|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "av1/encoder/cnn.h" | 
|  | #include "av1/common/av1_common_int.h" | 
|  |  | 
|  | #define CLAMPINDEX(a, hi) ((a) < 0 ? 0 : ((a) >= (hi) ? ((hi)-1) : (a))) | 
|  |  | 
|  | typedef struct { | 
|  | const float **input; | 
|  | int in_width; | 
|  | int in_height; | 
|  | int in_stride; | 
|  | const CNN_LAYER_CONFIG *layer_config; | 
|  | float **output; | 
|  | int out_stride; | 
|  | int start_idx; | 
|  | int th_step; | 
|  | } CONVOLVE_OPS; | 
|  |  | 
|  | typedef float (*activation_fn)(float); | 
|  |  | 
|  | static float softsign(float x) { return x / (float)(fabsf(x) + 1.0); } | 
|  |  | 
|  | static float relu(float x) { return (x < 0) ? 0 : x; } | 
|  |  | 
|  | static float identity(float x) { return x; } | 
|  |  | 
|  | typedef struct { | 
|  | int allocsize; | 
|  | int channels; | 
|  | int width, height, stride; | 
|  | float *buf[CNN_MAX_CHANNELS]; | 
|  | } TENSOR; | 
|  |  | 
|  | static void init_tensor(TENSOR *tensor) { memset(tensor, 0, sizeof(*tensor)); } | 
|  |  | 
|  | static void free_tensor(TENSOR *tensor) { | 
|  | if (tensor->allocsize) { | 
|  | aom_free(tensor->buf[0]); | 
|  | tensor->buf[0] = NULL; | 
|  | tensor->allocsize = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void realloc_tensor(TENSOR *tensor, int channels, int width, | 
|  | int height) { | 
|  | const int newallocsize = channels * width * height; | 
|  | if (tensor->allocsize < newallocsize) { | 
|  | free_tensor(tensor); | 
|  | tensor->buf[0] = | 
|  | (float *)aom_malloc(sizeof(*tensor->buf[0]) * newallocsize); | 
|  | tensor->allocsize = newallocsize; | 
|  | } | 
|  | tensor->width = width; | 
|  | tensor->height = height; | 
|  | tensor->stride = width; | 
|  | tensor->channels = channels; | 
|  | for (int c = 1; c < channels; ++c) | 
|  | tensor->buf[c] = &tensor->buf[0][c * width * height]; | 
|  | } | 
|  |  | 
|  | static void copy_tensor(const TENSOR *src, int copy_channels, int dst_offset, | 
|  | TENSOR *dst) { | 
|  | assert(src->width == dst->width); | 
|  | assert(src->height == dst->height); | 
|  | assert(copy_channels <= src->channels); | 
|  | if (src->stride == dst->width && dst->stride == dst->width) { | 
|  | for (int c = 0; c < copy_channels; ++c) { | 
|  | memcpy(dst->buf[dst_offset + c], src->buf[c], | 
|  | sizeof(*dst->buf[0]) * src->width * src->height); | 
|  | } | 
|  | } else { | 
|  | for (int c = 0; c < copy_channels; ++c) { | 
|  | for (int r = 0; r < dst->height; ++r) { | 
|  | memcpy(&dst->buf[dst_offset + c][r * dst->stride], | 
|  | &src->buf[c][r * src->stride], | 
|  | dst->width * sizeof(*dst->buf[c])); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void assign_tensor(TENSOR *tensor, float *buf[CNN_MAX_CHANNELS], | 
|  | int channels, int width, int height, int stride) { | 
|  | tensor->allocsize = 0; | 
|  | tensor->channels = channels; | 
|  | tensor->width = width; | 
|  | tensor->height = height; | 
|  | tensor->stride = stride; | 
|  | if (buf) { | 
|  | for (int c = 0; c < channels; ++c) tensor->buf[c] = buf[c]; | 
|  | } else { | 
|  | for (int c = 0; c < channels; ++c) tensor->buf[c] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void swap_tensor(TENSOR *t1, TENSOR *t2) { | 
|  | TENSOR t = *t1; | 
|  | *t1 = *t2; | 
|  | *t2 = t; | 
|  | } | 
|  |  | 
|  | // The concatenated tensor goes into dst with first the channels in | 
|  | // original dst followed by the channels in the src | 
|  | static void concat_tensor(const TENSOR *src, TENSOR *dst) { | 
|  | assert(src->width == dst->width); | 
|  | assert(src->height == dst->height); | 
|  |  | 
|  | const int dst_channels = dst->channels; | 
|  | const int channels = dst->channels + src->channels; | 
|  | const int newallocsize = channels * dst->width * dst->height; | 
|  | if (dst->allocsize < newallocsize) { | 
|  | TENSOR t; | 
|  | init_tensor(&t); | 
|  | // allocate new buffers and copy first the dst channels | 
|  | realloc_tensor(&t, channels, dst->width, dst->height); | 
|  | copy_tensor(dst, dst->channels, 0, &t); | 
|  | // Swap the tensors and free the old buffers | 
|  | swap_tensor(dst, &t); | 
|  | free_tensor(&t); | 
|  | } | 
|  | for (int c = 1; c < channels; ++c) | 
|  | dst->buf[c] = &dst->buf[0][c * dst->width * dst->height]; | 
|  | // Copy the channels in src after the first dst_channels channels. | 
|  | copy_tensor(src, src->channels, dst_channels, dst); | 
|  | } | 
|  |  | 
|  | int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) { | 
|  | return (t1->width == t2->width && t1->height == t2->height); | 
|  | } | 
|  |  | 
|  | int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) { | 
|  | return (t1->channels == t2->channels && t1->width == t2->width && | 
|  | t1->height == t2->height); | 
|  | } | 
|  |  | 
|  | static void find_layer_output_size(int in_width, int in_height, | 
|  | const CNN_LAYER_CONFIG *layer_config, | 
|  | int *out_width, int *out_height) { | 
