| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <memory.h> | 
 | #include <math.h> | 
 | #include <assert.h> | 
 | #include <stdbool.h> | 
 |  | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "av1/common/warped_motion.h" | 
 | #include "av1/common/scale.h" | 
 |  | 
 | // For warping, we really use a 6-tap filter, but we do blocks of 8 pixels | 
 | // at a time. The zoom/rotation/shear in the model are applied to the | 
 | // "fractional" position of each pixel, which therefore varies within | 
 | // [-1, 2) * WARPEDPIXEL_PREC_SHIFTS. | 
 | // We need an extra 2 taps to fit this in, for a total of 8 taps. | 
 | /* clang-format off */ | 
 | const int16_t av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS * 3 + 1][8] = { | 
 | #if WARPEDPIXEL_PREC_BITS == 6 | 
 |   // [-1, 0) | 
 |   { 0,   0, 127,   1,   0, 0, 0, 0 }, { 0, - 1, 127,   2,   0, 0, 0, 0 }, | 
 |   { 1, - 3, 127,   4, - 1, 0, 0, 0 }, { 1, - 4, 126,   6, - 2, 1, 0, 0 }, | 
 |   { 1, - 5, 126,   8, - 3, 1, 0, 0 }, { 1, - 6, 125,  11, - 4, 1, 0, 0 }, | 
 |   { 1, - 7, 124,  13, - 4, 1, 0, 0 }, { 2, - 8, 123,  15, - 5, 1, 0, 0 }, | 
 |   { 2, - 9, 122,  18, - 6, 1, 0, 0 }, { 2, -10, 121,  20, - 6, 1, 0, 0 }, | 
 |   { 2, -11, 120,  22, - 7, 2, 0, 0 }, { 2, -12, 119,  25, - 8, 2, 0, 0 }, | 
 |   { 3, -13, 117,  27, - 8, 2, 0, 0 }, { 3, -13, 116,  29, - 9, 2, 0, 0 }, | 
 |   { 3, -14, 114,  32, -10, 3, 0, 0 }, { 3, -15, 113,  35, -10, 2, 0, 0 }, | 
 |   { 3, -15, 111,  37, -11, 3, 0, 0 }, { 3, -16, 109,  40, -11, 3, 0, 0 }, | 
 |   { 3, -16, 108,  42, -12, 3, 0, 0 }, { 4, -17, 106,  45, -13, 3, 0, 0 }, | 
 |   { 4, -17, 104,  47, -13, 3, 0, 0 }, { 4, -17, 102,  50, -14, 3, 0, 0 }, | 
 |   { 4, -17, 100,  52, -14, 3, 0, 0 }, { 4, -18,  98,  55, -15, 4, 0, 0 }, | 
 |   { 4, -18,  96,  58, -15, 3, 0, 0 }, { 4, -18,  94,  60, -16, 4, 0, 0 }, | 
 |   { 4, -18,  91,  63, -16, 4, 0, 0 }, { 4, -18,  89,  65, -16, 4, 0, 0 }, | 
 |   { 4, -18,  87,  68, -17, 4, 0, 0 }, { 4, -18,  85,  70, -17, 4, 0, 0 }, | 
 |   { 4, -18,  82,  73, -17, 4, 0, 0 }, { 4, -18,  80,  75, -17, 4, 0, 0 }, | 
 |   { 4, -18,  78,  78, -18, 4, 0, 0 }, { 4, -17,  75,  80, -18, 4, 0, 0 }, | 
 |   { 4, -17,  73,  82, -18, 4, 0, 0 }, { 4, -17,  70,  85, -18, 4, 0, 0 }, | 
 |   { 4, -17,  68,  87, -18, 4, 0, 0 }, { 4, -16,  65,  89, -18, 4, 0, 0 }, | 
 |   { 4, -16,  63,  91, -18, 4, 0, 0 }, { 4, -16,  60,  94, -18, 4, 0, 0 }, | 
 |   { 3, -15,  58,  96, -18, 4, 0, 0 }, { 4, -15,  55,  98, -18, 4, 0, 0 }, | 
