| /* | 
 |  * Copyright (c) 2024, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AV1_ENCODER_TRELLIS_QUANT_H_ | 
 | #define AOM_AV1_ENCODER_TRELLIS_QUANT_H_ | 
 |  | 
 | #include "config/aom_config.h" | 
 |  | 
 | #include "av1/common/av1_common_int.h" | 
 | #include "av1/common/blockd.h" | 
 | #if CONFIG_COEFF_HR_ADAPTIVE | 
 | #include "av1/common/hr_coding.h" | 
 | #endif | 
 | #include "av1/common/txb_common.h" | 
 | #include "av1/encoder/block.h" | 
 | #include "av1/encoder/encoder.h" | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #if CONFIG_TCQ | 
 | #define MAX_DIAG 32 | 
 | #define MAX_LF_SCAN 10 | 
 |  | 
 | typedef struct tcq_node_t { | 
 |   int64_t rdCost : 64; | 
 |   int32_t rate : 32; | 
 |   int32_t absLevel : 24; | 
 |   int32_t prevId : 8; | 
 | } tcq_node_t; | 
 |  | 
 | // This struct maintains context for current and upcoming | 
 | // diagonals (A diagonal is a group of consecutive coeffs | 
 | // with the same row + col, traversed from upper-right to | 
 | // lower-left. Diagonals are processed from the largest (which | 
 | // contains the initial EOB position), to the smallest (DC coeff). | 
 | typedef struct tcq_ctx_t { | 
 |   // Coeff magnitudes for one diagonal, clipped to fit within 8 bits, | 
 |   // used to calculate upcoming contexts | 
 |   uint8_t lev_new[MAX_DIAG + 8][TCQ_MAX_STATES]; | 
 |   // Sum of neighbors used for base level syntax, for the upcoming | 
 |   // diagonal. This contains the sum of {2,0} {1,1} and {0,2} | 
 |   // template neighbors. | 
 |   uint8_t mag_base[MAX_DIAG + 8][TCQ_MAX_STATES]; | 
 |   // Sum of neighbors used for mid level syntax, for the upcoming | 
 |   // diagonal. This contains the {1,1} neighbor. | 
 |   uint8_t mag_mid[MAX_DIAG + 8][TCQ_MAX_STATES]; | 
 |   // Neighbor context for mid/base, packed into 8 bits. | 
 |   // for use in current diagonal. | 
 |   // base_ctx = ({sum of 5 nbrs} + 1) >> 1 | 
 |   // mid_ctx = ({sum of 3 nbrs} + 1) >> 1 | 
 |   // ctx = (mid_ctx << 4) + base_ctx | 
 |   uint8_t ctx[MAX_DIAG + 8][TCQ_MAX_STATES]; | 
 |   // Map trellis state to previous state. After the diagonal is | 
 |   // processed, this array is used to backtrack and traverse the | 
 |   // trellis-selected coeffs. A value of -1 indicates a new eob position. | 
 |   int8_t prev_st[MAX_DIAG + 8][TCQ_MAX_STATES]; | 
 |   // Maintain which original state (from the beginning of the diagonal) | 
 |   // is selected with the current state. (-1 indicates new eob) | 
 |   int8_t orig_st[TCQ_MAX_STATES]; | 
 | } tcq_ctx_t; | 
 |  | 
 | typedef struct prequant_t { | 
 |   int32_t absLevel[4]; | 
 |   int64_t deltaDist[4]; | 
 |   int16_t qIdx; | 
 | } prequant_t; | 
 |  | 
 | typedef struct tcq_rate_t { | 
 |   int32_t rate[2 * TCQ_MAX_STATES]; | 
 |   int32_t rate_zero[TCQ_MAX_STATES]; | 
 |   int32_t rate_eob[2]; | 
 | } tcq_rate_t; | 
 |  | 
 | typedef struct tcq_coeff_ctx_t { | 
 |   uint8_t coef[TCQ_MAX_STATES]; | 
 |   uint8_t coef_eob; | 
 |   uint8_t pad[3]; | 
 | } tcq_coeff_ctx_t; | 
 |  | 
 | typedef struct tcq_param_t { | 
 |   int plane; | 
 |   int bwl; | 
 |   int txb_height; | 
 |   TX_SIZE tx_size; | 
 |   TX_CLASS tx_class; | 
 |   int sharpness; | 
 |   int64_t rdmult; | 
