|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include <limits.h> | 
|  |  | 
|  | #include "aom_mem/aom_mem.h" | 
|  |  | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/tile_common.h" | 
|  |  | 
|  | #include "av1/common/cost.h" | 
|  | #include "av1/encoder/segmentation.h" | 
|  |  | 
|  | void av1_enable_segmentation(struct segmentation *seg) { | 
|  | seg->enabled = 1; | 
|  | seg->update_map = 1; | 
|  | seg->update_data = 1; | 
|  | seg->temporal_update = 0; | 
|  | } | 
|  |  | 
|  | void av1_disable_segmentation(struct segmentation *seg) { | 
|  | seg->enabled = 0; | 
|  | seg->update_map = 0; | 
|  | seg->update_data = 0; | 
|  | seg->temporal_update = 0; | 
|  | } | 
|  |  | 
|  | void av1_disable_segfeature(struct segmentation *seg, int segment_id, | 
|  | SEG_LVL_FEATURES feature_id) { | 
|  | seg->feature_mask[segment_id] &= ~(1 << feature_id); | 
|  | } | 
|  |  | 
|  | void av1_clear_segdata(struct segmentation *seg, int segment_id, | 
|  | SEG_LVL_FEATURES feature_id) { | 
|  | seg->feature_data[segment_id][feature_id] = 0; | 
|  | } | 
|  |  | 
|  | static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | const TileInfo *tile, MB_MODE_INFO **mi, | 
|  | unsigned *no_pred_segcounts, | 
|  | unsigned (*temporal_predictor_count)[2], | 
|  | unsigned *t_unpred_seg_counts, int bw, int bh, | 
|  | int mi_row, int mi_col) { | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | xd->mi = mi; | 
|  | assert(xd->mi && xd->mi[0]); | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, | 
|  | mi_params->mi_cols, &xd->mi[0]->chroma_ref_info); | 
|  |  | 
|  | // Count the number of hits on each segment with no prediction | 
|  | const int segment_id = xd->mi[0]->segment_id; | 
|  | no_pred_segcounts[segment_id]++; | 
|  |  | 
|  | // Temporal prediction not allowed on key frames | 
|  | if (cm->current_frame.frame_type != KEY_FRAME && | 
|  | xd->mi[0]->region_type != INTRA_REGION) { | 
|  | const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | // Test to see if the segment id matches the predicted value. | 
|  | const int pred_segment_id = | 
|  | cm->last_frame_seg_map | 
|  | ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row, | 
|  | mi_col) | 
|  | : 0; | 
|  | const int pred_flag = pred_segment_id == segment_id; | 
|  | const int pred_context = av1_get_pred_context_seg_id(xd); | 
|  |  | 
|  | // Store the prediction status for this mb and update counts | 
|  | // as appropriate | 
|  | xd->mi[0]->seg_id_predicted = pred_flag; | 
|  | temporal_predictor_count[pred_context][pred_flag]++; | 
|  |  | 
|  | // Update the "unpredicted" segment count | 
|  | if (!pred_flag) t_unpred_seg_counts[segment_id]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | const TileInfo *tile, MB_MODE_INFO **mi, | 
|  | unsigned *no_pred_segcounts, | 
|  | unsigned (*temporal_predictor_count)[2], | 
|  | unsigned *t_unpred_seg_counts, int mi_row, int mi_col, | 
|  | const PARTITION_TREE *ptree) { | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int mis = mi_params->mi_stride; | 
|  | BLOCK_SIZE bsize = ptree->bsize; | 
|  | const int bw = mi_size_wide[bsize], bh = mi_size_high[bsize]; | 
|  | const int hbw = bw / 2, hbh = bh / 2; | 
|  | const int qbw = bw / 4, qbh = bh / 4; | 
|  | const int ebw = bw / 8, ebh = bh / 8; | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | #define CSEGS(cs_bw, cs_bh, cs_rowoff, cs_coloff)                              \ | 
|  | count_segs(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff),               \ | 
