|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/system_state.h" | 
|  |  | 
|  | #include "av1/common/alloccommon.h" | 
|  | #include "av1/encoder/aq_cyclicrefresh.h" | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/seg_common.h" | 
|  |  | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encode_strategy.h" | 
|  | #include "av1/encoder/gop_structure.h" | 
|  | #include "av1/encoder/random.h" | 
|  | #include "av1/encoder/ratectrl.h" | 
|  |  | 
|  | #define USE_UNRESTRICTED_Q_IN_CQ_MODE 0 | 
|  |  | 
|  | // Max rate target for 1080P and below encodes under normal circumstances | 
|  | // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB | 
|  | #define MAX_MB_RATE 250 | 
|  | #define MAXRATE_1080P 2025000 | 
|  |  | 
|  | #define MIN_BPB_FACTOR 0.005 | 
|  | #define MAX_BPB_FACTOR 50 | 
|  |  | 
|  | #define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0 | 
|  | #define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2 | 
|  | #define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0 | 
|  |  | 
|  | #define FRAME_OVERHEAD_BITS 200 | 
|  | #define ASSIGN_MINQ_TABLE(bit_depth, name)                   \ | 
|  | do {                                                       \ | 
|  | switch (bit_depth) {                                     \ | 
|  | case AOM_BITS_8: name = name##_8; break;               \ | 
|  | case AOM_BITS_10: name = name##_10; break;             \ | 
|  | case AOM_BITS_12: name = name##_12; break;             \ | 
|  | default:                                               \ | 
|  | assert(0 &&                                          \ | 
|  | "bit_depth should be AOM_BITS_8, AOM_BITS_10" \ | 
|  | " or AOM_BITS_12");                           \ | 
|  | name = NULL;                                         \ | 
|  | }                                                        \ | 
|  | } while (0) | 
|  |  | 
|  | // Tables relating active max Q to active min Q | 
|  | static int kf_low_motion_minq_8[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_ld_low_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_ld_high_motion_minq_8[QINDEX_RANGE]; | 
|  | static int inter_minq_8[QINDEX_RANGE]; | 
|  | static int rtc_minq_8[QINDEX_RANGE]; | 
|  |  | 
|  | static int kf_low_motion_minq_10[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_ld_low_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_ld_high_motion_minq_10[QINDEX_RANGE]; | 
|  | static int inter_minq_10[QINDEX_RANGE]; | 
|  | static int rtc_minq_10[QINDEX_RANGE]; | 
|  | static int kf_low_motion_minq_12[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_ld_low_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_ld_high_motion_minq_12[QINDEX_RANGE]; | 
|  | static int inter_minq_12[QINDEX_RANGE]; | 
|  | static int rtc_minq_12[QINDEX_RANGE]; | 
|  |  | 
|  | static int gf_high = 2400; | 
|  | static int gf_low = 300; | 
|  | #ifdef STRICT_RC | 
|  | static int kf_high = 3200; | 
|  | #else | 
|  | static int kf_high = 5000; | 
|  | #endif | 
|  | static int kf_low = 400; | 
|  |  | 
|  | // How many times less pixels there are to encode given the current scaling. | 
|  | // Temporary replacement for rcf_mult and rate_thresh_mult. | 
|  | static double resize_rate_factor(const FrameDimensionCfg *const frm_dim_cfg, | 
|  | int width, int height) { | 
|  | return (double)(frm_dim_cfg->width * frm_dim_cfg->height) / (width * height); | 
|  | } | 
|  |  | 
|  | // Functions to compute the active minq lookup table entries based on a | 
|  | // formulaic approach to facilitate easier adjustment of the Q tables. | 
|  | // The formulae were derived from computing a 3rd order polynomial best | 
|  | // fit to the original data (after plotting real maxq vs minq (not q index)) | 
|  | static int get_minq_index(double maxq, double x3, double x2, double x1, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); | 
|  |  | 
|  | // Special case handling to deal with lossless mode | 
|  | if (minqtarget <= 1.0) return 0; | 
|  |  | 
|  | return av1_find_qindex(minqtarget, bit_depth, 0, | 
|  | bit_depth == AOM_BITS_8    ? QINDEX_RANGE_8_BITS - 1 | 
|  | : bit_depth == AOM_BITS_10 ? QINDEX_RANGE_10_BITS - 1 | 
|  | : QINDEX_RANGE - 1); | 
|  | } | 
|  |  | 
|  | static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, | 
|  | int *arfgf_high, int *arfgf_ld_low, | 
|  | int *arfgf_ld_high, int *inter, int *rtc, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < (bit_depth == AOM_BITS_8    ? QINDEX_RANGE_8_BITS | 
|  | : bit_depth == AOM_BITS_10 ? QINDEX_RANGE_10_BITS | 
|  | : QINDEX_RANGE); | 
|  | i++) { | 
|  | const double maxq = av1_convert_qindex_to_q(i, bit_depth); | 
|  | kf_low_m[i] = | 
|  | get_minq_index(maxq, 0.000001 * 4, -0.0004 * 2, 0.15, bit_depth); | 
|  | kf_high_m[i] = | 
|  | get_minq_index(maxq, 0.0000021 * 4, -0.00125 * 2, 0.45, bit_depth); | 
|  | arfgf_low[i] = | 
|  | get_minq_index(maxq, 0.0000015 * 4, -0.0009 * 2, 0.30, bit_depth); | 
|  | arfgf_high[i] = | 
|  | get_minq_index(maxq, 0.0000021 * 4, -0.00125 * 2, 0.55, bit_depth); | 
|  | arfgf_ld_low[i] = | 
|  | get_minq_index(maxq, 0.0000015 * 4, -0.0009 * 2, 0.35, bit_depth); | 
|  | arfgf_ld_high[i] = | 
|  | get_minq_index(maxq, 0.0000021 * 4, -0.00125 * 2, 0.65, bit_depth); | 
|  | inter[i] = | 
|  | get_minq_index(maxq, 0.00000271 * 4, -0.00113 * 2, 0.90, bit_depth); | 
|  | rtc[i] = | 
|  | get_minq_index(maxq, 0.00000271 * 4, -0.00113 * 2, 0.70, bit_depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_init_minq_luts(void) { | 
|  | init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, | 
|  | arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, | 
|  | arfgf_ld_low_motion_minq_8, arfgf_ld_high_motion_minq_8, | 
|  | inter_minq_8, rtc_minq_8, AOM_BITS_8); | 
|  | init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, | 
|  | arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, | 
|  | arfgf_ld_low_motion_minq_10, arfgf_ld_high_motion_minq_10, | 
|  | inter_minq_10, rtc_minq_10, AOM_BITS_10); | 
|  | init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, | 
|  | arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, | 
|  | arfgf_ld_low_motion_minq_12, arfgf_ld_high_motion_minq_12, | 
|  | inter_minq_12, rtc_minq_12, AOM_BITS_12); | 
|  | } | 
|  |  | 
|  | // These functions use formulaic calculations to make playing with the | 
|  | // quantizer tables easier. If necessary they can be replaced by lookup | 
|  | // tables if and when things settle down in the experimental bitstream | 
|  |  | 
|  | double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) { | 
|  | // Please ensure restoration.c:get_qstep() is in sync with changes here. | 
|  | // Convert the index to a real Q value normalized for unitary transforms. | 
|  | switch (bit_depth) { | 
|  | case AOM_BITS_8: | 
|  | return av1_ac_quant_QTX(qindex, 0, 0, bit_depth) / | 
|  | (8.0 * (1 << QUANT_TABLE_BITS)); | 
|  | case AOM_BITS_10: | 
|  | return av1_ac_quant_QTX(qindex, 0, 0, bit_depth) / | 
|  | (32.0 * (1 << QUANT_TABLE_BITS)); | 
|  | case AOM_BITS_12: | 
|  | return av1_ac_quant_QTX(qindex, 0, 0, bit_depth) / | 
|  | (128.0 * (1 << QUANT_TABLE_BITS)); | 
|  |  | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | return -1.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, | 
|  | double correction_factor, aom_bit_depth_t bit_depth, | 
|  | const int is_screen_content_type) { | 
|  | const double q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | int enumerator = frame_type == KEY_FRAME ? 1000000 : 750000; | 
|  | if (is_screen_content_type) { | 
|  | enumerator = frame_type == KEY_FRAME ? 500000 : 375000; | 
|  | } | 
|  |  | 
|  | assert(correction_factor <= MAX_BPB_FACTOR && | 
|  | correction_factor >= MIN_BPB_FACTOR); | 
|  |  | 
|  | // q based adjustment to baseline enumerator | 
|  | return (int)(enumerator * correction_factor / q); | 
|  | } | 
|  |  | 
|  | int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, | 
|  | double correction_factor, aom_bit_depth_t bit_depth, | 
|  | const int is_screen_content_type) { | 
|  | const int bpm = (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, | 
|  | bit_depth, is_screen_content_type)); | 
|  | return AOMMAX(FRAME_OVERHEAD_BITS, | 
|  | (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); | 
|  | } | 
|  |  | 
|  | int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target, | 
|  | FRAME_UPDATE_TYPE frame_update_type) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | const int min_frame_target = | 
|  | AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); | 
|  | // Clip the frame target to the minimum setup value. | 
|  | if (frame_update_type == OVERLAY_UPDATE || | 
|  | frame_update_type == KFFLT_OVERLAY_UPDATE || | 
|  | frame_update_type == INTNL_OVERLAY_UPDATE) { | 
|  | // If there is an active ARF at this location use the minimum | 
|  | // bits on this frame even if it is a constructed arf. | 
|  | // The active maximum quantizer insures that an appropriate | 
|  | // number of bits will be spent if needed for constructed ARFs. | 
|  | target = min_frame_target; | 
|  | } else if (target < min_frame_target) { | 
|  | target = min_frame_target; | 
|  | } | 
|  |  | 
|  | // Clip the frame target to the maximum allowed value. | 
|  | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; | 
|  | if (oxcf->rc_cfg.max_inter_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * oxcf->rc_cfg.max_inter_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; | 
|  | if (rc_cfg->max_intra_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * rc_cfg->max_intra_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; | 
|  | return target; | 
|  | } | 
|  |  | 
|  | // Update the buffer level: leaky bucket model. | 
|  | static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | // Non-viewable frames are a special case and are treated as pure overhead. | 
|  | if (!cm->show_frame) | 
|  | rc->bits_off_target -= encoded_frame_size; | 
|  | else | 
|  | rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; | 
|  |  | 
|  | // Clip the buffer level to the maximum specified buffer size. | 
|  | rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size); | 
|  | rc->buffer_level = rc->bits_off_target; | 
|  | } | 
|  |  | 
|  | int av1_rc_get_default_min_gf_interval(int width, int height, | 
|  | double framerate) { | 
|  | // Assume we do not need any constraint lower than 4K 20 fps | 
|  | static const double factor_safe = 3840 * 2160 * 20.0; | 
|  | const double factor = width * height * framerate; | 
