| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #include "av1/common/av1_common_int.h" | 
 | #include "av1/common/cfl.h" | 
 | #include "av1/common/common_data.h" | 
 | #include "av1/common/enums.h" | 
 | #include "av1/common/reconintra.h" | 
 |  | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #if CONFIG_E125_MHCCP_SIMPLIFY | 
 | #include "av1/common/reconinter.h" | 
 | #endif  // CONFIG_E125_MHCCP_SIMPLIFY | 
 |  | 
 | #include "av1/common/warped_motion.h" | 
 |  | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 | #define LOCAL_FIXED_MULT(x, y, round, bits) (((x) * (y) + round) >> bits) | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |  | 
 | void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) { | 
 |   assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); | 
 |   assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); | 
 |  | 
 |   memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3)); | 
 |   memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3)); | 
 | #if CONFIG_ENABLE_MHCCP | 
 |   memset(&cfl->mhccp_ref_buf_q3, 0, sizeof(cfl->mhccp_ref_buf_q3)); | 
 | #endif  // CONFIG_ENABLE_MHCCP | 
 |   cfl->subsampling_x = seq_params->subsampling_x; | 
 |   cfl->subsampling_y = seq_params->subsampling_y; | 
 |   cfl->are_parameters_computed = 0; | 
 |   cfl->store_y = 0; | 
 |   // The DC_PRED cache is disabled by default and is only enabled in | 
 |   // cfl_rd_pick_alpha | 
 |   cfl->use_dc_pred_cache = 0; | 
 |   cfl->dc_pred_is_cached[CFL_PRED_U] = 0; | 
 |   cfl->dc_pred_is_cached[CFL_PRED_V] = 0; | 
 | } | 
 |  | 
 | void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint16_t *input, | 
 |                        CFL_PRED_TYPE pred_plane, int width) { | 
 |   assert(pred_plane < CFL_PRED_PLANES); | 
 |   assert(width <= CFL_BUF_LINE); | 
 |  | 
 |   memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width * sizeof(*input)); | 
 |   return; | 
 | } | 
 |  | 
 | static void cfl_load_dc_pred_hbd(const uint16_t *dc_pred_cache, uint16_t *dst, | 
 |                                  int dst_stride, int width, int height) { | 
 |   const size_t num_bytes = width * sizeof(*dst); | 
 |   for (int j = 0; j < height; j++) { | 
 |     memcpy(dst, dc_pred_cache, num_bytes); | 
 |     dst += dst_stride; | 
 |   } | 
 | } | 
 | void cfl_load_dc_pred(MACROBLOCKD *const xd, uint16_t *dst, int dst_stride, | 
 |                       TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) { | 
 |   const int width = tx_size_wide[tx_size]; | 
 |   const int height = tx_size_high[tx_size]; | 
 |   assert(pred_plane < CFL_PRED_PLANES); | 
 |   assert(width <= CFL_BUF_LINE); | 
 |   assert(height <= CFL_BUF_LINE); | 
 |   cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride, | 
 |                        width, height); | 
 | } | 
 |  | 
 | // Due to frame boundary issues, it is possible that the total area covered by | 
 | // chroma exceeds that of luma. When this happens, we fill the missing pixels by | 
 | // repeating the last columns and/or rows. | 
 | static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) { | 
 |   const int diff_width = width - cfl->buf_width; | 
 |   const int diff_height = height - cfl->buf_height; | 
 |   uint16_t last_pixel; | 
 |   if (diff_width > 0) { | 
 |     const int min_height = height - diff_height; | 
 |     uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width); | 
 |     for (int j = 0; j < min_height; j++) { | 
 |       last_pixel = recon_buf_q3[-1]; | 
 |       assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); | 
 |       for (int i = 0; i < diff_width; i++) { | 
 |         recon_buf_q3[i] = last_pixel; | 
 |       } | 
 |       recon_buf_q3 += CFL_BUF_LINE; | 
 |     } | 
 |     cfl->buf_width = width; | 
 |   } | 
 |   if (diff_height > 0) { | 
 |     uint16_t *recon_buf_q3 = | 
 |         cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE); | 
 |     for (int j = 0; j < diff_height; j++) { | 
 |       const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE; | 
 |       assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); | 
 |       for (int i = 0; i < width; i++) { | 
 |         recon_buf_q3[i] = last_row_q3[i]; | 
 |       } | 
 |       recon_buf_q3 += CFL_BUF_LINE; | 
 |     } | 
 |     cfl->buf_height = height; | 
 |   } | 
 | } | 
 |  | 
 | static void subtract_average_c(const uint16_t *src, int16_t *dst, int width, | 
 |                                int height, int round_offset, int num_pel_log2) { | 
 |   int sum = round_offset; | 
 |   const uint16_t *recon = src; | 
 |   for (int j = 0; j < height; j++) { | 
 |     for (int i = 0; i < width; i++) { | 
 |       sum += recon[i]; | 
 |     } | 
 |     recon += CFL_BUF_LINE; | 
 |   } | 
 |   const int avg = sum >> num_pel_log2; | 
 |   for (int j = 0; j < height; j++) { | 
 |     for (int i = 0; i < width; i++) { | 
 |       dst[i] = src[i] - avg; | 
 |     } | 
 |     src += CFL_BUF_LINE; | 
 |     dst += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | CFL_SUB_AVG_FN(c) | 
 |  | 
 | static INLINE int cfl_idx_to_alpha(uint8_t alpha_idx, int8_t joint_sign, | 
 |                                    CFL_PRED_TYPE pred_type) { | 
 |   const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign) | 
 |                                                    : CFL_SIGN_V(joint_sign); | 
 |   if (alpha_sign == CFL_SIGN_ZERO) return 0; | 
 |   const int abs_alpha_q3 = | 
 |       (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx); | 
 |   return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1; | 
 | } | 
 |  | 
 | void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride, | 
 |                        int alpha_q3, int bit_depth, int width, int height) { | 
 |   for (int j = 0; j < height; j++) { | 
 |     for (int i = 0; i < width; i++) { | 
 |       dst[i] = clip_pixel_highbd( | 
 |           get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth); | 
 |     } | 
 |     dst += dst_stride; | 
 |     ac_buf_q3 += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | CFL_PREDICT_FN(c, hbd) | 
 |  | 
 | // Subtract the average from neighoring pixels | 
 | static void subtract_average_neighbor(const uint16_t *src, int16_t *dst, | 
 |                                       int width, int height, int avg) { | 
 |   for (int j = 0; j < height; ++j) { | 
 |     for (int i = 0; i < width; ++i) { | 
 |       dst[i] = src[i] - avg; | 
 |     } | 
 |     src += CFL_BUF_LINE; | 
 |     dst += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | // Calculate luma AC values with neighbor DC | 
 | static void cfl_compute_parameters_alt(CFL_CTX *const cfl, TX_SIZE tx_size) { | 
 |   cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]); | 
 |  | 
 |   subtract_average_neighbor(cfl->recon_buf_q3, cfl->ac_buf_q3, | 
 |                             tx_size_wide[tx_size], tx_size_high[tx_size], | 
 |                             cfl->avg_l); | 
 |   cfl->are_parameters_computed = 1; | 
 | } | 
 |  | 
 | static void get_top_bottom_offsets( | 
 | #if CONFIG_CFL_SIMPLIFICATION | 
 |     int is_top_sb_boundary, | 
 | #endif  // CONFIG_CFL_SIMPLIFICATION | 
 |     int *top_offset, int *bottom_offset) { | 
 | #if CONFIG_CFL_SIMPLIFICATION | 
 |   // If this is the above super block boundary, use only the above line and | 
 |   // repeated it. This can be done by changing the offset. | 