|  | no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, \ | 
|  | (cs_bw), (cs_bh), mi_row + (cs_rowoff), mi_col + (cs_coloff)); | 
|  | #define CSEGS_RECURSIVE(cs_rowoff, cs_coloff, subtree)              \ | 
|  | count_segs_sb(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff), \ | 
|  | no_pred_segcounts, temporal_predictor_count,        \ | 
|  | t_unpred_seg_counts, mi_row + (cs_rowoff),          \ | 
|  | mi_col + (cs_coloff), subtree); | 
|  |  | 
|  | int tree_idx = 0; | 
|  | const PARTITION_TYPE partition = ptree->partition; | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: CSEGS(bw, bh, 0, 0); break; | 
|  | case PARTITION_HORZ: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | CSEGS_RECURSIVE(hbh, 0, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | CSEGS_RECURSIVE(0, hbw, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_HORZ_3: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | CSEGS_RECURSIVE(qbh, 0, ptree->sub_tree[tree_idx++]); | 
|  | CSEGS_RECURSIVE(qbh, hbw, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_row + 3 * qbh < mi_params->mi_rows) | 
|  | CSEGS_RECURSIVE(3 * qbh, 0, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_VERT_3: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | CSEGS_RECURSIVE(0, qbw, ptree->sub_tree[tree_idx++]); | 
|  | CSEGS_RECURSIVE(hbh, qbw, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_col + 3 * qbw < mi_params->mi_cols) | 
|  | CSEGS_RECURSIVE(0, 3 * qbw, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_HORZ_4A: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_row + ebh < mi_params->mi_rows) | 
|  | CSEGS_RECURSIVE(ebh, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_row + 3 * ebh < mi_params->mi_rows) | 
|  | CSEGS_RECURSIVE(3 * ebh, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_row + 7 * ebh < mi_params->mi_rows) | 
|  | CSEGS_RECURSIVE(7 * ebh, 0, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_HORZ_4B: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_row + ebh < mi_params->mi_rows) | 
|  | CSEGS_RECURSIVE(ebh, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_row + 5 * ebh < mi_params->mi_rows) | 
|  | CSEGS_RECURSIVE(5 * ebh, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_row + 7 * ebh < mi_params->mi_rows) | 
|  | CSEGS_RECURSIVE(7 * ebh, 0, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_VERT_4A: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_col + ebw < mi_params->mi_cols) | 
|  | CSEGS_RECURSIVE(0, ebw, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_col + 3 * ebw < mi_params->mi_cols) | 
|  | CSEGS_RECURSIVE(0, 3 * ebw, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_col + 7 * ebw < mi_params->mi_cols) | 
|  | CSEGS_RECURSIVE(0, 7 * ebw, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_VERT_4B: | 
|  | CSEGS_RECURSIVE(0, 0, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_col + ebw < mi_params->mi_cols) | 
|  | CSEGS_RECURSIVE(0, ebw, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_col + 5 * ebw < mi_params->mi_cols) | 
|  | CSEGS_RECURSIVE(0, 5 * ebw, ptree->sub_tree[tree_idx++]); | 
|  | if (mi_col + 7 * ebw < mi_params->mi_cols) | 
|  | CSEGS_RECURSIVE(0, 7 * ebw, ptree->sub_tree[tree_idx++]); | 
|  | break; | 
|  | case PARTITION_SPLIT: { | 
|  | for (int n = 0; n < 4; n++) { | 
|  | const int mi_dc = hbw * (n & 1); | 
|  | const int mi_dr = hbh * (n >> 1); | 
|  | count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts, | 
|  | temporal_predictor_count, t_unpred_seg_counts, | 
|  | mi_row + mi_dr, mi_col + mi_dc, ptree->sub_tree[n]); | 
