| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_once.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/cfl.h" |
| |
| enum { |
| NEED_LEFT = 1 << 1, |
| NEED_ABOVE = 1 << 2, |
| NEED_ABOVERIGHT = 1 << 3, |
| NEED_ABOVELEFT = 1 << 4, |
| NEED_BOTTOMLEFT = 1 << 5, |
| }; |
| |
| #define INTRA_EDGE_FILT 3 |
| #define INTRA_EDGE_TAPS 5 |
| #define MAX_UPSAMPLE_SZ 16 |
| |
| static const uint8_t extend_modes[INTRA_MODES] = { |
| NEED_ABOVE | NEED_LEFT, // DC |
| NEED_ABOVE, // V |
| NEED_LEFT, // H |
| NEED_ABOVE | NEED_ABOVERIGHT, // D45 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D113 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D157 |
| NEED_LEFT | NEED_BOTTOMLEFT, // D203 |
| NEED_ABOVE | NEED_ABOVERIGHT, // D67 |
| NEED_LEFT | NEED_ABOVE, // SMOOTH |
| NEED_LEFT | NEED_ABOVE, // SMOOTH_V |
| NEED_LEFT | NEED_ABOVE, // SMOOTH_H |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // PAETH |
| }; |
| |
| static int has_top_right(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int top_available, int right_available, TX_SIZE txsz, |
| int row_off, int col_off, int ss_x, int ss_y, |
| int px_to_right_edge, int *px_top_right, |
| int is_bsize_altered_for_chroma) { |
| if (!top_available || !right_available) return 0; |
| |
| const int bw_unit = block_size_wide[bsize] >> tx_size_wide_log2[0]; |
| const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1); |
| const int top_right_count_unit = tx_size_wide_unit[txsz]; |
| const int px_tr_common = AOMMIN(tx_size_wide[txsz], px_to_right_edge); |
| |
| if (px_tr_common <= 0) return 0; |
| |
| *px_top_right = px_tr_common; |
| |
| if (row_off > 0) { // Just need to check if enough pixels on the right. |
| if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) { |
| // Special case: For 128x128 blocks, the transform unit whose |
| // top-right corner is at the center of the block does in fact have |
| // pixels available at its top-right corner. |
| if (row_off == mi_size_high[BLOCK_64X64] >> ss_y && |
| col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) { |
| return 1; |
| } |
| const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; |
| const int col_off_64 = col_off % plane_bw_unit_64; |
| return col_off_64 + top_right_count_unit < plane_bw_unit_64; |
| } |
| return col_off + top_right_count_unit < plane_bw_unit; |
| } else { |
| // All top-right pixels are in the block above, which is already available. |
| if (col_off + top_right_count_unit < plane_bw_unit) return 1; |
| |
| // Handle the top-right intra tx block of the coding block |
| const int sb_mi_size = mi_size_wide[cm->seq_params.sb_size]; |
| const int mi_row_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_row_chroma_base |
| : mi_row; |
| const int mi_col_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_col_chroma_base |
| : mi_col; |
| const int tr_mask_row = (mi_row_aligned & (sb_mi_size - 1)) - 1; |
| const int tr_mask_col = |
| (mi_col_aligned & (sb_mi_size - 1)) + mi_size_wide[bsize]; |
| |
| if (tr_mask_row < 0) { |
| return 1; |
| } else if (tr_mask_col >= sb_mi_size) { |
| return 0; |
| } else { // Handle the general case: the top_right mi is in the same SB |
| const int tr_offset = tr_mask_row * xd->is_mi_coded_stride + tr_mask_col; |
| // As long as the first mi is available, we determine tr is available |
| int has_tr = xd->is_mi_coded[tr_offset]; |
| |
| // Calculate px_top_right: how many top-right pixels are available. If it |
| // is less than tx_size_wide[txsz], px_top_right will be used to |
| // determine the location of the last available pixel, which will be used |
| // for padding. |
| if (has_tr) { |
| int mi_tr = 0; |
| for (int i = 0; i < top_right_count_unit << ss_x; ++i) { |
| if ((tr_mask_col + i) >= sb_mi_size || |
| !xd->is_mi_coded[tr_offset + i]) { |
| break; |
| } else { |
| mi_tr++; |
| } |
| } |
| |
| *px_top_right = AOMMIN((mi_tr << MI_SIZE_LOG2) >> ss_x, px_tr_common); |
| } |
| |
| return has_tr; |
| } |
| } |
| } |
| |
| static int has_bottom_left(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bottom_available, int left_available, |
| TX_SIZE txsz, int row_off, int col_off, int ss_x, |
| int ss_y, int px_to_bottom_edge, int *px_bottom_left, |
| int is_bsize_altered_for_chroma) { |
| if (!bottom_available || !left_available) return 0; |
| |
| const int px_bl_common = AOMMIN(tx_size_high[txsz], px_to_bottom_edge); |
| |
| if (px_bl_common <= 0) return 0; |
| |
| *px_bottom_left = px_bl_common; |
| |
| // Special case for 128x* blocks, when col_off is half the block width. |
| // This is needed because 128x* superblocks are divided into 64x* blocks in |
| // raster order |
| if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) { |
| const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; |
| const int col_off_64 = col_off % plane_bw_unit_64; |
| if (col_off_64 == 0) { |
| // We are at the left edge of top-right or bottom-right 64x* block. |
| const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y; |
| const int row_off_64 = row_off % plane_bh_unit_64; |
| const int plane_bh_unit = |
| AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64); |
| // Check if all bottom-left pixels are in the left 64x* block (which is |
| // already coded). |
| return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit; |
| } |
| } |
| |
| if (col_off > 0) { |
| // Bottom-left pixels are in the bottom-left block, which is not available. |
| return 0; |
| } else { |
| const int bh_unit = block_size_high[bsize] >> tx_size_high_log2[0]; |
| const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1); |
| const int bottom_left_count_unit = tx_size_high_unit[txsz]; |
| |
| // All bottom-left pixels are in the left block, which is already available. |
| if (row_off + bottom_left_count_unit < plane_bh_unit) return 1; |
| |
| // The general case: neither the leftmost column nor the bottom row. The |
| // bottom-left mi is in the same SB |
| const int sb_mi_size = mi_size_high[cm->seq_params.sb_size]; |
| const int mi_row_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_row_chroma_base |
| : mi_row; |
| const int mi_col_aligned = |
| is_bsize_altered_for_chroma |
| ? xd->mi[0]->chroma_ref_info.mi_col_chroma_base |
| : mi_col; |
| const int bl_mask_row = |
| (mi_row_aligned & (sb_mi_size - 1)) + mi_size_high[bsize]; |
| const int bl_mask_col = (mi_col_aligned & (sb_mi_size - 1)) - 1; |
| |
| if (bl_mask_col < 0) { |
| const int plane_sb_height = |
| block_size_high[cm->seq_params.sb_size] >> ss_y; |
| const int plane_bottom_row = |
| (((mi_row_aligned & (sb_mi_size - 1)) << MI_SIZE_LOG2) + |
| block_size_high[bsize]) >> |
| ss_y; |
| *px_bottom_left = |
| AOMMIN(plane_sb_height - plane_bottom_row, px_bl_common); |
| |
| return *px_bottom_left > 0; |
| } else if (bl_mask_row >= sb_mi_size) { |
| return 0; |
| } else { |
| const int bl_offset = bl_mask_row * xd->is_mi_coded_stride + bl_mask_col; |
| // As long as there is one bottom-left mi available, we determine bl is |
| // available |
| int has_bl = xd->is_mi_coded[bl_offset]; |
| |
| // Calculate px_bottom_left: how many bottom-left pixels are available. If |
| // it is less than tx_size_high[txsz], px_bottom_left will be used to |
| // determine the location of the last available pixel, which will be used |
| // for padding. |
| if (has_bl) { |
| int mi_bl = 0; |
| for (int i = 0; i < bottom_left_count_unit << ss_y; ++i) { |
| if ((bl_mask_row + i) >= sb_mi_size || |
| !xd->is_mi_coded[bl_offset + i * xd->is_mi_coded_stride]) { |
| break; |
| } else { |
| mi_bl++; |
| } |
| } |
| |
| *px_bottom_left = AOMMIN((mi_bl << MI_SIZE_LOG2) >> ss_y, px_bl_common); |
| } |
| |
| return has_bl; |
| } |
| } |
| } |
| |
| typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, |
| const uint8_t *above, const uint8_t *left); |
| |
| static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL]; |
| static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL]; |
| |
| typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *above, const uint16_t *left, |
| int bd); |
| static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL]; |
| static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL]; |
| |
| static void init_intra_predictors_internal(void) { |
| assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES); |
| |
| #if CONFIG_FLEX_PARTITION |
| #define INIT_RECTANGULAR(p, type) \ |
| p[TX_4X8] = aom_##type##_predictor_4x8; \ |
| p[TX_8X4] = aom_##type##_predictor_8x4; \ |
| p[TX_8X16] = aom_##type##_predictor_8x16; \ |
| p[TX_16X8] = aom_##type##_predictor_16x8; \ |
| p[TX_16X32] = aom_##type##_predictor_16x32; \ |
| p[TX_32X16] = aom_##type##_predictor_32x16; \ |
| p[TX_32X64] = aom_##type##_predictor_32x64; \ |
| p[TX_64X32] = aom_##type##_predictor_64x32; \ |
| p[TX_4X16] = aom_##type##_predictor_4x16; \ |
| p[TX_16X4] = aom_##type##_predictor_16x4; \ |
| p[TX_8X32] = aom_##type##_predictor_8x32; \ |
| p[TX_32X8] = aom_##type##_predictor_32x8; \ |
| p[TX_16X64] = aom_##type##_predictor_16x64; \ |
| p[TX_64X16] = aom_##type##_predictor_64x16; \ |
| p[TX_4X32] = aom_##type##_predictor_4x32; \ |
| p[TX_32X4] = aom_##type##_predictor_32x4; \ |
| p[TX_8X64] = aom_##type##_predictor_8x64; \ |
| p[TX_64X8] = aom_##type##_predictor_64x8; \ |
| p[TX_4X64] = aom_##type##_predictor_4x64; \ |
| p[TX_64X4] = aom_##type##_predictor_64x4; |
| #else |
| #define INIT_RECTANGULAR(p, type) \ |
| p[TX_4X8] = aom_##type##_predictor_4x8; \ |
| p[TX_8X4] = aom_##type##_predictor_8x4; \ |
| p[TX_8X16] = aom_##type##_predictor_8x16; \ |
| p[TX_16X8] = aom_##type##_predictor_16x8; \ |
| p[TX_16X32] = aom_##type##_predictor_16x32; \ |
| p[TX_32X16] = aom_##type##_predictor_32x16; \ |
| p[TX_32X64] = aom_##type##_predictor_32x64; \ |
| p[TX_64X32] = aom_##type##_predictor_64x32; \ |
| p[TX_4X16] = aom_##type##_predictor_4x16; \ |
| p[TX_16X4] = aom_##type##_predictor_16x4; \ |
| p[TX_8X32] = aom_##type##_predictor_8x32; \ |
| p[TX_32X8] = aom_##type##_predictor_32x8; \ |
| p[TX_16X64] = aom_##type##_predictor_16x64; \ |
| p[TX_64X16] = aom_##type##_predictor_64x16; |
| #endif // CONFIG_FLEX_PARTITION |
| |
| #define INIT_NO_4X4(p, type) \ |
| p[TX_8X8] = aom_##type##_predictor_8x8; \ |
| p[TX_16X16] = aom_##type##_predictor_16x16; \ |
| p[TX_32X32] = aom_##type##_predictor_32x32; \ |
| p[TX_64X64] = aom_##type##_predictor_64x64; \ |
| INIT_RECTANGULAR(p, type) |
| |
| #define INIT_ALL_SIZES(p, type) \ |
| p[TX_4X4] = aom_##type##_predictor_4x4; \ |
| INIT_NO_4X4(p, type) |
| |
| INIT_ALL_SIZES(pred[V_PRED], v); |
| INIT_ALL_SIZES(pred[H_PRED], h); |
| INIT_ALL_SIZES(pred[PAETH_PRED], paeth); |
| INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth); |
| INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v); |
| INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h); |
| INIT_ALL_SIZES(dc_pred[0][0], dc_128); |
| INIT_ALL_SIZES(dc_pred[0][1], dc_top); |
| INIT_ALL_SIZES(dc_pred[1][0], dc_left); |
| INIT_ALL_SIZES(dc_pred[1][1], dc); |
| |
| INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); |
| INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); |
| INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth); |
| INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth); |
| INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v); |
| INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h); |
| INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); |
| INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); |
| INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); |
| INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); |
| #undef intra_pred_allsizes |
| } |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_above, int dx, int dy) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| assert(dy == 1); |
| assert(dx > 0); |
| |
| const int max_base_x = ((bw + bh) - 1) << upsample_above; |
| const int frac_bits = 6 - upsample_above; |