 |   int log_scale; | 
 |   int dc_sign_ctx; | 
 |   const int16_t *scan; | 
 |   const int32_t *tmp_sign; | 
 |   const tran_low_t *qcoeff; | 
 |   const tran_low_t *tcoeff; | 
 |   const int32_t *quant; | 
 |   const int32_t *dequant; | 
 |   const qm_val_t *iqmatrix; | 
 |   const uint16_t *block_eob_rate; | 
 |   const TXB_CTX *txb_ctx; | 
 |   const LV_MAP_COEFF_COST *txb_costs; | 
 | } tcq_param_t; | 
 |  | 
 | // Extract mid/base magnitude context. | 
 | // (context based on sum of neighbor abs_coeff levels) | 
 | // Packed format: | 
 | //   mid_ctx: bits[7:4] | 
 | //   base_ctx: bits[3:0] | 
 | static AOM_FORCE_INLINE int get_mid_ctx(int coeff_ctx) { | 
 |   return coeff_ctx >> 4; | 
 | } | 
 |  | 
 | static AOM_FORCE_INLINE int get_base_ctx(int coeff_ctx) { | 
 |   return coeff_ctx & 15; | 
 | } | 
 |  | 
 | // Extract mid/base diagonal context. | 
 | // (context offset based on row + col) | 
 | // Packed format: | 
 | //   mid_diag_ctx: bits[15:8] | 
 | //   base_diag_ctx: bits[7:0] | 
 | static AOM_FORCE_INLINE int get_mid_diag_ctx(int diag_ctx) { | 
 |   return diag_ctx >> 8; | 
 | } | 
 |  | 
 | static AOM_FORCE_INLINE int get_base_diag_ctx(int diag_ctx) { | 
 |   return diag_ctx & 255; | 
 | } | 
 |  | 
 | // Get the low range part of a coeff | 
 | static AOM_FORCE_INLINE int get_low_range(int abs_qc, int lf) { | 
 |   int base_levels = lf ? 6 : 4; | 
 |   int parity = abs_qc & 1; | 
 | #if ((COEFF_BASE_RANGE & 1) == 1) | 
 |   int br_max = COEFF_BASE_RANGE + base_levels - 1 - parity; | 
 |   int low = AOMMIN(abs_qc, br_max); | 
 |   low -= base_levels - 1; | 
 | #else | 
 |   int abs2 = abs_qc & ~1; | 
 |   int low = AOMMIN(abs2, COEFF_BASE_RANGE + base_levels - 2) + parity; | 
 |   low -= base_levels - 1; | 
 | #endif | 
 |   return low; | 
 | } | 
 |  | 
 | #if CONFIG_COEFF_BR_LF_UV_BYPASS | 
 | // Get the high range part of a coeff | 
 | static AOM_FORCE_INLINE int get_high_range_uv(int abs_qc, int lf) { | 
 |   int base_levels = lf ? 6 : 4; | 
 |   int high_range = (abs_qc - (base_levels - 1)) >> 1; | 
 |   return high_range; | 
 | } | 
 | #endif | 
 |  | 
 | // Get the high range part of a coeff | 
 | static AOM_FORCE_INLINE int get_high_range(int abs_qc, int lf) { | 
 |   int base_levels = lf ? 6 : 4; | 
 |   int low_range = get_low_range(abs_qc, lf); | 
 |   int high_range = (abs_qc - low_range - (base_levels - 1)) >> 1; | 
 |   return high_range; | 
 | } | 
 |  | 
 | // Calculate the cost of high range of a coeff | 
 | static AOM_FORCE_INLINE int get_golomb_cost_tcq(int abs_qc, int lf) { | 
 | #if CONFIG_COEFF_HR_ADAPTIVE && CONFIG_TCQ_IMP | 
 |   int hr = get_high_range(abs_qc, lf); | 
 |   int hr_cost = av1_cost_literal(get_adaptive_hr_length(hr, 0)); | 
 |   return hr_cost; | 
 | #else | 
 |   const int r = 1 + get_high_range(abs_qc, lf); | 
 |   const int length = get_msb(r) + 1; | 
 |   return av1_cost_literal(2 * length - 1); | 
 | #endif | 
 | } | 
 |  | 
 | #if CONFIG_COEFF_BR_LF_UV_BYPASS | 
 | // Calculate the cost of low range of a coeff in low-freq region | 
 | static AOM_FORCE_INLINE int get_br_lf_cost_tcq_uv(tran_low_t level) { | 
 |   const int r = 1 + get_high_range_uv(level, 1); | 
 |   const int length = get_msb(r) + 1; | 
