blob: 59c8c9b725a91cb38232975542fc0e3b8e112556 [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/tile_common.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/resize.h"
#include "aom_dsp/aom_dsp_common.h"
void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) {
av1_tile_set_row(tile, cm, row);
av1_tile_set_col(tile, cm, col);
}
// Find smallest k>=0 such that (blk_size << k) >= target
static int tile_log2(int blk_size, int target) {
int k;
for (k = 0; (blk_size << k) < target; k++) {
}
return k;
}
void av1_get_tile_limits(AV1_COMMON *const cm) {
int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
int sb_size_log2 = cm->seq_params.mib_size_log2 + MI_SIZE_LOG2;
cm->max_tile_width_sb = MAX_TILE_WIDTH >> sb_size_log2;
int max_tile_area_sb = MAX_TILE_AREA >> (2 * sb_size_log2);
cm->min_log2_tile_cols = tile_log2(cm->max_tile_width_sb, sb_cols);
cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS));
cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS));
cm->min_log2_tiles = tile_log2(max_tile_area_sb, sb_cols * sb_rows);
cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols);
}
void av1_calculate_tile_cols(AV1_COMMON *const cm) {
int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
int i;
// This will be overridden if there is at least two columns of tiles
// (otherwise there is no inner tile width)
cm->min_inner_tile_width = -1;
if (cm->uniform_tile_spacing_flag) {
int start_sb;
int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols);
size_sb >>= cm->log2_tile_cols;
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_cols; i++) {
cm->tile_col_start_sb[i] = start_sb;
start_sb += size_sb;
}
cm->tile_cols = i;
cm->tile_col_start_sb[i] = sb_cols;
cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0);
cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows;
cm->tile_width = size_sb << cm->seq_params.mib_size_log2;
cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
if (cm->tile_cols > 1) {
cm->min_inner_tile_width = cm->tile_width;
}
} else {
int max_tile_area_sb = (sb_rows * sb_cols);
int widest_tile_sb = 1;
int narrowest_inner_tile_sb = 65536;
cm->log2_tile_cols = tile_log2(1, cm->tile_cols);
for (i = 0; i < cm->tile_cols; i++) {
int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
widest_tile_sb = AOMMAX(widest_tile_sb, size_sb);
// ignore the rightmost tile in frame for determining the narrowest
if (i < cm->tile_cols - 1)
narrowest_inner_tile_sb = AOMMIN(narrowest_inner_tile_sb, size_sb);
}
if (cm->min_log2_tiles) {
max_tile_area_sb >>= (cm->min_log2_tiles + 1);
}
cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / widest_tile_sb, 1);
if (cm->tile_cols > 1) {
cm->min_inner_tile_width = narrowest_inner_tile_sb
<< cm->seq_params.mib_size_log2;
}
}
}
void av1_calculate_tile_rows(AV1_COMMON *const cm) {
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
int start_sb, size_sb, i;
if (cm->uniform_tile_spacing_flag) {
size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows);
size_sb >>= cm->log2_tile_rows;
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_rows; i++) {
cm->tile_row_start_sb[i] = start_sb;
start_sb += size_sb;
}
cm->tile_rows = i;
cm->tile_row_start_sb[i] = sb_rows;
cm->tile_height = size_sb << cm->seq_params.mib_size_log2;
cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
} else {
cm->log2_tile_rows = tile_log2(1, cm->tile_rows);
}
}
void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
assert(row < cm->tile_rows);
int mi_row_start = cm->tile_row_start_sb[row] << cm->seq_params.mib_size_log2;
int mi_row_end = cm->tile_row_start_sb[row + 1]
<< cm->seq_params.mib_size_log2;
tile->tile_row = row;
tile->mi_row_start = mi_row_start;
tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows);
assert(tile->mi_row_end > tile->mi_row_start);
}
void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
assert(col < cm->tile_cols);
int mi_col_start = cm->tile_col_start_sb[col] << cm->seq_params.mib_size_log2;
int mi_col_end = cm->tile_col_start_sb[col + 1]
<< cm->seq_params.mib_size_log2;
tile->tile_col = col;
tile->mi_col_start = mi_col_start;
tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols);
assert(tile->mi_col_end > tile->mi_col_start);
}
int av1_get_sb_rows_in_tile(AV1_COMMON *cm, TileInfo tile) {
int mi_rows_aligned_to_sb = ALIGN_POWER_OF_TWO(
tile.mi_row_end - tile.mi_row_start, cm->seq_params.mib_size_log2);
int sb_rows = mi_rows_aligned_to_sb >> cm->seq_params.mib_size_log2;
return sb_rows;
}
int av1_get_sb_cols_in_tile(AV1_COMMON *cm, TileInfo tile) {
int mi_cols_aligned_to_sb = ALIGN_POWER_OF_TWO(
tile.mi_col_end - tile.mi_col_start, cm->seq_params.mib_size_log2);
int sb_cols = mi_cols_aligned_to_sb >> cm->seq_params.mib_size_log2;
return sb_cols;
}
AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm,
int is_uv) {
AV1PixelRect r;
// Calculate position in the Y plane
r.left = tile_info->mi_col_start * MI_SIZE;
r.right = tile_info->mi_col_end * MI_SIZE;
r.top = tile_info->mi_row_start * MI_SIZE;
r.bottom = tile_info->mi_row_end * MI_SIZE;
// If upscaling is enabled, the tile limits need scaling to match the
// upscaled frame where the restoration units live. To do this, scale up the
// top-left and bottom-right of the tile.
if (av1_superres_scaled(cm)) {
av1_calculate_unscaled_superres_size(&r.left, &r.top,
cm->superres_scale_denominator);
av1_calculate_unscaled_superres_size(&r.right, &r.bottom,
cm->superres_scale_denominator);
}
const int frame_w = cm->superres_upscaled_width;
const int frame_h = cm->superres_upscaled_height;
// Make sure we don't fall off the bottom-right of the frame.
r.right = AOMMIN(r.right, frame_w);
r.bottom = AOMMIN(r.bottom, frame_h);
// Convert to coordinates in the appropriate plane
const int ss_x = is_uv && cm->seq_params.subsampling_x;
const int ss_y = is_uv && cm->seq_params.subsampling_y;
r.left = ROUND_POWER_OF_TWO(r.left, ss_x);
r.right = ROUND_POWER_OF_TWO(r.right, ss_x);
r.top = ROUND_POWER_OF_TWO(r.top, ss_y);
r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y);
return r;
}
void av1_get_uniform_tile_size(const AV1_COMMON *cm, int *w, int *h) {
if (cm->uniform_tile_spacing_flag) {
*w = cm->tile_width;
*h = cm->tile_height;
} else {
for (int i = 0; i < cm->tile_cols; ++i) {
const int tile_width_sb =
cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
const int tile_w = tile_width_sb * cm->seq_params.mib_size;
assert(i == 0 || tile_w == *w); // ensure all tiles have same dimension
*w = tile_w;
}
for (int i = 0; i < cm->tile_rows; ++i) {
const int tile_height_sb =
cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i];
const int tile_h = tile_height_sb * cm->seq_params.mib_size;
assert(i == 0 || tile_h == *h); // ensure all tiles have same dimension
*h = tile_h;
}
}
}
int av1_is_min_tile_width_satisfied(const AV1_COMMON *cm) {
// Disable check if there is a single tile col in the frame
if (cm->tile_cols == 1) return 1;
return ((cm->min_inner_tile_width << MI_SIZE_LOG2) >=
(64 << av1_superres_scaled(cm)));
}