|  | if (!layer_config->deconvolve) { | 
|  | switch (layer_config->pad) { | 
|  | case PADDING_SAME_ZERO: | 
|  | case PADDING_SAME_REPLICATE: | 
|  | *out_width = (in_width + layer_config->skip_width - 1) / | 
|  | layer_config->skip_width; | 
|  | *out_height = (in_height + layer_config->skip_height - 1) / | 
|  | layer_config->skip_height; | 
|  | break; | 
|  | case PADDING_VALID: | 
|  | *out_width = | 
|  | (in_width - layer_config->filter_width + layer_config->skip_width) / | 
|  | layer_config->skip_width; | 
|  | *out_height = (in_height - layer_config->filter_height + | 
|  | layer_config->skip_height) / | 
|  | layer_config->skip_height; | 
|  | break; | 
|  | default: assert(0 && "Unknown padding type"); | 
|  | } | 
|  | } else { | 
|  | switch (layer_config->pad) { | 
|  | case PADDING_SAME_ZERO: | 
|  | case PADDING_SAME_REPLICATE: | 
|  | *out_width = in_width * layer_config->skip_width; | 
|  | *out_height = in_height * layer_config->skip_height; | 
|  | break; | 
|  | case PADDING_VALID: | 
|  | *out_width = (in_width - 1) * layer_config->skip_width + | 
|  | layer_config->filter_width; | 
|  | *out_height = (in_height - 1) * layer_config->skip_height + | 
|  | layer_config->filter_height; | 
|  | break; | 
|  | default: assert(0 && "Unknown padding type"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config, | 
|  | int channels_per_branch[]) { | 
|  | int branch = layer_config->branch; | 
|  | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { | 
|  | if (layer_config->branch_copy_type == BRANCH_INPUT) { | 
|  | channels_per_branch[b] = layer_config->in_channels; | 
|  | } else if (layer_config->branch_copy_type == BRANCH_OUTPUT) { | 
|  | channels_per_branch[b] = layer_config->out_channels; | 
|  | } else if (layer_config->branch_copy_type == BRANCH_COMBINED) { | 
|  | channels_per_branch[b] = layer_config->out_channels; | 
|  | for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { | 
|  | if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { | 
|  | assert(channels_per_branch[c] > 0); | 
|  | channels_per_branch[b] += channels_per_branch[c]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | channels_per_branch[branch] = layer_config->out_channels; | 
|  | for (int c = 0; c < CNN_MAX_BRANCHES; ++c) { | 
|  | if ((branch_config->branches_to_combine & (1 << c)) && c != branch) { | 
|  | assert(channels_per_branch[c] > 0); | 
|  | channels_per_branch[branch] += channels_per_branch[c]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_DEBUG | 
|  | static INLINE int cnn_has_at_least_one_output(const CNN_CONFIG *cnn_config) { | 
|  | const int num_layers = cnn_config->num_layers; | 
|  | const CNN_LAYER_CONFIG *layer_configs = cnn_config->layer_config; | 
|  |  | 
|  | for (int idx = 0; idx < num_layers; idx++) { | 
|  | if (layer_configs[idx].output_num != -1) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void av1_find_cnn_output_size(int in_width, int in_height, | 
|  | const CNN_CONFIG *cnn_config, int *out_width, | 
|  | int *out_height, int *out_channels) { | 
|  | int channels_per_branch[CNN_MAX_BRANCHES] = { 0 }; | 
|  | int i_width[CNN_MAX_BRANCHES] = { 0 }; | 
|  | int i_height[CNN_MAX_BRANCHES] = { 0 }; | 
|  | i_width[0] = in_width + cnn_config->ext_width * 2; | 
|  | i_height[0] = in_height + cnn_config->ext_height * 2; | 
|  |  | 
|  | #if CONFIG_DEBUG | 
|  | assert(cnn_has_at_least_one_output(cnn_config)); | 
|  | #endif | 
|  |  | 
|  | for (int i = 0; i < cnn_config->num_layers; ++i) { | 
|  | const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[i]; | 
|  | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; | 
|  | const int branch = layer_config->branch; | 
|  | int o_width = 0, o_height = 0; | 
|  |  | 
|  | if (layer_config->branch_copy_type == BRANCH_INPUT) { | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { | 
|  | assert(i_width[branch] > 0 && i_height[branch] > 0); | 
|  | i_width[b] = i_width[branch]; | 
|  | i_height[b] = i_height[branch]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | find_layer_output_size(i_width[branch], i_height[branch], layer_config, | 
|  | &o_width, &o_height); | 
|  | i_width[branch] = o_width; | 
|  | i_height[branch] = o_height; | 
|  |  | 
|  | if (layer_config->branch_copy_type == BRANCH_OUTPUT) { | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { | 
|  | i_width[b] = o_width; | 
|  | i_height[b] = o_height; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | find_cnn_out_channels(layer_config, channels_per_branch); | 
|  |  | 
|  | const int output_num = layer_config->output_num; | 
|  | if (output_num != -1) {  // Current layer is an output layer | 
|  | out_width[output_num] = o_width; | 
|  | out_height[output_num] = o_height; | 
|  | out_channels[output_num] = channels_per_branch[layer_config->branch]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | activation_fn get_activation(ACTIVATION layer_activation) { | 