 |   { 3, -14,  52, 100, -17, 4, 0, 0 }, { 3, -14,  50, 102, -17, 4, 0, 0 }, | 
 |   { 3, -13,  47, 104, -17, 4, 0, 0 }, { 3, -13,  45, 106, -17, 4, 0, 0 }, | 
 |   { 3, -12,  42, 108, -16, 3, 0, 0 }, { 3, -11,  40, 109, -16, 3, 0, 0 }, | 
 |   { 3, -11,  37, 111, -15, 3, 0, 0 }, { 2, -10,  35, 113, -15, 3, 0, 0 }, | 
 |   { 3, -10,  32, 114, -14, 3, 0, 0 }, { 2, - 9,  29, 116, -13, 3, 0, 0 }, | 
 |   { 2, - 8,  27, 117, -13, 3, 0, 0 }, { 2, - 8,  25, 119, -12, 2, 0, 0 }, | 
 |   { 2, - 7,  22, 120, -11, 2, 0, 0 }, { 1, - 6,  20, 121, -10, 2, 0, 0 }, | 
 |   { 1, - 6,  18, 122, - 9, 2, 0, 0 }, { 1, - 5,  15, 123, - 8, 2, 0, 0 }, | 
 |   { 1, - 4,  13, 124, - 7, 1, 0, 0 }, { 1, - 4,  11, 125, - 6, 1, 0, 0 }, | 
 |   { 1, - 3,   8, 126, - 5, 1, 0, 0 }, { 1, - 2,   6, 126, - 4, 1, 0, 0 }, | 
 |   { 0, - 1,   4, 127, - 3, 1, 0, 0 }, { 0,   0,   2, 127, - 1, 0, 0, 0 }, | 
 |  | 
 |   // [0, 1) | 
 |   { 0,  0,   0, 127,   1,   0,  0,  0}, { 0,  0,  -1, 127,   2,   0,  0,  0}, | 
 |   { 0,  1,  -3, 127,   4,  -2,  1,  0}, { 0,  1,  -5, 127,   6,  -2,  1,  0}, | 
 |   { 0,  2,  -6, 126,   8,  -3,  1,  0}, {-1,  2,  -7, 126,  11,  -4,  2, -1}, | 
 |   {-1,  3,  -8, 125,  13,  -5,  2, -1}, {-1,  3, -10, 124,  16,  -6,  3, -1}, | 
 |   {-1,  4, -11, 123,  18,  -7,  3, -1}, {-1,  4, -12, 122,  20,  -7,  3, -1}, | 
 |   {-1,  4, -13, 121,  23,  -8,  3, -1}, {-2,  5, -14, 120,  25,  -9,  4, -1}, | 
 |   {-1,  5, -15, 119,  27, -10,  4, -1}, {-1,  5, -16, 118,  30, -11,  4, -1}, | 
 |   {-2,  6, -17, 116,  33, -12,  5, -1}, {-2,  6, -17, 114,  35, -12,  5, -1}, | 
 |   {-2,  6, -18, 113,  38, -13,  5, -1}, {-2,  7, -19, 111,  41, -14,  6, -2}, | 
 |   {-2,  7, -19, 110,  43, -15,  6, -2}, {-2,  7, -20, 108,  46, -15,  6, -2}, | 
 |   {-2,  7, -20, 106,  49, -16,  6, -2}, {-2,  7, -21, 104,  51, -16,  7, -2}, | 
 |   {-2,  7, -21, 102,  54, -17,  7, -2}, {-2,  8, -21, 100,  56, -18,  7, -2}, | 
 |   {-2,  8, -22,  98,  59, -18,  7, -2}, {-2,  8, -22,  96,  62, -19,  7, -2}, | 
 |   {-2,  8, -22,  94,  64, -19,  7, -2}, {-2,  8, -22,  91,  67, -20,  8, -2}, | 
 |   {-2,  8, -22,  89,  69, -20,  8, -2}, {-2,  8, -22,  87,  72, -21,  8, -2}, | 
 |   {-2,  8, -21,  84,  74, -21,  8, -2}, {-2,  8, -22,  82,  77, -21,  8, -2}, | 
 |   {-2,  8, -21,  79,  79, -21,  8, -2}, {-2,  8, -21,  77,  82, -22,  8, -2}, | 
 |   {-2,  8, -21,  74,  84, -21,  8, -2}, {-2,  8, -21,  72,  87, -22,  8, -2}, | 