 |   *top_offset = 2 - is_top_sb_boundary; | 
 |   *bottom_offset = 1 - is_top_sb_boundary; | 
 | #else | 
 |   *top_offset = 2; | 
 |   *bottom_offset = 1; | 
 | #endif  // CONFIG_CFL_SIMPLIFICATION | 
 | } | 
 |  | 
 | void cfl_implicit_fetch_neighbor_luma(const AV1_COMMON *cm, | 
 |                                       MACROBLOCKD *const xd, int row, int col, | 
 | #if CONFIG_CFL_SIMPLIFICATION | 
 |                                       int is_top_sb_boundary, | 
 | #endif  // CONFIG_CFL_SIMPLIFICATION | 
 |                                       TX_SIZE tx_size) { | 
 |  | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; | 
 |   int input_stride = pd->dst.stride; | 
 |  | 
 |   const int row_dst = | 
 |       row + xd->mi[0]->chroma_ref_info.mi_row_chroma_base - xd->mi_row; | 
 |   const int col_dst = | 
 |       col + xd->mi[0]->chroma_ref_info.mi_col_chroma_base - xd->mi_col; | 
 |   uint16_t *dst = | 
 |       &pd->dst.buf[-((-row_dst * pd->dst.stride - col_dst) << MI_SIZE_LOG2)]; | 
 |  | 
 |   const int width = tx_size_wide[tx_size]; | 
 |   const int height = tx_size_high[tx_size]; | 
 |   const int sub_x = cfl->subsampling_x; | 
 |   const int sub_y = cfl->subsampling_y; | 
 |   const int row_start = | 
 |       ((xd->mi[0]->chroma_ref_info.mi_row_chroma_base + row) << MI_SIZE_LOG2); | 
 |   const int col_start = | 
 |       ((xd->mi[0]->chroma_ref_info.mi_col_chroma_base + col) << MI_SIZE_LOG2); | 
 |   int have_top = 0, have_left = 0; | 
 |   set_have_top_and_left(&have_top, &have_left, xd, row, col, AOM_PLANE_U); | 
 |  | 
 |   memset(cfl->recon_yuv_buf_above[0], 0, sizeof(cfl->recon_yuv_buf_above[0])); | 
 |   memset(cfl->recon_yuv_buf_left[0], 0, sizeof(cfl->recon_yuv_buf_left[0])); | 
 |   // top boundary | 
 |   uint16_t *output_q3 = cfl->recon_yuv_buf_above[0]; | 
 |   if (have_top) { | 
 |     // If this is the above super block boundary, use only the above line and | 
 |     // repeated it. | 
 |     int top_offset = 0;  // In the case filter_type is 2, top_offset points to | 
 |                          // the middle reference line | 
 |     int bottom_offset = 0; | 
 | #if CONFIG_CFL_SIMPLIFICATION | 
 |     get_top_bottom_offsets(is_top_sb_boundary, &top_offset, &bottom_offset); | 
 | #else | 
 |     get_top_bottom_offsets(&top_offset, &bottom_offset); | 
 | #endif  // CONFIG_CFL_SIMPLIFICATION | 
 |  | 
 |     if (sub_x && sub_y) { | 
 |       uint16_t *input = dst - top_offset * input_stride; | 
 |       for (int i = 0; i < width; i += 2) { | 
 |         const int bot = i + bottom_offset * input_stride; | 
 |         const int filter_type = cm->seq_params.cfl_ds_filter_index; | 
 |         if (filter_type == 1) { | 
 |           output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 2 * input[i] + | 
 |                               input[i + 1] + input[bot + AOMMAX(-1, -i)] + | 
 |                               2 * input[bot] + input[bot + 1]; | 
 |         } else if (filter_type == 2) { | 
 | #if CONFIG_CFL_SIMPLIFICATION | 
 |           const int top = | 
 |               i - (is_top_sb_boundary ? 0 : 1) * | 
 |                       input_stride;  // If this is the top sb boundary, the top | 
 |                                      // index points to the current sample | 
 | #else | 
 |           const int top = i - input_stride; | 
 | #endif  // CONFIG_CFL_SIMPLIFICATION | 
 |           output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 4 * input[i] + | 
 |                               input[i + 1] + input[top] + input[bot]; | 
 |         } else { | 
 |           output_q3[i >> 1] = | 
 |               (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; | 
 |         } | 
 |       } | 
 |     } else if (sub_x) { | 
 |       uint16_t *input = dst - input_stride; | 
 |       for (int i = 0; i < width; i += 2) { | 
 |         const int filter_type = cm->seq_params.cfl_ds_filter_index; | 
 |         if (filter_type == 1) { | 
 |           output_q3[i >> 1] = | 
 |               (input[AOMMAX(0, i - 1)] + 2 * input[i] + input[i + 1]) << 1; | 
 |         } else if (filter_type == 2) { | 
 |           output_q3[i >> 1] = input[i] << 3; | 
 |         } else { | 
 |           output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; | 
 |         } | 
 |       } | 
 |     } else if (sub_y) { | 
 |       uint16_t *input = dst - top_offset * input_stride; | 
 |       for (int i = 0; i < width; ++i) { | 
 |         const int bot = i + bottom_offset * input_stride; | 
 |         output_q3[i] = (input[i] + input[bot]) << 2; | 
 |       } | 
 |     } else { | 
 |       uint16_t *input = dst - input_stride; | 
 |       for (int i = 0; i < width; ++i) output_q3[i] = input[i] << 3; | 
 |     } | 
 | #if CONFIG_F054_PIC_BOUNDARY | 
 |     if (col_start >= pd->dst.width) { | 
 | #else | 
 |     if (col_start >= cm->width) { | 
 | #endif  // CONFIG_F054_PIC_BOUNDARY | 
 |       const uint16_t mid = (1 << xd->bd) >> 1; | 
 |       for (int j = 0; j < width >> sub_x; ++j) { | 
 |         output_q3[j] = mid; | 
 |       } | 
 | #if CONFIG_F054_PIC_BOUNDARY | 
 |     } else if ((col_start + width) > pd->dst.width) { | 
 |       int temp = width - ((col_start + width) - pd->dst.width); | 
 | #else | 
 |     } else if ((col_start + width) > cm->width) { | 
 |       int temp = width - ((col_start + width) - cm->width); | 
 | #endif  // CONFIG_F054_PIC_BOUNDARY | 
 |       assert(temp > 0 && temp < width); | 
 |       for (int i = temp >> sub_x; i < width >> sub_x; ++i) { | 
 |         output_q3[i] = output_q3[i - 1]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // left boundary | 
 |   output_q3 = cfl->recon_yuv_buf_left[0]; | 
 |   if (have_left) { | 
 |     if (sub_x && sub_y) { | 
 |       uint16_t *input = dst - 2; | 
 |       for (int j = 0; j < height; j += 2) { | 
 |         const int bot = input_stride; | 
 |         const int filter_type = cm->seq_params.cfl_ds_filter_index; | 
 |         if (filter_type == 1) { | 
 |           output_q3[j >> 1] = input[-1] + 2 * input[0] + input[1] + | 
 |                               input[bot - 1] + 2 * input[bot] + input[bot + 1]; | 
 |         } else if (filter_type == 2) { | 
 |           const int top = (j == 0) ? 0 : (0 - input_stride); | 
 |           output_q3[j >> 1] = | 
 |               input[-1] + 4 * input[0] + input[1] + input[top] + input[bot]; | 
 |         } else { | 
 |           output_q3[j >> 1] = | 
 |               (input[0] + input[1] + input[bot] + input[bot + 1]) << 1; | 
 |         } | 
 |         input += input_stride * 2; | 
 |       } | 
 |     } else if (sub_x) { | 
 |       uint16_t *input = dst - 2; | 
 |       for (int j = 0; j < height; ++j) { | 
 |         const int filter_type = cm->seq_params.cfl_ds_filter_index; | 
 |         if (filter_type == 1) { | 
 |           output_q3[j] = (input[-1] + 2 * input[0] + input[1]) << 1; | 
 |         } else if (filter_type == 2) { | 
 |           output_q3[j] = input[0] << 3; | 
 |         } else { | 
 |           output_q3[j] = (input[0] + input[1]) << 2; | 
 |         } | 
 |         input += input_stride; | 
 |       } | 
 |     } else if (sub_y) { | 
 |       uint16_t *input = dst - 1; | 
 |       for (int j = 0; j < height; ++j) { | 
 |         output_q3[j] = (input[0] + input[input_stride]) << 2; | 
 |         input += input_stride * 2; | 
 |       } | 
 |     } else { | 