|  | switch (layer_activation) { | 
|  | case NONE: return identity; | 
|  | case RELU: return relu; | 
|  | case SOFTSIGN: return softsign; | 
|  | case SIGMOID: | 
|  | assert(0 && "Sigmoid has not been supported in CNN.");  // TO DO | 
|  | return NULL; | 
|  | default: assert(0 && "Unknown activation type"); return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int get_start_shift_convolve(int width, int filt_width, | 
|  | int stride) { | 
|  | const int mod = (width % stride); | 
|  | const int filt_off = (filt_width - 1) / 2; | 
|  | const int dif = (mod ? mod - 1 : stride - 1); | 
|  | return AOMMIN((dif + (filt_width % 2)) / 2, filt_off); | 
|  | } | 
|  |  | 
|  | void av1_cnn_add_c(float **output, int channels, int width, int height, | 
|  | int stride, const float **add) { | 
|  | for (int c = 0; c < channels; ++c) { | 
|  | for (int i = 0; i < height; ++i) | 
|  | for (int j = 0; j < width; ++j) | 
|  | output[c][i * stride + j] += add[c][i * stride + j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_cnn_activate_c(float **output, int channels, int width, int height, | 
|  | int stride, ACTIVATION layer_activation) { | 
|  | activation_fn activation = get_activation(layer_activation); | 
|  | for (int c = 0; c < channels; ++c) { | 
|  | for (int i = 0; i < height; ++i) | 
|  | for (int j = 0; j < width; ++j) | 
|  | output[c][i * stride + j] = activation(output[c][i * stride + j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void copy_active_tensor_to_branches(const TENSOR *layer_active_tensor, | 
|  | const CNN_LAYER_CONFIG *layer_config, | 
|  | int branch, TENSOR branch_output[]) { | 
|  | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->input_to_branches & (1 << b)) && b != branch) { | 
|  | // Copy layer's active tensor to output tensor of branch b if set in | 
|  | // mask. The output becomes the input of the first layer of the branch | 
|  | // because the layer of the branch is not the first layer. | 
|  | int copy_channels = branch_config->channels_to_copy > 0 | 
|  | ? branch_config->channels_to_copy | 
|  | : layer_active_tensor->channels; | 
|  | realloc_tensor(&branch_output[b], copy_channels, | 
|  | layer_active_tensor->width, layer_active_tensor->height); | 
|  | copy_tensor(layer_active_tensor, copy_channels, 0, &branch_output[b]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int convolve_layer(void *arg1, void *arg2) { | 
|  | const CONVOLVE_OPS *convolve_ops = arg1; | 
|  | (void)arg2; | 
|  | av1_cnn_convolve( | 
|  | convolve_ops->input, convolve_ops->in_width, convolve_ops->in_height, | 
|  | convolve_ops->in_stride, convolve_ops->layer_config, convolve_ops->output, | 
|  | convolve_ops->out_stride, convolve_ops->start_idx, convolve_ops->th_step); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void convolve_layer_mt(const float **input, int in_width, int in_height, | 
|  | int in_stride, | 
|  | const CNN_LAYER_CONFIG *layer_config, | 
|  | const CNN_THREAD_DATA *thread_data, | 
|  | float **output, int out_stride) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | const int num_workers = thread_data->num_workers; | 
|  |  | 
|  | CONVOLVE_OPS convolve_ops[CNN_MAX_THREADS]; | 
|  | for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { | 
|  | AVxWorker *const worker = &thread_data->workers[th]; | 
|  | winterface->reset(worker); | 
|  |  | 
|  | CONVOLVE_OPS convolve_op = { input,      in_width,     in_height, | 
|  | in_stride,  layer_config, output, | 
|  | out_stride, th,           num_workers }; | 
|  | convolve_ops[th] = convolve_op; | 
|  | worker->hook = convolve_layer; | 
|  | worker->data1 = &(convolve_ops[th]); | 
|  | worker->data2 = NULL; | 
|  |  | 
|  | // Start convolving. | 
|  | if (th == num_workers - 1) { | 
|  | winterface->execute(worker); | 
|  | } else { | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait until all workers have finished. | 
|  | for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) { | 
|  | winterface->sync(&thread_data->workers[th]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_cnn_convolve_c(const float **input, int in_width, int in_height, | 
|  | int in_stride, const CNN_LAYER_CONFIG *layer_config, | 
|  | float **output, int out_stride, int start_idx, | 
|  | int step) { | 
|  | assert(!layer_config->deconvolve); | 
|  | const int cstep = layer_config->in_channels * layer_config->out_channels; | 
|  | const int filter_height_half = layer_config->filter_height >> 1; | 
|  | const int filter_width_half = layer_config->filter_width >> 1; | 
|  | const int channel_step = AOMMAX(step, 1); | 
|  |  | 
|  | if (layer_config->maxpool && | 
|  | (layer_config->skip_height > 1 || layer_config->skip_width > 1)) { | 
|  | switch (layer_config->pad) { | 
|  | case PADDING_SAME_ZERO: | 
|  | for (int i = 0; i < layer_config->out_channels; ++i) { | 
|  | for (int h = 0, u = 0; h < in_height; | 
|  | h += layer_config->skip_height, ++u) { | 