 |   {-2,  8, -20,  69,  89, -22,  8, -2}, {-2,  8, -20,  67,  91, -22,  8, -2}, | 
 |   {-2,  7, -19,  64,  94, -22,  8, -2}, {-2,  7, -19,  62,  96, -22,  8, -2}, | 
 |   {-2,  7, -18,  59,  98, -22,  8, -2}, {-2,  7, -18,  56, 100, -21,  8, -2}, | 
 |   {-2,  7, -17,  54, 102, -21,  7, -2}, {-2,  7, -16,  51, 104, -21,  7, -2}, | 
 |   {-2,  6, -16,  49, 106, -20,  7, -2}, {-2,  6, -15,  46, 108, -20,  7, -2}, | 
 |   {-2,  6, -15,  43, 110, -19,  7, -2}, {-2,  6, -14,  41, 111, -19,  7, -2}, | 
 |   {-1,  5, -13,  38, 113, -18,  6, -2}, {-1,  5, -12,  35, 114, -17,  6, -2}, | 
 |   {-1,  5, -12,  33, 116, -17,  6, -2}, {-1,  4, -11,  30, 118, -16,  5, -1}, | 
 |   {-1,  4, -10,  27, 119, -15,  5, -1}, {-1,  4,  -9,  25, 120, -14,  5, -2}, | 
 |   {-1,  3,  -8,  23, 121, -13,  4, -1}, {-1,  3,  -7,  20, 122, -12,  4, -1}, | 
 |   {-1,  3,  -7,  18, 123, -11,  4, -1}, {-1,  3,  -6,  16, 124, -10,  3, -1}, | 
 |   {-1,  2,  -5,  13, 125,  -8,  3, -1}, {-1,  2,  -4,  11, 126,  -7,  2, -1}, | 
 |   { 0,  1,  -3,   8, 126,  -6,  2,  0}, { 0,  1,  -2,   6, 127,  -5,  1,  0}, | 
 |   { 0,  1,  -2,   4, 127,  -3,  1,  0}, { 0,  0,   0,   2, 127,  -1,  0,  0}, | 
 |  | 
 |   // [1, 2) | 
 |   { 0, 0, 0,   1, 127,   0,   0, 0 }, { 0, 0, 0, - 1, 127,   2,   0, 0 }, | 
 |   { 0, 0, 1, - 3, 127,   4, - 1, 0 }, { 0, 0, 1, - 4, 126,   6, - 2, 1 }, | 
 |   { 0, 0, 1, - 5, 126,   8, - 3, 1 }, { 0, 0, 1, - 6, 125,  11, - 4, 1 }, | 
 |   { 0, 0, 1, - 7, 124,  13, - 4, 1 }, { 0, 0, 2, - 8, 123,  15, - 5, 1 }, | 
 |   { 0, 0, 2, - 9, 122,  18, - 6, 1 }, { 0, 0, 2, -10, 121,  20, - 6, 1 }, | 
 |   { 0, 0, 2, -11, 120,  22, - 7, 2 }, { 0, 0, 2, -12, 119,  25, - 8, 2 }, | 
 |   { 0, 0, 3, -13, 117,  27, - 8, 2 }, { 0, 0, 3, -13, 116,  29, - 9, 2 }, | 
 |   { 0, 0, 3, -14, 114,  32, -10, 3 }, { 0, 0, 3, -15, 113,  35, -10, 2 }, | 
 |   { 0, 0, 3, -15, 111,  37, -11, 3 }, { 0, 0, 3, -16, 109,  40, -11, 3 }, | 
 |   { 0, 0, 3, -16, 108,  42, -12, 3 }, { 0, 0, 4, -17, 106,  45, -13, 3 }, | 
 |   { 0, 0, 4, -17, 104,  47, -13, 3 }, { 0, 0, 4, -17, 102,  50, -14, 3 }, | 
 |   { 0, 0, 4, -17, 100,  52, -14, 3 }, { 0, 0, 4, -18,  98,  55, -15, 4 }, | 
 |   { 0, 0, 4, -18,  96,  58, -15, 3 }, { 0, 0, 4, -18,  94,  60, -16, 4 }, | 
 |   { 0, 0, 4, -18,  91,  63, -16, 4 }, { 0, 0, 4, -18,  89,  65, -16, 4 }, | 
 |   { 0, 0, 4, -18,  87,  68, -17, 4 }, { 0, 0, 4, -18,  85,  70, -17, 4 }, | 
 |   { 0, 0, 4, -18,  82,  73, -17, 4 }, { 0, 0, 4, -18,  80,  75, -17, 4 }, | 