|  | const int default_interval = | 
|  | clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); | 
|  |  | 
|  | if (factor <= factor_safe) | 
|  | return default_interval; | 
|  | else | 
|  | return AOMMAX(default_interval, | 
|  | (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); | 
|  | // Note this logic makes: | 
|  | // 4K24: 5 | 
|  | // 4K30: 6 | 
|  | // 4K60: 12 | 
|  | } | 
|  |  | 
|  | int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { | 
|  | int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); | 
|  | interval += (interval & 0x01);  // Round to even value | 
|  | interval = AOMMAX(MAX_GF_INTERVAL, interval); | 
|  | return AOMMAX(interval, min_gf_interval); | 
|  | } | 
|  |  | 
|  | void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { | 
|  | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; | 
|  | int i; | 
|  |  | 
|  | if (pass == 0 && rc_cfg->mode == AOM_CBR) { | 
|  | rc->avg_frame_qindex[KEY_FRAME] = rc_cfg->worst_allowed_q; | 
|  | rc->avg_frame_qindex[INTER_FRAME] = rc_cfg->worst_allowed_q; | 
|  | } else { | 
|  | rc->avg_frame_qindex[KEY_FRAME] = | 
|  | (rc_cfg->worst_allowed_q + rc_cfg->best_allowed_q) / 2; | 
|  | rc->avg_frame_qindex[INTER_FRAME] = | 
|  | (rc_cfg->worst_allowed_q + rc_cfg->best_allowed_q) / 2; | 
|  | } | 
|  |  | 
|  | rc->last_q[KEY_FRAME] = rc_cfg->best_allowed_q; | 
|  | rc->last_q[INTER_FRAME] = rc_cfg->worst_allowed_q; | 
|  |  | 
|  | rc->buffer_level = rc->starting_buffer_level; | 
|  | rc->bits_off_target = rc->starting_buffer_level; | 
|  |  | 
|  | rc->rolling_target_bits = rc->avg_frame_bandwidth; | 
|  | rc->rolling_actual_bits = rc->avg_frame_bandwidth; | 
|  | rc->long_rolling_target_bits = rc->avg_frame_bandwidth; | 
|  | rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; | 
|  |  | 
|  | rc->total_actual_bits = 0; | 
|  | rc->total_target_bits = 0; | 
|  | rc->total_target_vs_actual = 0; | 
|  |  | 
|  | rc->frames_since_key = 8;  // Sensible default for first frame. | 
|  | rc->this_key_frame_forced = 0; | 
|  | rc->next_key_frame_forced = 0; | 
|  |  | 
|  | rc->frames_till_gf_update_due = 0; | 
|  | rc->ni_av_qi = rc_cfg->worst_allowed_q; | 
|  | rc->ni_tot_qi = 0; | 
|  | rc->ni_frames = 0; | 
|  |  | 
|  | rc->tot_q = 0.0; | 
|  | rc->avg_q = av1_convert_qindex_to_q(rc_cfg->worst_allowed_q, | 
|  | oxcf->tool_cfg.bit_depth); | 
|  |  | 
|  | for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { | 
|  | rc->rate_correction_factors[i] = 0.7; | 
|  | } | 
|  | rc->rate_correction_factors[KF_STD] = 1.0; | 
|  | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; | 
|  | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; | 
|  | if (rc->min_gf_interval == 0) | 
|  | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( | 
|  | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, | 
|  | oxcf->input_cfg.init_framerate); | 
|  | if (rc->max_gf_interval == 0) | 
|  | rc->max_gf_interval = av1_rc_get_default_max_gf_interval( | 
|  | oxcf->input_cfg.init_framerate, rc->min_gf_interval); | 
|  | rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; | 
|  | rc->avg_frame_low_motion = 0; | 
|  |  | 
|  | rc->resize_state = ORIG; | 
|  | rc->resize_avg_qp = 0; | 
|  | rc->resize_buffer_underflow = 0; | 
|  | rc->resize_count = 0; | 
|  | } | 
|  |  | 
|  | int av1_rc_drop_frame(AV1_COMP *cpi) { | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | if (!oxcf->rc_cfg.drop_frames_water_mark) { | 
|  | return 0; | 
|  | } else { | 
|  | if (rc->buffer_level < 0) { | 
|  | // Always drop if buffer is below 0. | 
|  | return 1; | 
|  | } else { | 
|  | // If buffer is below drop_mark, for now just drop every other frame | 
|  | // (starting with the next frame) until it increases back over drop_mark. | 
|  | int drop_mark = (int)(oxcf->rc_cfg.drop_frames_water_mark * | 
|  | rc->optimal_buffer_level / 100); | 
|  | if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) { | 
|  | --rc->decimation_factor; | 
|  | } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) { | 
|  | rc->decimation_factor = 1; | 
|  | } | 
|  | if (rc->decimation_factor > 0) { | 
|  | if (rc->decimation_count > 0) { | 
|  | --rc->decimation_count; | 
|  | return 1; | 
|  | } else { | 
|  | rc->decimation_count = rc->decimation_factor; | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | rc->decimation_count = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  | const int max_delta = 16; | 
|  | const int change_avg_frame_bandwidth = | 
|  | abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) > | 
|  | 0.1 * (rc->avg_frame_bandwidth); | 
|  | // If resolution changes or avg_frame_bandwidth significantly changed, | 
|  | // then set this flag to indicate change in target bits per macroblock. | 
|  | const int change_target_bits_mb = | 
|  | cm->prev_frame && | 
|  | (cm->width != cm->prev_frame->width || | 
|  | cm->height != cm->prev_frame->height || change_avg_frame_bandwidth); | 
|  | // Apply some control/clamp to QP under certain conditions. | 
|  | if (cm->current_frame.frame_type != KEY_FRAME && rc->frames_since_key > 1 && | 
|  | !change_target_bits_mb && | 
|  | (!cpi->oxcf.rc_cfg.gf_cbr_boost_pct || (level > 1))) { | 
|  | // Make sure q is between oscillating Qs to prevent resonance. | 
|  | if (rc->rc_1_frame * rc->rc_2_frame == -1 && | 
|  | rc->q_1_frame != rc->q_2_frame) { | 
|  | q = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame), | 
|  | AOMMAX(rc->q_1_frame, rc->q_2_frame)); | 
|  | } | 
|  | // Limit the decrease in Q from previous frame. | 
|  | if (rc->q_1_frame - q > max_delta) q = rc->q_1_frame - max_delta; | 
|  | } | 
|  | // For single spatial layer: if resolution has increased push q closer | 
|  | // to the active_worst to avoid excess overshoot. | 
|  | if (cm->prev_frame && (cm->width * cm->height > | 
|  | 1.5 * cm->prev_frame->width * cm->prev_frame->height)) | 
|  | q = (q + active_worst_quality) >> 1; | 
|  | return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality); | 
|  | } | 
|  |  | 
|  | static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = { | 
|  | KF_STD,        // KF_UPDATE | 
|  | INTER_NORMAL,  // LF_UPDATE | 
|  | GF_ARF_STD,    // GF_UPDATE | 
|  | GF_ARF_STD,    // ARF_UPDATE | 
|  | INTER_NORMAL,  // OVERLAY_UPDATE | 
|  | INTER_NORMAL,  // INTNL_OVERLAY_UPDATE | 
|  | GF_ARF_LOW,    // INTNL_ARF_UPDATE | 
|  | GF_ARF_STD,    // KFFLT_UPDATE | 
|  | INTER_NORMAL,  // KFFLT_OVERLAY_UPDATE | 
|  | }; | 
|  |  | 
|  | static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group) { | 
|  | const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index]; | 
|  | assert(update_type < FRAME_UPDATE_TYPES); | 
|  | return rate_factor_levels[update_type]; | 
|  | } | 
|  |  | 
|  | /*!\brief Gets a rate vs Q correction factor | 
|  | * | 
|  | * This function returns the current value of a correction factor used to | 
|  | * dynamilcally adjust the relationship between Q and the expected number | 
|  | * of bits for the frame. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   width                 Frame width | 
|  | * \param[in]   height                Frame height | 
|  | * | 
|  | * \return Returns a correction factor for the current frame | 
|  | */ | 
|  | static double get_rate_correction_factor(const AV1_COMP *cpi, int width, | 
|  | int height) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  | double rcf; | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type == KEY_FRAME) { | 
|  | rcf = rc->rate_correction_factors[KF_STD]; | 
|  | } else if (is_stat_consumption_stage(cpi)) { | 
|  | const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group); | 
|  | rcf = rc->rate_correction_factors[rf_lvl]; | 
|  | } else { | 
|  | if (level <= 1 && (cpi->oxcf.rc_cfg.mode != AOM_CBR || | 
|  | cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) | 
|  | rcf = rc->rate_correction_factors[GF_ARF_STD]; | 
|  | else | 
|  | rcf = rc->rate_correction_factors[INTER_NORMAL]; | 
|  | } | 
|  | rcf *= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); | 
|  | return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); | 
|  | } | 
|  |  | 
|  | /*!\brief Sets a rate vs Q correction factor | 
|  | * | 
|  | * This function updates the current value of a correction factor used to | 
|  | * dynamilcally adjust the relationship between Q and the expected number | 
|  | * of bits for the frame. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   factor                New correction factor | 
|  | * \param[in]   width                 Frame width | 
|  | * \param[in]   height                Frame height | 
|  | * | 
|  | * No return value but updates the rate correction factor for the | 
|  | * current frame type in cpi->rc. | 
|  | */ | 
|  | static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width, | 
|  | int height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  |  | 
|  | // Normalize RCF to account for the size-dependent scaling factor. | 
|  | factor /= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); | 
|  |  | 
|  | factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type == KEY_FRAME) { | 
|  | rc->rate_correction_factors[KF_STD] = factor; | 
|  | } else if (is_stat_consumption_stage(cpi)) { | 
|  | const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group); | 
|  | rc->rate_correction_factors[rf_lvl] = factor; | 
|  | } else { | 
|  | if (level <= 1 && (cpi->oxcf.rc_cfg.mode != AOM_CBR || | 
|  | cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) | 
|  | rc->rate_correction_factors[GF_ARF_STD] = factor; | 
|  | else | 
|  | rc->rate_correction_factors[INTER_NORMAL] = factor; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width, | 
|  | int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int correction_factor = 100; | 
|  | double rate_correction_factor = | 
|  | get_rate_correction_factor(cpi, width, height); | 
|  | double adjustment_limit; | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  |  | 
|  | int projected_size_based_on_q = 0; | 
|  |  | 
|  | // Do not update the rate factors for arf overlay frames. | 
|  | if (cpi->rc.is_src_frame_alt_ref) return; | 
|  |  | 
|  | // Clear down mmx registers to allow floating point in what follows | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // Work out how big we would have expected the frame to be at this Q given | 
|  | // the current correction factor. | 
|  | // Stay in double to avoid int overflow when values are large | 
|  | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { | 