|  | for (int w = 0, v = 0; w < in_width; | 
|  | w += layer_config->skip_width, ++v) { | 
|  | for (int hh = h; | 
|  | hh < AOMMIN(in_height, h + layer_config->skip_height); | 
|  | ++hh) { | 
|  | for (int ww = w; | 
|  | ww < AOMMIN(in_width, w + layer_config->skip_width); | 
|  | ++ww) { | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int l = 0; l < layer_config->filter_height; ++l) { | 
|  | const int ii = hh + l - filter_height_half; | 
|  | for (int m = 0; m < layer_config->filter_width; | 
|  | ++m, off += cstep) { | 
|  | const int jj = ww + m - filter_width_half; | 
|  | if (ii < 0 || ii >= in_height || jj < 0 || | 
|  | jj >= in_width) | 
|  | continue; | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | } | 
|  | } | 
|  | } | 
|  | const float a = sum; | 
|  | if (h == hh && w == ww) | 
|  | output[i][u * out_stride + v] = a; | 
|  | else | 
|  | output[i][u * out_stride + v] = | 
|  | AOMMAX(output[i][u * out_stride + v], a); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PADDING_SAME_REPLICATE: | 
|  | for (int i = 0; i < layer_config->out_channels; ++i) { | 
|  | for (int h = 0, u = 0; h < in_height; | 
|  | h += layer_config->skip_height, ++u) { | 
|  | for (int w = 0, v = 0; w < in_width; | 
|  | w += layer_config->skip_width, ++v) { | 
|  | for (int hh = h; | 
|  | hh < AOMMIN(in_height, h + layer_config->skip_height); | 
|  | ++hh) { | 
|  | for (int ww = w; | 
|  | ww < AOMMIN(in_width, w + layer_config->skip_width); | 
|  | ++ww) { | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int l = 0; l < layer_config->filter_height; ++l) { | 
|  | const int ii = | 
|  | CLAMPINDEX(hh + l - filter_height_half, in_height); | 
|  | for (int m = 0; m < layer_config->filter_width; | 
|  | ++m, off += cstep) { | 
|  | const int jj = | 
|  | CLAMPINDEX(ww + m - filter_width_half, in_width); | 
|  | assert(ii >= 0 && ii < in_height && jj >= 0 && | 
|  | jj < in_width); | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | } | 
|  | } | 
|  | } | 
|  | const float a = sum; | 
|  | if (h == hh && w == ww) | 
|  | output[i][u * out_stride + v] = a; | 
|  | else | 
|  | output[i][u * out_stride + v] = | 
|  | AOMMAX(output[i][u * out_stride + v], a); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PADDING_VALID: | 
|  | for (int i = 0; i < layer_config->out_channels; ++i) { | 
|  | for (int h = 0, u = 0; | 
|  | h < in_height - layer_config->filter_height + 1; | 
|  | h += layer_config->skip_height, ++u) { | 
|  | for (int w = 0, v = 0; | 
|  | w < in_width - layer_config->filter_width + 1; | 
|  | w += layer_config->skip_width, ++v) { | 
|  | for (int hh = h; | 
|  | hh < AOMMIN(in_height, h + layer_config->skip_height); | 
|  | ++hh) { | 
|  | for (int ww = w; | 
|  | ww < AOMMIN(in_width, w + layer_config->skip_width); | 
|  | ++ww) { | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int l = 0; l < layer_config->filter_height; ++l) { | 
|  | const int ii = hh + l; | 
|  | for (int m = 0; m < layer_config->filter_width; | 
|  | ++m, off += cstep) { | 
|  | const int jj = ww + m; | 
|  | assert(ii >= 0 && ii < in_height && jj >= 0 && | 
|  | jj < in_width); | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | } | 
|  | } | 
|  | } | 
|  | const float a = sum; | 
|  | if (h == hh && w == ww) | 
|  | output[i][u * out_stride + v] = a; | 
|  | else | 
|  | output[i][u * out_stride + v] = | 
|  | AOMMAX(output[i][u * out_stride + v], a); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: assert(0 && "Unknown padding type"); | 
|  | } | 
|  | } else { | 
|  | // Results in element-wise matrix multiplication. | 
|  | if (layer_config->filter_height == 1 && layer_config->filter_width == 1) { | 
|  | const int start_h = get_start_shift_convolve( | 
|  | in_height, layer_config->filter_height, layer_config->skip_height); | 
|  | const int start_w = | 
|  | get_start_shift_convolve(in_width, layer_config->filter_width, | 
|  | layer_config->skip_width) + | 
|  | start_idx * layer_config->skip_width; | 
|  | const int out_w_step = AOMMAX(step, 1); | 
|  | const int in_w_step = layer_config->skip_width * out_w_step; | 
|  | for (int i = 0; i < layer_config->out_channels; ++i) { | 
|  | for (int h = start_h, u = 0; h < in_height; | 
|  | h += layer_config->skip_height, ++u) { | 
|  | const int in_h = h * in_stride; | 
|  | const int out_h = u * out_stride + start_idx; | 
|  | for (int w = start_w, out_index = out_h; w < in_width; | 
|  | w += in_w_step, out_index += out_w_step) { | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | sum += layer_config->weights[k * layer_config->out_channels + i] * | 
|  | input[k][in_h + w]; | 
|  | } | 
|  | output[i][out_index] = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | const int ii_shift = | 
|  | filter_height_half - (layer_config->filter_height - 1) % 2; | 
|  | const int jj_shift = | 
|  | filter_width_half - (layer_config->filter_width - 1) % 2; | 
|  | switch (layer_config->pad) { | 