 |   { 0, 0, 4, -18,  78,  78, -18, 4 }, { 0, 0, 4, -17,  75,  80, -18, 4 }, | 
 |   { 0, 0, 4, -17,  73,  82, -18, 4 }, { 0, 0, 4, -17,  70,  85, -18, 4 }, | 
 |   { 0, 0, 4, -17,  68,  87, -18, 4 }, { 0, 0, 4, -16,  65,  89, -18, 4 }, | 
 |   { 0, 0, 4, -16,  63,  91, -18, 4 }, { 0, 0, 4, -16,  60,  94, -18, 4 }, | 
 |   { 0, 0, 3, -15,  58,  96, -18, 4 }, { 0, 0, 4, -15,  55,  98, -18, 4 }, | 
 |   { 0, 0, 3, -14,  52, 100, -17, 4 }, { 0, 0, 3, -14,  50, 102, -17, 4 }, | 
 |   { 0, 0, 3, -13,  47, 104, -17, 4 }, { 0, 0, 3, -13,  45, 106, -17, 4 }, | 
 |   { 0, 0, 3, -12,  42, 108, -16, 3 }, { 0, 0, 3, -11,  40, 109, -16, 3 }, | 
 |   { 0, 0, 3, -11,  37, 111, -15, 3 }, { 0, 0, 2, -10,  35, 113, -15, 3 }, | 
 |   { 0, 0, 3, -10,  32, 114, -14, 3 }, { 0, 0, 2, - 9,  29, 116, -13, 3 }, | 
 |   { 0, 0, 2, - 8,  27, 117, -13, 3 }, { 0, 0, 2, - 8,  25, 119, -12, 2 }, | 
 |   { 0, 0, 2, - 7,  22, 120, -11, 2 }, { 0, 0, 1, - 6,  20, 121, -10, 2 }, | 
 |   { 0, 0, 1, - 6,  18, 122, - 9, 2 }, { 0, 0, 1, - 5,  15, 123, - 8, 2 }, | 
 |   { 0, 0, 1, - 4,  13, 124, - 7, 1 }, { 0, 0, 1, - 4,  11, 125, - 6, 1 }, | 
 |   { 0, 0, 1, - 3,   8, 126, - 5, 1 }, { 0, 0, 1, - 2,   6, 126, - 4, 1 }, | 
 |   { 0, 0, 0, - 1,   4, 127, - 3, 1 }, { 0, 0, 0,   0,   2, 127, - 1, 0 }, | 
 |   // dummy (replicate row index 191) | 
 |   { 0, 0, 0,   0,   2, 127, - 1, 0 }, | 
 |  | 
 | #elif WARPEDPIXEL_PREC_BITS == 5 | 
 |   // [-1, 0) | 
 |   {0,   0, 127,   1,   0, 0, 0, 0}, {1,  -3, 127,   4,  -1, 0, 0, 0}, | 
 |   {1,  -5, 126,   8,  -3, 1, 0, 0}, {1,  -7, 124,  13,  -4, 1, 0, 0}, | 
 |   {2,  -9, 122,  18,  -6, 1, 0, 0}, {2, -11, 120,  22,  -7, 2, 0, 0}, | 
 |   {3, -13, 117,  27,  -8, 2, 0, 0}, {3, -14, 114,  32, -10, 3, 0, 0}, | 
 |   {3, -15, 111,  37, -11, 3, 0, 0}, {3, -16, 108,  42, -12, 3, 0, 0}, | 
 |   {4, -17, 104,  47, -13, 3, 0, 0}, {4, -17, 100,  52, -14, 3, 0, 0}, | 
 |   {4, -18,  96,  58, -15, 3, 0, 0}, {4, -18,  91,  63, -16, 4, 0, 0}, | 
 |   {4, -18,  87,  68, -17, 4, 0, 0}, {4, -18,  82,  73, -17, 4, 0, 0}, | 
 |   {4, -18,  78,  78, -18, 4, 0, 0}, {4, -17,  73,  82, -18, 4, 0, 0}, | 
 |   {4, -17,  68,  87, -18, 4, 0, 0}, {4, -16,  63,  91, -18, 4, 0, 0}, | 
 |   {3, -15,  58,  96, -18, 4, 0, 0}, {3, -14,  52, 100, -17, 4, 0, 0}, | 
 |   {3, -13,  47, 104, -17, 4, 0, 0}, {3, -12,  42, 108, -16, 3, 0, 0}, | 
 |   {3, -11,  37, 111, -15, 3, 0, 0}, {3, -10,  32, 114, -14, 3, 0, 0}, | 
 |   {2,  -8,  27, 117, -13, 3, 0, 0}, {2,  -7,  22, 120, -11, 2, 0, 0}, | 