| const int base_inc = 1 << upsample_above; |
| x = dx; |
| for (r = 0; r < bh; ++r, dst += stride, x += dx) { |
| base = x >> frac_bits; |
| shift = ((x << upsample_above) & 0x3F) >> 1; |
| |
| if (base >= max_base_x) { |
| for (int i = r; i < bh; ++i) { |
| memset(dst, above[max_base_x], bw * sizeof(dst[0])); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bw; ++c, base += base_inc) { |
| if (base < max_base_x) { |
| val = above[base] * (32 - shift) + above[base + 1] * shift; |
| dst[c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| dst[c] = above[max_base_x]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_above, int upsample_left, int dx, |
| int dy) { |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| const int min_base_x = -(1 << upsample_above); |
| const int min_base_y = -(1 << upsample_left); |
| (void)min_base_y; |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| |
| for (int r = 0; r < bh; ++r) { |
| for (int c = 0; c < bw; ++c) { |
| int val; |
| int y = r + 1; |
| int x = (c << 6) - y * dx; |
| const int base_x = x >> frac_bits_x; |
| if (base_x >= min_base_x) { |
| const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1; |
| val = above[base_x] * (32 - shift) + above[base_x + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| x = c + 1; |
| y = (r << 6) - x * dy; |
| const int base_y = y >> frac_bits_y; |
| #if CONFIG_DERIVED_INTRA_MODE |
| if (base_y < min_base_y) { |
| dst[c] = left[min_base_y]; |
| continue; |
| } |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| assert(base_y >= min_base_y); |
| const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1; |
| val = left[base_y] * (32 - shift) + left[base_y + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } |
| dst[c] = val; |
| } |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_left, int dx, int dy) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| const int max_base_y = (bw + bh - 1) << upsample_left; |
| const int frac_bits = 6 - upsample_left; |
| const int base_inc = 1 << upsample_left; |
| y = dy; |
| for (c = 0; c < bw; ++c, y += dy) { |
| base = y >> frac_bits; |
| shift = ((y << upsample_left) & 0x3F) >> 1; |
| |
| for (r = 0; r < bh; ++r, base += base_inc) { |
| if (base < max_base_y) { |
| val = left[base] * (32 - shift) + left[base + 1] * shift; |
| dst[r * stride + c] = val = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_above, int upsample_left, int angle) { |
| const int dx = av1_get_dx(angle); |
| const int dy = av1_get_dy(angle); |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| assert(angle > 0 && angle < 270); |
| |
| if (angle > 0 && angle < 90) { |
| av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx, |
| dy); |
| } else if (angle > 90 && angle < 180) { |
| #if CONFIG_DERIVED_INTRA_MODE |
| av1_dr_prediction_z2_c(dst, stride, bw, bh, above, left, upsample_above, |
| upsample_left, dx, dy); |
| #else |
| av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above, |
| upsample_left, dx, dy); |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| } else if (angle > 180 && angle < 270) { |
| av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx, |
| dy); |
| } else if (angle == 90) { |
| pred[V_PRED][tx_size](dst, stride, above, left); |
| } else if (angle == 180) { |
| pred[H_PRED][tx_size](dst, stride, above, left); |
| } |
| } |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int dx, int dy, int bd) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| (void)bd; |
| assert(dy == 1); |
| assert(dx > 0); |
| |
| const int max_base_x = ((bw + bh) - 1) << upsample_above; |
| const int frac_bits = 6 - upsample_above; |
| const int base_inc = 1 << upsample_above; |
| x = dx; |
| for (r = 0; r < bh; ++r, dst += stride, x += dx) { |
| base = x >> frac_bits; |
| shift = ((x << upsample_above) & 0x3F) >> 1; |
| |
| if (base >= max_base_x) { |
| for (int i = r; i < bh; ++i) { |
| aom_memset16(dst, above[max_base_x], bw); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bw; ++c, base += base_inc) { |
| if (base < max_base_x) { |
| val = above[base] * (32 - shift) + above[base + 1] * shift; |
| dst[c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| dst[c] = above[max_base_x]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int dx, int dy, int bd) { |
| (void)bd; |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| const int min_base_x = -(1 << upsample_above); |
| const int min_base_y = -(1 << upsample_left); |
| (void)min_base_y; |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| |
| for (int r = 0; r < bh; ++r) { |
| for (int c = 0; c < bw; ++c) { |
| int val; |
| int y = r + 1; |
| int x = (c << 6) - y * dx; |
| const int base_x = x >> frac_bits_x; |
| if (base_x >= min_base_x) { |
| const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1; |
| val = above[base_x] * (32 - shift) + above[base_x + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| x = c + 1; |
| y = (r << 6) - x * dy; |
| const int base_y = y >> frac_bits_y; |
| assert(base_y >= min_base_y); |
| const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1; |
| val = left[base_y] * (32 - shift) + left[base_y + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } |
| dst[c] = val; |
| } |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_left, |
| int dx, int dy, int bd) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| (void)bd; |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| const int max_base_y = (bw + bh - 1) << upsample_left; |
| const int frac_bits = 6 - upsample_left; |
| const int base_inc = 1 << upsample_left; |
| y = dy; |
| for (c = 0; c < bw; ++c, y += dy) { |
| base = y >> frac_bits; |
| shift = ((y << upsample_left) & 0x3F) >> 1; |
| |
| for (r = 0; r < bh; ++r, base += base_inc) { |
| if (base < max_base_y) { |
| val = left[base] * (32 - shift) + left[base + 1] * shift; |
| dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int angle, int bd) { |
| const int dx = av1_get_dx(angle); |
| const int dy = av1_get_dy(angle); |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| assert(angle > 0 && angle < 270); |
| |
| if (angle > 0 && angle < 90) { |
| av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left, |
| upsample_above, dx, dy, bd); |
| } else if (angle > 90 && angle < 180) { |
| av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left, |
| upsample_above, upsample_left, dx, dy, bd); |
| } else if (angle > 180 && angle < 270) { |
| av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, |
| dx, dy, bd); |
| } else if (angle == 90) { |
| pred_high[V_PRED][tx_size](dst, stride, above, left, bd); |
| } else if (angle == 180) { |
| pred_high[H_PRED][tx_size](dst, stride, above, left, bd); |
| } |
| } |
| |
| DECLARE_ALIGNED(16, const int8_t, |
| av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = { |
| { |
| { -6, 10, 0, 0, 0, 12, 0, 0 }, |
| { -5, 2, 10, 0, 0, 9, 0, 0 }, |
| { -3, 1, 1, 10, 0, 7, 0, 0 }, |
| { -3, 1, 1, 2, 10, 5, 0, 0 }, |
| { -4, 6, 0, 0, 0, 2, 12, 0 }, |
| { -3, 2, 6, 0, 0, 2, 9, 0 }, |
| { -3, 2, 2, 6, 0, 2, 7, 0 }, |
| { -3, 1, 2, 2, 6, 3, 5, 0 }, |
| }, |
| { |
| { -10, 16, 0, 0, 0, 10, 0, 0 }, |
| { -6, 0, 16, 0, 0, 6, 0, 0 }, |
| { -4, 0, 0, 16, 0, 4, 0, 0 }, |
| { -2, 0, 0, 0, 16, 2, 0, 0 }, |
| { -10, 16, 0, 0, 0, 0, 10, 0 }, |
| { -6, 0, 16, 0, 0, 0, 6, 0 }, |
| { -4, 0, 0, 16, 0, 0, 4, 0 }, |
| { -2, 0, 0, 0, 16, 0, 2, 0 }, |
| }, |
| { |
| { -8, 8, 0, 0, 0, 16, 0, 0 }, |
| { -8, 0, 8, 0, 0, 16, 0, 0 }, |
| { -8, 0, 0, 8, 0, 16, 0, 0 }, |
| { -8, 0, 0, 0, 8, 16, 0, 0 }, |
| { -4, 4, 0, 0, 0, 0, 16, 0 }, |
| { -4, 0, 4, 0, 0, 0, 16, 0 }, |
| { -4, 0, 0, 4, 0, 0, 16, 0 }, |
| { -4, 0, 0, 0, 4, 0, 16, 0 }, |
| }, |
| { |
| { -2, 8, 0, 0, 0, 10, 0, 0 }, |
| { -1, 3, 8, 0, 0, 6, 0, 0 }, |
| { -1, 2, 3, 8, 0, 4, 0, 0 }, |
| { 0, 1, 2, 3, 8, 2, 0, 0 }, |
| { -1, 4, 0, 0, 0, 3, 10, 0 }, |
| { -1, 3, 4, 0, 0, 4, 6, 0 }, |
| { -1, 2, 3, 4, 0, 4, 4, 0 }, |
| { -1, 2, 2, 3, 4, 3, 3, 0 }, |
| }, |
| { |
| { -12, 14, 0, 0, 0, 14, 0, 0 }, |
| { -10, 0, 14, 0, 0, 12, 0, 0 }, |
| { -9, 0, 0, 14, 0, 11, 0, 0 }, |
| { -8, 0, 0, 0, 14, 10, 0, 0 }, |
| { -10, 12, 0, 0, 0, 0, 14, 0 }, |
| { -9, 1, 12, 0, 0, 0, 12, 0 }, |
| { -8, 0, 0, 12, 0, 1, 11, 0 }, |
| { -7, 0, 0, 1, 12, 1, 9, 0 }, |
| }, |
| }; |
| |
| void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint8_t *above, |
| const uint8_t *left, int mode) { |
| int r, c; |
| uint8_t buffer[33][33]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| assert(bw <= 32 && bh <= 32); |
| |
| // The initialization is just for silencing Jenkins static analysis warnings |
| for (r = 0; r < bh + 1; ++r) |
| memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; |
| memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t)); |
| |
| for (r = 1; r < bh + 1; r += 2) |
| for (c = 1; c < bw + 1; c += 4) { |
| const uint8_t p0 = buffer[r - 1][c - 1]; |
| const uint8_t p1 = buffer[r - 1][c]; |
| const uint8_t p2 = buffer[r - 1][c + 1]; |
| const uint8_t p3 = buffer[r - 1][c + 2]; |
| const uint8_t p4 = buffer[r - 1][c + 3]; |
| const uint8_t p5 = buffer[r][c - 1]; |
| const uint8_t p6 = buffer[r + 1][c - 1]; |
| for (int k = 0; k < 8; ++k) { |
| int r_offset = k >> 2; |
| int c_offset = k & 0x03; |
| buffer[r + r_offset][c + c_offset] = |
| clip_pixel(ROUND_POWER_OF_TWO_SIGNED( |
| av1_filter_intra_taps[mode][k][0] * p0 + |
| av1_filter_intra_taps[mode][k][1] * p1 + |
| av1_filter_intra_taps[mode][k][2] * p2 + |
| av1_filter_intra_taps[mode][k][3] * p3 + |
| av1_filter_intra_taps[mode][k][4] * p4 + |
| av1_filter_intra_taps[mode][k][5] * p5 + |
| av1_filter_intra_taps[mode][k][6] * p6, |
| FILTER_INTRA_SCALE_BITS)); |
| } |
| } |
| |
| for (r = 0; r < bh; ++r) { |
| memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t)); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, |
| const uint16_t *above, |
| const uint16_t *left, int mode, |
| int bd) { |
| int r, c; |
| uint16_t buffer[33][33]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| assert(bw <= 32 && bh <= 32); |
| |
| // The initialization is just for silencing Jenkins static analysis warnings |
| for (r = 0; r < bh + 1; ++r) |
| memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; |
| memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 1; r < bh + 1; r += 2) |
| for (c = 1; c < bw + 1; c += 4) { |
| const uint16_t p0 = buffer[r - 1][c - 1]; |
| const uint16_t p1 = buffer[r - 1][c]; |
| const uint16_t p2 = buffer[r - 1][c + 1]; |
| const uint16_t p3 = buffer[r - 1][c + 2]; |
| const uint16_t p4 = buffer[r - 1][c + 3]; |
| const uint16_t p5 = buffer[r][c - 1]; |
| const uint16_t p6 = buffer[r + 1][c - 1]; |
| for (int k = 0; k < 8; ++k) { |
| int r_offset = k >> 2; |
| int c_offset = k & 0x03; |
| buffer[r + r_offset][c + c_offset] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO_SIGNED( |
| av1_filter_intra_taps[mode][k][0] * p0 + |
| av1_filter_intra_taps[mode][k][1] * p1 + |
| av1_filter_intra_taps[mode][k][2] * p2 + |
| av1_filter_intra_taps[mode][k][3] * p3 + |
| av1_filter_intra_taps[mode][k][4] * p4 + |
| av1_filter_intra_taps[mode][k][5] * p5 + |
| av1_filter_intra_taps[mode][k][6] * p6, |
| FILTER_INTRA_SCALE_BITS), |
| bd); |
| } |
| } |
| |
| for (r = 0; r < bh; ++r) { |
| memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0])); |
| dst += stride; |
| } |
| } |
| |
| static int is_smooth(const MB_MODE_INFO *mbmi, int plane) { |
| if (plane == 0) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED || |
| mode == SMOOTH_H_PRED); |
| } else { |
| // uv_mode is not set for inter blocks, so need to explicitly |
| // detect that case. |
| if (is_inter_block(mbmi)) return 0; |
| |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED || |
| uv_mode == UV_SMOOTH_H_PRED); |
| } |
| } |
| |
| static int get_filt_type(const MACROBLOCKD *xd, int plane) { |
| int ab_sm, le_sm; |
| |
| if (plane == 0) { |
| const MB_MODE_INFO *ab = xd->above_mbmi; |