|  | projected_size_based_on_q = | 
|  | av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); | 
|  | } else { | 
|  | projected_size_based_on_q = av1_estimate_bits_at_q( | 
|  | cm->current_frame.frame_type, cm->quant_params.base_qindex, MBs, | 
|  | rate_correction_factor, cm->seq_params.bit_depth, | 
|  | cpi->is_screen_content_type); | 
|  | } | 
|  | // Work out a size correction factor. | 
|  | if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) | 
|  | correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / | 
|  | projected_size_based_on_q); | 
|  |  | 
|  | // More heavily damped adjustment used if we have been oscillating either side | 
|  | // of target. | 
|  | if (correction_factor > 0) { | 
|  | adjustment_limit = | 
|  | 0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor))); | 
|  | } else { | 
|  | adjustment_limit = 0.75; | 
|  | } | 
|  |  | 
|  | cpi->rc.q_2_frame = cpi->rc.q_1_frame; | 
|  | cpi->rc.q_1_frame = cm->quant_params.base_qindex; | 
|  | cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; | 
|  | if (correction_factor > 110) | 
|  | cpi->rc.rc_1_frame = -1; | 
|  | else if (correction_factor < 90) | 
|  | cpi->rc.rc_1_frame = 1; | 
|  | else | 
|  | cpi->rc.rc_1_frame = 0; | 
|  |  | 
|  | if (correction_factor > 102) { | 
|  | // We are not already at the worst allowable quality | 
|  | correction_factor = | 
|  | (int)(100 + ((correction_factor - 100) * adjustment_limit)); | 
|  | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; | 
|  | // Keep rate_correction_factor within limits | 
|  | if (rate_correction_factor > MAX_BPB_FACTOR) | 
|  | rate_correction_factor = MAX_BPB_FACTOR; | 
|  | } else if (correction_factor < 99) { | 
|  | // We are not already at the best allowable quality | 
|  | correction_factor = | 
|  | (int)(100 - ((100 - correction_factor) * adjustment_limit)); | 
|  | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; | 
|  |  | 
|  | // Keep rate_correction_factor within limits | 
|  | if (rate_correction_factor < MIN_BPB_FACTOR) | 
|  | rate_correction_factor = MIN_BPB_FACTOR; | 
|  | } | 
|  |  | 
|  | set_rate_correction_factor(cpi, rate_correction_factor, width, height); | 
|  | } | 
|  |  | 
|  | // Calculate rate for the given 'q'. | 
|  | static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh, | 
|  | double correction_factor, int q) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | return use_cyclic_refresh | 
|  | ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor) | 
|  | : av1_rc_bits_per_mb(cm->current_frame.frame_type, q, | 
|  | correction_factor, cm->seq_params.bit_depth, | 
|  | cpi->is_screen_content_type); | 
|  | } | 
|  |  | 
|  | /*!\brief Searches for a Q index value predicted to give an average macro | 
|  | * block rate closest to the target value. | 
|  | * | 
|  | * Similar to find_qindex_by_rate() function, but returns a q index with a | 
|  | * rate just above or below the desired rate, depending on which of the two | 
|  | * rates is closer to the desired rate. | 
|  | * Also, respects the selected aq_mode when computing the rate. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   desired_bits_per_mb   Target bits per mb | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   correction_factor     Current Q to rate correction factor | 
|  | * \param[in]   best_qindex           Min allowed Q value. | 
|  | * \param[in]   worst_qindex          Max allowed Q value. | 
|  | * | 
|  | * \return Returns a correction factor for the current frame | 
|  | */ | 
|  | static int find_closest_qindex_by_rate(int desired_bits_per_mb, | 
|  | const AV1_COMP *cpi, | 
|  | double correction_factor, | 
|  | int best_qindex, int worst_qindex) { | 
|  | const int use_cyclic_refresh = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && | 
|  | cpi->cyclic_refresh->apply_cyclic_refresh; | 
|  |  | 
|  | // Find 'qindex' based on 'desired_bits_per_mb'. | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const int mid_bits_per_mb = | 
|  | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid); | 
|  | if (mid_bits_per_mb > desired_bits_per_mb) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | assert(low == high); | 
|  |  | 
|  | // Calculate rate difference of this q index from the desired rate. | 
|  | const int curr_q = low; | 
|  | const int curr_bits_per_mb = | 
|  | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q); | 
|  | const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb) | 
|  | ? desired_bits_per_mb - curr_bits_per_mb | 
|  | : INT_MAX; | 
|  | assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) || | 
|  | curr_q == worst_qindex); | 
|  |  | 
|  | // Calculate rate difference for previous q index too. | 
|  | const int prev_q = curr_q - 1; | 
|  | int prev_bit_diff; | 
|  | if (curr_bit_diff == INT_MAX || curr_q == best_qindex) { | 
|  | prev_bit_diff = INT_MAX; | 
|  | } else { | 
|  | const int prev_bits_per_mb = | 
|  | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q); | 
|  | assert(prev_bits_per_mb > desired_bits_per_mb); | 
|  | prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb; | 
|  | } | 
|  |  | 
|  | // Pick one of the two q indices, depending on which one has rate closer to | 
|  | // the desired rate. | 
|  | return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q; | 
|  | } | 
|  |  | 
|  | int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame, | 
|  | int active_best_quality, int active_worst_quality, | 
|  | int width, int height) { | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  | const double correction_factor = | 
|  | get_rate_correction_factor(cpi, width, height); | 
|  | const int target_bits_per_mb = | 
|  | (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs); | 
|  |  | 
|  | int q = | 
|  | find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor, | 
|  | active_best_quality, active_worst_quality); | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_CBR && has_no_stats_stage(cpi)) | 
|  | return adjust_q_cbr(cpi, q, active_worst_quality); | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static int get_active_quality(int q, int gfu_boost, int low, int high, | 
|  | int *low_motion_minq, int *high_motion_minq) { | 
|  | if (gfu_boost > high) { | 
|  | return low_motion_minq[q]; | 
|  | } else if (gfu_boost < low) { | 
|  | return high_motion_minq[q]; | 
|  | } else { | 
|  | const int gap = high - low; | 
|  | const int offset = high - gfu_boost; | 
|  | const int qdiff = high_motion_minq[q] - low_motion_minq[q]; | 
|  | const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; | 
|  | return low_motion_minq[q] + adjustment; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int *kf_low_motion_minq; | 
|  | int *kf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); | 
|  | ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); | 
|  | return get_active_quality(q, rc->kf_boost, kf_low, kf_high, | 
|  | kf_low_motion_minq, kf_high_motion_minq); | 
|  | } | 
|  |  | 
|  | static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, | 
|  | int is_lowdelay, aom_bit_depth_t bit_depth) { | 
|  | if (is_lowdelay) { | 
|  | int *arfgf_ld_low_motion_minq; | 
|  | int *arfgf_ld_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_ld_low_motion_minq); | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_ld_high_motion_minq); | 
|  | return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, | 
|  | arfgf_ld_low_motion_minq, | 
|  | arfgf_ld_high_motion_minq); | 
|  | } else { | 
|  | int *arfgf_low_motion_minq; | 
|  | int *arfgf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); | 
|  | return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, | 
|  | arfgf_low_motion_minq, arfgf_high_motion_minq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_gf_high_motion_quality(int q, int is_lowdelay, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | if (is_lowdelay) { | 
|  | int *arfgf_ld_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_ld_high_motion_minq); | 
|  | return arfgf_ld_high_motion_minq[q]; | 
|  | } else { | 
|  | int *arfgf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); | 
|  | return arfgf_high_motion_minq[q]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int calc_active_worst_quality_no_stats_vbr(const AV1_COMP *cpi) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  | const unsigned int curr_frame = cpi->common.current_frame.frame_number; | 
|  | int active_worst_quality; | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type == KEY_FRAME) { | 
|  | active_worst_quality = | 
|  | curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2; | 
|  | } else { | 
|  | if (!rc->is_src_frame_alt_ref && level <= 1) { | 
|  | active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4 | 
|  | : rc->last_q[INTER_FRAME]; | 
|  | } else { | 
|  | active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2 | 
|  | : rc->last_q[INTER_FRAME] * 2; | 
|  | } | 
|  | } | 
|  | return AOMMIN(active_worst_quality, rc->worst_quality); | 
|  | } | 
|  |  | 
|  | // Adjust active_worst_quality level based on buffer level. | 
|  | static int calc_active_worst_quality_no_stats_cbr(const AV1_COMP *cpi) { | 
|  | // Adjust active_worst_quality: If buffer is above the optimal/target level, | 
|  | // bring active_worst_quality down depending on fullness of buffer. | 
|  | // If buffer is below the optimal level, let the active_worst_quality go from | 
|  | // ambient Q (at buffer = optimal level) to worst_quality level | 
|  | // (at buffer = critical level). | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | // Buffer level below which we push active_worst to worst_quality. | 
|  | int64_t critical_level = rc->optimal_buffer_level >> 3; | 
|  | int64_t buff_lvl_step = 0; | 
|  | int adjustment = 0; | 
|  | int active_worst_quality; | 
|  | int ambient_qp; | 
|  | if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality; | 
|  | // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] | 
|  | // for the first few frames following key frame. These are both initialized | 
|  | // to worst_quality and updated with (3/4, 1/4) average in postencode_update. | 
|  | // So for first few frames following key, the qp of that key frame is weighted | 
|  | // into the active_worst_quality setting. | 
|  | ambient_qp = (cm->current_frame.frame_number < 5) | 
|  | ? AOMMIN(rc->avg_frame_qindex[INTER_FRAME], | 
|  | rc->avg_frame_qindex[KEY_FRAME]) | 
|  | : rc->avg_frame_qindex[INTER_FRAME]; | 
|  | active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4); | 