 |   {1,  -6,  18, 122,  -9, 2, 0, 0}, {1,  -4,  13, 124,  -7, 1, 0, 0}, | 
 |   {1,  -3,   8, 126,  -5, 1, 0, 0}, {0,  -1,   4, 127,  -3, 1, 0, 0}, | 
 |   // [0, 1) | 
 |   { 0,  0,   0, 127,   1,   0,   0,  0}, { 0,  1,  -3, 127,   4,  -2,   1,  0}, | 
 |   { 0,  2,  -6, 126,   8,  -3,   1,  0}, {-1,  3,  -8, 125,  13,  -5,   2, -1}, | 
 |   {-1,  4, -11, 123,  18,  -7,   3, -1}, {-1,  4, -13, 121,  23,  -8,   3, -1}, | 
 |   {-1,  5, -15, 119,  27, -10,   4, -1}, {-2,  6, -17, 116,  33, -12,   5, -1}, | 
 |   {-2,  6, -18, 113,  38, -13,   5, -1}, {-2,  7, -19, 110,  43, -15,   6, -2}, | 
 |   {-2,  7, -20, 106,  49, -16,   6, -2}, {-2,  7, -21, 102,  54, -17,   7, -2}, | 
 |   {-2,  8, -22,  98,  59, -18,   7, -2}, {-2,  8, -22,  94,  64, -19,   7, -2}, | 
 |   {-2,  8, -22,  89,  69, -20,   8, -2}, {-2,  8, -21,  84,  74, -21,   8, -2}, | 
 |   {-2,  8, -21,  79,  79, -21,   8, -2}, {-2,  8, -21,  74,  84, -21,   8, -2}, | 
 |   {-2,  8, -20,  69,  89, -22,   8, -2}, {-2,  7, -19,  64,  94, -22,   8, -2}, | 
 |   {-2,  7, -18,  59,  98, -22,   8, -2}, {-2,  7, -17,  54, 102, -21,   7, -2}, | 
 |   {-2,  6, -16,  49, 106, -20,   7, -2}, {-2,  6, -15,  43, 110, -19,   7, -2}, | 
 |   {-1,  5, -13,  38, 113, -18,   6, -2}, {-1,  5, -12,  33, 116, -17,   6, -2}, | 
 |   {-1,  4, -10,  27, 119, -15,   5, -1}, {-1,  3,  -8,  23, 121, -13,   4, -1}, | 
 |   {-1,  3,  -7,  18, 123, -11,   4, -1}, {-1,  2,  -5,  13, 125,  -8,   3, -1}, | 
 |   { 0,  1,  -3,   8, 126,  -6,   2,  0}, { 0,  1,  -2,   4, 127,  -3,   1,  0}, | 
 |   // [1, 2) | 
 |   {0, 0, 0,   1, 127,   0,   0, 0}, {0, 0, 1,  -3, 127,   4,  -1, 0}, | 
 |   {0, 0, 1,  -5, 126,   8,  -3, 1}, {0, 0, 1,  -7, 124,  13,  -4, 1}, | 
 |   {0, 0, 2,  -9, 122,  18,  -6, 1}, {0, 0, 2, -11, 120,  22,  -7, 2}, | 
 |   {0, 0, 3, -13, 117,  27,  -8, 2}, {0, 0, 3, -14, 114,  32, -10, 3}, | 
 |   {0, 0, 3, -15, 111,  37, -11, 3}, {0, 0, 3, -16, 108,  42, -12, 3}, | 
 |   {0, 0, 4, -17, 104,  47, -13, 3}, {0, 0, 4, -17, 100,  52, -14, 3}, | 
 |   {0, 0, 4, -18,  96,  58, -15, 3}, {0, 0, 4, -18,  91,  63, -16, 4}, | 
 |   {0, 0, 4, -18,  87,  68, -17, 4}, {0, 0, 4, -18,  82,  73, -17, 4}, | 
 |   {0, 0, 4, -18,  78,  78, -18, 4}, {0, 0, 4, -17,  73,  82, -18, 4}, | 
 |   {0, 0, 4, -17,  68,  87, -18, 4}, {0, 0, 4, -16,  63,  91, -18, 4}, | 
 |   {0, 0, 3, -15,  58,  96, -18, 4}, {0, 0, 3, -14,  52, 100, -17, 4}, | 
 |   {0, 0, 3, -13,  47, 104, -17, 4}, {0, 0, 3, -12,  42, 108, -16, 3}, | 