| const MB_MODE_INFO *le = xd->left_mbmi; |
| ab_sm = ab ? is_smooth(ab, plane) : 0; |
| le_sm = le ? is_smooth(le, plane) : 0; |
| } else { |
| const MB_MODE_INFO *ab = xd->chroma_above_mbmi; |
| const MB_MODE_INFO *le = xd->chroma_left_mbmi; |
| ab_sm = ab ? is_smooth(ab, plane) : 0; |
| le_sm = le ? is_smooth(le, plane) : 0; |
| } |
| |
| return (ab_sm || le_sm) ? 1 : 0; |
| } |
| |
| static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) { |
| const int d = abs(delta); |
| int strength = 0; |
| |
| const int blk_wh = bs0 + bs1; |
| if (type == 0) { |
| if (blk_wh <= 8) { |
| if (d >= 56) strength = 1; |
| } else if (blk_wh <= 12) { |
| if (d >= 40) strength = 1; |
| } else if (blk_wh <= 16) { |
| if (d >= 40) strength = 1; |
| } else if (blk_wh <= 24) { |
| if (d >= 8) strength = 1; |
| if (d >= 16) strength = 2; |
| if (d >= 32) strength = 3; |
| } else if (blk_wh <= 32) { |
| if (d >= 1) strength = 1; |
| if (d >= 4) strength = 2; |
| if (d >= 32) strength = 3; |
| } else { |
| if (d >= 1) strength = 3; |
| } |
| } else { |
| if (blk_wh <= 8) { |
| if (d >= 40) strength = 1; |
| if (d >= 64) strength = 2; |
| } else if (blk_wh <= 16) { |
| if (d >= 20) strength = 1; |
| if (d >= 48) strength = 2; |
| } else if (blk_wh <= 24) { |
| if (d >= 4) strength = 3; |
| } else { |
| if (d >= 1) strength = 3; |
| } |
| } |
| return strength; |
| } |
| |
| void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) { |
| if (!strength) return; |
| |
| const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 }, |
| { 0, 5, 6, 5, 0 }, |
| { 2, 4, 4, 4, 2 } }; |
| const int filt = strength - 1; |
| uint8_t edge[129]; |
| |
| memcpy(edge, p, sz * sizeof(*p)); |
| for (int i = 1; i < sz; i++) { |
| int s = 0; |
| for (int j = 0; j < INTRA_EDGE_TAPS; j++) { |
| int k = i - 2 + j; |
| k = (k < 0) ? 0 : k; |
| k = (k > sz - 1) ? sz - 1 : k; |
| s += edge[k] * kernel[filt][j]; |
| } |
| s = (s + 8) >> 4; |
| p[i] = s; |
| } |
| } |
| |
| static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) { |
| const int kernel[3] = { 5, 6, 5 }; |
| |
| int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) + |
| (p_above[0] * kernel[2]); |
| s = (s + 8) >> 4; |
| p_above[-1] = s; |
| p_left[-1] = s; |
| } |
| |
| void av1_filter_intra_edge_high_c(uint16_t *p, int sz, int strength) { |
| if (!strength) return; |
| |
| const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 }, |
| { 0, 5, 6, 5, 0 }, |
| { 2, 4, 4, 4, 2 } }; |
| const int filt = strength - 1; |
| uint16_t edge[129]; |
| |
| memcpy(edge, p, sz * sizeof(*p)); |
| for (int i = 1; i < sz; i++) { |
| int s = 0; |
| for (int j = 0; j < INTRA_EDGE_TAPS; j++) { |
| int k = i - 2 + j; |
| k = (k < 0) ? 0 : k; |
| k = (k > sz - 1) ? sz - 1 : k; |
| s += edge[k] * kernel[filt][j]; |
| } |
| s = (s + 8) >> 4; |
| p[i] = s; |
| } |
| } |
| |
| static void filter_intra_edge_corner_high(uint16_t *p_above, uint16_t *p_left) { |
| const int kernel[3] = { 5, 6, 5 }; |
| |
| int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) + |
| (p_above[0] * kernel[2]); |
| s = (s + 8) >> 4; |
| p_above[-1] = s; |
| p_left[-1] = s; |
| } |
| |
| void av1_upsample_intra_edge_c(uint8_t *p, int sz) { |
| // interpolate half-sample positions |
| assert(sz <= MAX_UPSAMPLE_SZ); |
| |
| uint8_t in[MAX_UPSAMPLE_SZ + 3]; |
| // copy p[-1..(sz-1)] and extend first and last samples |
| in[0] = p[-1]; |
| in[1] = p[-1]; |
| for (int i = 0; i < sz; i++) { |
| in[i + 2] = p[i]; |
| } |
| in[sz + 2] = p[sz - 1]; |
| |
| // interpolate half-sample edge positions |
| p[-2] = in[0]; |
| for (int i = 0; i < sz; i++) { |
| int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3]; |
| s = clip_pixel((s + 8) >> 4); |
| p[2 * i - 1] = s; |
| p[2 * i] = in[i + 2]; |
| } |
| } |
| |
| void av1_upsample_intra_edge_high_c(uint16_t *p, int sz, int bd) { |
| // interpolate half-sample positions |
| assert(sz <= MAX_UPSAMPLE_SZ); |
| |
| uint16_t in[MAX_UPSAMPLE_SZ + 3]; |
| // copy p[-1..(sz-1)] and extend first and last samples |
| in[0] = p[-1]; |
| in[1] = p[-1]; |
| for (int i = 0; i < sz; i++) { |
| in[i + 2] = p[i]; |
| } |
| in[sz + 2] = p[sz - 1]; |
| |
| // interpolate half-sample edge positions |
| p[-2] = in[0]; |
| for (int i = 0; i < sz; i++) { |
| int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3]; |
| s = (s + 8) >> 4; |
| s = clip_pixel_highbd(s, bd); |
| p[2 * i - 1] = s; |
| p[2 * i] = in[i + 2]; |
| } |
| } |
| |
| #if CONFIG_ADAPT_FILTER_INTRA |
| #define MAX_H_THICK 4 |
| #define MIN_H_THICK 0 |
| #define MAX_V_THICK 4 |
| #define MIN_V_THICK 0 |
| #define CLIP_T(t, max, min) AOMMAX(AOMMIN((t), (max)), (min)) |
| |
| #define ADAPT_FILTER_INTRA_GET_SRC_VAL_0 src[(i + 1) * stride + j - 1] |
| #define ADAPT_FILTER_INTRA_GET_SRC_VAL_1 src[i * stride + j - 1] |
| #define ADAPT_FILTER_INTRA_GET_SRC_VAL_2 src[(i - 1) * stride + j - 1] |
| #define ADAPT_FILTER_INTRA_GET_SRC_VAL_3 src[(i - 1) * stride + j] |
| #define ADAPT_FILTER_INTRA_GET_SRC_VAL_4 src[(i - 1) * stride + j + 1] |
| |
| #define ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(func_name, tap1, tap2, \ |
| tap3, data_type) \ |
| void func_name(const data_type *src, int stride, int w, int h, \ |
| int64_t *dst_buf) { \ |
| for (int i = 0; i < h; i++) { \ |
| for (int j = 0; j < w; j++) { \ |
| const int x = src[i * stride + j]; \ |
| const int v1 = ADAPT_FILTER_INTRA_GET_SRC_VAL_##tap1; \ |
| const int v2 = ADAPT_FILTER_INTRA_GET_SRC_VAL_##tap2; \ |
| const int v3 = ADAPT_FILTER_INTRA_GET_SRC_VAL_##tap3; \ |
| dst_buf[0] += v1 * v1; \ |
| dst_buf[1] += v1 * v2; \ |
| dst_buf[2] += v2 * v2; \ |
| dst_buf[3] += v1 * v3; \ |
| dst_buf[4] += v2 * v3; \ |
| dst_buf[5] += v3 * v3; \ |
| dst_buf[6] += v1 * x; \ |
| dst_buf[7] += v2 * x; \ |
| dst_buf[8] += v3 * x; \ |
| } \ |
| } \ |
| } |
| |
| #define ADAPT_FILTER_INTRA_DEFINE_4_TAP_ACCUM_FUNC(func_name, tap1, tap2, \ |
| tap3, tap4, data_type) \ |
| void func_name(const data_type *src, int stride, int w, int h, \ |
| int64_t *dst_buf) { \ |
| for (int i = 0; i < h; i++) { \ |
| for (int j = 0; j < w; j++) { \ |
| const int x = src[i * stride + j]; \ |
| const int v1 = ADAPT_FILTER_INTRA_GET_SRC_VAL_##tap1; \ |
| const int v2 = ADAPT_FILTER_INTRA_GET_SRC_VAL_##tap2; \ |
| const int v3 = ADAPT_FILTER_INTRA_GET_SRC_VAL_##tap3; \ |
| const int v4 = ADAPT_FILTER_INTRA_GET_SRC_VAL_##tap4; \ |
| dst_buf[0] += v1 * v1; \ |
| dst_buf[1] += v1 * v2; \ |
| dst_buf[2] += v2 * v2; \ |
| dst_buf[3] += v1 * v3; \ |
| dst_buf[4] += v2 * v3; \ |
| dst_buf[5] += v3 * v3; \ |
| dst_buf[6] += v1 * v4; \ |
| dst_buf[7] += v2 * v4; \ |
| dst_buf[8] += v3 * v4; \ |
| dst_buf[9] += v4 * v4; \ |
| dst_buf[10] += v1 * x; \ |
| dst_buf[11] += v2 * x; \ |
| dst_buf[12] += v3 * x; \ |
| dst_buf[13] += v4 * x; \ |
| } \ |
| } \ |
| } |
| |
| #define ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR( \ |
| func_name, pred_expression, data_type) \ |
| void func_name(data_type *dst, int stride, TX_SIZE tx_size, double *filt, \ |
| const data_type *above, const data_type *left) { \ |
| int r, c; \ |
| double buf[65][66]; \ |
| const int bw = tx_size_wide[tx_size]; \ |
| const int bh = tx_size_high[tx_size]; \ |
| for (r = 0; r < bh; ++r) buf[r + 1][0] = (double)left[r]; \ |
| for (c = 0; c < bw + 1; ++c) buf[0][c] = (double)above[c - 1]; \ |
| for (r = 0; r < bh + 1; ++r) buf[r][bw + 1] = (double)above[bw]; \ |
| for (r = 1; r < bh + 1; ++r) { \ |
| for (c = 1; c < bw + 1; ++c) { \ |
| buf[r][c] = (pred_expression); \ |
| dst[(r - 1) * stride + c - 1] = \ |
| (uint16_t)(AOMMIN(AOMMAX(buf[r][c], 0.001), 254.999) + 0.5); \ |
| } \ |
| } \ |
| } |
| |
| #define ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_COL_MAJOR( \ |
| func_name, pred_expression, data_type) \ |
| void func_name(data_type *dst, int stride, TX_SIZE tx_size, double *filt, \ |
| const data_type *above, const data_type *left) { \ |
| int r, c; \ |
| double buf[66][65]; \ |
| const int bw = tx_size_wide[tx_size]; \ |
| const int bh = tx_size_high[tx_size]; \ |
| for (r = 0; r < bh; ++r) buf[r + 1][0] = (double)left[r]; \ |
| for (c = 0; c < bw + 1; ++c) buf[0][c] = (double)above[c - 1]; \ |
| for (c = 0; c < bw + 1; ++c) buf[bh + 1][c] = (double)left[bh]; \ |
| for (c = 1; c < bw + 1; ++c) { \ |
| for (r = 1; r < bh + 1; ++r) { \ |
| buf[r][c] = (pred_expression); \ |
| dst[(r - 1) * stride + c - 1] = \ |
| (uint16_t)(AOMMIN(AOMMAX(buf[r][c], 0.001), 254.999) + 0.5); \ |
| } \ |
| } \ |
| } |
| |
| // Set up functions for accumulating statistics necessary to adaptively fit |
| // filter coefficients for the transform unit: |
| typedef void (*adapt_filter_intra_accum_fn)(const uint8_t *src, int stride, |
| int w, int h, int64_t *dst_buf); |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_0, 1, 2, 3, |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_1, 0, 1, 3, |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_2, 1, 3, 4, |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_4_TAP_ACCUM_FUNC(adapt_filter_intra_accum_3, 0, 1, 2, |
| 3, uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_4_TAP_ACCUM_FUNC(adapt_filter_intra_accum_4, 1, 2, 3, |
| 4, uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_5, 0, 2, 3, |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_6, 1, 2, 4, |
| uint8_t) |
| static const adapt_filter_intra_accum_fn |
| adapt_filter_intra_accum_fns[ADAPT_FILTER_INTRA_MODES] = { |
| adapt_filter_intra_accum_0, adapt_filter_intra_accum_1, |
| adapt_filter_intra_accum_2, adapt_filter_intra_accum_3, |
| adapt_filter_intra_accum_4, adapt_filter_intra_accum_5, |
| adapt_filter_intra_accum_6 |
| }; |
| |
| typedef void (*adapt_filter_intra_accum_fn_hbd)(const uint16_t *src, int stride, |
| int w, int h, int64_t *dst_buf); |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_0_hbd, 1, 2, |
| 3, uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_1_hbd, 0, 1, |
| 3, uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_2_hbd, 1, 3, |
| 4, uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_4_TAP_ACCUM_FUNC(adapt_filter_intra_accum_3_hbd, 0, 1, |
| 2, 3, uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_4_TAP_ACCUM_FUNC(adapt_filter_intra_accum_4_hbd, 1, 2, |
| 3, 4, uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_5_hbd, 0, 2, |
| 3, uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_3_TAP_ACCUM_FUNC(adapt_filter_intra_accum_6_hbd, 1, 2, |
| 4, uint16_t) |
| static const adapt_filter_intra_accum_fn_hbd |
| adapt_filter_intra_accum_fns_hbd[ADAPT_FILTER_INTRA_MODES] = { |
| adapt_filter_intra_accum_0_hbd, adapt_filter_intra_accum_1_hbd, |
| adapt_filter_intra_accum_2_hbd, adapt_filter_intra_accum_3_hbd, |
| adapt_filter_intra_accum_4_hbd, adapt_filter_intra_accum_5_hbd, |
| adapt_filter_intra_accum_6_hbd |
| }; |
| |
| // Set up functions for performing prediction given the fit filter coefficients. |
| // Whenever coefficent for the bottom-left pixel is non-zero, we are forced to |
| // do the prediction in the column-major order. |
| typedef void (*adapt_filter_intra_pred_fn)(uint8_t *dst, int stride, |
| TX_SIZE tx_size, double *filt, |
| const uint8_t *above, |
| const uint8_t *left); |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_0, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c]), |
| uint8_t) |
| |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_COL_MAJOR(adapt_filter_intra_pred_1, |
| (filt[0] * buf[r + 1][c - 1] + |
| filt[1] * buf[r][c - 1] + |
| filt[2] * buf[r - 1][c]), |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_2, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c] + |
| filt[2] * buf[r - 1][c + 1]), |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_COL_MAJOR(adapt_filter_intra_pred_3, |
| (filt[0] * buf[r + 1][c - 1] + |
| filt[1] * buf[r][c - 1] + |
| filt[2] * buf[r - 1][c - 1] + |
| filt[3] * buf[r - 1][c]), |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_4, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c] + |