|  | if (rc->buffer_level > rc->optimal_buffer_level) { | 
|  | // Adjust down. | 
|  | // Maximum limit for down adjustment, ~30%. | 
|  | int max_adjustment_down = active_worst_quality / 3; | 
|  | if (max_adjustment_down) { | 
|  | buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) / | 
|  | max_adjustment_down); | 
|  | if (buff_lvl_step) | 
|  | adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / | 
|  | buff_lvl_step); | 
|  | active_worst_quality -= adjustment; | 
|  | } | 
|  | } else if (rc->buffer_level > critical_level) { | 
|  | // Adjust up from ambient Q. | 
|  | if (critical_level) { | 
|  | buff_lvl_step = (rc->optimal_buffer_level - critical_level); | 
|  | if (buff_lvl_step) { | 
|  | adjustment = (int)((rc->worst_quality - ambient_qp) * | 
|  | (rc->optimal_buffer_level - rc->buffer_level) / | 
|  | buff_lvl_step); | 
|  | } | 
|  | active_worst_quality = ambient_qp + adjustment; | 
|  | } | 
|  | } else { | 
|  | // Set to worst_quality if buffer is below critical level. | 
|  | active_worst_quality = rc->worst_quality; | 
|  | } | 
|  | return active_worst_quality; | 
|  | } | 
|  |  | 
|  | // Calculate the active_best_quality level. | 
|  | static int calc_active_best_quality_no_stats_cbr(const AV1_COMP *cpi, | 
|  | int active_worst_quality, | 
|  | int width, int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | int *rtc_minq; | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  | int active_best_quality = rc->best_quality; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, rtc_minq); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | // Handle the special case for key frames forced when we have reached | 
|  | // the maximum key frame interval. Here force the Q to a range | 
|  | // based on the ambient Q to reduce the risk of popping. | 
|  | if (rc->this_key_frame_forced) { | 
|  | int qindex = rc->last_boosted_qindex; | 
|  | double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | int delta_qindex = av1_compute_qdelta(rc, last_boosted_q, | 
|  | (last_boosted_q * 0.75), bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else if (current_frame->frame_number > 0) { | 
|  | // not first frame of one pass and kf_boost is set | 
|  | double q_adj_factor = 1.0; | 
|  | double q_val; | 
|  | active_best_quality = | 
|  | get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth); | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  | // Convert the adjustment factor to a qindex delta | 
|  | // on active_best_quality. | 
|  | q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); | 
|  | } | 
|  | } else if (!rc->is_src_frame_alt_ref && cpi->oxcf.rc_cfg.gf_cbr_boost_pct && | 
|  | level <= 1) { | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | int q = active_worst_quality; | 
|  | if (rc->frames_since_key > 1 && | 
|  | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { | 
|  | q = rc->avg_frame_qindex[INTER_FRAME]; | 
|  | } | 
|  | active_best_quality = get_gf_active_quality( | 
|  | rc, q, cpi->oxcf.gf_cfg.lag_in_frames == 0, bit_depth); | 
|  | } else { | 
|  | // Use the lower of active_worst_quality and recent/average Q. | 
|  | FRAME_TYPE frame_type = | 
|  | (current_frame->frame_number > 1) ? INTER_FRAME : KEY_FRAME; | 
|  | if (rc->avg_frame_qindex[frame_type] < active_worst_quality) | 
|  | active_best_quality = rtc_minq[rc->avg_frame_qindex[frame_type]]; | 
|  | else | 
|  | active_best_quality = rtc_minq[active_worst_quality]; | 
|  | } | 
|  | return active_best_quality; | 
|  | } | 
|  |  | 
|  | /*!\brief Picks q and q bounds given CBR rate control parameters in \c cpi->rc. | 
|  | * | 
|  | * Handles the special case when using: | 
|  | * - Constant bit-rate mode: \c cpi->oxcf.rc_cfg.mode == \ref AOM_CBR, and | 
|  | * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are | 
|  | * NOT available. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       width        Coded frame width | 
|  | * \param[in]       height       Coded frame height | 
|  | * \param[out]      bottom_index Bottom bound for q index (best quality) | 
|  | * \param[out]      top_index    Top bound for q index (worst quality) | 
|  | * \return Returns selected q index to be used for encoding this frame. | 
|  | */ | 
|  | static int rc_pick_q_and_bounds_no_stats_cbr(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | int q; | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  | int active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); | 
|  | int active_best_quality = calc_active_best_quality_no_stats_cbr( | 
|  | cpi, active_worst_quality, width, height); | 
|  | assert(has_no_stats_stage(cpi)); | 
|  | assert(cpi->oxcf.rc_cfg.mode == AOM_CBR); | 
|  |  | 
|  | // Clip the active best and worst quality values to limits | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | // Limit Q range for the adaptive loop. | 
|  | if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced && | 
|  | current_frame->frame_number != 0) { | 
|  | int qdelta = 0; | 
|  | aom_clear_system_state(); | 
|  | qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type, | 
|  | active_worst_quality, 2.0, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | *top_index = active_worst_quality + qdelta; | 
|  | *top_index = AOMMAX(*top_index, *bottom_index); | 
|  | } | 
|  |  | 
|  | // Special case code to try and match quality with forced key frames | 
|  | if (current_frame->frame_type == KEY_FRAME && rc->this_key_frame_forced) { | 
|  | q = rc->last_boosted_qindex; | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > *top_index) { | 
|  | // Special case when we are targeting the max allowed rate | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth) | 
|  | *top_index = q; | 
|  | else | 
|  | q = *top_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) { | 
|  | return gf_group->layer_depth[gf_index]; | 
|  | } | 
|  |  | 
|  | static int get_active_qp(const RATE_CONTROL *rc, | 
|  | const AV1EncoderConfig *const oxcf, int intra_only | 
|  | #if CONFIG_ENABLE_SR | 
|  | , | 
|  | aom_superres_mode superres_mode, int superres_denom | 
|  | #endif  // CONFIG_ENABLE_SR | 
|  | ) { | 
|  | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; | 
|  | static const double cq_adjust_threshold = 0.1; | 
|  | int active_qp = rc_cfg->qp; | 
|  | (void)intra_only; | 
|  | #if CONFIG_ENABLE_SR | 
|  | if (rc_cfg->mode == AOM_CQ || rc_cfg->mode == AOM_Q) { | 
|  | // printf("Superres %d %d %d = %d\n", superres_denom, intra_only, | 
|  | //        rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1)); | 
|  | if ((superres_mode == AOM_SUPERRES_QTHRESH || | 
|  | superres_mode == AOM_SUPERRES_AUTO) && | 
|  | superres_denom != SCALE_NUMERATOR) { | 
|  | #if ADJUST_SUPER_RES_Q | 
|  | active_qp = rc_cfg->qp; | 
|  | #else | 
|  | int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO; | 
|  | if (intra_only && rc->frames_to_key <= 1) { | 
|  | mult = 0; | 
|  | } else if (intra_only) { | 
|  | mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME; | 
|  | } else { | 
|  | mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME; | 
|  | } | 
|  | active_qp = | 
|  | AOMMAX(active_qp - ((superres_denom - SCALE_NUMERATOR) * mult), 0); | 
|  | #endif  // ADJUST_SUPER_RES_Q | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_ENABLE_SR | 
|  | if (rc_cfg->mode == AOM_CQ && rc->total_target_bits > 0) { | 
|  | const double x = (double)rc->total_actual_bits / rc->total_target_bits; | 
|  | if (x < cq_adjust_threshold) { | 
|  | active_qp = (int)(active_qp * x / cq_adjust_threshold); | 
|  | } | 
|  | } | 
|  | return active_qp; | 
|  | } | 
|  |  | 
|  | /*! \brief Pick q index for this frame using fixed q index offsets. | 
|  | * | 
|  | * The q index offsets are fixed in the sense that they are independent of the | 
|  | * video content. The offsets for each pyramid level are taken from | 
|  | * \c oxcf->q_cfg.fixed_qp_offsets array. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   oxcf        Top level encoder configuration | 
|  | * \param[in]   rc          Top level rate control structure | 
|  | * \param[in]   gf_group    Configuration of current golden frame group | 
|  | * \param[in]   gf_index    Index of this frame in the golden frame group | 
|  | * \param[in]   qp          Upper bound for q index (this may be same as | 
|  | *                          \c oxcf->qp, or slightly modified for some | 
|  | *                          special cases) | 
|  | * \param[in]   bit_depth   Bit depth of the codec (same as | 
|  | *                          \c cm->seq_params.bit_depth) | 
|  | * \return Returns selected q index to be used for encoding this frame. | 
|  | */ | 
|  | static int get_q_using_fixed_offsets(const AV1EncoderConfig *const oxcf, | 
|  | const RATE_CONTROL *const rc, | 
|  | const GF_GROUP *const gf_group, | 
|  | int gf_index, int qp, int bit_depth) { | 
|  | assert(oxcf->q_cfg.use_fixed_qp_offsets == 1 || | 
|  | oxcf->q_cfg.use_fixed_qp_offsets == 2); | 
|  | assert(oxcf->rc_cfg.mode == AOM_Q); | 
|  | const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_index]; | 
|  |  | 
|  | int offset_idx = -1; | 
|  | if (update_type == KF_UPDATE) { | 
|  | if (rc->frames_to_key <= 1) { | 
|  | // Image / intra-only coding: ignore offsets. | 
|  | return qp; | 
|  | } | 
|  | offset_idx = 0; | 
|  | } else if (update_type == ARF_UPDATE || update_type == GF_UPDATE || | 
|  | update_type == INTNL_ARF_UPDATE || update_type == LF_UPDATE || | 
|  | update_type == KFFLT_UPDATE) { | 
|  | if (gf_group->layer_depth[gf_index] >= | 
|  | oxcf->gf_cfg.gf_max_pyr_height + 1) {  // Leaf. | 
|  | return qp;  // Directly Return worst quality allowed. | 
|  | } | 
|  | offset_idx = | 
|  | AOMMIN(gf_group->layer_depth[gf_index], oxcf->gf_cfg.gf_max_pyr_height); | 
|  | } else {  // Overlay frame. | 
|  | assert(update_type == OVERLAY_UPDATE || | 
|  | update_type == KFFLT_OVERLAY_UPDATE || | 
|  | update_type == INTNL_OVERLAY_UPDATE); | 
|  | return qp;  // Directly Return worst quality allowed. | 
|  | } | 
|  | assert(offset_idx >= 0 && offset_idx < FIXED_QP_OFFSET_COUNT); | 
|  | assert(oxcf->q_cfg.fixed_qp_offsets[offset_idx] >= 0); | 
|  |  | 
|  | // Get qindex offset, by first converting to 'q' and then back. | 
|  | const double q_val_orig = av1_convert_qindex_to_q(qp, bit_depth); | 
|  | const double q_val_target = | 
|  | AOMMAX(q_val_orig - oxcf->q_cfg.fixed_qp_offsets[offset_idx], 0.0); | 
|  | const int delta_qindex = | 
|  | av1_compute_qdelta(rc, q_val_orig, q_val_target, bit_depth); | 