|  | case PADDING_SAME_ZERO: { | 
|  | const int start_h = get_start_shift_convolve( | 
|  | in_height, layer_config->filter_height, layer_config->skip_height); | 
|  | const int start_w = get_start_shift_convolve( | 
|  | in_width, layer_config->filter_width, layer_config->skip_width); | 
|  | const int end_ii_shift = filter_height_half + 1; | 
|  | const int end_jj_shift = filter_width_half + 1; | 
|  | // *_filter_margin stores the number of pixels along a dimension in the | 
|  | // intersection of the complement of the image in the extended image | 
|  | // and the filter. | 
|  | const int top_filter_margin = layer_config->filter_width * ii_shift; | 
|  | const int right_filter_margin = end_jj_shift - in_width; | 
|  | for (int i = start_idx; i < layer_config->out_channels; | 
|  | i += channel_step) { | 
|  | for (int h = start_h, u = 0; h < in_height; | 
|  | h += layer_config->skip_height, ++u) { | 
|  | const int out_h = u * out_stride; | 
|  | const int top_cstep = | 
|  | AOMMAX(0, top_filter_margin - h * layer_config->filter_width) * | 
|  | cstep + | 
|  | i; | 
|  | const int start_ii = AOMMAX(0, h - ii_shift); | 
|  | const int end_ii = AOMMIN(in_height, h + end_ii_shift); | 
|  | for (int w = start_w, out_index = out_h; w < in_width; | 
|  | w += layer_config->skip_width, ++out_index) { | 
|  | const int left_cstep = AOMMAX(0, jj_shift - w) * cstep; | 
|  | const int right_cstep = | 
|  | AOMMAX(0, right_filter_margin + w) * cstep; | 
|  | const int start_jj = AOMMAX(0, w - jj_shift); | 
|  | const int end_jj = AOMMIN(in_width, w + end_jj_shift); | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + top_cstep; | 
|  | for (int ii = start_ii; ii < end_ii; ++ii) { | 
|  | off += left_cstep; | 
|  | for (int jj = start_jj; jj < end_jj; ++jj, off += cstep) { | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | } | 
|  | off += right_cstep; | 
|  | } | 
|  | } | 
|  | output[i][out_index] = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PADDING_SAME_REPLICATE: { | 
|  | // h and w are shifted to an offset coordinate system to reduce in-loop | 
|  | // computation. | 
|  | const int start_h = | 
|  | get_start_shift_convolve(in_height, layer_config->filter_height, | 
|  | layer_config->skip_height) - | 
|  | ii_shift; | 
|  | const int start_w = | 
|  | get_start_shift_convolve(in_width, layer_config->filter_width, | 
|  | layer_config->skip_width) - | 
|  | jj_shift; | 
|  | const int end_h = in_height - ii_shift; | 
|  | const int end_w = in_width - jj_shift; | 
|  | for (int i = start_idx; i < layer_config->out_channels; | 
|  | i += channel_step) { | 
|  | for (int h = start_h, u = 0; h < end_h; | 
|  | h += layer_config->skip_height, ++u) { | 
|  | const int out_h = u * out_stride; | 
|  | const int upper_ii_index = layer_config->filter_height + h; | 
|  | for (int w = start_w, out_index = out_h; w < end_w; | 
|  | w += layer_config->skip_width, ++out_index) { | 
|  | const int upper_jj_index = layer_config->filter_width + w; | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int ii = h; ii < upper_ii_index; ++ii) { | 
|  | const int clamped_ii = CLAMPINDEX(ii, in_height); | 
|  | for (int jj = w; jj < upper_jj_index; ++jj) { | 
|  | const int clamped_jj = CLAMPINDEX(jj, in_width); | 
|  | assert(clamped_ii >= 0 && clamped_ii < in_height && | 
|  | clamped_jj >= 0 && clamped_jj < in_width); | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][clamped_ii * in_stride + clamped_jj]; | 
|  | off += cstep; | 
|  | } | 
|  | } | 
|  | } | 
|  | output[i][out_index] = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PADDING_VALID: { | 
|  | for (int i = start_idx; i < layer_config->out_channels; | 
|  | i += channel_step) { | 
|  | for (int h = 0, u = 0; | 
|  | h < in_height - layer_config->filter_height + 1; | 
|  | h += layer_config->skip_height, ++u) { | 
|  | const int out_h = u * out_stride; | 
|  | const int upper_ii_index = layer_config->filter_height + h; | 
|  | for (int w = 0, out_index = out_h; | 
|  | w < in_width - layer_config->filter_width + 1; | 
|  | w += layer_config->skip_width, ++out_index) { | 
|  | const int upper_jj_index = layer_config->filter_width + w; | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int ii = h; ii < upper_ii_index; ++ii) { | 
|  | for (int jj = w; jj < upper_jj_index; ++jj) { | 
|  | assert(ii >= 0 && ii < in_height && jj >= 0 && | 
|  | jj < in_width); | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | off += cstep; | 
|  | } | 
|  | } | 
|  | } | 
|  | output[i][out_index] = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: assert(0 && "Unknown padding type"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int get_start_shift_deconvolve(int filt_width, int stride) { | 
|  | const int dif = AOMMAX(filt_width - stride, 0); | 
|  | return dif / 2; | 
|  | } | 
|  |  | 
|  | void av1_cnn_batchnorm_c(float **image, int channels, int width, int height, | 