 |       uint16_t *input = dst - 1; | 
 |       for (int j = 0; j < height; ++j) | 
 |         output_q3[j] = input[j * input_stride] << 3; | 
 |     } | 
 | #if CONFIG_F054_PIC_BOUNDARY | 
 |     if (row_start >= pd->dst.height) { | 
 | #else | 
 |     if (row_start >= cm->height) { | 
 | #endif  // CONFIG_F054_PIC_BOUNDARY | 
 |       const uint16_t mid = (1 << xd->bd) >> 1; | 
 |       for (int j = 0; j < height >> sub_y; ++j) { | 
 |         output_q3[j] = mid; | 
 |       } | 
 | #if CONFIG_F054_PIC_BOUNDARY | 
 |     } else if ((row_start + height) > pd->dst.height) { | 
 |       int temp = height - ((row_start + height) - pd->dst.height); | 
 | #else | 
 |     } else if ((row_start + height) > cm->height) { | 
 |       int temp = height - ((row_start + height) - cm->height); | 
 | #endif  // CONFIG_F054_PIC_BOUNDARY | 
 |       assert(temp > 0 && temp < height); | 
 |       for (int j = temp >> sub_y; j < height >> sub_y; ++j) { | 
 |         output_q3[j] = output_q3[j - 1]; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void cfl_calc_luma_dc(MACROBLOCKD *const xd, int row, int col, | 
 |                       TX_SIZE tx_size) { | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   const int width = tx_size_wide[tx_size]; | 
 |   const int height = tx_size_high[tx_size]; | 
 |  | 
 |   int have_top = 0, have_left = 0; | 
 |   set_have_top_and_left(&have_top, &have_left, xd, row, col, AOM_PLANE_U); | 
 |  | 
 |   int count = 0; | 
 |   int sum_x = 0; | 
 |  | 
 |   uint16_t *l; | 
 |   if (have_top) { | 
 |     l = cfl->recon_yuv_buf_above[0]; | 
 |     for (int i = 0; i < width; ++i) { | 
 |       sum_x += l[i]; | 
 |     } | 
 |     count += width; | 
 |   } | 
 |  | 
 |   if (have_left) { | 
 |     l = cfl->recon_yuv_buf_left[0]; | 
 |     for (int i = 0; i < height; ++i) { | 
 |       sum_x += l[i]; | 
 |     } | 
 |     count += height; | 
 |   } | 
 |  | 
 |   if (count > 0) { | 
 |     cfl->avg_l = (sum_x + count / 2) / count; | 
 |   } else { | 
 |     cfl->avg_l = 8 << (xd->bd - 1); | 
 |   } | 
 | } | 
 |  | 
 | void cfl_implicit_fetch_neighbor_chroma(const AV1_COMMON *cm, | 
 |                                         MACROBLOCKD *const xd, int plane, | 
 |                                         int row, int col, TX_SIZE tx_size) { | 
 | #if CONFIG_F054_PIC_BOUNDARY | 
 |   (void)cm; | 
 | #endif  // CONFIG_F054_PIC_BOUNDARY | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   int input_stride = pd->dst.stride; | 
 |   uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; | 
 |  | 
 |   const int width = tx_size_wide[tx_size]; | 
 |   const int height = tx_size_high[tx_size]; | 
 |   const int sub_x = cfl->subsampling_x; | 
 |   const int sub_y = cfl->subsampling_y; | 
 |  | 
 | #if CONFIG_F054_PIC_BOUNDARY | 
 |   int pic_width_c = pd->dst.width; | 
 |   int pic_height_c = pd->dst.height; | 
 | #else | 
 |   int pic_width_c = cm->width >> sub_x; | 
 |   int pic_height_c = cm->height >> sub_y; | 
 | #endif  // CONFIG_F054_PIC_BOUNDARY | 
 |  | 
 |   const int row_start = | 
 |       (((xd->mi[0]->chroma_ref_info.mi_row_chroma_base >> sub_y) + row) | 
 |        << MI_SIZE_LOG2); | 
 |   const int col_start = | 
 |       (((xd->mi[0]->chroma_ref_info.mi_col_chroma_base >> sub_x) + col) | 
 |        << MI_SIZE_LOG2); | 
 |   int have_top = 0, have_left = 0; | 
 |   set_have_top_and_left(&have_top, &have_left, xd, row, col, plane); | 
 |  | 
 |   memset(cfl->recon_yuv_buf_above[plane], 0, | 
 |          sizeof(cfl->recon_yuv_buf_above[plane])); | 
 |   memset(cfl->recon_yuv_buf_left[plane], 0, | 
 |          sizeof(cfl->recon_yuv_buf_left[plane])); | 
 |  | 
 |   // top boundary | 
 |   uint16_t *output_q3 = cfl->recon_yuv_buf_above[plane]; | 
 |   if (have_top) { | 
 |     uint16_t *input = dst - input_stride; | 
 |     for (int i = 0; i < width; ++i) { | 
 |       output_q3[i] = input[i]; | 
 |     } | 
 |     if (col_start >= pic_width_c) { | 
 |       const uint16_t mid = (1 << xd->bd) >> 1; | 
 |       for (int i = 0; i < width; ++i) { | 
 |         output_q3[i] = mid; | 
 |       } | 
 |     } else if ((col_start + width) > pic_width_c) { | 
 |       int temp = width - ((col_start + width) - pic_width_c); | 
 |       assert(temp > 0 && temp < width); | 
 |       for (int i = temp; i < width; ++i) { | 
 |         output_q3[i] = output_q3[i - 1]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // left boundary | 
 |   output_q3 = cfl->recon_yuv_buf_left[plane]; | 
 |   if (have_left) { | 
 |     uint16_t *input = dst - 1; | 
 |     for (int j = 0; j < height; ++j) { | 
 |       output_q3[j] = input[0]; | 
 |       input += input_stride; | 
 |     } | 
 |  | 
 |     if (row_start >= pic_height_c) { | 
 |       const uint16_t mid = (1 << xd->bd) >> 1; | 
 |       for (int i = 0; i < height; ++i) { | 
 |         output_q3[i] = mid; | 
 |       } | 
 |     } else if ((row_start + height) > pic_height_c) { | 
 |       int temp = height - ((row_start + height) - pic_height_c); | 
 |       assert(temp > 0 && temp < height); | 
 |       for (int j = temp; j < height; ++j) { | 
 |         output_q3[j] = output_q3[j - 1]; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void cfl_derive_implicit_scaling_factor(MACROBLOCKD *const xd, int plane, | 
 |                                         int row, int col, TX_SIZE tx_size) { | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   const int width = tx_size_wide[tx_size]; | 
 |   const int height = tx_size_high[tx_size]; | 
 |  | 
 |   int have_top = 0, have_left = 0; | 
 |   set_have_top_and_left(&have_top, &have_left, xd, row, col, plane); | 
 |  | 
 | #if CONFIG_CFL_SIMPLIFICATION | 
 |   // Distribute number of reference samples above and left based on the width, | 
 |   // height and the availability of the above and left. If only one side is | 
 |   // available, the number is distributed to the avalable reference side. Else, | 
 |   // if one side is larger than the other side by more than 2 times, the number | 
 |   // is distributed to the larger side. Else, the number is distributed equally | 
 |   // to two side. NUM_REF_SAM_CFL is 8, so the division can be replaced by bit | 
 |   // right shift by 3. | 
 |   int numb_up = 0; | 
 |   int numb_left = 0; | 
 |  | 
 |   if (have_top && have_left) { | 
 |     if (width > (height * 2)) { | 
 |       numb_left = 0; | 
 |       numb_up = NUM_REF_SAM_CFL; | 
 |     } else if (height > (width * 2)) { | 
 |       numb_up = 0; | 
 |       numb_left = NUM_REF_SAM_CFL; | 
 |     } else { | 
 |       numb_up = NUM_REF_SAM_CFL >> 1; | 
 |       numb_left = NUM_REF_SAM_CFL >> 1; | 
 |     } | 
 |   } else { | 
 |     numb_up = have_top ? NUM_REF_SAM_CFL : 0; | 
 |     numb_left = have_left ? NUM_REF_SAM_CFL : 0; | 
 |   } | 
 |   numb_up = (numb_up > width) ? width : numb_up; | 
 |   numb_left = (numb_left > height) ? height : numb_left; | 
 | #endif  // CONFIG_CFL_SIMPLIFICATION | 
 |  | 
 |   int count = 0; | 
 |   int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0; | 
 |  | 
 |   uint16_t *l, *c; | 
 | #if CONFIG_CFL_SIMPLIFICATION | 
 |   if (numb_up > 0) { | 
 |     l = cfl->recon_yuv_buf_above[0]; | 
 |     c = cfl->recon_yuv_buf_above[plane]; | 
 |  | 
 |     const int step_up = AOMMAX((int)width / numb_up, 1); | 
 |     const int start_up = (step_up == 1) ? 0 : (step_up >> 1); | 
 |  | 