|  | } | 
|  | } break; | 
|  | default: assert(0); | 
|  | } | 
|  |  | 
|  | #undef CSEGS | 
|  | } | 
|  |  | 
|  | void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) { | 
|  | struct segmentation *seg = &cm->seg; | 
|  | struct segmentation_probs *segp = &cm->fc->seg; | 
|  | int no_pred_cost; | 
|  | int t_pred_cost = INT_MAX; | 
|  | int tile_col, tile_row, mi_row, mi_col; | 
|  | unsigned temporal_predictor_count[SEG_TEMPORAL_PRED_CTXS][2] = { { 0 } }; | 
|  | unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 }; | 
|  | unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 }; | 
|  | (void)xd; | 
|  | int scale_up = cm->prev_frame && (cm->width > cm->prev_frame->width || | 
|  | cm->height > cm->prev_frame->height); | 
|  | // First of all generate stats regarding how well the last segment map | 
|  | // predicts this one | 
|  | if (!scale_up) { | 
|  | for (tile_row = 0; tile_row < cm->tiles.rows; tile_row++) { | 
|  | TileInfo tile_info; | 
|  | av1_tile_set_row(&tile_info, cm, tile_row); | 
|  | for (tile_col = 0; tile_col < cm->tiles.cols; tile_col++) { | 
|  | MB_MODE_INFO **mi_ptr; | 
|  | av1_tile_set_col(&tile_info, cm, tile_col); | 
|  | mi_ptr = cm->mi_params.mi_grid_base + | 
|  | tile_info.mi_row_start * cm->mi_params.mi_stride + | 
|  | tile_info.mi_col_start; | 
|  | for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; | 
|  | mi_row += cm->mib_size, | 
|  | mi_ptr += cm->mib_size * cm->mi_params.mi_stride) { | 
|  | MB_MODE_INFO **mi = mi_ptr; | 
|  | for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
|  | mi_col += cm->mib_size, mi += cm->mib_size) { | 
|  | const SB_INFO *sbi = av1_get_sb_info(cm, mi_row, mi_col); | 
|  | const PARTITION_TREE *ptree = sbi->ptree_root[AOM_PLANE_Y]; | 
|  | count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts, | 
|  | temporal_predictor_count, t_unpred_seg_counts, mi_row, | 
|  | mi_col, ptree); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int seg_id_cost[MAX_SEGMENTS]; | 
|  | av1_cost_tokens_from_cdf(seg_id_cost, segp->tree_cdf, NULL); | 
|  | no_pred_cost = 0; | 
|  | for (int i = 0; i < MAX_SEGMENTS; ++i) | 
|  | no_pred_cost += no_pred_segcounts[i] * seg_id_cost[i]; | 
|  |  | 
|  | // Frames without past dependency cannot use temporal prediction | 
|  | if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) { | 
|  | int pred_flag_cost[SEG_TEMPORAL_PRED_CTXS][2]; | 
|  | for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) | 
|  | av1_cost_tokens_from_cdf(pred_flag_cost[i], segp->pred_cdf[i], NULL); | 
|  | t_pred_cost = 0; | 
|  | // Cost for signaling the prediction flag. | 
|  | for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) { | 
|  | for (int j = 0; j < 2; ++j) | 
|  | t_pred_cost += temporal_predictor_count[i][j] * pred_flag_cost[i][j]; | 
|  | } | 
|  | // Cost for signaling the unpredicted segment id. | 
|  | for (int i = 0; i < MAX_SEGMENTS; ++i) | 
|  | t_pred_cost += t_unpred_seg_counts[i] * seg_id_cost[i]; | 
|  | } | 
|  |  | 
|  | // Now choose which coding method to use. | 
|  | if (t_pred_cost < no_pred_cost) { | 
|  | assert(!cm->features.error_resilient_mode); | 
|  | seg->temporal_update = 1; | 
|  | } else { | 
|  | seg->temporal_update = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_reset_segment_features(AV1_COMMON *cm) { | 
|  | struct segmentation *seg = &cm->seg; | 
|  |  | 
|  | // Set up default state for MB feature flags | 
|  | seg->enabled = 0; | 
|  | seg->update_map = 0; | 
|  | seg->update_data = 0; | 
|  | av1_clearall_segfeatures(seg); | 
|  | } |