|  | int stride, const float *gamma, const float *beta, | 
|  | const float *mean, const float *std) { | 
|  | assert(gamma && beta && beta && std && "batchnorm has null parameter!"); | 
|  | for (int ch = 0; ch < channels; ch++) { | 
|  | const float ch_gamma = gamma[ch]; | 
|  | const float ch_beta = beta[ch]; | 
|  | const float ch_mean = mean[ch]; | 
|  | const float ch_std = std[ch]; | 
|  | float *image_row = image[ch]; | 
|  |  | 
|  | for (int row = 0; row < height; row++) { | 
|  | for (int col = 0; col < width; col++) { | 
|  | image_row[col] = | 
|  | ch_gamma * (image_row[col] - ch_mean) / ch_std + ch_beta; | 
|  | } | 
|  | image_row += stride; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_cnn_deconvolve_c(const float **input, int in_width, int in_height, | 
|  | int in_stride, const CNN_LAYER_CONFIG *layer_config, | 
|  | float **output, int out_stride) { | 
|  | assert(layer_config->deconvolve); | 
|  |  | 
|  | const int cstep = layer_config->in_channels * layer_config->out_channels; | 
|  |  | 
|  | int out_width = 0; | 
|  | int out_height = 0; | 
|  | find_layer_output_size(in_width, in_height, layer_config, &out_width, | 
|  | &out_height); | 
|  | switch (layer_config->pad) { | 
|  | case PADDING_SAME_ZERO: | 
|  | for (int i = 0; i < layer_config->out_channels; ++i) { | 
|  | for (int u = 0; u < out_height; ++u) { | 
|  | for (int v = 0; v < out_width; ++v) { | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int l = 0; l < layer_config->filter_height; ++l) { | 
|  | const int h = | 
|  | u - l + | 
|  | get_start_shift_deconvolve(layer_config->filter_height, | 
|  | layer_config->skip_height); | 
|  | for (int m = 0; m < layer_config->filter_width; | 
|  | ++m, off += cstep) { | 
|  | const int w = | 
|  | v - m + | 
|  | get_start_shift_deconvolve(layer_config->filter_width, | 
|  | layer_config->skip_width); | 
|  | if ((h % layer_config->skip_height) != 0 || | 
|  | (w % layer_config->skip_width) != 0) | 
|  | continue; | 
|  | const int ii = h / layer_config->skip_height; | 
|  | const int jj = w / layer_config->skip_width; | 
|  | if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) | 
|  | continue; | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | } | 
|  | } | 
|  | } | 
|  | output[i][u * out_stride + v] = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PADDING_SAME_REPLICATE: | 
|  | for (int i = 0; i < layer_config->out_channels; ++i) { | 
|  | for (int u = 0; u < out_height; ++u) { | 
|  | for (int v = 0; v < out_width; ++v) { | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int l = 0; l < layer_config->filter_height; ++l) { | 
|  | const int h = | 
|  | u - l + | 
|  | get_start_shift_deconvolve(layer_config->filter_height, | 
|  | layer_config->skip_height); | 
|  | for (int m = 0; m < layer_config->filter_width; | 
|  | ++m, off += cstep) { | 
|  | const int w = | 
|  | v - m + | 
|  | get_start_shift_deconvolve(layer_config->filter_width, | 
|  | layer_config->skip_width); | 
|  | if ((h % layer_config->skip_height) != 0 || | 
|  | (w % layer_config->skip_width) != 0) | 
|  | continue; | 
|  | const int ii = | 
|  | CLAMPINDEX(h / layer_config->skip_height, in_height); | 
|  | const int jj = | 
|  | CLAMPINDEX(w / layer_config->skip_width, in_width); | 
|  | assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width); | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | } | 
|  | } | 
|  | } | 
|  | output[i][u * out_stride + v] = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PADDING_VALID: | 
|  | for (int i = 0; i < layer_config->out_channels; ++i) { | 
|  | for (int u = 0; u < out_height; ++u) { | 
|  | for (int v = 0; v < out_width; ++v) { | 
|  | float sum = layer_config->bias[i]; | 
|  | for (int k = 0; k < layer_config->in_channels; ++k) { | 
|  | int off = k * layer_config->out_channels + i; | 
|  | for (int l = 0; l < layer_config->filter_height; ++l) { | 
|  | const int h = u - l; | 
|  | for (int m = 0; m < layer_config->filter_width; | 
|  | ++m, off += cstep) { | 
|  | const int w = v - m; | 
|  | if ((h % layer_config->skip_height) != 0 || | 
|  | (w % layer_config->skip_width) != 0) | 
|  | continue; | 
|  | const int ii = h / layer_config->skip_height; | 
|  | const int jj = w / layer_config->skip_width; | 
|  | if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width) | 
|  | continue; | 
|  | sum += layer_config->weights[off] * | 
|  | input[k][ii * in_stride + jj]; | 
|  | } | 
|  | } | 
|  | } | 
|  | output[i][u * out_stride + v] = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: assert(0 && "Unknown padding type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_cnn_predict_c(const float **input, int in_width, int in_height, | 
|  | int in_stride, const CNN_CONFIG *cnn_config, | 
|  | const CNN_THREAD_DATA *thread_data, | 
|  | CNN_MULTI_OUT *output_struct) { | 
|  | TENSOR tensor1[CNN_MAX_BRANCHES] = { { 0 } }; | 
|  | TENSOR tensor2[CNN_MAX_BRANCHES] = { { 0 } }; | 