 |     for (int i = start_up; i < width; i += step_up) { | 
 |       sum_x += l[i] >> 3; | 
 |       sum_y += c[i]; | 
 |       sum_xy += (l[i] >> 3) * c[i]; | 
 |       sum_xx += (l[i] >> 3) * (l[i] >> 3); | 
 |       ++count; | 
 |     } | 
 |   } | 
 |  | 
 |   if (numb_left > 0) { | 
 |     l = cfl->recon_yuv_buf_left[0]; | 
 |     c = cfl->recon_yuv_buf_left[plane]; | 
 |  | 
 |     const int step_left = AOMMAX((int)height / numb_left, 1); | 
 |     const int start_left = (step_left == 1) ? 0 : (step_left >> 1); | 
 |  | 
 |     for (int i = start_left; i < height; i += step_left) { | 
 |       sum_x += l[i] >> 3; | 
 |       sum_y += c[i]; | 
 |       sum_xy += (l[i] >> 3) * c[i]; | 
 |       sum_xx += (l[i] >> 3) * (l[i] >> 3); | 
 |       ++count; | 
 |     } | 
 |   } | 
 | #else | 
 |   if (have_top) { | 
 |     l = cfl->recon_yuv_buf_above[0]; | 
 |     c = cfl->recon_yuv_buf_above[plane]; | 
 |  | 
 |     for (int i = 0; i < width; ++i) { | 
 |       sum_x += l[i] >> 3; | 
 |       sum_y += c[i]; | 
 |       sum_xy += (l[i] >> 3) * c[i]; | 
 |       sum_xx += (l[i] >> 3) * (l[i] >> 3); | 
 |     } | 
 |     count += width; | 
 |   } | 
 |  | 
 |   if (have_left) { | 
 |     l = cfl->recon_yuv_buf_left[0]; | 
 |     c = cfl->recon_yuv_buf_left[plane]; | 
 |  | 
 |     for (int i = 0; i < height; ++i) { | 
 |       sum_x += l[i] >> 3; | 
 |       sum_y += c[i]; | 
 |       sum_xy += (l[i] >> 3) * c[i]; | 
 |       sum_xx += (l[i] >> 3) * (l[i] >> 3); | 
 |     } | 
 |     count += height; | 
 |   } | 
 | #endif  // CONFIG_CFL_SIMPLIFICATION | 
 |   const int shift = 3 + CFL_ADD_BITS_ALPHA; | 
 |   mbmi->cfl_implicit_alpha[plane - 1] = derive_linear_parameters_alpha( | 
 |       sum_x, sum_y, sum_xx, sum_xy, count, shift); | 
 | } | 
 |  | 
 | void cfl_derive_block_implicit_scaling_factor(uint16_t *l, const uint16_t *c, | 
 |                                               const int width, const int height, | 
 |                                               const int stride, | 
 |                                               const int chroma_stride, | 
 |                                               int *alpha) { | 
 |   int count = 0; | 
 |   int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0; | 
 |   for (int j = 0; j < height; ++j) { | 
 |     for (int i = 0; i < width; ++i) { | 
 |       sum_x += l[i + j * stride] >> 3; | 
 |       sum_y += c[i + j * chroma_stride]; | 
 |       sum_xy += (l[i + j * stride] >> 3) * c[i + j * chroma_stride]; | 
 |       sum_xx += (l[i + j * stride] >> 3) * (l[i + j * stride] >> 3); | 
 |     } | 
 |     count += width; | 
 |   } | 
 |  | 
 |   const int shift = 3 + CFL_ADD_BITS_ALPHA; | 
 |   *alpha = derive_linear_parameters_alpha(sum_x, sum_y, sum_xx, sum_xy, count, | 
 |                                           shift); | 
 | } | 
 |  | 
 | #if CONFIG_ENABLE_MHCCP | 
 | void cfl_predict_block(MACROBLOCKD *const xd, uint16_t *dst, int dst_stride, | 
 |                        TX_SIZE tx_size, int plane, bool have_top, | 
 |                        bool have_left, int above_lines, int left_lines) { | 
 | #else | 
 | void cfl_predict_block(MACROBLOCKD *const xd, uint16_t *dst, int dst_stride, | 
 |                        TX_SIZE tx_size, int plane) { | 
 | #endif  // CONFIG_ENABLE_MHCCP | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   assert(is_cfl_allowed(xd)); | 
 |  | 
 |   cfl_compute_parameters_alt(cfl, tx_size); | 
 |   int alpha_q3; | 
 | #if CONFIG_ENABLE_MHCCP | 
 | #if MHCCP_3_PARAMETERS | 
 |   if (mbmi->cfl_idx == CFL_MULTI_PARAM_V) { | 
 |     mhccp_predict_hv_hbd(cfl->mhccp_ref_buf_q3[0] + (uint16_t)left_lines + | 
 |                              (uint16_t)above_lines * CFL_BUF_LINE * 2, | 
 |                          dst, have_top, have_left, dst_stride, | 
 |                          mbmi->mhccp_implicit_param[plane - 1], xd->bd, | 
 |                          tx_size_wide[tx_size], tx_size_high[tx_size], | 
 |                          mbmi->mh_dir); | 
 |     return; | 
 |   } | 
 | #else | 
 |   if (mbmi->cfl_idx == CFL_MULTI_PARAM_V && mbmi->mh_dir == 0) { | 
 |     mhccp_predict_hv_hbd(cfl->mhccp_ref_buf_q3[0] + (uint16_t)left_lines + | 
 |                              (uint16_t)above_lines * CFL_BUF_LINE * 2, | 
 |                          dst, have_top, have_left, dst_stride, | 
 |                          mbmi->mhccp_implicit_param[plane - 1], xd->bd, | 
 |                          tx_size_wide[tx_size], tx_size_high[tx_size], 0); | 
 |     return; | 
 |   } else if (mbmi->cfl_idx == CFL_MULTI_PARAM_V && mbmi->mh_dir == 1) { | 
 |     mhccp_predict_hv_hbd(cfl->mhccp_ref_buf_q3[0] + (uint16_t)left_lines + | 
 |                              (uint16_t)above_lines * CFL_BUF_LINE * 2, | 
 |                          dst, have_top, have_left, dst_stride, | 
 |                          mbmi->mhccp_implicit_param[plane - 1], xd->bd, | 
 |                          tx_size_wide[tx_size], tx_size_high[tx_size], 1); | 
 |     return; | 
 |   } | 
 | #endif  // MHCCP_3_PARAMETERS | 
 |   else if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) { | 
 |     alpha_q3 = mbmi->cfl_implicit_alpha[plane - 1]; | 
 |   } else { | 
 |     alpha_q3 = | 
 |         cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1); | 
 |     alpha_q3 *= (1 << CFL_ADD_BITS_ALPHA); | 
 |   } | 
 | #else | 
 |   if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) { | 
 |     alpha_q3 = mbmi->cfl_implicit_alpha[plane - 1]; | 
 |   } else { | 
 |     alpha_q3 = | 
 |         cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1); | 
 |     alpha_q3 *= (1 << CFL_ADD_BITS_ALPHA); | 
 |   } | 
 | #endif  // CONFIG_ENABLE_MHCCP | 
 |  | 
 |   assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <= | 
 |          CFL_BUF_SQUARE); | 
 |   cfl_get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3, | 
 |                                   xd->bd); | 
 | } | 
 |  | 
 | static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input, | 
 |                                            int input_stride, | 
 |                                            uint16_t *output_q3, int width, | 
 |                                            int height) { | 
 |   for (int j = 0; j < height; j += 2) { | 
 |     for (int i = 0; i < width; i += 2) { | 
 |       const int bot = i + input_stride; | 
 |       output_q3[i >> 1] = | 
 |           (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; | 
 |     } | 
 |     input += input_stride << 1; | 
 |     output_q3 += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | void cfl_luma_subsampling_420_hbd_colocated(const uint16_t *input, | 
 |                                             int input_stride, | 
 |                                             uint16_t *output_q3, int width, | 
 |                                             int height) { | 
 |   for (int j = 0; j < height; j += 2) { | 
 |     for (int i = 0; i < width; i += 2) { | 
 |       const int top = (j == 0) ? i : (i - input_stride); | 
 |       const int bot = i + input_stride; | 
 |       output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 4 * input[i] + | 
 |                           input[i + 1] + input[top] + input[bot]; | 
 |     } | 
 |     input += input_stride << 1; | 
 |     output_q3 += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | void cfl_luma_subsampling_420_hbd_121_c(const uint16_t *input, int input_stride, | 
