blob: 62f33a8b7f644a1641fb993d3871a4c7fb27f31c [file] [log] [blame] [edit]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "av1/common/nn_em.h"
#if CONFIG_INTRA_ENTROPY
// Applies the ReLu activation to one fc layer
// output[i] = Max(input[i],0.0f)
static void nn_relu(float *input, int num_outputs) {
for (int i = 0; i < num_outputs; ++i) {
input[i] = AOMMAX(input[i], 0.0f);
}
}
// Applies the Sigmoid activation to one fc layer
// output[i] = 1/(1+exp(input[i]))
static void nn_sigmoid(float *input, int num_outputs) {
for (int i = 0; i < num_outputs; ++i) {
const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f);
input[i] = 1.0f / (1.0f + expf(-tmp));
}
}
// Forward prediction in one fc layer, used in function av1_nn_predict_V2
void av1_nn_fc_forward_c(FC_LAYER_EM *layer, const float *input,
float *output) {
const float *weights = layer->weights;
const float *bias = layer->bias;
for (int node = 0; node < layer->num_outputs; ++node) {
float val = bias[node];
for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i];
output[node] = val;
weights += layer->num_inputs;
}
// activation
switch (layer->activation) {
case ACTN_NONE: // Do Nothing;
break;
case ACTN_RELU: nn_relu(output, layer->num_outputs); break;
case ACTN_SIGMOID: nn_sigmoid(output, layer->num_outputs); break;
default: assert(0 && "Unknown activation"); // Unknown activation
}
}
void av1_nn_input_forward(FC_INPUT_LAYER_EM *layer, const int *sparse_features,
const float *dense_features) {
float *output = layer->output;
const int output_size = layer->num_outputs;
const int has_sparse = layer->num_sparse_inputs > 0;
const int has_dense = layer->num_dense_inputs > 0;
const float *bias = layer->bias;
av1_copy_array(output, bias, output_size);
if (has_sparse) {
float **sparse_weights = layer->sparse_weights;
for (int sparse_idx = 0; sparse_idx < layer->num_sparse_inputs;
sparse_idx++) {
const float *weight_ptr = sparse_weights[sparse_idx] +
sparse_features[sparse_idx] * output_size;
for (int out_idx = 0; out_idx < output_size; out_idx++) {
output[out_idx] += weight_ptr[out_idx];
}
}
}
if (has_dense) {
const float *dense_weights = layer->dense_weights;
for (int node = 0; node < layer->num_outputs; ++node) {
float val = 0.0f;
for (int i = 0; i < layer->num_dense_inputs; ++i) {
val += dense_weights[i] * dense_features[i];
}
output[node] += val;
dense_weights += layer->num_dense_inputs;
}
}
// activation
switch (layer->activation) {
case ACTN_NONE: // Do Nothing;
break;
case ACTN_RELU: nn_relu(output, layer->num_outputs); break;
case ACTN_SIGMOID: nn_sigmoid(output, layer->num_outputs); break;
default: assert(0 && "Unknown activation"); // Unknown activation
}
}
void av1_nn_predict_em(NN_CONFIG_EM *nn_config) {
const int *sparse_features = nn_config->sparse_features;
const float *dense_features = nn_config->dense_features;
const int num_layers = nn_config->num_hidden_layers;
assert(num_layers <= EM_MAX_HLAYERS);
// Propagate input layers
av1_nn_input_forward(&nn_config->input_layer, sparse_features,
dense_features);
float *input_nodes = nn_config->input_layer.output;
// Propagate the layers.