 |   return av1_cost_literal(2 * length - 1); | 
 | } | 
 | #endif | 
 |  | 
 | // Calculate the cost of low range of a coeff in low-freq region | 
 | static AOM_FORCE_INLINE int get_br_lf_cost_tcq(tran_low_t level, | 
 |                                                const int *coeff_lps) { | 
 |   const int base_range = get_low_range(level, 1); | 
 |   if (base_range < COEFF_BASE_RANGE - 1) return coeff_lps[base_range]; | 
 |   return coeff_lps[base_range] + get_golomb_cost_tcq(level, 1); | 
 | } | 
 |  | 
 | // Calculate the cost of low range of a coeff in non-low-freq region | 
 | static INLINE int get_br_cost_tcq(tran_low_t level, const int *coeff_lps) { | 
 |   const int base_range = get_low_range(level, 0); | 
 |   if (base_range < COEFF_BASE_RANGE - 1) return coeff_lps[base_range]; | 
 |   return coeff_lps[base_range] + get_golomb_cost_tcq(level, 0); | 
 | } | 
 |  | 
 | /*!\brief Adjust the magnitude of quantized coefficients to achieve better | 
 |  * rate-distortion (RD) trade-off with trellis coded quant techology. | 
 |  * | 
 |  * \ingroup coefficient_coding | 
 |  * | 
 |  * This function builds a trellis through each position of coefficient and keep | 
 |  * track of best RD cost of each node in the trellis. At the last position, it | 
 |  * decides the best candidate and back track to eob to find the optimal | 
 |  * quantization path. | 
 |  * | 
 |  * The coefficients are processing in reversed scan order. | 
 |  * | 
 |  * Note that, the end of block position (eob) may change if the original last | 
 |  * coefficient is lowered to zero. | 
 |  * | 
 |  * \param[in]    cpi            Top-level encoder structure | 
 |  * \param[in]    x              Pointer to structure holding the data for the | 
 |                                 current encoding macroblock | 
 |  * \param[in]    plane          The index of the current plane | 
 |  * \param[in]    block          The index of the current transform block in the | 
 |  * \param[in]    tx_size        The transform size | 
 |  * \param[in]    tx_type        The transform type | 
 |  * \param[in]    cctx_type      The cross chroma component transform type | 
 |  * \param[in]    txb_ctx        Context info for entropy coding transform block | 
 |  * skip flag (tx_skip) and the sign of DC coefficient (dc_sign). | 
 |  * \param[out]   rate_cost      The entropy cost of coding the transform block | 
 |  * after adjustment of coefficients. | 
 |  * \param[in]    sharpness      When sharpness == 1, the function will be less | 
 |  * aggressive toward lowering the magnitude of coefficients. | 
 |  * In this way, the transform block will contain more high-frequency | 
 |  coefficients | 
 |  * and therefore preserve the sharpness of the reconstructed block. | 
 |  */ | 
 | int av1_trellis_quant(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, | 
 |                       int block, TX_SIZE tx_size, TX_TYPE tx_type, | 
 |                       CctxType cctx_type, const TXB_CTX *const txb_ctx, | 
 |                       int *rate_cost, int sharpness); | 
 | #endif  // CONFIG_TCQ | 
 |  | 
 | #ifdef __cplusplus | 
 | } | 
 | #endif | 
 |  | 
 | #endif  // AOM_AV1_ENCODER_TRELLIS_QUANT_H_ |