| filt[3] * buf[r - 1][c + 1]), |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_COL_MAJOR(adapt_filter_intra_pred_5, |
| (filt[0] * buf[r + 1][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c]), |
| uint8_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_6, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c + 1]), |
| uint8_t) |
| static const adapt_filter_intra_pred_fn |
| adapt_filter_intra_pred_fns[ADAPT_FILTER_INTRA_MODES] = { |
| adapt_filter_intra_pred_0, adapt_filter_intra_pred_1, |
| adapt_filter_intra_pred_2, adapt_filter_intra_pred_3, |
| adapt_filter_intra_pred_4, adapt_filter_intra_pred_5, |
| adapt_filter_intra_pred_6 |
| }; |
| |
| typedef void (*adapt_filter_intra_pred_fn_hbd)(uint16_t *dst, int stride, |
| TX_SIZE tx_size, double *filt, |
| const uint16_t *above, |
| const uint16_t *left); |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_0_hbd, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c]), |
| uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_COL_MAJOR(adapt_filter_intra_pred_1_hbd, |
| (filt[0] * buf[r + 1][c - 1] + |
| filt[1] * buf[r][c - 1] + |
| filt[2] * buf[r - 1][c]), |
| uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_2_hbd, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c] + |
| filt[2] * buf[r - 1][c + 1]), |
| uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_COL_MAJOR(adapt_filter_intra_pred_3_hbd, |
| (filt[0] * buf[r + 1][c - 1] + |
| filt[1] * buf[r][c - 1] + |
| filt[2] * buf[r - 1][c - 1] + |
| filt[3] * buf[r - 1][c]), |
| uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_4_hbd, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c] + |
| filt[3] * buf[r - 1][c + 1]), |
| uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_COL_MAJOR(adapt_filter_intra_pred_5_hbd, |
| (filt[0] * buf[r + 1][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c]), |
| uint16_t) |
| ADAPT_FILTER_INTRA_DEFINE_PRED_FUNC_ROW_MAJOR(adapt_filter_intra_pred_6_hbd, |
| (filt[0] * buf[r][c - 1] + |
| filt[1] * buf[r - 1][c - 1] + |
| filt[2] * buf[r - 1][c + 1]), |
| uint16_t) |
| static const adapt_filter_intra_pred_fn_hbd |
| adapt_filter_intra_pred_fns_hbd[ADAPT_FILTER_INTRA_MODES] = { |
| adapt_filter_intra_pred_0_hbd, adapt_filter_intra_pred_1_hbd, |
| adapt_filter_intra_pred_2_hbd, adapt_filter_intra_pred_3_hbd, |
| adapt_filter_intra_pred_4_hbd, adapt_filter_intra_pred_5_hbd, |
| adapt_filter_intra_pred_6_hbd |
| }; |
| |
| // Define the parameters that describe the shape of the region used to fit the |
| // filter, i.e. the training region (separately for each transform size and |
| // adaptive filter intra mode) |
| static const int |
| adapt_filter_intra_thickness_hor[TX_SIZES_ALL][ADAPT_FILTER_INTRA_MODES] = { |
| { CLIP_T(2, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(2, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK) }, // TX_4X4 |
| { CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(2, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(8, MAX_H_THICK, MIN_H_THICK) }, // TX_8X8 |
| { CLIP_T(12, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(10, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK) }, // TX_16X16 |
| { CLIP_T(16, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(14, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(15, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(19, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(17, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(16, MAX_H_THICK, MIN_H_THICK) }, // TX_32X32 |
| { CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK) }, // TX_64X64 |
| { CLIP_T(3, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(1, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(2, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK) }, // TX_4X8 |
| { CLIP_T(3, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(4, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(2, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK) }, // TX_8X4 |
| { CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(4, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK) }, // TX_8X16 |
| { CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(10, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(10, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK) }, // TX_16X8 |
| { CLIP_T(12, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK) }, // TX_16X32 |
| { CLIP_T(19, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(14, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(19, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(15, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(14, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK) }, // TX_32X16 |
| { CLIP_T(17, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(17, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(17, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(17, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(17, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(17, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(17, MAX_H_THICK, MIN_H_THICK) }, // TX_32X64 |
| { CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK) }, // TX_64X32 |
| { CLIP_T(2, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(3, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(4, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK) }, // TX_4X16 |
| { CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK) }, // TX_16X4 |
| { CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(3, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(8, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(4, MAX_H_THICK, MIN_H_THICK) }, // TX_8X32 |
| { CLIP_T(16, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(20, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(18, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(16, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(20, MAX_H_THICK, MIN_H_THICK) }, // TX_32X8 |
| { CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK) }, // TX_16X64 |
| { CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(33, MAX_H_THICK, MIN_H_THICK) }, // TX_64X16 |
| #if CONFIG_FLEX_PARTITION |
| // TODO(huisu): Correct these |
| { CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(4, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK) }, // TX_4X32 |
| { CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(10, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(10, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK) }, // TX_32X4 |
| { CLIP_T(12, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(6, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(11, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(7, MAX_H_THICK, MIN_H_THICK) }, // TX_8X64 |
| { CLIP_T(19, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(14, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(19, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(15, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(14, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK) }, // TX_64X8 |
| { CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(9, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(3, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(8, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(5, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(4, MAX_H_THICK, MIN_H_THICK) }, // TX_4X64 |
| { CLIP_T(16, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(20, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(18, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(16, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(13, MAX_H_THICK, MIN_H_THICK), |
| CLIP_T(20, MAX_H_THICK, MIN_H_THICK) }, // TX_64X4 |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| static const int |
| adapt_filter_intra_thickness_ver[TX_SIZES_ALL][ADAPT_FILTER_INTRA_MODES] = { |
| { CLIP_T(4, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(2, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(4, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK) }, // TX_4X4 |
| { CLIP_T(3, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK) }, // TX_8X8 |
| { CLIP_T(11, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(10, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(12, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(10, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK) }, // TX_16X16 |
| { CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(16, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(14, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(16, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK) }, // TX_32X32 |
| { CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK) }, // TX_64X64 |
| { CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(3, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(3, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK) }, // TX_4X8 |
| { CLIP_T(3, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(2, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK) }, // TX_8X4 |
| { CLIP_T(11, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(11, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK) }, // TX_8X16 |
| { CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(3, MAX_V_THICK, MIN_V_THICK) }, // TX_16X8 |
| { CLIP_T(14, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(15, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(20, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(19, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(14, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(14, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK) }, // TX_16X32 |
| { CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(12, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(11, MAX_V_THICK, MIN_V_THICK) }, // TX_32X16 |
| { CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK) }, // TX_32X64 |
| { CLIP_T(17, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK) }, // TX_64X32 |
| { CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(11, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(10, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(11, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK) }, // TX_4X16 |
| { CLIP_T(2, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(1, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(4, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK) }, // TX_16X4 |
| { CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(19, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(15, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(15, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK) }, // TX_8X32 |
| { CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(4, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(3, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK) }, // TX_32X8 |
| { CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(33, MAX_V_THICK, MIN_V_THICK) }, // TX_16X64 |
| { CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK) }, // TX_64X16 |
| #if CONFIG_FLEX_PARTITION |
| // TODO(huisu): Correct these |
| { CLIP_T(11, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(11, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK) }, // TX_4X32 |
| { CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(3, MAX_V_THICK, MIN_V_THICK) }, // TX_32X4 |
| { CLIP_T(14, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(15, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(20, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(19, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(14, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(14, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK) }, // TX_8X64 |
| { CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(7, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(8, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(12, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(11, MAX_V_THICK, MIN_V_THICK) }, // TX_64X8 |
| { CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(19, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(15, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(13, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(15, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(17, MAX_V_THICK, MIN_V_THICK) }, // TX_4X64 |
| { CLIP_T(5, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(4, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(6, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(3, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK), |
| CLIP_T(9, MAX_V_THICK, MIN_V_THICK) }, // TX_64X4 |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| static const int adapt_filter_intra_top_right_offset |
| [TX_SIZES_ALL][ADAPT_FILTER_INTRA_MODES] = { |
| { 1, 4, 3, 2, 1, -4, 0 }, // TX_4X4 |
| { 2, 1, 7, -1, 1, 1, 3 }, // TX_8X8 |
| { -2, -1, 8, -3, 5, 2, 5 }, // TX_16X16 |
| { -2, -3, 17, -3, 14, 2, 14 }, // TX_32X32 |
| { 0, 0, 33, 0, 33, 0, 33 }, // TX_64X64 |
| { -3, 1, 4, 2, 1, 3, 6 }, // TX_4X8 |
| { 0, 1, 6, 2, 5, -3, 3 }, // TX_8X4 |
| { -1, 0, 8, -4, 3, 2, 5 }, // TX_8X16 |
| { 0, 0, 8, -3, 7, 0, 11 }, // TX_16X8 |
| { 0, -2, 10, -2, 6, -4, 7 }, // TX_16X32 |
| { -1, -4, 20, -3, 16, -3, 15 }, // TX_32X16 |
| { 0, 0, 17, 0, 17, 0, 17 }, // TX_32X64 |
| { 0, 0, 33, 0, 33, 0, 33 }, // TX_64X32 |
| { 4, -1, 2, -2, 1, -3, 2 }, // TX_4X16 |
| { 2, 3, 11, 3, 7, -3, 8 }, // TX_16X4 |
| { -1, -4, 5, -2, 2, -4, 7 }, // TX_8X32 |
| { -2, 2, 15, -4, 19, -1, 17 }, // TX_32X8 |
| { 0, 0, 9, 0, 9, 0, 9 }, // TX_16X64 |
| { 0, 0, 33, 0, 33, 0, 33 }, // TX_64X16 |
| #if CONFIG_FLEX_PARTITION |
| // TODO(huisu): Correct these |
| { -1, 0, 8, -4, 3, 2, 5 }, // TX_4X32 |
| { 0, 0, 8, -3, 7, 0, 11 }, // TX_32X4 |
| { 0, -2, 10, -2, 6, -4, 7 }, // TX_8X64 |
| { -1, -4, 20, -3, 16, -3, 15 }, // TX_64X8 |
| { -1, -4, 5, -2, 2, -4, 7 }, // TX_4X64 |
| { -2, 2, 15, -4, 19, -1, 17 }, // TX_64X4 |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| static const int adapt_filter_intra_bottom_left_offset |
| [TX_SIZES_ALL][ADAPT_FILTER_INTRA_MODES] = { |
| { -1, 3, 0, 2, 3, 5, -3 }, // TX_4X4 |
| { 1, 7, 1, 1, 2, 7, -2 }, // TX_8X8 |
| { -1, 6, -3, 8, -1, 10, -1 }, // TX_16X16 |
| { -1, 13, -4, 15, -2, 15, -3 }, // TX_32X32 |
| { 0, 33, 0, 33, 0, 33, 0 }, // TX_64X64 |
| { -3, 8, -1, 4, 1, 7, 0 }, // TX_4X8 |
| { 0, 4, 2, 1, 0, 3, 0 }, // TX_8X4 |
| { -4, 10, -2, 7, -1, 9, 0 }, // TX_8X16 |
| { -1, 5, -3, 4, 2, 7, 4 }, // TX_16X8 |
| { -4, 16, 1, 13, -3, 15, -1 }, // TX_16X32 |
| { -3, 8, 1, 7, -1, 9, -1 }, // TX_32X16 |
| { 0, 33, 0, 33, 0, 33, 0 }, // TX_32X64 |
| { 0, 17, 0, 17, 0, 17, 0 }, // TX_64X32 |
| { -1, 11, 0, 9, 1, 8, -2 }, // TX_4X16 |
| { 2, 4, 1, 1, 2, 0, -3 }, // TX_16X4 |
| { -1, 18, -3, 13, 1, 14, 1 }, // TX_8X32 |
| { -2, 5, 0, 4, -2, 5, -1 }, // TX_32X8 |
| { 0, 33, 0, 33, 0, 33, 0 }, // TX_16X64 |
| { 0, 9, 0, 9, 0, 9, 0 }, // TX_64X16 |
| #if CONFIG_FLEX_PARTITION |
| // TODO(huisu): Correct these |
| { -4, 10, -2, 7, -1, 9, 0 }, // TX_4X32 |
| { -1, 5, -3, 4, 2, 7, 4 }, // TX_32X4 |
| { -4, 16, 1, 13, -3, 15, -1 }, // TX_8X64 |
| { -3, 8, 1, 7, -1, 9, -1 }, // TX_64X8 |
| { -1, 18, -3, 13, 1, 14, 1 }, // TX_4X64 |
| { -2, 5, 0, 4, -2, 5, -1 }, // TX_64X4 |
| #endif // CONFIG_FLEX_PARTITION |
| }; |
| |
| // Specify the number of taps each mode is using (only 3 and 4 are currently |
| // supported): |
| static const int adapt_filter_intra_num_taps[ADAPT_FILTER_INTRA_MODES] = { |
| 3, 3, 3, 4, 4, 3, 3 |
| }; |
| |
| // Specify whether each mode uses top-right or bottom-left pixels (it affects |
| // the size of the training region): |
| static const int adapt_filter_intra_use_top_right[ADAPT_FILTER_INTRA_MODES] = { |
| 0, 0, 1, 0, 1, 0, 1 |
| }; |
| static const int |
| adapt_filter_intra_use_bottom_left[ADAPT_FILTER_INTRA_MODES] = { 0, 1, 0, 1, |
| 0, 1, 0 }; |
| |
| // Some modes use only left/top context of the block for training: |
| static const int adapt_filter_intra_top_allowed[ADAPT_FILTER_INTRA_MODES] = { |
| 1, 1, 1, 0, 1, 1, 1 |
| }; |
| static const int adapt_filter_intra_left_allowed[ADAPT_FILTER_INTRA_MODES] = { |
| 1, 1, 1, 1, 0, 1, 1 |
| }; |
| |
| // To prevent degenerate systems from appearing introduce extra L2 |
| // regularization: |
| static const int adapt_filter_intra_regularization_coef = 2; |
| |
| static void adapt_filter_intra_accumulate_stats( |
| const uint8_t *ref, int stride, TX_SIZE tx_size, int n_top_px, |
| int n_topright_px, int n_left_px, int n_bottomleft_px, int64_t *dst_stats, |
| int px_row, int px_col, int mode) { |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| const int up_offs = |
| AOMMIN(adapt_filter_intra_thickness_ver[tx_size][mode], px_row) - 1; |
| const int left_offs = |
| AOMMIN(adapt_filter_intra_thickness_hor[tx_size][mode], px_col) - 1; |
| const int top_right_offs = adapt_filter_intra_top_right_offset[tx_size][mode]; |
| const int bottom_left_offs = |
| adapt_filter_intra_bottom_left_offset[tx_size][mode]; |
| |
| const int w_adjust = adapt_filter_intra_use_top_right[mode] ? -1 : 0; |
| const int h_adjust = adapt_filter_intra_use_bottom_left[mode] ? -1 : 0; |
| |
| const int top_width = |
| AOMMIN(n_top_px + n_topright_px, txwpx + top_right_offs); |
| const int left_height = |
| AOMMIN(n_left_px + n_bottomleft_px, txhpx + bottom_left_offs); |
| const adapt_filter_intra_accum_fn accum_fn = |
| adapt_filter_intra_accum_fns[mode]; |
| |
| if (adapt_filter_intra_top_allowed[mode] && |
| adapt_filter_intra_left_allowed[mode]) { |
| if (n_top_px > 0 && n_left_px > 0) { |
| accum_fn(ref - up_offs * stride, stride, top_width + w_adjust, |
| up_offs + h_adjust, dst_stats); |
| accum_fn(ref - left_offs, stride, left_offs + w_adjust, |
| left_height + h_adjust, dst_stats); |
| accum_fn(ref - up_offs * stride - left_offs, stride, left_offs, up_offs, |
| dst_stats); |
| } else if (n_top_px > 0) { |
| accum_fn(ref - up_offs * stride + 1, stride, top_width - 1 + w_adjust, |
| up_offs + h_adjust, dst_stats); |
| } else if (n_left_px > 0) { |
| accum_fn(ref + stride - left_offs, stride, left_offs + w_adjust, |
| left_height - 1 + h_adjust, dst_stats); |
| } |
| } else if (adapt_filter_intra_top_allowed[mode]) { |
| const int extra_offs = (n_left_px > 0 || bottom_left_offs <= 0) |
| ? AOMMIN(bottom_left_offs, px_col) |
| : 0; |
| accum_fn(ref - up_offs * stride - (extra_offs - 1), stride, |
| top_width + extra_offs - 1 + w_adjust, up_offs + h_adjust, |
| dst_stats); |
| } else if (adapt_filter_intra_left_allowed[mode]) { |
| const int extra_offs = (n_top_px > 0 || top_right_offs <= 0) |
| ? AOMMIN(top_right_offs, px_row) |
| : 0; |
| accum_fn(ref - (extra_offs - 1) * stride - left_offs, stride, |
| left_offs + w_adjust, left_height + extra_offs - 1 + h_adjust, |
| dst_stats); |
| } |
| } |
| |
| static void adapt_filter_intra_accumulate_stats_hbd( |
| const uint16_t *ref, int stride, TX_SIZE tx_size, int n_top_px, |
| int n_topright_px, int n_left_px, int n_bottomleft_px, int64_t *dst_stats, |
| int px_row, int px_col, int mode) { |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| const int up_offs = |
| AOMMIN(adapt_filter_intra_thickness_ver[tx_size][mode], px_row) - 1; |
| const int left_offs = |
| AOMMIN(adapt_filter_intra_thickness_hor[tx_size][mode], px_col) - 1; |
| const int top_right_offs = adapt_filter_intra_top_right_offset[tx_size][mode]; |
| const int bottom_left_offs = |
| adapt_filter_intra_bottom_left_offset[tx_size][mode]; |
| |
| const int w_adjust = adapt_filter_intra_use_top_right[mode] ? -1 : 0; |
| const int h_adjust = adapt_filter_intra_use_bottom_left[mode] ? -1 : 0; |
| |
| const int top_width = |
| AOMMIN(n_top_px + n_topright_px, txwpx + top_right_offs); |
| const int left_height = |
| AOMMIN(n_left_px + n_bottomleft_px, txhpx + bottom_left_offs); |
| |
| const adapt_filter_intra_accum_fn_hbd accum_fn = |
| adapt_filter_intra_accum_fns_hbd[mode]; |
| if (adapt_filter_intra_top_allowed[mode] && |
| adapt_filter_intra_left_allowed[mode]) { |
| if (n_top_px > 0 && n_left_px > 0) { |
| accum_fn(ref - up_offs * stride, stride, top_width + w_adjust, |
| up_offs + h_adjust, dst_stats); |
| accum_fn(ref - left_offs, stride, left_offs + w_adjust, |
| left_height + h_adjust, dst_stats); |
| accum_fn(ref - up_offs * stride - left_offs, stride, left_offs, up_offs, |
| dst_stats); |
| } else if (n_top_px > 0) { |
| accum_fn(ref - up_offs * stride + 1, stride, top_width - 1 + w_adjust, |
| up_offs + h_adjust, dst_stats); |
| } else if (n_left_px > 0) { |
| accum_fn(ref + stride - left_offs, stride, left_offs + w_adjust, |
| left_height - 1 + h_adjust, dst_stats); |
| } |
| } else if (adapt_filter_intra_top_allowed[mode]) { |
| const int extra_offs = (n_left_px > 0 || bottom_left_offs <= 0) |
| ? AOMMIN(bottom_left_offs, px_col) |
| : 0; |
| accum_fn(ref - up_offs * stride - (extra_offs - 1), stride, |
| top_width + extra_offs - 1 + w_adjust, up_offs + h_adjust, |
| dst_stats); |
| } else if (adapt_filter_intra_left_allowed[mode]) { |
| const int extra_offs = (n_top_px > 0 || top_right_offs <= 0) |
| ? AOMMIN(top_right_offs, px_row) |
| : 0; |
| accum_fn(ref - (extra_offs - 1) * stride - left_offs, stride, |
| left_offs + w_adjust, left_height + extra_offs - 1 + h_adjust, |
| dst_stats); |
| } |
| } |
| |
| static void adapt_filter_intra_solve_3x3(const int64_t *coefs, |
| double *dst_solution) { |
| // coefs layout: |
| // 0 1 3 | 6 |
| // 1 2 4 | 7 |
| // 3 4 5 | 8 |
| const int64_t *lhs = coefs; |
| const int64_t *rhs = coefs + 6; |
| |
| // Precompute determinants of 6 2x2 submatrices: |
| int64_t a[6]; |
| a[0] = lhs[1] * lhs[4] - lhs[2] * lhs[3]; |
| a[1] = lhs[1] * lhs[5] - lhs[4] * lhs[3]; |
| a[2] = lhs[1] * rhs[2] - rhs[1] * lhs[3]; |
| a[3] = lhs[2] * lhs[5] - lhs[4] * lhs[4]; |
| a[4] = lhs[2] * rhs[2] - rhs[1] * lhs[4]; |
| a[5] = lhs[4] * rhs[2] - rhs[1] * lhs[5]; |
| |
| // Compute 4 determinats that we actually care about |
| const int64_t base_det = lhs[0] * a[3] - lhs[1] * a[1] + lhs[3] * a[0]; |
| assert(base_det != 0); |
| const int64_t det1 = rhs[0] * a[3] + lhs[1] * a[5] - lhs[3] * a[4]; |
| const int64_t det2 = -lhs[0] * a[5] - rhs[0] * a[1] + lhs[3] * a[2]; |
| const int64_t det3 = lhs[0] * a[4] - lhs[1] * a[2] + rhs[0] * a[0]; |
| |
| dst_solution[0] = (double)det1 / (double)base_det; |
| dst_solution[1] = (double)det2 / (double)base_det; |
| dst_solution[2] = (double)det3 / (double)base_det; |
| } |
| |
| static void adapt_filter_intra_solve_4x4(const int64_t *coefs, |
| double *dst_solution) { |
| // coefs layout: |
| // 0 1 3 6 | 10 |
| // 1 2 4 7 | 11 |
| // 3 4 5 8 | 12 |
| // 6 7 8 9 | 13 |
| const int64_t *lhs = coefs; |
| const int64_t *rhs = coefs + 10; |
| |
| // Precompute determinants of 20 2x2 submatrices: |
| int64_t a[10], b[10]; |
| a[0] = lhs[0] * lhs[2] - lhs[1] * lhs[1]; |
| a[1] = lhs[0] * lhs[4] - lhs[3] * lhs[1]; |
| a[2] = lhs[0] * lhs[7] - lhs[6] * lhs[1]; |
| a[3] = lhs[0] * rhs[1] - rhs[0] * lhs[1]; |
| a[4] = lhs[1] * lhs[4] - lhs[3] * lhs[2]; |
| a[5] = lhs[1] * lhs[7] - lhs[6] * lhs[2]; |
| a[6] = lhs[1] * rhs[1] - rhs[0] * lhs[2]; |
| a[7] = lhs[3] * lhs[7] - lhs[6] * lhs[4]; |
| a[8] = lhs[3] * rhs[1] - rhs[0] * lhs[4]; |
| a[9] = lhs[6] * rhs[1] - rhs[0] * lhs[7]; |
| |
| b[0] = lhs[3] * lhs[7] - lhs[4] * lhs[6]; |
| b[1] = lhs[3] * lhs[8] - lhs[5] * lhs[6]; |
| b[2] = lhs[3] * lhs[9] - lhs[8] * lhs[6]; |
| b[3] = lhs[3] * rhs[3] - rhs[2] * lhs[6]; |
| b[4] = lhs[4] * lhs[8] - lhs[5] * lhs[7]; |
| b[5] = lhs[4] * lhs[9] - lhs[8] * lhs[7]; |
| b[6] = lhs[4] * rhs[3] - rhs[2] * lhs[7]; |
| b[7] = lhs[5] * lhs[9] - lhs[8] * lhs[8]; |
| b[8] = lhs[5] * rhs[3] - rhs[2] * lhs[8]; |
| b[9] = lhs[8] * rhs[3] - rhs[2] * lhs[9]; |
| |