|  | return AOMMAX(qp + delta_qindex, 0); | 
|  | } | 
|  |  | 
|  | /*!\brief Picks q and q bounds given non-CBR rate control params in \c cpi->rc. | 
|  | * | 
|  | * Handles the special case when using: | 
|  | * - Any rate control other than constant bit-rate mode: | 
|  | * \c cpi->oxcf.rc_cfg.mode != \ref AOM_CBR, and | 
|  | * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are | 
|  | * NOT available. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       width        Coded frame width | 
|  | * \param[in]       height       Coded frame height | 
|  | * \param[in]       gf_index     Index of this frame in the golden frame group | 
|  | * \param[out]      bottom_index Bottom bound for q index (best quality) | 
|  | * \param[out]      top_index    Top bound for q index (worst quality) | 
|  | * \return Returns selected q index to be used for encoding this frame. | 
|  | */ | 
|  | static int rc_pick_q_and_bounds_no_stats(const AV1_COMP *cpi, int width, | 
|  | int height, int gf_index, | 
|  | int *bottom_index, int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  | const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; | 
|  |  | 
|  | assert(has_no_stats_stage(cpi)); | 
|  | assert(rc_mode == AOM_VBR || | 
|  | (!USE_UNRESTRICTED_Q_IN_CQ_MODE && rc_mode == AOM_CQ) || | 
|  | rc_mode == AOM_Q); | 
|  | assert(IMPLIES(rc_mode == AOM_Q, | 
|  | gf_group->update_type[gf_index] == ARF_UPDATE || | 
|  | gf_group->update_type[gf_index] == KFFLT_UPDATE)); | 
|  |  | 
|  | const int qp = | 
|  | get_active_qp(rc, oxcf, frame_is_intra_only(cm) | 
|  | #if CONFIG_ENABLE_SR | 
|  | , | 
|  | cpi->superres_mode, cm->superres_scale_denominator | 
|  | #endif  // CONFIG_ENABLE_SR | 
|  | ); | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  |  | 
|  | if (oxcf->q_cfg.use_fixed_qp_offsets) { | 
|  | return get_q_using_fixed_offsets(oxcf, rc, gf_group, gf_index, qp, | 
|  | bit_depth); | 
|  | } | 
|  |  | 
|  | int active_best_quality; | 
|  | int active_worst_quality = calc_active_worst_quality_no_stats_vbr(cpi); | 
|  | int q; | 
|  | int *inter_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, inter_minq); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | if (rc_mode == AOM_Q) { | 
|  | const int qindex = qp; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const int delta_qindex = | 
|  | av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else if (rc->this_key_frame_forced) { | 
|  | const int qindex = rc->last_boosted_qindex; | 
|  | const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const int delta_qindex = av1_compute_qdelta( | 
|  | rc, last_boosted_q, last_boosted_q * 0.75, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else {  // not first frame of one pass and kf_boost is set | 
|  | double q_adj_factor = 1.0; | 
|  |  | 
|  | active_best_quality = | 
|  | get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth); | 
|  |  | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  |  | 
|  | // Convert the adjustment factor to a qindex delta on active_best_quality. | 
|  | { | 
|  | const double q_val = | 
|  | av1_convert_qindex_to_q(active_best_quality, bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); | 
|  | } | 
|  | } | 
|  | } else if (!rc->is_src_frame_alt_ref && level <= 1) { | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | q = (rc->frames_since_key > 1 && | 
|  | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) | 
|  | ? rc->avg_frame_qindex[INTER_FRAME] | 
|  | : rc->avg_frame_qindex[KEY_FRAME]; | 
|  | // For constrained quality dont allow Q less than the cq level | 
|  | if (rc_mode == AOM_CQ) { | 
|  | if (q < qp) q = qp; | 
|  | active_best_quality = get_gf_active_quality( | 
|  | rc, q, cpi->oxcf.gf_cfg.lag_in_frames == 0, bit_depth); | 
|  | // Constrained quality use slightly lower active best. | 
|  | active_best_quality = active_best_quality * 15 / 16; | 
|  | } else if (rc_mode == AOM_Q) { | 
|  | const int qindex = qp; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const int delta_qindex = | 
|  | (level <= 1) ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth) | 
|  | : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else { | 
|  | active_best_quality = get_gf_active_quality( | 
|  | rc, q, cpi->oxcf.gf_cfg.lag_in_frames == 0, bit_depth); | 
|  | } | 
|  | } else { | 
|  | assert(rc_mode != AOM_Q); | 
|  | // Use the lower of active_worst_quality and recent/average Q. | 
|  | active_best_quality = (current_frame->frame_number > 1) | 
|  | ? inter_minq[rc->avg_frame_qindex[INTER_FRAME]] | 
|  | : inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; | 
|  | // For the constrained quality mode we don't want | 
|  | // q to fall below the cq level. | 
|  | if ((rc_mode == AOM_CQ) && (active_best_quality < qp)) { | 
|  | active_best_quality = qp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clip the active best and worst quality values to limits | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | // Limit Q range for the adaptive loop. | 
|  | { | 
|  | int qdelta = 0; | 
|  | aom_clear_system_state(); | 
|  | if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced && | 
|  | current_frame->frame_number != 0) { | 
|  | qdelta = av1_compute_qdelta_by_rate( | 
|  | &cpi->rc, current_frame->frame_type, active_worst_quality, 2.0, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | } else if (!rc->is_src_frame_alt_ref && (level <= 1)) { | 
|  | qdelta = av1_compute_qdelta_by_rate( | 
|  | &cpi->rc, current_frame->frame_type, active_worst_quality, 1.75, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | } | 
|  | *top_index = active_worst_quality + qdelta; | 
|  | *top_index = AOMMAX(*top_index, *bottom_index); | 
|  | } | 
|  |  | 
|  | if (rc_mode == AOM_Q) { | 
|  | q = active_best_quality; | 
|  | // Special case code to try and match quality with forced key frames | 
|  | } else if ((current_frame->frame_type == KEY_FRAME) && | 
|  | rc->this_key_frame_forced) { | 
|  | q = rc->last_boosted_qindex; | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > *top_index) { | 
|  | // Special case when we are targeting the max allowed rate | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth) | 
|  | *top_index = q; | 
|  | else | 
|  | q = *top_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = { | 
|  | 1.00,  // INTER_NORMAL | 
|  | 1.50,  // GF_ARF_LOW | 
|  | 2.00,  // GF_ARF_STD | 
|  | 2.00,  // KF_STD | 
|  | }; | 
|  |  | 
|  | int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) { | 
|  | const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group); | 
|  | const FRAME_TYPE frame_type = (rf_lvl == KF_STD) ? KEY_FRAME : INTER_FRAME; | 
|  | double rate_factor; | 
|  |  | 
|  | rate_factor = rate_factor_deltas[rf_lvl]; | 
|  | return av1_compute_qdelta_by_rate(&cpi->rc, frame_type, q, rate_factor, | 
|  | cpi->is_screen_content_type, | 
|  | cpi->common.seq_params.bit_depth); | 
|  | } | 
|  |  | 
|  | // This unrestricted Q selection on CQ mode is useful when testing new features, | 
|  | // but may lead to Q being out of range on current RC restrictions | 
|  | #if USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  | static int rc_pick_q_and_bounds_no_stats_cq(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const int qp = | 
|  | get_active_qp(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, | 
|  | cm->superres_scale_denominator); | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  | const int q = (int)av1_convert_qindex_to_q(qp, bit_depth); | 
|  | (void)width; | 
|  | (void)height; | 
|  | assert(has_no_stats_stage(cpi)); | 
|  | assert(cpi->oxcf.rc_cfg.mode == AOM_CQ); | 
|  |  | 
|  | *top_index = q; | 
|  | *bottom_index = q; | 
|  |  | 
|  | return q; | 
|  | } | 
|  | #endif  // USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  |  | 
|  | #define STATIC_MOTION_THRESH 95 | 
|  | static void get_intra_q_and_bounds(const AV1_COMP *cpi, int width, int height, | 
|  | int *active_best, int *active_worst, int qp, | 
|  | int is_fwd_kf) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | int active_best_quality; | 
|  | int active_worst_quality = *active_worst; | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  |  | 
|  | if (rc->frames_to_key <= 1 && oxcf->rc_cfg.mode == AOM_Q) { | 
|  | // If the next frame is also a key frame or the current frame is the | 
|  | // only frame in the sequence in AOM_Q mode, just use the qp as q. | 
|  | active_best_quality = qp; | 
|  | active_worst_quality = qp; | 
|  | } else if (is_fwd_kf) { | 
|  | // Handle the special case for forward reference key frames. | 
|  | // Increase the boost because this keyframe is used as a forward and | 
|  | // backward reference. | 
|  | const int qindex = rc->last_boosted_qindex; | 
|  | const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const int delta_qindex = av1_compute_qdelta( | 
|  | rc, last_boosted_q, last_boosted_q * 0.25, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else if (rc->this_key_frame_forced) { | 
|  | // Handle the special case for key frames forced when we have reached | 
|  | // the maximum key frame interval. Here force the Q to a range | 
|  | // based on the ambient Q to reduce the risk of popping. | 
|  | double last_boosted_q; | 
|  | int delta_qindex; | 
|  | int qindex; | 
|  |  | 
|  | qindex = rc->last_boosted_qindex; | 
|  | last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | delta_qindex = av1_compute_qdelta(rc, last_boosted_q, last_boosted_q * 0.50, | 
|  | bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else { | 
|  | // Not forced keyframe. | 
|  | double q_adj_factor = 1.0; | 
|  | double q_val; | 
|  |  | 
|  | // Baseline value derived from cpi->active_worst_quality and kf boost. | 
|  | active_best_quality = | 
|  | get_kf_active_quality(rc, active_worst_quality, bit_depth); | 
|  | if (cpi->is_screen_content_type) { | 
|  | active_best_quality /= 2; | 
|  | } | 
|  |  | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  |  | 
|  | // Convert the adjustment factor to a qindex delta | 
|  | // on active_best_quality. | 
|  | q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); | 
|  |  | 
|  | #if CONFIG_ENABLE_SR | 
|  | // Tweak active_best_quality for AOM_Q mode when superres is on, as this | 
|  | // will be used directly as 'q' later. | 
|  | if (oxcf->rc_cfg.mode == AOM_Q && | 
|  | (cpi->superres_mode == AOM_SUPERRES_QTHRESH || | 
|  | cpi->superres_mode == AOM_SUPERRES_AUTO) && | 
|  | cm->superres_scale_denominator != SCALE_NUMERATOR) { | 
|  | active_best_quality = | 