|  |  | 
|  | float **output[CNN_MAX_BRANCHES]; | 
|  | const int *out_chs = output_struct->output_channels; | 
|  | output[0] = output_struct->output_buffer; | 
|  | for (int out_idx = 1; out_idx < output_struct->num_outputs; out_idx++) { | 
|  | output[out_idx] = output[out_idx - 1] + out_chs[out_idx - 1]; | 
|  | } | 
|  |  | 
|  | int i_width = in_width; | 
|  | int i_height = in_height; | 
|  | int o_width = 0, o_height = 0; | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | init_tensor(&tensor1[b]); | 
|  | init_tensor(&tensor2[b]); | 
|  | } | 
|  |  | 
|  | const int *out_stride = output_struct->output_strides; | 
|  | for (int layer = 0; layer < cnn_config->num_layers; ++layer) { | 
|  | const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[layer]; | 
|  | const int branch = layer_config->branch; | 
|  | const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config; | 
|  |  | 
|  | // Allocate input tensor | 
|  | if (layer == 0) {       // First layer | 
|  | assert(branch == 0);  // First layer must be primary branch | 
|  | assign_tensor(&tensor1[branch], (float **)input, | 
|  | layer_config->in_channels, in_width, in_height, in_stride); | 
|  | } else {  // Non-first layer | 
|  | // Swap tensor1 and tensor2 | 
|  | swap_tensor(&tensor1[branch], &tensor2[branch]); | 
|  |  | 
|  | i_width = tensor1[branch].width; | 
|  | i_height = tensor1[branch].height; | 
|  | } | 
|  |  | 
|  | // Allocate output tensor | 
|  | find_layer_output_size(i_width, i_height, layer_config, &o_width, | 
|  | &o_height); | 
|  | const int output_num = layer_config->output_num; | 
|  | if (output_num == -1) {  // Non-output layer | 
|  | realloc_tensor(&tensor2[branch], layer_config->out_channels, o_width, | 
|  | o_height); | 
|  | } else {  // Output layer | 
|  | free_tensor(&tensor2[branch]); | 
|  | assign_tensor(&tensor2[branch], output[output_num], | 
|  | layer_config->out_channels, o_width, o_height, | 
|  | out_stride[output_num]); | 
|  | } | 
|  |  | 
|  | // If we are combining branches make sure that the branch to combine | 
|  | // is different from the current branch. | 
|  | assert(IMPLIES(layer_config->branch_combine_type != BRANCH_NOC, | 
|  | !(branch_config->branches_to_combine & (1 << branch)))); | 
|  |  | 
|  | if (layer_config->branch_copy_type == BRANCH_INPUT) { | 
|  | copy_active_tensor_to_branches(&tensor1[branch], layer_config, branch, | 
|  | tensor2); | 
|  | } | 
|  | // Check consistency of input and output channels | 
|  | assert(tensor1[branch].channels == layer_config->in_channels); | 
|  | assert(tensor2[branch].channels == layer_config->out_channels); | 
|  |  | 
|  | // Convolve/Deconvolve | 
|  | if (!cnn_config->layer_config[layer].deconvolve) { | 
|  | if (thread_data->num_workers > 1) { | 
|  | convolve_layer_mt((const float **)tensor1[branch].buf, | 
|  | tensor1[branch].width, tensor1[branch].height, | 
|  | tensor1[branch].stride, layer_config, thread_data, | 
|  | tensor2[branch].buf, tensor2[branch].stride); | 
|  | } else { | 
|  | av1_cnn_convolve((const float **)tensor1[branch].buf, | 
|  | tensor1[branch].width, tensor1[branch].height, | 
|  | tensor1[branch].stride, layer_config, | 
|  | tensor2[branch].buf, tensor2[branch].stride, 0, 1); | 
|  | } | 
|  | } else { | 
|  | av1_cnn_deconvolve((const float **)tensor1[branch].buf, | 
|  | tensor1[branch].width, tensor1[branch].height, | 
|  | tensor1[branch].stride, layer_config, | 
|  | tensor2[branch].buf, tensor2[branch].stride); | 
|  | } | 
|  |  | 
|  | if (layer_config->branch_copy_type == BRANCH_OUTPUT) { | 
|  | copy_active_tensor_to_branches(&tensor2[branch], layer_config, branch, | 
|  | tensor2); | 
|  | } | 
|  |  | 
|  | // Add tensors from other branches if needed | 
|  | if (layer_config->branch_combine_type == BRANCH_ADD) { | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { | 
|  | assert(check_tensor_equal_size(&tensor2[b], &tensor2[branch])); | 
|  | av1_cnn_add(tensor2[branch].buf, tensor2[branch].channels, | 
|  | tensor2[branch].width, tensor2[branch].height, | 
|  | tensor2[branch].stride, (const float **)tensor2[b].buf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Non-linearity | 
|  | if (layer_config->activation != IDENTITY) | 
|  | av1_cnn_activate(tensor2[branch].buf, tensor2[branch].channels, | 
|  | tensor2[branch].width, tensor2[branch].height, | 
|  | tensor2[branch].stride, layer_config->activation); | 
|  |  | 
|  | if (layer_config->bn_params.bn_gamma) { | 
|  | av1_cnn_batchnorm( | 
|  | tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width, | 
|  | tensor2[branch].height, tensor2[branch].stride, | 
|  | layer_config->bn_params.bn_gamma, layer_config->bn_params.bn_beta, | 
|  | layer_config->bn_params.bn_mean, layer_config->bn_params.bn_std); | 
|  | } | 
|  |  | 
|  | // Concatenate tensors | 
|  | if (layer_config->branch_combine_type == BRANCH_CAT) { | 