 |                                         uint16_t *output_q3, int width, | 
 |                                         int height) { | 
 |   for (int j = 0; j < height; j += 2) { | 
 |     output_q3[0] = 3 * input[0] + input[1] + 3 * input[input_stride] + | 
 |                    input[input_stride + 1]; | 
 |     for (int i = 2; i < width; i += 2) { | 
 |       const int bot = i + input_stride; | 
 |       output_q3[i >> 1] = input[i - 1] + 2 * input[i] + input[i + 1] + | 
 |                           input[bot - 1] + 2 * input[bot] + input[bot + 1]; | 
 |     } | 
 |     input += input_stride << 1; | 
 |     output_q3 += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input, | 
 |                                            int input_stride, | 
 |                                            uint16_t *output_q3, int width, | 
 |                                            int height) { | 
 |   assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); | 
 |   for (int j = 0; j < height; j++) { | 
 |     for (int i = 0; i < width; i += 2) { | 
 |       output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; | 
 |     } | 
 |     input += input_stride; | 
 |     output_q3 += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | void cfl_adaptive_luma_subsampling_422_hbd_c(const uint16_t *input, | 
 |                                              int input_stride, | 
 |                                              uint16_t *output_q3, int width, | 
 |                                              int height, int filter_type) { | 
 |   assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); | 
 |   for (int j = 0; j < height; j++) { | 
 |     for (int i = 0; i < width; i += 2) { | 
 |       if (filter_type == 1) { | 
 |         output_q3[i >> 1] = | 
 |             (input[AOMMAX(0, i - 1)] + 2 * input[i] + input[i + 1]) << 1; | 
 |       } else if (filter_type == 2) { | 
 |         output_q3[i >> 1] = (input[i]) << 3; | 
 |       } else { | 
 |         output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; | 
 |       } | 
 |     } | 
 |     input += input_stride; | 
 |     output_q3 += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input, | 
 |                                            int input_stride, | 
 |                                            uint16_t *output_q3, int width, | 
 |                                            int height) { | 
 |   assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); | 
 |   for (int j = 0; j < height; j++) { | 
 |     for (int i = 0; i < width; i++) { | 
 |       output_q3[i] = input[i] << 3; | 
 |     } | 
 |     input += input_stride; | 
 |     output_q3 += CFL_BUF_LINE; | 
 |   } | 
 | } | 
 |  | 
 | CFL_GET_SUBSAMPLE_FUNCTION(c) | 
 |  | 
 | static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size, | 
 |                                                        int sub_x, int sub_y) { | 
 |   if (sub_x == 1) { | 
 |     if (sub_y == 1) { | 
 |       return cfl_get_luma_subsampling_420_hbd(tx_size); | 
 |     } | 
 |     return cfl_get_luma_subsampling_422_hbd(tx_size); | 
 |   } | 
 |   return cfl_get_luma_subsampling_444_hbd(tx_size); | 
 | } | 
 |  | 
 | void cfl_store(MACROBLOCKD *const xd, CFL_CTX *cfl, const uint16_t *input, | 
 |                int input_stride, int row, int col, TX_SIZE tx_size, | 
 |                int filter_type) { | 
 |   const int width = tx_size_wide[tx_size]; | 
 |   const int height = tx_size_high[tx_size]; | 
 |   const int tx_off_log2 = MI_SIZE_LOG2; | 
 |   const int sub_x = cfl->subsampling_x; | 
 |   const int sub_y = cfl->subsampling_y; | 
 |   const int store_row = row << (tx_off_log2 - sub_y); | 
 |   const int store_col = col << (tx_off_log2 - sub_x); | 
 |   const int store_height = height >> sub_y; | 
 |   const int store_width = width >> sub_x; | 
 |  | 
 |   // Invalidate current parameters | 
 |   cfl->are_parameters_computed = 0; | 
 |  | 
 |   // Store the surface of the pixel buffer that was written to, this way we | 
 |   // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the | 
 |   // frame boundary) | 
 |   if (col == 0 && row == 0) { | 
 |     cfl->buf_width = store_width; | 
 |     cfl->buf_height = store_height; | 
 |   } else { | 
 |     cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width); | 
 |     cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height); | 
 |   } | 
 |  | 
 |   if (xd->tree_type == CHROMA_PART) { | 
 |     const struct macroblockd_plane *const pd = &xd->plane[PLANE_TYPE_UV]; | 
 |     if (xd->mb_to_right_edge < 0) | 
 |       cfl->buf_width += xd->mb_to_right_edge >> (3 + pd->subsampling_x); | 
 |     if (xd->mb_to_bottom_edge < 0) | 
 |       cfl->buf_height += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); | 
 |   } | 
 |  | 
 |   // Check that we will remain inside the pixel buffer. | 
 |   assert(store_row + store_height <= CFL_BUF_LINE); | 
 |   assert(store_col + store_width <= CFL_BUF_LINE); | 
 |  | 
 |   // Store the input into the CfL pixel buffer | 
 |   uint16_t *recon_buf_q3 = | 
 |       cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col); | 
 |   if (sub_x == 1 && sub_y == 0) { | 
 |     cfl_adaptive_luma_subsampling_422_hbd_c(input, input_stride, recon_buf_q3, | 
 |                                             width, height, filter_type); | 
 |   } else if (filter_type == 1) { | 
 |     if (sub_x && sub_y) | 
 |       cfl_luma_subsampling_420_hbd_121_c(input, input_stride, recon_buf_q3, | 
 |                                          width, height); | 
 |     else | 
 | #if CONFIG_CFL_64x64 | 
 |     { | 
 |       if (AOMMAX(width, height) > 32) | 
 |         cfl_luma_subsampling_420_hbd_c(input, input_stride, recon_buf_q3, width, | 
 |                                        height); | 
 |       else | 
 |         cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride, | 
 |                                                    recon_buf_q3); | 
 |     } | 
 | #else | 
 |       cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride, | 
 |                                                  recon_buf_q3); | 
 | #endif  // CONFIG_CFL_64x64 | 
 |   } else if (filter_type == 2) { | 
 |     if (sub_x && sub_y) | 
 |       cfl_luma_subsampling_420_hbd_colocated(input, input_stride, recon_buf_q3, | 
 |                                              width, height); | 
 |     else | 
 | #if CONFIG_CFL_64x64 | 
 |     { | 
 |       if (AOMMAX(width, height) > 32) | 
 |         cfl_luma_subsampling_420_hbd_c(input, input_stride, recon_buf_q3, width, | 
 |                                        height); | 
 |       else | 
 |         cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride, | 
 |                                                    recon_buf_q3); | 
 |     } | 
 | #else | 
 |       cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride, | 
 |                                                  recon_buf_q3); | 
 | #endif  // CONFIG_CFL_64x64 | 
 |   } else { | 
 | #if CONFIG_CFL_64x64 | 
 |     { | 
 |       if (AOMMAX(width, height) > 32) | 
 |         cfl_luma_subsampling_420_hbd_c(input, input_stride, recon_buf_q3, width, | 
 |                                        height); | 
 |       else | 
 |         cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride, | 
 |                                                    recon_buf_q3); | 
