blob: 30705eb7469303fbbca734955e3cf9c9883c22e3 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "av1/common/filter.h"
#include "av1/common/scale.h"
#include "aom_dsp/aom_filter.h"
// Note: Expect val to be in q4 precision
static INLINE int scaled_x(int val, const struct scale_factors *sf) {
const int off =
(sf->x_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1));
const int64_t tval = (int64_t)val * sf->x_scale_fp + off;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval,
REF_SCALE_SHIFT - SCALE_EXTRA_BITS);
}
// Note: Expect val to be in q4 precision
static INLINE int scaled_y(int val, const struct scale_factors *sf) {
const int off =
(sf->y_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1));
const int64_t tval = (int64_t)val * sf->y_scale_fp + off;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval,
REF_SCALE_SHIFT - SCALE_EXTRA_BITS);
}
// Note: Expect val to be in q4 precision
static int unscaled_value(int val, const struct scale_factors *sf) {
(void)sf;
return val * (1 << SCALE_EXTRA_BITS);
}
#if CONFIG_ACROSS_SCALE_TPL_MVS
static INLINE int scaled_x_gen(int val, const struct scale_factors *sf) {
const int64_t tval = (int64_t)val * sf->x_scale_fp;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT);
}
static INLINE int scaled_y_gen(int val, const struct scale_factors *sf) {
const int64_t tval = (int64_t)val * sf->y_scale_fp;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT);
}
static int unscaled_value_gen(int val, const struct scale_factors *sf) {
(void)sf;
return val;
}
#endif // CONFIG_ACROSS_SCALE_TPL_MVS
static int get_fixed_point_scale_factor(int other_size, int this_size) {
// Calculate scaling factor once for each reference frame
// and use fixed point scaling factors in decoding and encoding routines.
// Hardware implementations can calculate scale factor in device driver
// and use multiplication and shifting on hardware instead of division.
return ((other_size << REF_SCALE_SHIFT) + this_size / 2) / this_size;
}
// Given the fixed point scale, calculate coarse point scale.
static int fixed_point_scale_to_coarse_point_scale(int scale_fp) {
return ROUND_POWER_OF_TWO(scale_fp, REF_SCALE_SHIFT - SCALE_SUBPEL_BITS);
}
// Note: x and y are integer precision, mvq4 is q4 precision.
MV32 av1_scale_mv(const MV *mvq4, int x, int y,
const struct scale_factors *sf) {
const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf);
const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf);
const MV32 res = { scaled_y((y << SUBPEL_BITS) + mvq4->row, sf) - y_off_q4,
scaled_x((x << SUBPEL_BITS) + mvq4->col, sf) - x_off_q4 };
return res;
}
void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w,
int other_h, int this_w, int this_h) {
if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) {
sf->x_scale_fp = REF_INVALID_SCALE;
sf->y_scale_fp = REF_INVALID_SCALE;
return;
}
#if CONFIG_2D_SR_LIMIT_SCALE_FACTORS
// Limit the scale factor for a factor of SCALE_FACTOR
if( (other_h != this_h) || (other_w != this_w) ) {
//assert(SCALE_NUMERATOR==4);
int tmp;
tmp = ( other_w * SCALE_NUMERATOR * 2 ) / this_w;
tmp = ( tmp + 1 ) >> 1;
other_w = tmp;
this_w = SCALE_NUMERATOR;
tmp = ( other_h * SCALE_NUMERATOR * 2 ) / this_h;
tmp = ( tmp + 1 ) >> 1;
other_h = tmp;
this_h = SCALE_NUMERATOR;
assert(other_w==6 || other_w==8 || other_w==12 || other_w==16 || other_w==24);
assert(other_h==6 || other_h==8 || other_h==12 || other_h==16 || other_h==24);
}
#endif
sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
sf->x_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->x_scale_fp);
sf->y_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->y_scale_fp);
if (av1_is_scaled(sf)) {
sf->scale_value_x = scaled_x;
sf->scale_value_y = scaled_y;
#if CONFIG_ACROSS_SCALE_TPL_MVS
sf->scale_value_x_gen = scaled_x_gen;
sf->scale_value_y_gen = scaled_y_gen;
#endif // CONFIG_ACROSS_SCALE_TPL_MVS
} else {
sf->scale_value_x = unscaled_value;
sf->scale_value_y = unscaled_value;
#if CONFIG_ACROSS_SCALE_TPL_MVS
sf->scale_value_x_gen = unscaled_value_gen;
sf->scale_value_y_gen = unscaled_value_gen;
#endif // CONFIG_ACROSS_SCALE_TPL_MVS
}
}