|  | if (output_num == -1) {  // Non-output layer | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { | 
|  | assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); | 
|  | assert(tensor2[b].channels > 0); | 
|  | concat_tensor(&tensor2[b], &tensor2[branch]); | 
|  | } | 
|  | } | 
|  | } else {  // Output layer | 
|  | const int existing_channels = tensor2[branch].channels; | 
|  | int num_chs = existing_channels; | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { | 
|  | assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); | 
|  | // Needed only to assign the new channel buffers | 
|  | num_chs += tensor2[b].channels; | 
|  | } | 
|  | } | 
|  | assign_tensor(&tensor2[branch], output[output_num], num_chs, o_width, | 
|  | o_height, out_stride[output_num]); | 
|  |  | 
|  | num_chs = existing_channels; | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | if ((branch_config->branches_to_combine & (1 << b)) && b != branch) { | 
|  | assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); | 
|  | // Needed only to assign the new channel buffers | 
|  | copy_tensor(&tensor2[b], tensor2[b].channels, num_chs, | 
|  | &tensor2[branch]); | 
|  | num_chs += tensor2[b].channels; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (layer_config->branch_copy_type == BRANCH_COMBINED) { | 
|  | copy_active_tensor_to_branches(&tensor2[branch], layer_config, branch, | 
|  | tensor2); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int b = 0; b < CNN_MAX_BRANCHES; ++b) { | 
|  | free_tensor(&tensor1[b]); | 
|  | free_tensor(&tensor2[b]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assume output already has proper allocation | 
|  | // Assume input image buffers all have same resolution and strides | 
|  | void av1_cnn_predict_img_multi_out_highbd(uint16_t **dgd, int width, int height, | 
|  | int stride, | 
|  | const CNN_CONFIG *cnn_config, | 
|  | const CNN_THREAD_DATA *thread_data, | 
|  | int bit_depth, | 
|  | CNN_MULTI_OUT *output) { | 
|  | const float max_val = (float)((1 << bit_depth) - 1); | 
|  |  | 
|  | const int in_width = width + 2 * cnn_config->ext_width; | 
|  | const int in_height = height + 2 * cnn_config->ext_height; | 
|  | const int in_channels = cnn_config->layer_config[0].in_channels; | 
|  | float *inputs[CNN_MAX_CHANNELS]; | 
|  | float *input_ = | 
|  | (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_)); | 
|  | const int in_stride = in_width; | 
|  |  | 
|  | for (int c = 0; c < in_channels; ++c) { | 
|  | inputs[c] = input_ + c * in_stride * in_height; | 
|  | float *input = | 
|  | inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width; | 
|  |  | 
|  | if (cnn_config->strict_bounds) { | 
|  | for (int i = 0; i < height; ++i) | 
|  | for (int j = 0; j < width; ++j) | 
|  | input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; | 
|  | // extend left and right | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = -cnn_config->ext_width; j < 0; ++j) | 
|  | input[i * in_stride + j] = input[i * in_stride]; | 
|  | for (int j = width; j < width + cnn_config->ext_width; ++j) | 
|  | input[i * in_stride + j] = input[i * in_stride + width - 1]; | 
|  | } | 
|  | // extend top and bottom | 
|  | for (int i = -cnn_config->ext_height; i < 0; ++i) | 
|  | memcpy(&input[i * in_stride - cnn_config->ext_width], | 
|  | &input[-cnn_config->ext_width], in_width * sizeof(*input)); | 
|  | for (int i = height; i < height + cnn_config->ext_height; ++i) | 
|  | memcpy(&input[i * in_stride - cnn_config->ext_width], | 
|  | &input[(height - 1) * in_stride - cnn_config->ext_width], | 
|  | in_width * sizeof(*input)); | 
|  | } else { | 
|  | for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height; | 
|  | ++i) | 
|  | for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width; | 
|  | ++j) | 
|  | input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_cnn_predict((const float **)inputs, in_width, in_height, in_stride, | 
|  | cnn_config, thread_data, output); | 
|  |  | 
|  | aom_free(input_); | 
|  | } | 
|  |  | 
|  | // Assume output already has proper allocation | 
|  | // Assume input image buffers all have same resolution and strides | 
|  | void av1_cnn_predict_img_highbd(uint16_t **dgd, int width, int height, | 
|  | int stride, const CNN_CONFIG *cnn_config, | 
|  | const CNN_THREAD_DATA *thread_data, | 
|  | int bit_depth, float **output, int out_stride) { | 
|  | int out_width = 0, out_height = 0, out_channels = 0; | 
|  | av1_find_cnn_output_size(width, height, cnn_config, &out_width, &out_height, | 
|  | &out_channels); | 
|  | const int output_chs[1] = { out_channels }; | 
|  | const int output_strides[1] = { out_stride }; | 
|  | CNN_MULTI_OUT output_struct = { .output_channels = output_chs, | 
|  | .output_strides = output_strides, | 
|  | .output_buffer = output }; | 
|  | av1_cnn_predict_img_multi_out_highbd(dgd, width, height, stride, cnn_config, | 
|  | thread_data, bit_depth, &output_struct); | 
|  | } |