 |     } | 
 | #else | 
 |     cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride, | 
 |                                                recon_buf_q3); | 
 | #endif  // CONFIG_CFL_64x64 | 
 |   } | 
 | } | 
 |  | 
 | void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size, | 
 |                      int filter_type) { | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; | 
 |   // Always store full block, even if partially outside frame boundary. | 
 |   const int width = block_size_wide[bsize]; | 
 |   const int height = block_size_high[bsize]; | 
 |   const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; | 
 |   const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; | 
 |   const int row_offset = mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base; | 
 |   const int col_offset = mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base; | 
 |  | 
 |   tx_size = get_tx_size(width, height); | 
 |   assert(tx_size != TX_INVALID); | 
 |   cfl_store(xd, cfl, pd->dst.buf, pd->dst.stride, row_offset, col_offset, | 
 |             tx_size, filter_type); | 
 | } | 
 |  | 
 | #if CONFIG_ENABLE_MHCCP | 
 | #define NON_LINEAR(V, M, BD) ((V * V + M) >> BD) | 
 | void mhccp_derive_multi_param_hv(MACROBLOCKD *const xd, int plane, | 
 |                                  int above_lines, int left_lines, int ref_width, | 
 |                                  int ref_height, int dir | 
 | #if CONFIG_MHCCP_SB_BOUNDARY | 
 |                                  , | 
 |                                  int is_top_sb_boundary | 
 | #endif  // CONFIG_MHCCP_SB_BOUNDARY | 
 | ) { | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |  | 
 |   int count = 0; | 
 |  | 
 |   // Collect reference data to input matrix A and target vector Y | 
 |   int16_t A[MHCCP_NUM_PARAMS][MHCCP_MAX_REF_SAMPLES]; | 
 |   uint16_t YCb[MHCCP_MAX_REF_SAMPLES]; | 
 |   const int16_t mid = (1 << (xd->bd - 1)); | 
 |  | 
 |   if (above_lines || left_lines) { | 
 |     uint16_t *l = cfl->mhccp_ref_buf_q3[0]; | 
 |     uint16_t *c = cfl->mhccp_ref_buf_q3[plane]; | 
 |  | 
 |     int ref_stride = CFL_BUF_LINE * 2; | 
 |     for (int j = 1; j < ref_height - 1; ++j) { | 
 |       for (int i = 1; i < ref_width - 1; ++i) { | 
 |         if ((i >= left_lines && j >= above_lines)) continue; | 
 |         int ref_h_offset = 0; | 
 | #if CONFIG_MHCCP_SB_BOUNDARY | 
 |         if (is_top_sb_boundary && above_lines == (LINE_NUM + 1)) { | 
 |           if (j < above_lines) { | 
 |             ref_h_offset = above_lines - 1 - j; | 
 |           } | 
 |         } | 
 | #endif  // CONFIG_MHCCP_SB_BOUNDARY | 
 | #if MHCCP_3_PARAMETERS | 
 |         // 3-tap cross | 
 |         assert(dir >= 0 && dir <= 2); | 
 |         if (dir == 0) { | 
 |           A[0][count] = (l[i + (j + ref_h_offset) * ref_stride] >> 3);  // C | 
 |           A[1][count] = NON_LINEAR( | 
 |               (l[i + (j + ref_h_offset) * ref_stride] >> 3), mid, xd->bd); | 
 |  | 
 |         } else if (dir == 1) { | 
 |           A[0][count] = (l[i + (j + ref_h_offset - 1) * ref_stride] >> 3);  // T | 
 |           A[1][count] = NON_LINEAR( | 
 |               (l[i + (j + ref_h_offset) * ref_stride] >> 3), mid, xd->bd); | 
 |         } else if (dir == 2) { | 
 |           A[0][count] = | 
 |               (l[(i - 1) + (j + ref_h_offset) * ref_stride] >> 3);  // L | 
 |           A[1][count] = NON_LINEAR( | 
 |               (l[i + (j + ref_h_offset) * ref_stride] >> 3), mid, xd->bd); | 
 |         } | 
 |         A[2][count] = mid; | 
 | #else | 
 |         // 5-tap cross or 4-tap cross based on CONFIG_E149_MHCCP_4PARA | 
 |         A[0][count] = (l[i + (j + ref_h_offset) * ref_stride] >> 3);  // C | 
 |         if (dir == 0) { | 
 |           A[1][count] = | 
 |               (l[i + (j + ref_h_offset - 1) * ref_stride] >> 3);  // N 1, -1 | 
 | #if !CONFIG_E149_MHCCP_4PARA | 
 |           A[2][count] = | 
 |               (i >= left_lines && (j + 1 + ref_h_offset) >= above_lines) | 
 |                   ? (l[i + (j + ref_h_offset) * ref_stride] >> 3) | 
 |                   : (l[i + (j + 1 + ref_h_offset) * ref_stride] >> | 
 |                      3);  // S 1,  1 | 
 | #endif  // !CONFIG_E149_MHCCP_4PARA | 
 |         } else { | 
 |           A[1][count] = | 
 |               (l[(i - 1) + (j + ref_h_offset) * ref_stride] >> 3);  // W 1, -1 | 
 | #if !CONFIG_E149_MHCCP_4PARA | 
 |           A[2][count] = (i + 1 >= left_lines && j >= above_lines) | 
 |                             ? (l[(i) + (j + ref_h_offset) * ref_stride] >> 3) | 
 |                             : (l[(i + 1) + (j + ref_h_offset) * ref_stride] >> | 
 |                                3);  // E 1,  1 | 
 | #endif  // !CONFIG_E149_MHCCP_4PARA | 
 |         } | 
 | #if CONFIG_E149_MHCCP_4PARA | 
 |         A[2][count] = NON_LINEAR((l[i + (j + ref_h_offset) * ref_stride] >> 3), | 
 |                                  mid, xd->bd); | 
 |         A[3][count] = mid; | 
 | #else | 
 |         A[3][count] = NON_LINEAR((l[i + (j + ref_h_offset) * ref_stride] >> 3), | 
 |                                  mid, xd->bd); | 
 |         A[4][count] = mid; | 
 | #endif  // CONFIG_E149_MHCCP_4PARA | 
 | #endif  // MHCCP_3_PARAMETERS | 
 |         YCb[count] = c[i + (j + ref_h_offset) * ref_stride]; | 
 |         ++count; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (count > 0) { | 
 |     int64_t ATA[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS]; | 
 | #if CONFIG_E125_MHCCP_SIMPLIFY | 
 |     // One more column is added to store the derived parameters | 
 |     int64_t C[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS + 1]; | 
 | #endif  // CONFIG_E125_MHCCP_SIMPLIFY | 
 |     int64_t Ty[MHCCP_NUM_PARAMS]; | 
 |     memset(ATA, 0x00, | 
 |            sizeof(int64_t) * (MHCCP_NUM_PARAMS) * (MHCCP_NUM_PARAMS)); | 
 |     memset(Ty, 0x00, sizeof(int64_t) * (MHCCP_NUM_PARAMS)); | 
 | #if CONFIG_E125_MHCCP_SIMPLIFY | 
 |     memset(C, 0x00, sizeof(C)); | 
 | #endif  // CONFIG_E125_MHCCP_SIMPLIFY | 
 |     for (int coli0 = 0; coli0 < (MHCCP_NUM_PARAMS); ++coli0) { | 
 |       for (int coli1 = coli0; coli1 < (MHCCP_NUM_PARAMS); ++coli1) { | 
 |         int16_t *col0 = A[coli0]; | 
 |         int16_t *col1 = A[coli1]; | 
 |  | 
 |         for (int rowi = 0; rowi < count; ++rowi) { | 
 |           ATA[coli0][coli1] += col0[rowi] * col1[rowi]; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     for (int coli = 0; coli < (MHCCP_NUM_PARAMS); ++coli) { | 
 |       int16_t *col = A[coli]; | 
 |  | 
 |       for (int rowi = 0; rowi < count; ++rowi) { | 
 |         Ty[coli] += col[rowi] * YCb[rowi]; | 
 |       } | 
 |     } | 
 |  | 
 |     // Scale the matrix and vector to selected dynamic range | 
 |     int matrixShift = | 
 |         (MHCCP_DECIM_BITS + 6) - 2 * xd->bd - (int)ceil(log2(count)); | 
 |  | 
 |     if (matrixShift > 0) { | 
 |       for (int coli0 = 0; coli0 < MHCCP_NUM_PARAMS; coli0++) | 
 |         for (int coli1 = coli0; coli1 < MHCCP_NUM_PARAMS; coli1++) | 
 |           ATA[coli0][coli1] <<= matrixShift; | 
 |  | 
 |       for (int coli = 0; coli < MHCCP_NUM_PARAMS; coli++) | 
 |         Ty[coli] <<= matrixShift; | 
 |     } else if (matrixShift < 0) { | 
 |       matrixShift = -matrixShift; | 
 |  | 
 |       for (int coli0 = 0; coli0 < MHCCP_NUM_PARAMS; coli0++) | 