| // Compute 5 determinats that we actually care about |
| const int64_t base_det = a[0] * b[7] + a[7] * b[0] + a[2] * b[4] + |
| a[4] * b[2] - a[5] * b[1] - a[1] * b[5]; |
| assert(base_det != 0); |
| const int64_t det1 = a[5] * b[8] + a[8] * b[5] - a[6] * b[7] - a[7] * b[6] - |
| a[4] * b[9] - a[9] * b[4]; |
| const int64_t det2 = a[1] * b[9] + a[9] * b[1] + a[3] * b[7] + a[7] * b[3] - |
| a[2] * b[8] - a[8] * b[2]; |
| const int64_t det3 = a[2] * b[6] + a[6] * b[2] - a[0] * b[9] - a[9] * b[0] - |
| a[3] * b[5] - a[5] * b[3]; |
| const int64_t det4 = a[0] * b[8] + a[8] * b[0] + a[3] * b[4] + a[4] * b[3] - |
| a[6] * b[1] - a[1] * b[6]; |
| |
| dst_solution[0] = (double)det1 / (double)base_det; |
| dst_solution[1] = (double)det2 / (double)base_det; |
| dst_solution[2] = (double)det3 / (double)base_det; |
| dst_solution[3] = (double)det4 / (double)base_det; |
| } |
| |
| static void adapt_filter_intra_predictor( |
| uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *ref, |
| ptrdiff_t ref_stride, int n_top_px, int n_topright_px, int n_left_px, |
| int n_bottomleft_px, TX_SIZE tx_size, const uint8_t *above_row, |
| const uint8_t *left_col, int mode, int px_row, int px_col) { |
| // Form a linear system of equations from the statistics collected over the |
| // training region around the current transform unit: |
| int64_t accumulated_stats[14] = { 0 }; |
| adapt_filter_intra_accumulate_stats(ref, ref_stride, tx_size, n_top_px, |
| n_topright_px, n_left_px, n_bottomleft_px, |
| accumulated_stats, px_row, px_col, mode); |
| |
| // Apply regularization and solve the resulting system to get the adaptive |
| // filter coefficients: |
| double adapt_filter[4] = { 0 }; |
| if (adapt_filter_intra_num_taps[mode] == 3) { |
| accumulated_stats[0] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[2] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[5] += adapt_filter_intra_regularization_coef; |
| adapt_filter_intra_solve_3x3(accumulated_stats, adapt_filter); |
| } else if (adapt_filter_intra_num_taps[mode] == 4) { |
| accumulated_stats[0] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[2] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[5] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[9] += adapt_filter_intra_regularization_coef; |
| adapt_filter_intra_solve_4x4(accumulated_stats, adapt_filter); |
| } else { |
| assert(0); |
| } |
| |
| // Finally, perform prediction using the fit filter coefficients: |
| adapt_filter_intra_pred_fns[mode](dst, dst_stride, tx_size, adapt_filter, |
| above_row, left_col); |
| } |
| |
| static void adapt_filter_intra_predictor_hbd( |
| uint16_t *dst, ptrdiff_t dst_stride, const uint16_t *ref, |
| ptrdiff_t ref_stride, int n_top_px, int n_topright_px, int n_left_px, |
| int n_bottomleft_px, TX_SIZE tx_size, const uint16_t *above_row, |
| const uint16_t *left_col, int mode, int px_row, int px_col) { |
| // Form a linear system of equations from the statistics collected over the |
| // training region around the current transform unit: |
| int64_t accumulated_stats[14] = { 0 }; |
| adapt_filter_intra_accumulate_stats_hbd( |
| ref, ref_stride, tx_size, n_top_px, n_topright_px, n_left_px, |
| n_bottomleft_px, accumulated_stats, px_row, px_col, mode); |
| |
| // Apply regularization and solve the resulting system to get the adaptive |
| // filter coefficients: |
| double adapt_filter[4] = { 0 }; |
| if (adapt_filter_intra_num_taps[mode] == 3) { |
| accumulated_stats[0] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[2] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[5] += adapt_filter_intra_regularization_coef; |
| adapt_filter_intra_solve_3x3(accumulated_stats, adapt_filter); |
| } else if (adapt_filter_intra_num_taps[mode] == 4) { |
| accumulated_stats[0] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[2] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[5] += adapt_filter_intra_regularization_coef; |
| accumulated_stats[9] += adapt_filter_intra_regularization_coef; |
| adapt_filter_intra_solve_4x4(accumulated_stats, adapt_filter); |
| } else { |
| assert(0); |
| } |
| |
| // Finally, perform prediction using the fit filter coefficients: |
| adapt_filter_intra_pred_fns_hbd[mode](dst, dst_stride, tx_size, adapt_filter, |
| above_row, left_col); |
| } |
| #endif // CONFIG_ADAPT_FILTER_INTRA |
| |
| static void build_intra_predictors_high( |
| const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, |
| int dst_stride, PREDICTION_MODE mode, int angle_delta, |
| FILTER_INTRA_MODE filter_intra_mode, TX_SIZE tx_size, |
| int disable_edge_filter, int n_top_px, int n_topright_px, int n_left_px, |
| int n_bottomleft_px, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| ADAPT_FILTER_INTRA_MODE adapt_filter_intra_mode, int col_off, int row_off, |
| #endif |
| #if CONFIG_DERIVED_INTRA_MODE |
| int derived_angle, |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| int plane) { |
| int i; |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); |
| DECLARE_ALIGNED(16, uint16_t, left_data[MAX_TX_SIZE * 2 + 32]); |
| DECLARE_ALIGNED(16, uint16_t, above_data[MAX_TX_SIZE * 2 + 32]); |
| uint16_t *const above_row = above_data + 16; |
| uint16_t *const left_col = left_data + 16; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; |
| const uint16_t *above_ref = ref - ref_stride; |
| const uint16_t *left_ref = ref - 1; |
| int p_angle = 0; |
| const int is_dr_mode = av1_is_directional_mode(mode); |
| const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; |
| int base = 128 << (xd->bd - 8); |
| |
| // The default values if ref pixels are not available: |
| // base-1 base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1 |
| // base+1 A B .. Y Z |
| // base+1 C D .. W X |
| // base+1 E F .. U V |
| // base+1 G H .. S T T T T T |
| |
| if (is_dr_mode) { |
| p_angle = mode_to_angle_map[mode] + angle_delta; |
| #if CONFIG_DERIVED_INTRA_MODE |
| if (derived_angle > 0) p_angle = derived_angle; |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0, need_above_left = 1; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1, need_above_left = 1; |
| else |
| need_above = 0, need_left = 1, need_above_left = 1; |
| } |
| if (use_filter_intra) need_left = need_above = need_above_left = 1; |
| #if CONFIG_ADAPT_FILTER_INTRA |
| const int use_adapt_filter_intra = |
| adapt_filter_intra_mode != ADAPT_FILTER_INTRA_MODES; |
| if (use_adapt_filter_intra) need_left = need_above = need_above_left = 1; |
| #endif // CONFIG_ADAPT_FILTER_INTRA |
| |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { |
| int val; |
| if (need_left) { |
| val = (n_top_px > 0) ? above_ref[0] : base + 1; |
| } else { |
| val = (n_left_px > 0) ? left_ref[0] : base - 1; |
| } |
| for (i = 0; i < txhpx; ++i) { |
| aom_memset16(dst, val, txwpx); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| // NEED_LEFT |
| if (need_left) { |
| int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| if (use_filter_intra) need_bottom = 0; |
| #if CONFIG_ADAPT_FILTER_INTRA |
| if (use_adapt_filter_intra) need_bottom = 1; |
| #endif |
| if (is_dr_mode) need_bottom = p_angle > 180; |
| const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0); |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == txhpx); |
| for (; i < txhpx + n_bottomleft_px; i++) |
| left_col[i] = left_ref[i * ref_stride]; |
| } |
| if (i < num_left_pixels_needed) |
| aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i); |
| } else { |
| if (n_top_px > 0) { |
| aom_memset16(left_col, above_ref[0], num_left_pixels_needed); |
| } else { |
| aom_memset16(left_col, base + 1, num_left_pixels_needed); |
| } |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| if (use_filter_intra) need_right = 0; |
| #if CONFIG_ADAPT_FILTER_INTRA |
| if (use_adapt_filter_intra) need_right = 1; |
| #endif |
| if (is_dr_mode) need_right = p_angle < 90; |
| const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0); |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0])); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == txwpx); |
| memcpy(above_row + txwpx, above_ref + txwpx, |
| n_topright_px * sizeof(above_ref[0])); |
| i += n_topright_px; |
| } |
| if (i < num_top_pixels_needed) |
| aom_memset16(&above_row[i], above_row[i - 1], |
| num_top_pixels_needed - i); |
| } else { |
| if (n_left_px > 0) { |
| aom_memset16(above_row, left_ref[0], num_top_pixels_needed); |
| } else { |
| aom_memset16(above_row, base - 1, num_top_pixels_needed); |
| } |
| } |
| } |
| |
| if (need_above_left) { |
| if (n_top_px > 0 && n_left_px > 0) { |
| above_row[-1] = above_ref[-1]; |
| } else if (n_top_px > 0) { |
| above_row[-1] = above_ref[0]; |
| } else if (n_left_px > 0) { |
| above_row[-1] = left_ref[0]; |
| } else { |
| above_row[-1] = base; |
| } |
| left_col[-1] = above_row[-1]; |
| } |
| |
| if (use_filter_intra) { |
| highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| filter_intra_mode, xd->bd); |
| return; |
| } |
| #if CONFIG_ADAPT_FILTER_INTRA |
| if (use_adapt_filter_intra) { |
| const int px_row = (-xd->mb_to_top_edge >> 3) + (row_off << MI_SIZE_LOG2); |
| const int px_col = (-xd->mb_to_left_edge >> 3) + (col_off << MI_SIZE_LOG2); |
| adapt_filter_intra_predictor_hbd(dst, dst_stride, ref, ref_stride, n_top_px, |
| n_topright_px, n_left_px, n_bottomleft_px, |
| tx_size, above_row, left_col, |
| adapt_filter_intra_mode, px_row, px_col); |
| return; |
| } |
| #endif // CONFIG_ADAPT_FILTER_INTRA |
| |
| if (is_dr_mode) { |
| int upsample_above = 0; |
| int upsample_left = 0; |
| if (!disable_edge_filter) { |
| const int need_right = p_angle < 90; |
| const int need_bottom = p_angle > 180; |
| const int filt_type = get_filt_type(xd, plane); |
| if (p_angle != 90 && p_angle != 180) { |
| const int ab_le = need_above_left ? 1 : 0; |
| if (need_above && need_left && (txwpx + txhpx >= 24)) { |
| filter_intra_edge_corner_high(above_row, left_col); |
| } |
| if (need_above && n_top_px > 0) { |
| const int strength = |
| intra_edge_filter_strength(txwpx, txhpx, p_angle - 90, filt_type); |
| const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0); |
| av1_filter_intra_edge_high(above_row - ab_le, n_px, strength); |
| } |
| if (need_left && n_left_px > 0) { |
| const int strength = intra_edge_filter_strength( |
| txhpx, txwpx, p_angle - 180, filt_type); |
| const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0); |
| av1_filter_intra_edge_high(left_col - ab_le, n_px, strength); |
| } |
| } |
| upsample_above = |
| av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, filt_type); |
| if (need_above && upsample_above) { |
| const int n_px = txwpx + (need_right ? txhpx : 0); |
| av1_upsample_intra_edge_high(above_row, n_px, xd->bd); |
| } |
| upsample_left = |
| av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, filt_type); |
| if (need_left && upsample_left) { |
| const int n_px = txhpx + (need_bottom ? txwpx : 0); |
| av1_upsample_intra_edge_high(left_col, n_px, xd->bd); |
| } |
| } |
| highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| upsample_above, upsample_left, p_angle, xd->bd); |
| return; |
| } |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( |
| dst, dst_stride, above_row, left_col, xd->bd); |
| } else { |
| pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, xd->bd); |
| } |
| } |
| |
| void av1_bd_memmove(uint8_t *dst, const uint8_t *ref, size_t n, bool is_hbd) { |
| if (is_hbd) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| const uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref); |
| memmove(dst16, ref16, n * sizeof(uint16_t)); |
| return; |
| } |
| memmove(dst, ref, n * sizeof(uint8_t)); |
| } |
| |
| void av1_bd_memset(uint8_t *dst, int c, size_t n, bool is_hbd) { |
| if (is_hbd) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (size_t i = 0; i < n; ++i) { |
| dst16[i] = c; |
| } |
| return; |
| } |
| memset(dst, c, n); |
| } |
| |
| // If a value cannot be copied for the intra-prediction extension (because there |