|  | AOMMAX(active_best_quality - | 
|  | ((cm->superres_scale_denominator - SCALE_NUMERATOR) * | 
|  | SUPERRES_QADJ_PER_DENOM_KEYFRAME), | 
|  | 0); | 
|  | } | 
|  | #endif  // CONFIG_ENABLE_SR | 
|  | } | 
|  | *active_best = active_best_quality; | 
|  | *active_worst = active_worst_quality; | 
|  | } | 
|  |  | 
|  | static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi, | 
|  | const int is_intrl_arf_boost, | 
|  | int *active_worst, | 
|  | int *active_best) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  | const int bit_depth = cpi->common.seq_params.bit_depth; | 
|  | int active_best_quality = *active_best; | 
|  | int active_worst_quality = *active_worst; | 
|  | // Extension to max or min Q if undershoot or overshoot is outside | 
|  | // the permitted range. | 
|  | if (cpi->oxcf.rc_cfg.mode != AOM_Q) { | 
|  | if (frame_is_intra_only(cm) || | 
|  | (!rc->is_src_frame_alt_ref && (level <= 1 || is_intrl_arf_boost))) { | 
|  | active_best_quality -= | 
|  | (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); | 
|  | active_worst_quality += (cpi->twopass.extend_maxq / 2); | 
|  | } else { | 
|  | active_best_quality -= | 
|  | (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; | 
|  | active_worst_quality += cpi->twopass.extend_maxq; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | #ifndef STRICT_RC | 
|  | // Static forced key frames Q restrictions dealt with elsewhere. | 
|  | if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced || | 
|  | (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { | 
|  | const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality); | 
|  | active_worst_quality = | 
|  | AOMMAX(active_worst_quality + qdelta, active_best_quality); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Modify active_best_quality for downscaled normal frames. | 
|  | if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) { | 
|  | int qdelta = av1_compute_qdelta_by_rate( | 
|  | rc, cm->current_frame.frame_type, active_best_quality, 2.0, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | active_best_quality = | 
|  | AOMMAX(active_best_quality + qdelta, rc->best_quality); | 
|  | } | 
|  |  | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *active_best = active_best_quality; | 
|  | *active_worst = active_worst_quality; | 
|  | } | 
|  |  | 
|  | /*!\brief Gets a Q value to use  for the current frame | 
|  | * | 
|  | * | 
|  | * Selects a Q value from a permitted range that we estimate | 
|  | * will result in approximately the target number of bits. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   width                 Width of frame | 
|  | * \param[in]   height                Height of frame | 
|  | * \param[in]   active_worst_quality  Max Q allowed | 
|  | * \param[in]   active_best_quality   Min Q allowed | 
|  | * | 
|  | * \return The suggested Q for this frame. | 
|  | */ | 
|  | static int get_q(const AV1_COMP *cpi, const int width, const int height, | 
|  | const int active_worst_quality, | 
|  | const int active_best_quality) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | int q; | 
|  |  | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_Q || | 
|  | (frame_is_intra_only(cm) && !rc->this_key_frame_forced && | 
|  | cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH && | 
|  | rc->frames_to_key > 1)) { | 
|  | q = active_best_quality; | 
|  | // Special case code to try and match quality with forced key frames. | 
|  | } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) { | 
|  | // If static since last kf use better of last boosted and last kf q. | 
|  | if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { | 
|  | q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex); | 
|  | } else { | 
|  | q = AOMMIN(rc->last_boosted_qindex, | 
|  | (active_best_quality + active_worst_quality) / 2); | 
|  | } | 
|  | q = clamp(q, active_best_quality, active_worst_quality); | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > active_worst_quality) { | 
|  | // Special case when we are targeting the max allowed rate. | 
|  | if (rc->this_frame_target < rc->max_frame_bandwidth) { | 
|  | q = active_worst_quality; | 
|  | } | 
|  | } | 
|  | q = AOMMAX(q, active_best_quality); | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | // Returns |active_best_quality| for an inter frame. | 
|  | // The |active_best_quality| depends on different rate control modes: | 
|  | // VBR, Q, CQ, CBR. | 
|  | // The returning active_best_quality could further be adjusted in | 
|  | // adjust_active_best_and_worst_quality(). | 
|  | static int get_active_best_quality(const AV1_COMP *const cpi, | 
|  | const int active_worst_quality, const int qp, | 
|  | const int gf_index, int *const level1_qp) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const GF_GROUP *gf_group = &cpi->gf_group; | 
|  | const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; | 
|  | int *inter_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, inter_minq); | 
|  | int active_best_quality = 0; | 
|  | const int is_level1_frame = (gf_group->layer_depth[gf_index] <= 1); | 
|  | const int is_bottom_leaf_frame = | 
|  | (gf_group->layer_depth[gf_index] == MAX_ARF_LAYERS); | 
|  | assert(IMPLIES(is_bottom_leaf_frame, !is_level1_frame)); | 
|  | const int is_overlay_frame = rc->is_src_frame_alt_ref; | 
|  |  | 
|  | if (is_bottom_leaf_frame || is_overlay_frame) { | 
|  | if (rc_mode == AOM_Q) return qp; | 
|  |  | 
|  | active_best_quality = inter_minq[active_worst_quality]; | 
|  | // For the constrained quality mode we don't want | 
|  | // q to fall below the cq level. | 
|  | if ((rc_mode == AOM_CQ) && (active_best_quality < qp)) { | 
|  | active_best_quality = qp; | 
|  | } | 
|  | return active_best_quality; | 
|  | } | 
|  |  | 
|  | // Determine active_best_quality for frames that are not leaf or overlay. | 
|  | int q = active_worst_quality; | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | if (rc->frames_since_key > 1 && | 
|  | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { | 
|  | q = rc->avg_frame_qindex[INTER_FRAME]; | 
|  | } | 
|  | if (rc_mode == AOM_CQ && q < qp) q = qp; | 
|  | active_best_quality = get_gf_active_quality( | 
|  | rc, q, cpi->oxcf.gf_cfg.lag_in_frames == 0, bit_depth); | 
|  | // Constrained quality use slightly lower active best. | 
|  | if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16; | 
|  | const int min_boost = get_gf_high_motion_quality( | 
|  | q, cpi->oxcf.gf_cfg.lag_in_frames == 0, bit_depth); | 
|  | const int boost = min_boost - active_best_quality; | 
|  | active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor); | 
|  | if (is_level1_frame) return active_best_quality; | 
|  |  | 
|  | if (rc_mode == AOM_Q || rc_mode == AOM_CQ) { | 
|  | if (rc->level1_qp == -1) {  // Uninitialized | 
|  | // We are coding frames in display order, but potentially with different | 
|  | // 'pyramid' levels. In this case, there is no ARF_UPDATE frame, and | 
|  | // rc->level1_qp may not be set yet. So, we set that now, to be used for | 
|  | // the subsequent frames in this GF group. | 
|  | assert(!is_level1_frame && !is_bottom_leaf_frame); | 
|  | *level1_qp = active_best_quality; | 
|  | } else { | 
|  | // rc->level1_qp was set from: | 
|  | // - ARF_UPDATE frame earlier, in case of out-of-order coding, OR | 
|  | // - by a previous leaf frame through the 'if' above, in case of coding | 
|  | // frames in display order. So, we use that as a base and then tweak it | 
|  | // below, based on the pyramid level of this frame. | 
|  | active_best_quality = rc->level1_qp; | 
|  | } | 
|  | } | 
|  | int this_height = gf_group_pyramid_level(gf_group, gf_index); | 
|  | while (this_height > 1) { | 
|  | active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; | 
|  | --this_height; | 
|  | } | 
|  | return active_best_quality; | 
|  | } | 
|  |  | 
|  | /*!\brief Picks q and q bounds given rate control parameters in \c cpi->rc. | 
|  | * | 
|  | * Handles the the general cases not covered by | 
|  | * \ref rc_pick_q_and_bounds_no_stats_cbr() and | 
|  | * \ref rc_pick_q_and_bounds_no_stats() | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       width        Coded frame width | 
|  | * \param[in]       height       Coded frame height | 
|  | * \param[in]       gf_index     Index of this frame in the golden frame group | 
|  | * \param[out]      bottom_index Bottom bound for q index (best quality) | 
|  | * \param[out]      top_index    Top bound for q index (worst quality) | 
|  | * \param[out]      level1_qp     Quality for frame(s) at pyramid level 1 | 
|  | * \return Returns selected q index to be used for encoding this frame. | 
|  | */ | 
|  | static int rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, | 
|  | int gf_index, int *bottom_index, int *top_index, | 
|  | int *level1_qp) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const GF_GROUP *gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  | assert(IMPLIES(has_no_stats_stage(cpi), | 
|  | cpi->oxcf.rc_cfg.mode == AOM_Q && | 
|  | gf_group->update_type[gf_index] != ARF_UPDATE && | 
|  | gf_group->update_type[gf_index] != KFFLT_UPDATE)); | 
|  | const int qp = | 
|  | get_active_qp(rc, oxcf, frame_is_intra_only(cm) | 
|  | #if CONFIG_ENABLE_SR | 
|  | , | 
|  | cpi->superres_mode, cm->superres_scale_denominator | 
|  | #endif  // CONFIG_ENABLE_SR | 
|  | ); | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  |  | 
|  | if (oxcf->q_cfg.use_fixed_qp_offsets) { | 
|  | return get_q_using_fixed_offsets(oxcf, rc, gf_group, gf_group->index, qp, | 
|  | bit_depth); | 
|  | } | 
|  |  | 
|  | int active_best_quality = 0; | 
|  | int active_worst_quality = rc->active_worst_quality; | 
|  | int q; | 
|  |  | 
|  | const int is_intrl_arf_boost = | 
|  | gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | const int is_fwd_kf = cm->current_frame.frame_type == KEY_FRAME && | 
|  | cm->show_frame == 0 && cpi->no_show_fwd_kf; | 
|  | get_intra_q_and_bounds(cpi, width, height, &active_best_quality, | 
|  | &active_worst_quality, qp, is_fwd_kf); | 
|  | #ifdef STRICT_RC | 
|  | active_best_quality = 0; | 
|  | #endif | 
|  | } else { | 
|  | //  Active best quality limited by previous layer. | 
|  | const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index); | 
|  |  | 
|  | if ((pyramid_level <= 1) || (pyramid_level > MAX_ARF_LAYERS) || | 
|  | (oxcf->rc_cfg.mode == AOM_Q)) { | 
|  | active_best_quality = get_active_best_quality(cpi, active_worst_quality, | 
|  | qp, gf_index, level1_qp); | 