 |   {0, 0, 3, -11,  37, 111, -15, 3}, {0, 0, 3, -10,  32, 114, -14, 3}, | 
 |   {0, 0, 2,  -8,  27, 117, -13, 3}, {0, 0, 2,  -7,  22, 120, -11, 2}, | 
 |   {0, 0, 1,  -6,  18, 122,  -9, 2}, {0, 0, 1,  -4,  13, 124,  -7, 1}, | 
 |   {0, 0, 1,  -3,   8, 126,  -5, 1}, {0, 0, 0,  -1,   4, 127,  -3, 1}, | 
 |   // dummy (replicate row index 95) | 
 |   {0, 0, 0,  -1,   4, 127,  -3, 1}, | 
 |  | 
 | #endif  // WARPEDPIXEL_PREC_BITS == 6 | 
 | }; | 
 |  | 
 | #if CONFIG_EXT_WARP_FILTER | 
 | DECLARE_ALIGNED(16, const int16_t, | 
 |                 av1_ext_warped_filter[EXT_WARP_PHASES + 1][EXT_WARP_STORAGE_TAPS]) = { | 
 | // The extended warp filter is a 6-tap filter, but we store each kernel with | 
 | // two extra zeros at the end so that each kernel is 16-byte aligned | 
 | { 0,   0, 128,   0,   0, 0, 0, 0 }, | 
 | { 0,  -1, 127,   2,   0, 0, 0, 0 }, | 
 | { 0,  -2, 127,   4,  -1, 0, 0, 0 }, | 
 | { 0,  -3, 126,   6,  -1, 0, 0, 0 }, | 
 | { 1,  -4, 125,   8,  -2, 0, 0, 0 }, | 
 | { 1,  -5, 124,  11,  -3, 0, 0, 0 }, | 
 | { 1,  -6, 123,  13,  -3, 0, 0, 0 }, | 
 | { 1,  -6, 122,  15,  -4, 0, 0, 0 }, | 
 | { 1,  -7, 120,  17,  -4, 1, 0, 0 }, | 
 | { 1,  -8, 119,  20,  -5, 1, 0, 0 }, | 
 | { 1,  -9, 118,  22,  -5, 1, 0, 0 }, | 
 | { 1,  -9, 117,  24,  -6, 1, 0, 0 }, | 
 | { 1, -10, 115,  27,  -6, 1, 0, 0 }, | 
 | { 1, -10, 114,  29,  -7, 1, 0, 0 }, | 
 | { 1, -11, 112,  32,  -7, 1, 0, 0 }, | 
 | { 1, -11, 111,  34,  -8, 1, 0, 0 }, | 
 | { 1, -11, 109,  36,  -8, 1, 0, 0 }, | 
 | { 2, -12, 107,  39,  -9, 1, 0, 0 }, | 
 | { 2, -12, 105,  41,  -9, 1, 0, 0 }, | 
 | { 2, -12, 103,  44, -10, 1, 0, 0 }, | 
 | { 2, -13, 102,  46, -10, 1, 0, 0 }, | 
 | { 2, -13,  99,  49, -10, 1, 0, 0 }, | 
 | { 2, -13,  98,  51, -11, 1, 0, 0 }, | 
 | { 2, -13,  95,  54, -11, 1, 0, 0 }, | 
 | { 2, -14,  93,  56, -11, 2, 0, 0 }, | 
 | { 2, -14,  91,  59, -12, 2, 0, 0 }, | 
 | { 2, -14,  89,  61, -12, 2, 0, 0 }, | 
 | { 2, -14,  87,  63, -12, 2, 0, 0 }, | 
 | { 2, -14,  85,  66, -13, 2, 0, 0 }, | 
 | { 2, -14,  83,  68, -13, 2, 0, 0 }, | 
 | { 2, -14,  80,  71, -13, 2, 0, 0 }, | 
 | { 2, -14,  78,  73, -13, 2, 0, 0 }, | 
 | { 2, -13,  75,  75, -13, 2, 0, 0 }, | 
 | { 2, -13,  73,  78, -14, 2, 0, 0 }, | 
 | { 2, -13,  71,  80, -14, 2, 0, 0 }, | 
 | { 2, -13,  68,  83, -14, 2, 0, 0 }, | 
 | { 2, -13,  66,  85, -14, 2, 0, 0 }, | 
 | { 2, -12,  63,  87, -14, 2, 0, 0 }, | 
 | { 2, -12,  61,  89, -14, 2, 0, 0 }, | 
 | { 2, -12,  59,  91, -14, 2, 0, 0 }, | 