 |         for (int coli1 = coli0; coli1 < MHCCP_NUM_PARAMS; coli1++) | 
 |           ATA[coli0][coli1] >>= matrixShift; | 
 |  | 
 |       for (int coli = 0; coli < MHCCP_NUM_PARAMS; coli++) | 
 |         Ty[coli] >>= matrixShift; | 
 |     } | 
 | #if CONFIG_E125_MHCCP_SIMPLIFY | 
 |     gauss_elimination_mhccp(ATA, C, Ty, mbmi->mhccp_implicit_param[plane - 1], | 
 |                             MHCCP_NUM_PARAMS, xd->bd); | 
 | #else | 
 |     int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS]; | 
 |     int64_t diag[MHCCP_NUM_PARAMS]; | 
 |     memset(U, 0x00, sizeof(int64_t) * (MHCCP_NUM_PARAMS) * (MHCCP_NUM_PARAMS)); | 
 |     memset(diag, 0x00, sizeof(int64_t) * (MHCCP_NUM_PARAMS)); | 
 |     bool decompOk = ldl_decompose(ATA, U, diag, MHCCP_NUM_PARAMS); | 
 |     ldl_solve(U, diag, Ty, mbmi->mhccp_implicit_param[plane - 1], | 
 |               MHCCP_NUM_PARAMS, decompOk); | 
 | #endif  // CONFIG_E125_MHCCP_SIMPLIFY | 
 |   } else { | 
 |     for (int i = 0; i < MHCCP_NUM_PARAMS - 1; ++i) { | 
 |       mbmi->mhccp_implicit_param[plane - 1][i] = 0; | 
 |     } | 
 |     mbmi->mhccp_implicit_param[plane - 1][MHCCP_NUM_PARAMS - 1] = | 
 |         1 << MHCCP_DECIM_BITS; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_E125_MHCCP_SIMPLIFY | 
 | #define DIV_PREC_BITS 14 | 
 | #define DIV_PREC_BITS_POW2 8 | 
 | #define DIV_SLOT_BITS 3 | 
 | #define DIV_INTR_BITS (DIV_PREC_BITS - DIV_SLOT_BITS) | 
 | #define DIV_INTR_ROUND (1 << DIV_INTR_BITS >> 1) | 
 |  | 
 | // Return the number of shifted bits for the denominator | 
 | static inline int floorLog2Uint64(uint64_t x) { | 
 |   if (x == 0) { | 
 |     return 0; | 
 |   } | 
 |   int result = 0; | 
 |   if (x & 0xffffffff00000000) { | 
 |     x >>= 32; | 
 |     result += 32; | 
 |   } | 
 |   if (x & 0xffff0000) { | 
 |     x >>= 16; | 
 |     result += 16; | 
 |   } | 
 |   if (x & 0xff00) { | 
 |     x >>= 8; | 
 |     result += 8; | 
 |   } | 
 |   if (x & 0xf0) { | 
 |     x >>= 4; | 
 |     result += 4; | 
 |   } | 
 |   if (x & 0xc) { | 
 |     x >>= 2; | 
 |     result += 2; | 
 |   } | 
 |   if (x & 0x2) { | 
 |     result += 1; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | void get_division_scale_shift(uint64_t denom, int *scale, int64_t *round, | 
 |                               int *shift) { | 
 |   // This array stores the coefficients for the quadratic | 
 |   // (squared) term in the polynomial for each of the 8 regions. | 
 |   static const int pow2W[DIV_PREC_BITS_POW2] = { 214, 153, 113, 86, | 
 |                                                  67,  53,  43,  35 }; | 
 |   // This array contains the offset values used to adjust | 
 |   //  the normalized denominator for each region. | 
 |   static const int pow2O[DIV_PREC_BITS_POW2] = { 4822, 5952, 6624, 6792, | 
 |                                                  6408, 5424, 3792, 1466 }; | 
 |   // This array holds the constant bias term for each region's polynomial. | 
 |   static const int pow2B[DIV_PREC_BITS_POW2] = { 12784, 12054, 11670, 11583, | 
 |                                                  11764, 12195, 12870, 13782 }; | 
 |  | 
 |   *shift = floorLog2Uint64(denom); | 
 |   if (*shift == 0) | 
 |     *round = 0; | 
 |   else | 
 |     *round = (int64_t)(1ULL << (*shift) >> 1); | 
 |  | 
 |   int normDiff = 0; | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |   normDiff = (int)((((denom << DIV_PREC_BITS) + *round) >> (*shift)) & | 
 |                    ((1 << DIV_PREC_BITS) - 1)); | 
 | #else | 
 |   if (*shift > DIV_PREC_BITS) | 
 |     normDiff = (int)((denom >> ((*shift) - DIV_PREC_BITS)) & | 
 |                      ((1 << DIV_PREC_BITS) - 1)); | 
 |   else | 
 |     normDiff = (int)((denom << (DIV_PREC_BITS - (*shift))) & | 
 |                      ((1 << DIV_PREC_BITS) - 1)); | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |   // The vale of index is ranging from 0 to 7 | 
 |   int index = normDiff >> DIV_INTR_BITS; | 
 |   int normDiff2 = normDiff - pow2O[index]; | 
 |  | 
 |   *scale = ((pow2W[index] * ((normDiff2 * normDiff2) >> DIV_PREC_BITS)) >> | 
 |             DIV_PREC_BITS_POW2) - | 
 |            (normDiff2 >> 1) + pow2B[index]; | 
 |   *scale <<= MHCCP_DECIM_BITS - DIV_PREC_BITS; | 
 | } | 
 |  | 
 | void gauss_back_substitute(int64_t *x, | 
 |                            int64_t C[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS + 1], | 
 |                            int numEq, int col | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |                            , | 
 |                            int round, int bits | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 | ) { | 
 |   x[numEq - 1] = C[numEq - 1][col]; | 
 |  | 
 |   for (int i = numEq - 2; i >= 0; i--) { | 
 |     x[i] = C[i][col]; | 
 |  | 
 |     for (int j = i + 1; j < numEq; j++) { | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |       x[i] -= LOCAL_FIXED_MULT(C[i][j], x[j], round, bits); | 
 | #else | 
 |       x[i] -= stable_mult_shift(C[i][j], x[j], MHCCP_DECIM_BITS, | 
 |                                 get_msb_signed_64(C[i][j]), | 
 |                                 get_msb_signed_64(x[j]), 32, NULL); | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void gauss_elimination_mhccp(int64_t A[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], | 
 |                              int64_t C[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS + 1], | 
 |                              int64_t *y0, int64_t *x0, int numEq, int bd) { | 
 |   int colChr0 = numEq; | 
 |  | 
 |   int reg = 2 << (bd - 8); | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |   const int decimBits = MHCCP_DECIM_BITS; | 
 |   const int decimRound = (1 << (decimBits - 1)); | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |   // Create an [M][M+2] matrix system (could have been done already when | 
 |   // calculating auto/cross-correlations) | 
 |   for (int i = 0; i < numEq; i++) { | 
 |     for (int j = 0; j < numEq; j++) { | 
 |       C[i][j] = j >= i ? A[i][j] : A[j][i]; | 
 |     } | 
 |  | 
 |     C[i][i] += reg;  // Regularization | 
 |     C[i][colChr0] = y0[i]; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < numEq; i++) { | 
 |     int64_t *src = C[i]; | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |     uint64_t diag = llabs(src[i]) < 1 ? 1 : llabs(src[i]); | 
 | #else | 
 |     uint64_t diag = src[i] < 1 ? 1 : src[i]; | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |     int64_t round; | 
 |     int scale, shift; | 
 |     get_division_scale_shift(diag, &scale, &round, &shift); | 
 |  | 
 |     for (int j = i + 1; j < numEq + 1; j++) { | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |       src[j] = (src[j] * scale + round) >> shift; | 
 | #else | 
 |       src[j] = | 
 |           stable_mult_shift(src[j], scale, shift, get_msb_signed_64(src[j]), | 
 |                             get_msb_signed_64(scale), 32, NULL); | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |     } | 
 |  | 
 |     for (int j = i + 1; j < numEq; j++) { | 
 |       int64_t *dst = C[j]; | 
 |       int64_t scale_factor = dst[i]; | 
 |  | 
 |       // On row j all elements with k < i+1 are now zero (not zeroing those here | 
 |       // as backsubstitution does not need them) | 
 |       for (int k = i + 1; k < numEq + 1; k++) { | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |         dst[k] -= LOCAL_FIXED_MULT(scale_factor, src[k], decimRound, decimBits); | 