int num_inputs = nn_config->layer[0].num_inputs;
for (int i = 0; i < num_layers; ++i) {
assert(num_inputs == nn_config->layer[i].num_inputs);
av1_nn_fc_forward(nn_config->layer + i, input_nodes,
nn_config->layer[i].output);
input_nodes = nn_config->layer[i].output;
num_inputs = nn_config->layer[i].num_outputs;
}
// Final layer
assert(num_inputs == nn_config->num_logits);
(void)num_inputs;
switch (nn_config->loss) {
case SOFTMAX_CROSS_ENTROPY_LOSS:
if (nn_config->num_logits == 1) {
// sigmoid
const float tmp = AOMMIN(AOMMAX(input_nodes[0], -10.0f), 10.0f);
nn_config->output[0] = 1.0f / (1.0f + expf(-tmp));
} else {
// softmax
av1_nn_softmax_em(input_nodes, nn_config->output,
nn_config->num_logits);
}
break;
default:
av1_copy_array(nn_config->output, input_nodes, nn_config->num_logits);
}
}
/***************************Backprop for gradient******************************/
// Backprop for ReLU activation
static void nn_relu_back(float *dX_out, const float *dY, const float *output,
int num_outputs) {
for (int i = 0; i < num_outputs; ++i)
dX_out[i] = output[i] > 0.0f ? dY[i] : 0.0f;
}
// Backprop for sigmoid activation
static void nn_sigmoid_back(float *dX_out, const float *dY, const float *output,
int num_outputs) {
for (int i = 0; i < num_outputs; ++i)
dX_out[i] = dY[i] * output[i] * (1 - output[i]); // dX=dY*sigmoid(X)
}
// Backprop for softmax cross entropy loss
static void nn_softmax_cross_entropy_loss_back(float *dX_out,
const float *output,
const int num_outputs,
const int label) {
if (num_outputs == 1) {
// sigmoid
assert(label < 2); // label [0,1]
dX_out[0] = output[0] - (float)label;
} else {
// softmax
assert(num_outputs > label); // label [0,1,... num_logits-1]
av1_copy_array(dX_out, output, num_outputs);
dX_out[label] -= 1;
}
}
// Assume there are no more than MAX_NODES nodes in each layer.
#define MAX_NODES 128
// Backprop in one fc layer, used in function av1_nn_backprop
static void nn_fc_backward(const float *X, float *dX_out, FC_LAYER_EM *layer) {
// backprop on activation
float dY_fc[MAX_NODES] = { 0.0f }; // dY for fc
switch (layer->activation) {
case ACTN_NONE: // no activation, dY_fc <-- dY
av1_copy_array(dY_fc, layer->dy, layer->num_outputs);
break;
case ACTN_RELU:
nn_relu_back(dY_fc, layer->dy, layer->output, layer->num_outputs);
break;
case ACTN_SIGMOID:
nn_sigmoid_back(dY_fc, layer->dy, layer->output, layer->num_outputs);
break;
default: assert(0 && "Unknown activation"); // Unknown activation
}
// backprop on fc
// gradient of W, b
float *dW = layer->dw;
float *db = layer->db;
for (int j = 0; j < layer->num_outputs; ++j) {
for (int i = 0; i < layer->num_inputs; ++i) {
dW[i] += dY_fc[j] * X[i];
}
db[j] += dY_fc[j];
dW += layer->num_inputs;
}
// gradient of the input, i.e., the output of last layer
if (dX_out) {
for (int i = 0; i < layer->num_inputs; ++i) {
float *w = layer->weights + i;
float val = 0.0f;
for (int j = 0; j < layer->num_outputs; ++j) {
val += dY_fc[j] * w[j * layer->num_inputs];
}
dX_out[i] = val;
}
}
}
static void nn_fc_input_backward(const int *sparse_features,
const float *dense_features,
FC_INPUT_LAYER_EM *layer) {
const int num_sparse = layer->num_sparse_inputs;
const int num_dense = layer->num_dense_inputs;
const int num_out = layer->num_outputs;
const int has_sparse = num_sparse > 0;
const int has_dense = num_dense > 0;
// backprop on activation
const float *dy_fc = NULL;
float dy_buffer[MAX_NODES] = { 0.0f }; // dY for fc
switch (layer->activation) {
case ACTN_NONE: // no activation, dY_fc <-- dY
dy_fc = layer->dy;
break;
case ACTN_RELU:
nn_relu_back(dy_buffer, layer->dy, layer->output, layer->num_outputs);
dy_fc = dy_buffer;
break;
case ACTN_SIGMOID:
nn_sigmoid_back(dy_buffer, layer->dy, layer->output, layer->num_outputs);
dy_fc = dy_buffer;
break;
default: assert(0 && "Unknown activation"); // Unknown activation
}
// Handle bias
float *db = layer->db;
for (int j = 0; j < num_out; ++j) {
db[j] += dy_fc[j];
}
// Handle sparse
float **dw_sparse = layer->dw_sparse;