|  | } else { | 
|  | active_best_quality = rc->active_best_quality[pyramid_level - 1] + 1; | 
|  | active_best_quality = AOMMIN(active_best_quality, active_worst_quality); | 
|  | #ifdef STRICT_RC | 
|  | active_best_quality += (active_worst_quality - active_best_quality) / 16; | 
|  | #else | 
|  | active_best_quality += (active_worst_quality - active_best_quality) / 2; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // For alt_ref and GF frames (including internal arf frames) adjust the | 
|  | // worst allowed quality as well. This insures that even on hard | 
|  | // sections we dont clamp the Q at the same value for arf frames and | 
|  | // leaf (non arf) frames. This is important to the TPL model which assumes | 
|  | // Q drops with each arf level. | 
|  | if (!(rc->is_src_frame_alt_ref) && (level <= 1 || is_intrl_arf_boost)) { | 
|  | active_worst_quality = | 
|  | (active_best_quality + (3 * active_worst_quality) + 2) / 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | adjust_active_best_and_worst_quality( | 
|  | cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality); | 
|  | q = get_q(cpi, width, height, active_worst_quality, active_best_quality); | 
|  |  | 
|  | // Special case when we are targeting the max allowed rate. | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth && | 
|  | q > active_worst_quality) { | 
|  | active_worst_quality = q; | 
|  | } | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | int av1_rc_pick_q_and_bounds(const AV1_COMP *cpi, RATE_CONTROL *rc, int width, | 
|  | int height, int gf_index, int *bottom_index, | 
|  | int *top_index) { | 
|  | int q; | 
|  | // TODO(sarahparker) merge no-stats vbr and altref q computation | 
|  | // with rc_pick_q_and_bounds(). | 
|  | const GF_GROUP *gf_group = &cpi->gf_group; | 
|  | if ((cpi->oxcf.rc_cfg.mode != AOM_Q || | 
|  | gf_group->update_type[gf_index] == ARF_UPDATE || | 
|  | gf_group->update_type[gf_index] == KFFLT_UPDATE) && | 
|  | has_no_stats_stage(cpi)) { | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { | 
|  | q = rc_pick_q_and_bounds_no_stats_cbr(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | #if USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  | } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) { | 
|  | q = rc_pick_q_and_bounds_no_stats_cq(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | #endif  // USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  | } else { | 
|  | q = rc_pick_q_and_bounds_no_stats(cpi, width, height, gf_index, | 
|  | bottom_index, top_index); | 
|  | } | 
|  | } else { | 
|  | q = rc_pick_q_and_bounds(cpi, width, height, gf_index, bottom_index, | 
|  | top_index, &rc->level1_qp); | 
|  | } | 
|  |  | 
|  | #if ADJUST_SUPER_RES_Q && CONFIG_ENABLE_SR | 
|  | // Maximum horizontal downscaled resolution can be 2x, | 
|  | // For 2x resolution the value superres_scale_denominator is 16. | 
|  | // It is assumed that the qindex value is reduced by 23 for 2x resolution | 
|  | // The value 23 is found by experiments maynot be optimal value | 
|  | // Assume 23 is maximum, the qindex is reduced by (23 * | 
|  | // log2(superres_scale_denominator/8)) | 
|  | if (cpi->superres_mode == AOM_SUPERRES_AUTO && | 
|  | cpi->common.superres_scale_denominator != SCALE_NUMERATOR) { | 
|  | q = AOMMAX( | 
|  | q - ((int)(log2(((double)cpi->common.superres_scale_denominator) / | 
|  | SCALE_NUMERATOR) * | 
|  | 23)), | 
|  | 0); | 
|  | } | 
|  | #endif  // ADJUST_SUPER_RES_Q && CONFIG_ENABLE_SR | 
|  |  | 
|  | if (gf_group->update_type[gf_index] == ARF_UPDATE || | 
|  | gf_group->update_type[gf_index] == KFFLT_UPDATE) | 
|  | rc->level1_qp = q; | 
|  | #if CONFIG_BRU | 
|  | if (cpi->common.bru.enabled && cpi->common.bru.frame_inactive_flag) { | 
|  | q = cpi->common.quant_params.base_qindex; | 
|  | } | 
|  | #endif  // CONFIG_BRU | 
|  | return q; | 
|  | } | 
|  |  | 
|  | void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target, | 
|  | int *frame_under_shoot_limit, | 
|  | int *frame_over_shoot_limit) { | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_Q) { | 
|  | *frame_under_shoot_limit = 0; | 
|  | *frame_over_shoot_limit = INT_MAX; | 
|  | } else { | 
|  | // For very small rate targets where the fractional adjustment | 
|  | // may be tiny make sure there is at least a minimum range. | 
|  | assert(cpi->sf.hl_sf.recode_tolerance <= 100); | 
|  | const int tolerance = (int)AOMMAX( | 
|  | 100, ((int64_t)cpi->sf.hl_sf.recode_tolerance * frame_target) / 100); | 
|  | *frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0); | 
|  | *frame_over_shoot_limit = | 
|  | AOMMIN(frame_target + tolerance, cpi->rc.max_frame_bandwidth); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | rc->this_frame_target = target; | 
|  |  | 
|  | // Modify frame size target when down-scaled. | 
|  | if (av1_frame_scaled(cm) && cpi->oxcf.rc_cfg.mode != AOM_CBR) { | 
|  | rc->this_frame_target = | 
|  | (int)(rc->this_frame_target * | 
|  | resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height)); | 
|  | } | 
|  |  | 
|  | // Target rate per SB64 (including partial SB64s. | 
|  | rc->sb64_target_rate = | 
|  | (int)(((int64_t)rc->this_frame_target << 12) / (width * height)); | 
|  | } | 
|  |  | 
|  | static void update_alt_ref_frame_stats(AV1_COMP *cpi) { | 
|  | // this frame refreshes means next frames don't unless specified by user | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | rc->frames_since_golden = 0; | 
|  | } | 
|  |  | 
|  | static void update_golden_frame_stats(AV1_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | // Update the Golden frame usage counts. | 
|  | if (gf_group->update_type[gf_group->index] == GF_UPDATE || | 
|  | rc->is_src_frame_alt_ref) { | 
|  | rc->frames_since_golden = 0; | 
|  | } else if (cpi->common.show_frame) { | 
|  | rc->frames_since_golden++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int level = gf_group->layer_depth[gf_group->index]; | 
|  |  | 
|  | const int is_intrnl_arf = | 
|  | gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE; | 
|  |  | 
|  | const int qindex = cm->quant_params.base_qindex; | 
|  |  | 
|  | // Update rate control heuristics | 
|  | rc->projected_frame_size = (int)(bytes_used << 3); | 
|  |  | 
|  | // Post encode loop adjustment of Q prediction. | 
|  | av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); | 
|  |  | 
|  | // Keep a record of last Q and ambient average Q. | 
|  | if (current_frame->frame_type == KEY_FRAME) { | 
|  | rc->last_q[KEY_FRAME] = qindex; | 
|  | rc->avg_frame_qindex[KEY_FRAME] = | 
|  | ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); | 
|  | } else { | 
|  | if ((!rc->is_src_frame_alt_ref && !(level <= 1 || is_intrnl_arf))) { | 
|  | rc->last_q[INTER_FRAME] = qindex; | 
|  | rc->avg_frame_qindex[INTER_FRAME] = | 
|  | ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); | 
|  | rc->ni_frames++; | 
|  | rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params.bit_depth); | 
|  | rc->avg_q = rc->tot_q / rc->ni_frames; | 
|  | // Calculate the average Q for normal inter frames (not key or GFU | 
|  | // frames). | 
|  | rc->ni_tot_qi += qindex; | 
|  | rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep record of last boosted (KF/GF/ARF) Q value. | 
|  | // If the current frame is coded at a lower Q then we also update it. | 
|  | // If all mbs in this group are skipped only update if the Q value is | 
|  | // better than that already stored. | 
|  | // This is used to help set quality in forced key frames to reduce popping | 
|  | if ((qindex < rc->last_boosted_qindex) || | 
|  | (current_frame->frame_type == KEY_FRAME) || | 
|  | (!rc->constrained_gf_group && (level <= 1 || is_intrnl_arf))) { | 
|  | rc->last_boosted_qindex = qindex; | 
|  | } | 
|  | if (current_frame->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex; | 
|  |  | 
|  | update_buffer_level(cpi, rc->projected_frame_size); | 
|  | rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth; | 
|  |  | 
|  | // Rolling monitors of whether we are over or underspending used to help | 
|  | // regulate min and Max Q in two pass. | 
|  | if (av1_frame_scaled(cm)) | 
|  | rc->this_frame_target = (int)(rc->this_frame_target / | 
|  | resize_rate_factor(&cpi->oxcf.frm_dim_cfg, | 
|  | cm->width, cm->height)); | 
|  | if (current_frame->frame_type != KEY_FRAME) { | 
|  | rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64( | 
|  | rc->rolling_target_bits * 3 + rc->this_frame_target, 2); | 
|  | rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64( | 
|  | rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); | 
|  | rc->long_rolling_target_bits = (int)ROUND_POWER_OF_TWO_64( | 
|  | rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); | 
|  | rc->long_rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64( | 
|  | rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); | 
|  | } | 
|  |  | 
|  | // Actual bits spent | 
|  | rc->total_actual_bits += rc->projected_frame_size; | 
|  | rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; | 
|  |  | 
|  | rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; | 
|  |  | 
|  | if (is_altref_enabled(cpi->oxcf.gf_cfg.lag_in_frames, | 
|  | cpi->oxcf.gf_cfg.enable_auto_arf) && | 
|  | gf_group->update_type[gf_group->index] == ARF_UPDATE && | 
|  | (current_frame->frame_type != KEY_FRAME && !frame_is_sframe(cm))) | 
|  | // Update the alternate reference frame stats as appropriate. | 
|  | update_alt_ref_frame_stats(cpi); | 
|  | else | 
|  | // Update the Golden frame stats as appropriate. | 
|  | update_golden_frame_stats(cpi); | 
|  |  | 
|  | if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0; | 
|  | // if (current_frame->frame_number == 1 && cm->show_frame) | 
|  | /* | 
|  | rc->this_frame_target = | 
|  | (int)(rc->this_frame_target / resize_rate_factor(&cpi->oxcf.frm_dim_cfg, | 
|  | cm->width, cm->height)); | 
|  | */ | 
|  | } | 
|  |  | 
|  | void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) { | 
|  | // Update buffer level with zero size, update frame counters, and return. | 
|  | update_buffer_level(cpi, 0); | 
|  | cpi->rc.frames_since_key++; | 
|  | cpi->rc.frames_to_key--; | 
|  | cpi->rc.rc_2_frame = 0; | 
|  | cpi->rc.rc_1_frame = 0; | 
|  | } | 
|  |  | 
|  | int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth, | 
|  | int best_qindex, int worst_qindex) { | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const double mid_q = av1_convert_qindex_to_q(mid, bit_depth); | 