 | #else | 
 |         dst[k] -= stable_mult_shift(scale_factor, src[k], MHCCP_DECIM_BITS, | 
 |                                     get_msb_signed_64(scale_factor), | 
 |                                     get_msb_signed_64(src[k]), 32, NULL); | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Solve with backsubstitution | 
 |   gauss_back_substitute(x0, C, numEq, colChr0 | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |                         , | 
 |                         decimRound, decimBits | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |   ); | 
 | } | 
 | #endif  // CONFIG_E125_MHCCP_SIMPLIFY | 
 |  | 
 | #if !CONFIG_E125_MHCCP_SIMPLIFY | 
 | bool ldl_decomp(int64_t A[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], | 
 |                 int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], | 
 |                 int64_t diag[MHCCP_NUM_PARAMS], int numEq) { | 
 |   for (int i = 0; i < numEq; i++) { | 
 |     diag[i] = A[i][i]; | 
 |  | 
 |     for (int k = i - 1; k >= 0; k--) { | 
 |       uint64_t u_unsigned = U[k][i]; | 
 |       uint64_t tmp = FIXED_MULT(u_unsigned, u_unsigned); | 
 |       uint64_t mult = FIXED_MULT(tmp, diag[k]); | 
 |       if ((uint64_t)diag[i] <= mult) return false; | 
 |       diag[i] -= mult; | 
 |     } | 
 |  | 
 |     for (int j = i + 1; j < numEq; j++) { | 
 |       int64_t scale = A[i][j]; | 
 |  | 
 |       for (int k = i - 1; k >= 0; k--) { | 
 |         int64_t tmp = FIXED_MULT(U[k][j], U[k][i]); | 
 |         scale -= FIXED_MULT(tmp, diag[k]); | 
 |       } | 
 |  | 
 |       U[i][j] = FIXED_DIV(AOMMAX(scale, 0), diag[i]); | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void ldl_transpose_back_substitution( | 
 |     int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], int64_t *y, int64_t *z, | 
 |     int numEq) { | 
 |   z[0] = y[0]; | 
 |  | 
 |   for (int i = 1; i < numEq; i++) { | 
 |     int64_t sum = 0; | 
 |  | 
 |     for (int j = 0; j < i; j++) { | 
 |       sum += FIXED_MULT(z[j], U[j][i]); | 
 |     } | 
 |  | 
 |     z[i] = y[i] - sum; | 
 |   } | 
 | } | 
 |  | 
 | void ldl_back_substitution(int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], | 
 |                            int64_t *z, int64_t *x, int numEq) { | 
 |   x[numEq - 1] = z[numEq - 1]; | 
 |  | 
 |   for (int i = numEq - 2; i >= 0; i--) { | 
 |     int64_t sum = 0; | 
 |  | 
 |     for (int j = i + 1; j < numEq; j++) { | 
 |       sum += FIXED_MULT(U[i][j], x[j]); | 
 |     } | 
 |  | 
 |     x[i] = z[i] - sum; | 
 |   } | 
 | } | 
 |  | 
 | bool ldl_decompose(int64_t A[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], | 
 |                    int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], | 
 |                    int64_t diag[MHCCP_NUM_PARAMS], int numEq) { | 
 |   for (int i = 0; i < numEq; i++) { | 
 |     A[i][i] += 1; | 
 |   } | 
 |  | 
 |   return ldl_decomp(A, U, diag, numEq); | 
 | } | 
 |  | 
 | void ldl_solve(int64_t U[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS], | 
 |                int64_t diag[MHCCP_NUM_PARAMS], int64_t *y, int64_t *x, | 
 |                int numEq, bool decomp_ok) { | 
 |   if (decomp_ok) { | 
 |     int64_t aux[MHCCP_NUM_PARAMS]; | 
 |     ldl_transpose_back_substitution(U, y, aux, numEq); | 
 |  | 
 |     for (int i = 0; i < numEq; i++) { | 
 |       aux[i] = FIXED_DIV(AOMMAX(aux[i], 0), diag[i]); | 
 |     } | 
 |  | 
 |     ldl_back_substitution(U, aux, x, numEq); | 
 |   } else { | 
 |     memset(x, 0, sizeof(int64_t) * numEq); | 
 |   } | 
 | } | 
 | #endif  // !CONFIG_E125_MHCCP_SIMPLIFY | 
 |  | 
 | static int16_t convolve(int64_t *params, uint16_t *vector, int16_t numParams) { | 
 |   int64_t sum = 0; | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |   const int decimBits = MHCCP_DECIM_BITS; | 
 |   const int decimRound = (1 << (decimBits - 1)); | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |   for (int i = 0; i < numParams; i++) { | 
 | #if CONFIG_MHCCP_GAUSSIAN | 
 |     sum += LOCAL_FIXED_MULT(params[i], vector[i], decimRound, decimBits); | 
 | #else | 
 | #if CONFIG_E125_MHCCP_SIMPLIFY && !CONFIG_MHCCP_CONVOLVE_SIMPLIFY | 
 |     sum += stable_mult_shift(params[i], vector[i], MHCCP_DECIM_BITS, | 
 |                              get_msb_signed_64(params[i]), | 
 |                              get_msb_signed(vector[i]), 32, NULL); | 
 | #else | 
 |     sum += params[i] * vector[i]; | 
 | #endif  // CONFIG_E125_MHCCP_SIMPLIFY | 
 | #endif  // CONFIG_MHCCP_GAUSSIAN | 
 |   } | 
 | #if (CONFIG_E125_MHCCP_SIMPLIFY && !CONFIG_MHCCP_CONVOLVE_SIMPLIFY) || \ | 
 |     CONFIG_MHCCP_GAUSSIAN | 
 |   return (int16_t)clamp64(sum, INT16_MIN, INT16_MAX); | 
 | #else | 
 |   return (int16_t)clamp64(((sum + MHCCP_DECIM_ROUND) >> MHCCP_DECIM_BITS), | 
 |                           INT16_MIN, INT16_MAX); | 
 | #endif  // (CONFIG_E125_MHCCP_SIMPLIFY && !CONFIG_MHCCP_CONVOLVE_SIMPLIFY) || | 
 |         // CONFIG_MHCCP_GAUSSIAN | 
 | } | 
 |  | 
 | void mhccp_predict_hv_hbd_c(const uint16_t *input, uint16_t *dst, bool have_top, | 
 |                             bool have_left, int dst_stride, int64_t *alpha_q3, | 
 |                             int bit_depth, int width, int height, int dir) { | 
 |   const uint16_t mid = (1 << (bit_depth - 1)); | 
 |  | 
 |   for (int j = 0; j < height; j++) { | 
 |     for (int i = 0; i < width; i++) { | 
 |       uint16_t vector[MHCCP_NUM_PARAMS]; | 
 |       vector[0] = input[i] >> 3;  // C | 
 |       uint16_t a = | 
 |           (j - 1 < 0 && !have_top ? input[i] : input[i - CFL_BUF_LINE * 2]) >> | 
 |           3;  // above | 
 | #if !CONFIG_E149_MHCCP_4PARA | 
 |       uint16_t b = (j + 1 >= height ? input[i] : input[i + CFL_BUF_LINE * 2]) >> | 
 |                    3;  // below | 
 | #endif                 // !CONFIG_E149_MHCCP_4PARA | 
 |       uint16_t c = | 
 |           (i - 1 < 0 && !have_left ? input[i] : input[i - 1]) >> 3;  // left | 
 | #if !CONFIG_E149_MHCCP_4PARA | 
 |       uint16_t d = (i + 1 >= width ? input[i] : input[i + 1]) >> 3;  // right | 
 | #endif  // !CONFIG_E149_MHCCP_4PARA | 
 | #if MHCCP_3_PARAMETERS | 
 |       if (dir == 1) { | 
 |         vector[0] = a;  // T | 
 |       } else if (dir == 2) { | 
 |         vector[0] = c;  // L | 
 |       } | 
 |       vector[1] = NON_LINEAR((input[i] >> 3), mid, bit_depth); | 
 |       vector[2] = mid; | 
 | #else | 
 |       if (dir == 0) { | 
 |         vector[1] = a; | 
 | #if !CONFIG_E149_MHCCP_4PARA | 
 |         vector[2] = b; | 
 | #endif  // !CONFIG_E149_MHCCP_4PARA | 
 |       } else { | 
 |         vector[1] = c; | 
 | #if !CONFIG_E149_MHCCP_4PARA | 
 |         vector[2] = d; | 
 | #endif  // !CONFIG_E149_MHCCP_4PARA | 
 |       } | 
 | #if CONFIG_E149_MHCCP_4PARA | 
 |       vector[2] = NON_LINEAR((input[i] >> 3), mid, bit_depth); | 
 |       vector[3] = mid; | 
 | #else | 
 |       vector[3] = NON_LINEAR((input[i] >> 3), mid, bit_depth); | 
 |       vector[4] = mid; | 
 | #endif  // CONFIG_E149_MHCCP_4PARA | 
 | #endif  // MHCCP_3_PARAMETERS | 
 |       dst[i] = clip_pixel_highbd(convolve(alpha_q3, vector, MHCCP_NUM_PARAMS), | 
 |                                  bit_depth); | 
 |     } | 
 |     dst += dst_stride; | 
 |     input += CFL_BUF_LINE * 2; | 
 |   } | 
 | } | 
 | #undef NON_LINEAR | 
 | #endif  // CONFIG_ENABLE_MHCCP |