blob: 9a51ab577cfb0e907363ae24483b5ae5c69184f3 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <emmintrin.h>
#include "aom_dsp/x86/synonyms.h"
#include "config/av1_rtcd.h"
#include "av1/common/restoration.h"
#include "av1/encoder/pickrst.h"
static INLINE void acc_stat_highbd_sse41(int64_t *dst, const uint16_t *dgd,
const __m128i *shuffle,
const __m128i *dgd_ijkl) {
// Load 256 bits from dgd in two chunks
const __m128i s0l = xx_loadu_128(dgd);
const __m128i s0h = xx_loadu_128(dgd + 4);
// s0l = [7 6 5 4 3 2 1 0] as u16 values (dgd indices)
// s0h = [11 10 9 8 7 6 5 4] as u16 values (dgd indices)
// (Slightly strange order so we can apply the same shuffle to both halves)
// Shuffle the u16 values in each half (actually using 8-bit shuffle mask)
const __m128i s1l = _mm_shuffle_epi8(s0l, *shuffle);
const __m128i s1h = _mm_shuffle_epi8(s0h, *shuffle);
// s1l = [4 3 3 2 2 1 1 0] as u16 values (dgd indices)
// s1h = [8 7 7 6 6 5 5 4] as u16 values (dgd indices)
// Multiply s1 by dgd_ijkl resulting in 8x u32 values
// Horizontally add pairs of u32 resulting in 4x u32
const __m128i dl = _mm_madd_epi16(*dgd_ijkl, s1l);
const __m128i dh = _mm_madd_epi16(*dgd_ijkl, s1h);
// dl = [d c b a] as u32 values
// dh = [h g f e] as u32 values
// Add these 8x u32 results on to dst in four parts
const __m128i dll = _mm_cvtepu32_epi64(dl);
const __m128i dlh = _mm_cvtepu32_epi64(_mm_srli_si128(dl, 8));
const __m128i dhl = _mm_cvtepu32_epi64(dh);
const __m128i dhh = _mm_cvtepu32_epi64(_mm_srli_si128(dh, 8));
// dll = [b a] as u64 values, etc.
const __m128i rll = _mm_add_epi64(xx_loadu_128(dst), dll);
xx_storeu_128(dst, rll);
const __m128i rlh = _mm_add_epi64(xx_loadu_128(dst + 2), dlh);
xx_storeu_128(dst + 2, rlh);
const __m128i rhl = _mm_add_epi64(xx_loadu_128(dst + 4), dhl);
xx_storeu_128(dst + 4, rhl);
const __m128i rhh = _mm_add_epi64(xx_loadu_128(dst + 6), dhh);
xx_storeu_128(dst + 6, rhh);
}
static INLINE void acc_stat_highbd_win7_one_line_sse4_1(
const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
int j, k, l;
const int wiener_win = WIENER_WIN;
// Main loop handles two pixels at a time
// We can assume that h_start is even, since it will always be aligned to
// a tile edge + some number of restoration units, and both of those will
// be 64-pixel aligned.
// However, at the edge of the image, h_end may be odd, so we need to handle
// that case correctly.
assert(h_start % 2 == 0);
const int h_end_even = h_end & ~1;
const int has_odd_pixel = h_end & 1;
for (j = h_start; j < h_end_even; j += 2) {
const uint16_t X1 = src[j];
const uint16_t X2 = src[j + 1];
*sumX += X1 + X2;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
const uint16_t D2 = dgd_ijk[l + 1];
sumY[k][l] += D1 + D2;
M_int[k][l] += D1 * X1 + D2 * X2;
// Load two u16 values from dgd as a single u32
// Then broadcast to 4x u32 slots of a 128
const __m128i dgd_ijkl = _mm_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
// dgd_ijkl = [y x y x y x y x] as u16
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
// If the width is odd, add in the final pixel
if (has_odd_pixel) {
const uint16_t X1 = src[j];
*sumX += X1;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
sumY[k][l] += D1;
M_int[k][l] += D1 * X1;
// The `acc_stat_highbd_sse41` function wants its input to have
// interleaved copies of two pixels, but we only have one. However, the
// pixels are (effectively) used as inputs to a multiply-accumulate. So
// if we set the extra pixel slot to 0, then it is effectively ignored.