|  | if (mid_q < desired_q) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | assert(low == high); | 
|  | assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q || | 
|  | low == worst_qindex); | 
|  | return low; | 
|  | } | 
|  |  | 
|  | int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const int start_index = | 
|  | av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality); | 
|  | const int target_index = | 
|  | av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality); | 
|  | return target_index - start_index; | 
|  | } | 
|  |  | 
|  | // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex], | 
|  | // assuming 'correction_factor' is 1.0. | 
|  | // To be precise, 'q_index' is the smallest integer, for which the corresponding | 
|  | // bits per mb <= desired_bits_per_mb. | 
|  | // If no such q index is found, returns 'worst_qindex'. | 
|  | static int find_qindex_by_rate(int desired_bits_per_mb, | 
|  | aom_bit_depth_t bit_depth, FRAME_TYPE frame_type, | 
|  | const int is_screen_content_type, | 
|  | int best_qindex, int worst_qindex) { | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const int mid_bits_per_mb = av1_rc_bits_per_mb( | 
|  | frame_type, mid, 1.0, bit_depth, is_screen_content_type); | 
|  | if (mid_bits_per_mb > desired_bits_per_mb) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | assert(low == high); | 
|  | assert(av1_rc_bits_per_mb(frame_type, low, 1.0, bit_depth, | 
|  | is_screen_content_type) <= desired_bits_per_mb || | 
|  | low == worst_qindex); | 
|  | return low; | 
|  | } | 
|  |  | 
|  | int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, | 
|  | int qindex, double rate_target_ratio, | 
|  | const int is_screen_content_type, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | // Look up the current projected bits per block for the base index | 
|  | const int base_bits_per_mb = av1_rc_bits_per_mb( | 
|  | frame_type, qindex, 1.0, bit_depth, is_screen_content_type); | 
|  |  | 
|  | // Find the target bits per mb based on the base value and given ratio. | 
|  | const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); | 
|  |  | 
|  | const int target_index = find_qindex_by_rate( | 
|  | target_bits_per_mb, bit_depth, frame_type, is_screen_content_type, | 
|  | rc->best_quality, rc->worst_quality); | 
|  | return target_index - qindex; | 
|  | } | 
|  |  | 
|  | void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi, | 
|  | RATE_CONTROL *const rc) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; | 
|  | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; | 
|  | if (rc->min_gf_interval == 0) | 
|  | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( | 
|  | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cpi->framerate); | 
|  | if (rc->max_gf_interval == 0) | 
|  | rc->max_gf_interval = | 
|  | av1_rc_get_default_max_gf_interval(cpi->framerate, rc->min_gf_interval); | 
|  | /* | 
|  | * Extended max interval for genuinely static scenes like slide shows. | 
|  | * The no.of.stats available in the case of LAP is limited, | 
|  | * hence setting to max_gf_interval. | 
|  | */ | 
|  | if (cpi->lap_enabled) | 
|  | rc->static_scene_max_gf_interval = rc->max_gf_interval + 1; | 
|  | else | 
|  | rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH; | 
|  |  | 
|  | if (rc->max_gf_interval > rc->static_scene_max_gf_interval) | 
|  | rc->max_gf_interval = rc->static_scene_max_gf_interval; | 
|  |  | 
|  | // Clamp min to max | 
|  | rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval); | 
|  | } | 
|  |  | 
|  | void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int vbr_max_bits; | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  |  | 
|  | rc->avg_frame_bandwidth = | 
|  | (int)(oxcf->rc_cfg.target_bandwidth / cpi->framerate); | 
|  | rc->min_frame_bandwidth = | 
|  | (int)(rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmin_section / 100); | 
|  |  | 
|  | rc->min_frame_bandwidth = | 
|  | AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); | 
|  |  | 
|  | // A maximum bitrate for a frame is defined. | 
|  | // The baseline for this aligns with HW implementations that | 
|  | // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits | 
|  | // per 16x16 MB (averaged over a frame). However this limit is extended if | 
|  | // a very high rate is given on the command line or the the rate cannnot | 
|  | // be acheived because of a user specificed max q (e.g. when the user | 
|  | // specifies lossless encode. | 
|  | vbr_max_bits = | 
|  | (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmax_section) / | 
|  | 100); | 
|  | rc->max_frame_bandwidth = | 
|  | AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); | 
|  |  | 
|  | av1_rc_set_gf_interval_range(cpi, rc); | 
|  | } | 
|  |  | 
|  | #define VBR_PCT_ADJUSTMENT_LIMIT 50 | 
|  | // For VBR...adjustment to the frame target based on error from previous frames | 
|  | static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int64_t vbr_bits_off_target = rc->vbr_bits_off_target; | 
|  | const int stats_count = | 
|  | cpi->twopass.stats_buf_ctx->total_stats != NULL | 
|  | ? (int)cpi->twopass.stats_buf_ctx->total_stats->count | 
|  | : 0; | 
|  | const int frame_window = AOMMIN( | 
|  | 16, (int)(stats_count - (int)cpi->common.current_frame.frame_number)); | 
|  | assert(VBR_PCT_ADJUSTMENT_LIMIT <= 100); | 
|  | if (frame_window > 0) { | 
|  | const int max_delta = (int)AOMMIN( | 
|  | abs((int)(vbr_bits_off_target / frame_window)), | 
|  | ((int64_t)(*this_frame_target) * VBR_PCT_ADJUSTMENT_LIMIT) / 100); | 
|  |  | 
|  | // vbr_bits_off_target > 0 means we have extra bits to spend | 
|  | // vbr_bits_off_target < 0 we are currently overshooting | 
|  | *this_frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta; | 
|  | } | 
|  |  | 
|  | // Fast redistribution of bits arising from massive local undershoot. | 
|  | // Dont do it for kf,arf,gf or overlay frames. | 
|  | if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && | 
|  | rc->vbr_bits_off_target_fast) { | 
|  | int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target); | 
|  | int fast_extra_bits; | 
|  | fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits); | 
|  | fast_extra_bits = (int)AOMMIN( | 
|  | fast_extra_bits, | 
|  | AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); | 
|  | *this_frame_target += (int)fast_extra_bits; | 
|  | rc->vbr_bits_off_target_fast -= fast_extra_bits; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_set_target_rate(AV1_COMP *cpi, int width, int height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int target_rate = rc->base_frame_target; | 
|  |  | 
|  | // Correction to rate target based on prior over or under shoot. | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_VBR || cpi->oxcf.rc_cfg.mode == AOM_CQ) | 
|  | vbr_rate_correction(cpi, &target_rate); | 
|  | av1_rc_set_frame_target(cpi, target_rate, width, height); | 
|  | } | 
|  |  | 
|  | int av1_calc_pframe_target_size_one_pass_vbr( | 
|  | const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) { | 
|  | static const int af_ratio = 10; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | int64_t target; | 
|  | #if USE_ALTREF_FOR_ONE_PASS | 
|  | if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE || | 
|  | frame_update_type == ARF_UPDATE || frame_update_type == KFFLT_UPDATE) { | 
|  | target = ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval * | 
|  | af_ratio) / | 
|  | (rc->baseline_gf_interval + af_ratio - 1); | 
|  | } else { | 
|  | target = ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval) / | 
|  | (rc->baseline_gf_interval + af_ratio - 1); | 
|  | } | 
|  | if (target > INT_MAX) target = INT_MAX; | 
|  | #else | 
|  | target = rc->avg_frame_bandwidth; | 
|  | #endif | 
|  | return av1_rc_clamp_pframe_target_size(cpi, (int)target, frame_update_type); | 
|  | } | 
|  |  | 
|  | int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { | 
|  | static const int kf_ratio = 25; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const int target = rc->avg_frame_bandwidth * kf_ratio; | 
|  | return av1_rc_clamp_iframe_target_size(cpi, target); | 
|  | } | 
|  |  | 
|  | int av1_calc_pframe_target_size_one_pass_cbr( | 
|  | const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) { | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const RateControlCfg *rc_cfg = &oxcf->rc_cfg; | 
|  | const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; | 
|  | const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; | 
|  | int min_frame_target = | 
|  | AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); | 
|  | int target; | 
|  |  | 
|  | if (rc_cfg->gf_cbr_boost_pct) { | 
|  | const int af_ratio_pct = rc_cfg->gf_cbr_boost_pct + 100; | 
|  | if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE || | 
|  | frame_update_type == KFFLT_OVERLAY_UPDATE) { | 
|  | target = | 
|  | (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) / | 
|  | (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); | 
|  | } else { | 
|  | target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / | 
|  | (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); | 
|  | } | 
|  | } else { | 
|  | target = rc->avg_frame_bandwidth; | 
|  | } | 
|  | if (diff > 0) { | 
|  | // Lower the target bandwidth for this frame. | 
|  | const int pct_low = | 
|  | (int)AOMMIN(diff / one_pct_bits, rc_cfg->under_shoot_pct); | 
|  | target -= (target * pct_low) / 200; | 
|  | } else if (diff < 0) { | 
|  | // Increase the target bandwidth for this frame. | 
|  | const int pct_high = | 
|  | (int)AOMMIN(-diff / one_pct_bits, rc_cfg->over_shoot_pct); | 
|  | target += (target * pct_high) / 200; | 
|  | } | 
|  | if (rc_cfg->max_inter_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  | return AOMMAX(min_frame_target, target); | 
|  | } | 
|  |  | 
|  | int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | int target; | 
|  | if (cpi->common.current_frame.frame_number == 0) { | 
|  | target = ((rc->starting_buffer_level / 2) > INT_MAX) | 
|  | ? INT_MAX | 
|  | : (int)(rc->starting_buffer_level / 2); | 
|  | } else { | 
|  | int kf_boost = 32; | 
|  | double framerate = cpi->framerate; | 
|  |  | 
|  | kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16)); | 
|  | if (rc->frames_since_key < framerate / 2) { | 
|  | kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); | 
|  | } | 
|  | target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; | 
|  | } | 
|  | return av1_rc_clamp_iframe_target_size(cpi, target); | 
|  | } |