| // is no existing valuet to base it on), this base color is used. Defaults to |
| // 128 for 8-bit, 512 for 10-bit, 2048 for 12-bit. |
| static int base_value(aom_bit_depth_t bd) { |
| switch (bd) { |
| case AOM_BITS_8: return 1 << 7; |
| case AOM_BITS_10: return 1 << 9; |
| case AOM_BITS_12: return 1 << 11; |
| default: assert(false && "unsupported bit-depth"); return 0; |
| } |
| } |
| |
| static int last_val_bd(const uint8_t *ref, int offset, bool is_hbd) { |
| if (is_hbd) { |
| return CONVERT_TO_SHORTPTR(ref)[offset]; |
| } |
| return ref[offset]; |
| } |
| |
| int av1_intra_top_available(const MACROBLOCKD *xd, int plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int have_top = |
| (pd->subsampling_y ? xd->chroma_up_available : xd->up_available); |
| if (have_top) { |
| return -xd->mb_to_top_edge >> (3 + pd->subsampling_y); |
| } else { |
| return 0; |
| } |
| } |
| |
| int av1_intra_left_available(const MACROBLOCKD *xd, int plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int have_left = |
| (pd->subsampling_x ? xd->chroma_left_available : xd->left_available); |
| if (have_left) { |
| return -xd->mb_to_left_edge >> (3 + pd->subsampling_x); |
| } else { |
| return 0; |
| } |
| } |
| |
| int av1_intra_bottom_unavailable(const MACROBLOCKD *xd, const int plane, |
| const TX_SIZE tx_size) { |
| const int txhpx = tx_size_high[tx_size]; |
| const int hpx = xd->plane[plane].height; |
| const int ssy = xd->plane[plane].subsampling_y; |
| const int yd = (xd->mb_to_bottom_edge >> (3 + ssy)) + hpx - txhpx; |
| return yd < 0 ? -1 * yd : 0; |
| } |
| |
| int av1_intra_right_unavailable(const MACROBLOCKD *xd, const int plane, |
| const TX_SIZE tx_size) { |
| const int txwpx = tx_size_wide[tx_size]; |
| const int wpx = xd->plane[plane].width; |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int xr = (xd->mb_to_right_edge >> (3 + ssx)) + wpx - txwpx; |
| return xr < 0 ? -1 * xr : 0; |
| } |
| |
| static void extend_intra_border_cols(const uint8_t *ref, int ref_stride, |
| uint8_t *dst, int dst_stride, |
| int left_available_cols, |
| int bottom_unavailable_rows, |
| const int height, int border, |
| aom_bit_depth_t bd, bool is_hbd) { |
| assert(height > bottom_unavailable_rows); |
| const int left_part = AOMMIN(border, left_available_cols); |
| // If there is no data, use the default value. |
| if (left_part == 0) { |
| const int left_default_val = base_value(bd) + 1; |
| dst -= border; |
| for (int j = 0; j < height; ++j) { |
| av1_bd_memset(dst, left_default_val, border, is_hbd); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| dst -= border; |
| ref -= left_part; |
| const int copyable = height - bottom_unavailable_rows; |
| for (int j = 0; j < copyable; ++j) { |
| // If there is partial data, replicate the closest column. |
| int last_val = last_val_bd(ref, 0, is_hbd); |
| av1_bd_memset(dst, last_val, border - left_part, is_hbd); |
| // Copy over the remaining values. |
| av1_bd_memmove(dst + border - left_part, ref, left_part, is_hbd); |
| dst += dst_stride; |
| ref += ref_stride; |
| } |
| for (int j = 0; j < bottom_unavailable_rows; ++j) { |
| // Copy the previous row. |
| av1_bd_memmove(dst, dst - dst_stride, border, is_hbd); |
| dst += dst_stride; |
| } |
| } |
| |
| static void extend_intra_border_rows(const uint8_t *ref, int ref_stride, |
| uint8_t *dst, int dst_stride, |
| int top_available_rows, |
| int right_unavailable_cols, |
| const int width, int border, |
| aom_bit_depth_t bd, bool is_hbd) { |
| assert(width > right_unavailable_cols); |
| const int top_part = AOMMIN(border, top_available_rows); |
| // If there is no data, use the default value. |
| if (top_part == 0) { |
| const int top_default_val = base_value(bd) - 1; |
| dst -= border * dst_stride; |
| for (int j = 0; j < border; ++j) { |
| av1_bd_memset(dst, top_default_val, width, is_hbd); |
| dst += dst_stride; |
| } |
| return; |
| } |
| // If there is partial data, replicate the closest row. |
| dst -= border * dst_stride; |
| ref -= top_part * ref_stride; |
| const int copyable = width - right_unavailable_cols; |
| for (int j = 0; j < border - top_part; ++j) { |
| av1_bd_memmove(dst, ref, copyable, is_hbd); |
| int last_val = last_val_bd(dst, copyable - 1, is_hbd); |
| av1_bd_memset(dst + copyable, last_val, right_unavailable_cols, is_hbd); |
| dst += dst_stride; |
| } |
| |
| // Copy over the remaining data. |
| for (int j = 0; j < top_part; ++j) { |
| av1_bd_memmove(dst, ref, copyable, is_hbd); |
| int last_val = last_val_bd(dst, copyable - 1, is_hbd); |
| av1_bd_memset(dst + copyable, last_val, right_unavailable_cols, is_hbd); |
| dst += dst_stride; |
| ref += ref_stride; |
| } |
| } |
| |
| static void extend_intra_border_corner(const uint8_t *ref, int ref_stride, |
| uint8_t *dst, int dst_stride, |
| int top_available_rows, |
| int left_available_cols, int border, |
| aom_bit_depth_t bd, bool is_hbd) { |
| const int top_part = AOMMIN(border, top_available_rows); |
| const int left_part = AOMMIN(border, left_available_cols); |
| const int corner_part = AOMMIN(top_part, left_part); |
| |
| // If there is no data, use the default value. |
| if (corner_part == 0) { |
| const int corner_default_val = base_value(bd) - 1; |
| dst -= border * dst_stride + border; |
| for (int j = 0; j < border; ++j) { |
| av1_bd_memset(dst, corner_default_val, border, is_hbd); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| dst -= dst_stride * corner_part + border; |
| ref -= ref_stride * corner_part + corner_part; |
| for (int j = 0; j < corner_part; ++j) { |
| // If there is partial data, replicate the closest column. |
| int last_val = last_val_bd(ref, 0, is_hbd); |
| av1_bd_memset(dst, last_val, border - corner_part, is_hbd); |
| // Copy over the remaining values. |
| av1_bd_memmove(dst + border - corner_part, ref, corner_part, is_hbd); |
| dst += dst_stride; |
| ref += ref_stride; |
| } |
| |
| // Replicate upward as necessary. |
| const uint8_t *dst_ref = dst - dst_stride * corner_part; |
| dst -= dst_stride * border; |
| for (int j = 0; j < border - corner_part; ++j) { |
| av1_bd_memmove(dst, dst_ref, border, is_hbd); |
| dst += dst_stride; |
| } |
| } |
| |
| // The rules for extending the intra-prediction border. |
| // |
| // The intra-pred border region consists of 3 areas: a top-left corner, |
| // left columns, and top rows. To illustrate, assume the border |
| // width is 2 and block size is 4x4. "X" marks the start of the pointer, |
| // 1 represents the top corner, 2 represents the top rows, and 3 represents the |
| // left columns: |
| // |
| // 1 1 2 2 2 2 |
| // 1 1 2 2 2 2 |
| // 3 3 X . . . |
| // 3 3 . . . . |
| // 3 3 . . . . |
| // 3 3 . . . . |
| // |
| // The following rules are used for creating the intra-pred border region: |
| // |
| // 1. If the reference buffer has data present for the rows, they |
| // are copied over into the destination buffer. If partial data exists, then |
| // the last valid row is replicated upward to fill the buffer. If no data at all |
| // exists, then compute the default value ((1 << (bit depth - 1)) - 1) and |
| // set the rows to it. |
| // |
| // 2. For columns, the same rule applies, except replicate leftward, and the |
| // the default value is ((1 << (bit depth - 1)) + 1). |
| // |
| // 3. For the top-left, if it exists in the reference buffer, copy |
| // it over. If no values exist, use ((1 << (bit depth - 1)) - 1). Otherwise, |
| // replicate leftward followed by replicating upward. |
| // |
| // Note that it's possible for a block to extend beyond the boundaries of an |
| // image (imagine a 32x8 block positioned 32 pixels from the right border |
| // but only 4 pixels from the bottom border -- it would extend 4 pixels |
| // below the end of the frame). In this situation, the unavailable rows or |
| // columns must be extended. |
| void av1_extend_intra_border(const uint8_t *ref, int ref_stride, uint8_t *dst, |
| int dst_stride, int top_available_rows, |
| int right_unavailable_cols, |
| int left_available_cols, |
| int bottom_unavailable_rows, const int width, |
| const int height, int border, aom_bit_depth_t bd, |
| bool is_hbd) { |
| // Step 1: copy over the rows. |
| extend_intra_border_rows(ref, ref_stride, dst, dst_stride, top_available_rows, |
| right_unavailable_cols, width, border, bd, is_hbd); |
| // Step 2: copy over the columns. |
| extend_intra_border_cols(ref, ref_stride, dst, dst_stride, |
| left_available_cols, bottom_unavailable_rows, height, |
| border, bd, is_hbd); |
| // Step 3: copy over the top-left corner. No need to check for unavailable |
| // rows or columns -- in such a case where it would affect it, either |
| // top_available_rows or left_available cols would be zero. |
| assert(right_unavailable_cols < width); |
| assert(bottom_unavailable_rows < height); |
| extend_intra_border_corner(ref, ref_stride, dst, dst_stride, |
| top_available_rows, left_available_cols, border, |
| bd, is_hbd); |
| } |
| |
| static void build_intra_predictors( |
| const MACROBLOCKD *xd, const uint8_t *ref, int ref_stride, uint8_t *dst, |
| int dst_stride, PREDICTION_MODE mode, int angle_delta, |
| FILTER_INTRA_MODE filter_intra_mode, TX_SIZE tx_size, |
| int disable_edge_filter, int n_top_px, int n_topright_px, int n_left_px, |
| int n_bottomleft_px, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| ADAPT_FILTER_INTRA_MODE adapt_filter_intra_mode, int col_off, int row_off, |
| #endif |
| #if CONFIG_DERIVED_INTRA_MODE |
| int derived_angle, |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| int plane) { |
| int i; |
| const uint8_t *above_ref = ref - ref_stride; |
| const uint8_t *left_ref = ref - 1; |
| DECLARE_ALIGNED(16, uint8_t, left_data[MAX_TX_SIZE * 2 + 32]); |
| DECLARE_ALIGNED(16, uint8_t, above_data[MAX_TX_SIZE * 2 + 32]); |
| uint8_t *const above_row = above_data + 16; |
| uint8_t *const left_col = left_data + 16; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; |
| int p_angle = 0; |
| const int is_dr_mode = av1_is_directional_mode(mode); |
| const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; |
| |
| // The default values if ref pixels are not available: |
| // 127 127 127 .. 127 127 127 127 127 127 |
| // 129 A B .. Y Z |
| // 129 C D .. W X |
| // 129 E F .. U V |
| // 129 G H .. S T T T T T |
| // .. |
| |
| if (is_dr_mode) { |
| p_angle = mode_to_angle_map[mode] + angle_delta; |
| #if CONFIG_DERIVED_INTRA_MODE |
| if (derived_angle > 0) p_angle = derived_angle; |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0, need_above_left = 1; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1, need_above_left = 1; |
| else |
| need_above = 0, need_left = 1, need_above_left = 1; |
| } |
| if (use_filter_intra) need_left = need_above = need_above_left = 1; |
| #if CONFIG_ADAPT_FILTER_INTRA |
| const int use_adapt_filter_intra = |
| adapt_filter_intra_mode != ADAPT_FILTER_INTRA_MODES; |
| if (use_adapt_filter_intra) need_left = need_above = need_above_left = 1; |
| #endif // CONFIG_ADAPT_FILTER_INTRA |
| |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { |
| int val; |
| if (need_left) { |
| val = (n_top_px > 0) ? above_ref[0] : 129; |
| } else { |
| val = (n_left_px > 0) ? left_ref[0] : 127; |
| } |
| for (i = 0; i < txhpx; ++i) { |
| memset(dst, val, txwpx); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| // NEED_LEFT |
| if (need_left) { |
| int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| if (use_filter_intra) need_bottom = 0; |
| #if CONFIG_ADAPT_FILTER_INTRA |
| if (use_adapt_filter_intra) need_bottom = 1; |
| #endif |
| if (is_dr_mode) need_bottom = p_angle > 180; |
| const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0); |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == txhpx); |
| for (; i < txhpx + n_bottomleft_px; i++) |
| left_col[i] = left_ref[i * ref_stride]; |
| } |
| if (i < num_left_pixels_needed) |
| memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i); |
| } else { |
| if (n_top_px > 0) { |
| memset(left_col, above_ref[0], num_left_pixels_needed); |
| } else { |
| memset(left_col, 129, num_left_pixels_needed); |
| } |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| if (use_filter_intra) need_right = 0; |
| #if CONFIG_ADAPT_FILTER_INTRA |
| if (use_adapt_filter_intra) need_right = 1; |
| #endif |
| if (is_dr_mode) need_right = p_angle < 90; |
| const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0); |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == txwpx); |
| memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px); |
| i += n_topright_px; |
| } |
| if (i < num_top_pixels_needed) |
| memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i); |
| } else { |
| if (n_left_px > 0) { |
| memset(above_row, left_ref[0], num_top_pixels_needed); |
| } else { |
| memset(above_row, 127, num_top_pixels_needed); |
| } |
| } |
| } |
| |
| if (need_above_left) { |
| if (n_top_px > 0 && n_left_px > 0) { |
| above_row[-1] = above_ref[-1]; |
| } else if (n_top_px > 0) { |
| above_row[-1] = above_ref[0]; |
| } else if (n_left_px > 0) { |
| above_row[-1] = left_ref[0]; |
| } else { |
| above_row[-1] = 128; |
| } |
| left_col[-1] = above_row[-1]; |
| } |
| |
| if (use_filter_intra) { |
| av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| filter_intra_mode); |
| return; |
| } |
| |
| #if CONFIG_ADAPT_FILTER_INTRA |
| if (use_adapt_filter_intra) { |
| const int px_row = (-xd->mb_to_top_edge >> 3) + (row_off << MI_SIZE_LOG2); |
| const int px_col = (-xd->mb_to_left_edge >> 3) + (col_off << MI_SIZE_LOG2); |
| adapt_filter_intra_predictor(dst, dst_stride, ref, ref_stride, n_top_px, |
| n_topright_px, n_left_px, n_bottomleft_px, |
| tx_size, above_row, left_col, |
| adapt_filter_intra_mode, px_row, px_col); |
| return; |
| } |
| #endif // CONFIG_ADAPT_FILTER_INTRA |
| |
| if (is_dr_mode) { |
| int upsample_above = 0; |
| int upsample_left = 0; |
| if (!disable_edge_filter) { |
| const int need_right = p_angle < 90; |
| const int need_bottom = p_angle > 180; |
| const int filt_type = get_filt_type(xd, plane); |
| if (p_angle != 90 && p_angle != 180) { |
| const int ab_le = need_above_left ? 1 : 0; |
| if (need_above && need_left && (txwpx + txhpx >= 24)) { |
| filter_intra_edge_corner(above_row, left_col); |
| } |
| if (need_above && n_top_px > 0) { |
| const int strength = |
| intra_edge_filter_strength(txwpx, txhpx, p_angle - 90, filt_type); |
| const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0); |
| av1_filter_intra_edge(above_row - ab_le, n_px, strength); |
| } |
| if (need_left && n_left_px > 0) { |
| const int strength = intra_edge_filter_strength( |
| txhpx, txwpx, p_angle - 180, filt_type); |
| const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0); |
| av1_filter_intra_edge(left_col - ab_le, n_px, strength); |
| } |
| } |
| upsample_above = |
| av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, filt_type); |
| if (need_above && upsample_above) { |
| const int n_px = txwpx + (need_right ? txhpx : 0); |
| av1_upsample_intra_edge(above_row, n_px); |
| } |
| upsample_left = |
| av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, filt_type); |
| if (need_left && upsample_left) { |
| const int n_px = txhpx + (need_bottom ? txwpx : 0); |
| av1_upsample_intra_edge(left_col, n_px); |
| } |
| } |
| dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above, |
| upsample_left, p_angle); |
| return; |
| } |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row, |
| left_col); |
| } else { |
| pred[mode][tx_size](dst, dst_stride, above_row, left_col); |
| } |
| } |
| |
| void av1_predict_intra_block(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int wpx, int hpx, TX_SIZE tx_size, |
| PREDICTION_MODE mode, int angle_delta, |
| int use_palette, |
| FILTER_INTRA_MODE filter_intra_mode, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| ADAPT_FILTER_INTRA_MODE adapt_filter_intra_mode, |
| #endif |
| #if CONFIG_DERIVED_INTRA_MODE |
| int derived_angle, |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| const uint8_t *ref, int ref_stride, uint8_t *dst, |
| int dst_stride, int col_off, int row_off, |
| int plane) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| const int x = col_off << tx_size_wide_log2[0]; |
| const int y = row_off << tx_size_high_log2[0]; |
| |
| if (use_palette) { |
| int r, c; |
| const uint8_t *const map = xd->plane[plane != 0].color_index_map + |
| xd->color_index_map_offset[plane != 0]; |
| const uint16_t *const palette = |
| mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE; |
| if (is_cur_buf_hbd(xd)) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (r = 0; r < txhpx; ++r) { |
| for (c = 0; c < txwpx; ++c) { |
| dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]]; |
| } |
| } |
| } else { |
| for (r = 0; r < txhpx; ++r) { |
| for (c = 0; c < txwpx; ++c) { |
| dst[r * dst_stride + c] = |
| (uint8_t)palette[map[(r + y) * wpx + c + x]]; |
| } |
| } |
| } |
| return; |
| } |
| |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int txw = tx_size_wide_unit[tx_size]; |
| const int txh = tx_size_high_unit[tx_size]; |
| const int have_top = row_off || (pd->subsampling_y ? xd->chroma_up_available |
| : xd->up_available); |
| const int have_left = |
| col_off || |
| (pd->subsampling_x ? xd->chroma_left_available : xd->left_available); |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| const int xr_chr_offset = 0; |
| const int yd_chr_offset = 0; |
| |
| // Distance between the right edge of this prediction block to |
| // the frame right edge |
| const int xr = (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + |
| (wpx - x - txwpx) - xr_chr_offset; |
| // Distance between the bottom edge of this prediction block to |
| // the frame bottom edge |
| const int yd = (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + |
| (hpx - y - txhpx) - yd_chr_offset; |
| const int right_available = |
| mi_col + ((col_off + txw) << pd->subsampling_x) < xd->tile.mi_col_end; |
| const int bottom_available = |
| (yd > 0) && |
| (mi_row + ((row_off + txh) << pd->subsampling_y) < xd->tile.mi_row_end); |
| |
| // force 4x4 chroma component block size. |
| bsize = plane ? mbmi->chroma_ref_info.bsize_base : bsize; |
| |
| int px_top_right = 0; |
| const int have_top_right = has_top_right( |
| cm, xd, bsize, mi_row, mi_col, have_top, right_available, tx_size, |
| row_off, col_off, pd->subsampling_x, pd->subsampling_y, xr, &px_top_right, |
| bsize != mbmi->sb_type); |
| |
| int px_bottom_left = 0; |
| const int have_bottom_left = has_bottom_left( |
| cm, xd, bsize, mi_row, mi_col, bottom_available, have_left, tx_size, |
| row_off, col_off, pd->subsampling_x, pd->subsampling_y, yd, |
| &px_bottom_left, bsize != mbmi->sb_type); |
| |
| const int disable_edge_filter = !cm->seq_params.enable_intra_edge_filter; |
| if (is_cur_buf_hbd(xd)) { |
| build_intra_predictors_high(xd, ref, ref_stride, dst, dst_stride, mode, |
| angle_delta, filter_intra_mode, tx_size, |
| disable_edge_filter, |
| have_top ? AOMMIN(txwpx, xr + txwpx) : 0, |
| have_top_right ? px_top_right : 0, |
| have_left ? AOMMIN(txhpx, yd + txhpx) : 0, |
| have_bottom_left ? px_bottom_left : 0, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| adapt_filter_intra_mode, col_off, row_off, |
| #endif |
| #if CONFIG_DERIVED_INTRA_MODE |
| derived_angle, |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| plane); |
| return; |
| } |
| |
| build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, |
| angle_delta, filter_intra_mode, tx_size, |
| disable_edge_filter, |
| have_top ? AOMMIN(txwpx, xr + txwpx) : 0, |
| have_top_right ? px_top_right : 0, |
| have_left ? AOMMIN(txhpx, yd + txhpx) : 0, |
| have_bottom_left ? px_bottom_left : 0, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| adapt_filter_intra_mode, col_off, row_off, |
| #endif |
| #if CONFIG_DERIVED_INTRA_MODE |
| derived_angle, |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| plane); |
| } |
| |
| void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, int blk_col, int blk_row, |
| TX_SIZE tx_size) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| const PREDICTION_MODE mode = |
| (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); |
| const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0; |
| const FILTER_INTRA_MODE filter_intra_mode = |
| (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra) |
| ? mbmi->filter_intra_mode_info.filter_intra_mode |
| : FILTER_INTRA_MODES; |
| #if CONFIG_ADAPT_FILTER_INTRA |
| const ADAPT_FILTER_INTRA_MODE adapt_filter_intra_mode = |
| (plane == AOM_PLANE_Y && |
| mbmi->adapt_filter_intra_mode_info.use_adapt_filter_intra) |
| ? mbmi->adapt_filter_intra_mode_info.adapt_filter_intra_mode |
| : ADAPT_FILTER_INTRA_MODES; |
| #endif // CONFIG_ADAPT_FILTER_INTRA |
| const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP; |
| |
| if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) { |
| #if CONFIG_DEBUG |
| assert(is_cfl_allowed(xd)); |
| const BLOCK_SIZE plane_bsize = get_plane_block_size( |
| mbmi->chroma_ref_info.bsize_base, pd->subsampling_x, pd->subsampling_y); |
| (void)plane_bsize; |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| if (!xd->lossless[mbmi->segment_id]) { |
| assert(blk_col == 0); |
| assert(blk_row == 0); |
| assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); |
| assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); |
| } |
| #endif |
| CFL_CTX *const cfl = &xd->cfl; |
| CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane); |
| if (cfl->dc_pred_is_cached[pred_plane] == 0) { |
| av1_predict_intra_block( |
| cm, xd, pd->width, pd->height, tx_size, mode, angle_delta, |
| use_palette, filter_intra_mode, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| adapt_filter_intra_mode, |
| #endif |
| #if CONFIG_DERIVED_INTRA_MODE |
| mbmi->use_derived_intra_mode[plane != 0] ? mbmi->derived_angle : 0, |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane); |
| if (cfl->use_dc_pred_cache) { |
| cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]); |
| cfl->dc_pred_is_cached[pred_plane] = 1; |
| } |
| } else { |
| cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane); |
| } |
| cfl_predict_block(xd, dst, dst_stride, tx_size, plane); |
| return; |
| } |
| |
| #if CONFIG_DERIVED_INTRA_MODE && FUSION_MODE |
| if (mbmi->use_derived_intra_mode[plane != 0]) { |
| int buf[MAX_SB_SQUARE] = { 0 }; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| for (int i = 0; i < NUM_DERIVED_INTRA_MODES; ++i) { |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode, |
| angle_delta, use_palette, filter_intra_mode, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| adapt_filter_intra_mode, |
| #endif |
| mbmi->derived_intra_angles[i], dst, dst_stride, |
| dst, dst_stride, blk_col, blk_row, plane); |
| const int wt = mbmi->derived_intra_weights[i]; |
| for (int r = 0; r < bh; ++r) { |
| for (int c = 0; c < bw; ++c) { |
| buf[r * MAX_SB_SIZE + c] += wt * dst[r * dst_stride + c]; |
| } |
| } |
| } |
| |
| for (int r = 0; r < bh; ++r) { |
| for (int c = 0; c < bw; ++c) { |
| const int temp = ROUND_POWER_OF_TWO(buf[r * MAX_SB_SIZE + c], |
| DERIVED_INTRA_FUSION_SHIFT); |
| dst[r * dst_stride + c] = clip_pixel(temp); |
| } |
| } |
| |
| return; |
| } |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| |
| av1_predict_intra_block( |
| cm, xd, pd->width, pd->height, tx_size, mode, angle_delta, use_palette, |
| filter_intra_mode, |
| #if CONFIG_ADAPT_FILTER_INTRA |
| adapt_filter_intra_mode, |
| #endif |
| #if CONFIG_DERIVED_INTRA_MODE |
| mbmi->use_derived_intra_mode[plane != 0] ? mbmi->derived_angle : 0, |
| #endif // CONFIG_DERIVED_INTRA_MODE |
| dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane); |
| } |
| |
| void av1_init_intra_predictors(void) { |
| aom_once(init_intra_predictors_internal); |
| } |