if (has_sparse) {
for (int s_idx = 0; s_idx < num_sparse; s_idx++) {
const int non_zero_idx = sparse_features[s_idx];
for (int j = 0; j < num_out; ++j) {
dw_sparse[s_idx][non_zero_idx * num_out + j] += dy_fc[j];
}
}
}
// Handle dense
if (has_dense) {
float *dw_dense = layer->dw_dense;
for (int j = 0; j < num_out; ++j) {
for (int i = 0; i < num_dense; ++i) {
dw_dense[i] += dy_fc[j] * dense_features[i];
}
dw_dense += num_dense;
}
}
}
void av1_nn_backprop_em(NN_CONFIG_EM *nn_config, const int label) {
// loss layer
const int num_layers = nn_config->num_hidden_layers;
float *prev_dY = num_layers > 0 ? nn_config->layer[num_layers - 1].dy
: nn_config->input_layer.dy;
switch (nn_config->loss) {
case SOFTMAX_CROSS_ENTROPY_LOSS:
nn_softmax_cross_entropy_loss_back(prev_dY, nn_config->output,
nn_config->num_logits, label);
break;
default: assert(0 && "Unknown loss"); // Unknown loss
}
// hidden fc layer
float *prev_Y;
for (int layer_idx = num_layers - 1; layer_idx >= 0; --layer_idx) {
if (layer_idx == 0) {
prev_dY = nn_config->input_layer.dy;
prev_Y = nn_config->input_layer.output;
} else {
FC_LAYER_EM *last_layer = &nn_config->layer[layer_idx - 1];
prev_dY = last_layer->dy;
prev_Y = last_layer->output;
}
nn_fc_backward(prev_Y, prev_dY, &nn_config->layer[layer_idx]);
}
nn_fc_input_backward(nn_config->sparse_features, nn_config->dense_features,
&nn_config->input_layer);
}
static INLINE void adapt(float *w, const float *dw, float mu, int n) {
for (int idx = 0; idx < n; idx++) {
w[idx] -= mu * dw[idx];
}
}
static void update_input_layer(NN_CONFIG_EM *nn_config, float mu) {
FC_INPUT_LAYER_EM *input_layer = &nn_config->input_layer;
const int num_sparse = input_layer->num_sparse_inputs;
const int num_dense = input_layer->num_dense_inputs;
const int num_out = input_layer->num_outputs;
const int has_sparse = num_sparse > 0;
const int has_dense = num_dense > 0;
float *b = input_layer->bias;
float *db = input_layer->db;
adapt(b, db, mu, num_out);
av1_zero_array(db, num_out);
// Handle sparse
if (has_sparse) {
float **dw_sparse = input_layer->dw_sparse;
float **w_sparse = input_layer->sparse_weights;
for (int s_idx = 0; s_idx < num_sparse; s_idx++) {
const int non_zero_idx = nn_config->sparse_features[s_idx];
const int sparse_size = input_layer->sparse_input_size[s_idx];
if (non_zero_idx == sparse_size - 1) {
continue;
}
adapt(&w_sparse[s_idx][non_zero_idx * num_out],
&dw_sparse[s_idx][non_zero_idx * num_out], mu, num_out);
av1_zero_array(&dw_sparse[s_idx][non_zero_idx * num_out], num_out);
}
}
if (has_dense) {
const int num_dense_weights = num_dense * num_out;
float *dw_dense = input_layer->dw_dense;
float *w_dense = input_layer->dense_weights;
adapt(w_dense, dw_dense, mu, num_dense_weights);
av1_zero_array(dw_dense, num_dense_weights);
}
}
void av1_nn_update_em(NN_CONFIG_EM *nn_config, float mu) {
const int num_layers = nn_config->num_hidden_layers;
// Update the weights
for (int i = 0; i < num_layers; ++i) {
FC_LAYER_EM *layer = nn_config->layer + i;
const int num_weights = layer->num_inputs * layer->num_outputs;
adapt(layer->weights, layer->dw, mu, num_weights);
av1_zero_array(layer->dw, num_weights);
const int num_out = layer->num_outputs;
adapt(layer->bias, layer->db, mu, num_out);
av1_zero_array(layer->db, num_out);
}
// Input layer
update_input_layer(nn_config, mu);
}
void av1_nn_softmax_em_c(const float *input, float *output, int n) {
// Softmax function is invariant to adding the same constant
// to all input values, so we subtract the maximum input to avoid
// possible overflow.
float max_inp = input[0];
for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]);
float sum_out = 0.0f;
for (int i = 0; i < n; i++) {
// Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
const float normalized_input = AOMMAX(input[i] - max_inp, -10.0f);
output[i] = (float)exp(normalized_input);
sum_out += output[i];
}
for (int i = 0; i < n; i++) output[i] /= sum_out;
}
#endif // CONFIG_INTRA_ENTROPY