const __m128i dgd_ijkl = _mm_set1_epi32((uint32_t)D1);
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
}
static INLINE void compute_stats_highbd_win7_opt_sse4_1(
const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
int64_t *H, aom_bit_depth_t bit_depth) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint16_t avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
int64_t H_int[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
int32_t sumX = 0;
const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
// Load just half of the 256-bit shuffle control used for the AVX2 version
const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
for (j = v_start; j < v_end; j += 64) {
const int vert_end = AOMMIN(64, v_end - j) + j;
for (i = j; i < vert_end; i++) {
acc_stat_highbd_win7_one_line_sse4_1(
dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
}
}
uint8_t bit_depth_divider = 1;
if (bit_depth == AOM_BITS_12)
bit_depth_divider = 16;
else if (bit_depth == AOM_BITS_10)
bit_depth_divider = 4;
const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
M[idx0] = (M_int[k][l] +
(avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
bit_depth_divider;
int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] =
(H_int_[n * 8 + m] +
(avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
bit_depth_divider;
}
}
}
}
}
static INLINE void acc_stat_highbd_win5_one_line_sse4_1(
const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
int j, k, l;
const int wiener_win = WIENER_WIN_CHROMA;
// Main loop handles two pixels at a time
// We can assume that h_start is even, since it will always be aligned to
// a tile edge + some number of restoration units, and both of those will
// be 64-pixel aligned.
// However, at the edge of the image, h_end may be odd, so we need to handle
// that case correctly.
assert(h_start % 2 == 0);
const int h_end_even = h_end & ~1;
const int has_odd_pixel = h_end & 1;
for (j = h_start; j < h_end_even; j += 2) {
const uint16_t X1 = src[j];
const uint16_t X2 = src[j + 1];
*sumX += X1 + X2;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
const uint16_t D2 = dgd_ijk[l + 1];
sumY[k][l] += D1 + D2;
M_int[k][l] += D1 * X1 + D2 * X2;
// Load two u16 values from dgd as a single u32
// then broadcast to 4x u32 slots of a 128
const __m128i dgd_ijkl = _mm_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
// dgd_ijkl = [y x y x y x y x] as u16
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
// If the width is odd, add in the final pixel
if (has_odd_pixel) {
const uint16_t X1 = src[j];
*sumX += X1;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
sumY[k][l] += D1;
M_int[k][l] += D1 * X1;
// The `acc_stat_highbd_sse41` function wants its input to have
// interleaved copies of two pixels, but we only have one. However, the
// pixels are (effectively) used as inputs to a multiply-accumulate. So
// if we set the extra pixel slot to 0, then it is effectively ignored.
const __m128i dgd_ijkl = _mm_set1_epi32((uint32_t)D1);
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
}
static INLINE void compute_stats_highbd_win5_opt_sse4_1(
const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
int64_t *H, aom_bit_depth_t bit_depth) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN_CHROMA;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint16_t avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int32_t sumX = 0;
const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
// Load just half of the 256-bit shuffle control used for the AVX2 version
const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
for (j = v_start; j < v_end; j += 64) {
const int vert_end = AOMMIN(64, v_end - j) + j;
for (i = j; i < vert_end; i++) {
acc_stat_highbd_win5_one_line_sse4_1(
dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
}
}
uint8_t bit_depth_divider = 1;
if (bit_depth == AOM_BITS_12)
bit_depth_divider = 16;
else if (bit_depth == AOM_BITS_10)
bit_depth_divider = 4;
const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
M[idx0] = (M_int[k][l] +
(avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
bit_depth_divider;
int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] =
(H_int_[n * 8 + m] +
(avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
bit_depth_divider;
}
}
}
}
}
void av1_compute_stats_highbd_sse4_1(int wiener_win, const uint16_t *dgd,
const uint16_t *src, int h_start,
int h_end, int v_start, int v_end,
int dgd_stride, int src_stride, int64_t *M,
int64_t *H, aom_bit_depth_t bit_depth) {
if (wiener_win == WIENER_WIN) {
compute_stats_highbd_win7_opt_sse4_1(dgd, src, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H,
bit_depth);
} else if (wiener_win == WIENER_WIN_CHROMA) {
compute_stats_highbd_win5_opt_sse4_1(dgd, src, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H,
bit_depth);
} else {
av1_compute_stats_highbd_c(wiener_win, dgd, src, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H, bit_depth);
}
}