else |
| return MV_SUBPEL_NONE; |
| } |
| |
| #if CONFIG_COMPANDED_MV |
| static INLINE MvSubpelPrecision get_companded_mv_precision(int comp, int ref) { |
| const int sign = comp < 0; |
| const int comp1 = sign ? comp + 1 : comp - 1; |
| const int mv_mag = abs((comp1 / 8) + (ref / 8)); |
| #if CONFIG_FLEX_MVRES |
| if (mv_mag > COMPANDED_INTMV_THRESH_HALF) return MV_SUBPEL_HALF_PRECISION; |
| #endif // CONFIG_FLEX_MVRES |
| if (mv_mag > COMPANDED_INTMV_THRESH_QTR) return MV_SUBPEL_QTR_PRECISION; |
| return MV_SUBPEL_EIGHTH_PRECISION; |
| } |
| #endif // CONFIG_COMPANDED_MV |
| |
| static INLINE MvSubpelPrecision |
| get_mv_precision(const MV mv, MvSubpelPrecision max_precision) { |
| (void)max_precision; |
| MvSubpelPrecision precision = MV_SUBPEL_NONE; |
| if ((mv.row & 1) || (mv.col & 1)) |
| precision = MV_SUBPEL_EIGHTH_PRECISION; |
| else if ((mv.row & 3) || (mv.col & 3)) |
| precision = MV_SUBPEL_QTR_PRECISION; |
| else if ((mv.row & 7) || (mv.col & 7)) |
| precision = MV_SUBPEL_HALF_PRECISION; |
| else |
| precision = MV_SUBPEL_NONE; |
| assert(precision <= max_precision); |
| #if DISALLOW_ONE_DOWN_FLEX_MVRES == 2 |
| if ((max_precision - precision) & 1) precision += 1; |
| #elif DISALLOW_ONE_DOWN_FLEX_MVRES == 1 |
| if (max_precision - precision == 1) precision = max_precision; |
| #endif // DISALLOW_ONE_DOWN_FLEX_MVRES |
| return precision; |
| } |
| |
| #if CONFIG_FLEX_MVRES |
| static INLINE MvSubpelPrecision |
| get_mv_precision2(const MV mv, const MV mv2, MvSubpelPrecision max_precision) { |
| return (MvSubpelPrecision)AOMMAX(get_mv_precision(mv, max_precision), |
| get_mv_precision(mv2, max_precision)); |
| } |
| #endif // CONFIG_FLEX_MVRES |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AOM_AV1_COMMON_MV_H_ |