 | { 2, -11,  56,  93, -14, 2, 0, 0 }, | 
 | { 1, -11,  54,  95, -13, 2, 0, 0 }, | 
 | { 1, -11,  51,  98, -13, 2, 0, 0 }, | 
 | { 1, -10,  49,  99, -13, 2, 0, 0 }, | 
 | { 1, -10,  46, 102, -13, 2, 0, 0 }, | 
 | { 1, -10,  44, 103, -12, 2, 0, 0 }, | 
 | { 1,  -9,  41, 105, -12, 2, 0, 0 }, | 
 | { 1,  -9,  39, 107, -12, 2, 0, 0 }, | 
 | { 1,  -8,  36, 109, -11, 1, 0, 0 }, | 
 | { 1,  -8,  34, 111, -11, 1, 0, 0 }, | 
 | { 1,  -7,  32, 112, -11, 1, 0, 0 }, | 
 | { 1,  -7,  29, 114, -10, 1, 0, 0 }, | 
 | { 1,  -6,  27, 115, -10, 1, 0, 0 }, | 
 | { 1,  -6,  24, 117,  -9, 1, 0, 0 }, | 
 | { 1,  -5,  22, 118,  -9, 1, 0, 0 }, | 
 | { 1,  -5,  20, 119,  -8, 1, 0, 0 }, | 
 | { 1,  -4,  17, 120,  -7, 1, 0, 0 }, | 
 | { 0,  -4,  15, 122,  -6, 1, 0, 0 }, | 
 | { 0,  -3,  13, 123,  -6, 1, 0, 0 }, | 
 | { 0,  -3,  11, 124,  -5, 1, 0, 0 }, | 
 | { 0,  -2,   8, 125,  -4, 1, 0, 0 }, | 
 | { 0,  -1,   6, 126,  -3, 0, 0, 0 }, | 
 | { 0,  -1,   4, 127,  -2, 0, 0, 0 }, | 
 | { 0,   0,   2, 127,  -1, 0, 0, 0 }, | 
 | { 0,   0,   0, 128,  0, 0, 0, 0 }, | 
 | }; | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 | /* clang-format on */ | 
 |  | 
 | // Recompute the translational part of a warp model, so that the center | 
 | // of the current block (determined by `mi_row`, `mi_col`, `bsize`) | 
 | // has an induced motion vector of `mv` | 
 | void av1_set_warp_translation(int mi_row, int mi_col, BLOCK_SIZE bsize, MV mv, | 
 |                               WarpedMotionParams *wm) { | 
 |   const int center_x = mi_col * MI_SIZE + block_size_wide[bsize] / 2 - 1; | 
 |   const int center_y = mi_row * MI_SIZE + block_size_high[bsize] / 2 - 1; | 
 |  | 
 |   // Note(rachelbarker): We subtract 1 from the diagonal part of the model here. | 
 |   // This is because the warp model M maps (current frame) pixel coordinates to | 
 |   // (ref frame) pixel coordinates. So, in order to calculate the induced | 
 |   // motion vector, we have to subtract the identity matrix. | 
 |   wm->wmmat[0] = mv.col * (1 << (WARPEDMODEL_PREC_BITS - 3)) - | 
 |                  (center_x * (wm->wmmat[2] - (1 << WARPEDMODEL_PREC_BITS)) + | 
 |                   center_y * wm->wmmat[3]); | 
 |   wm->wmmat[1] = mv.row * (1 << (WARPEDMODEL_PREC_BITS - 3)) - | 
 |                  (center_x * wm->wmmat[4] + | 
 |                   center_y * (wm->wmmat[5] - (1 << WARPEDMODEL_PREC_BITS))); | 
 |  | 
 |   wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP, | 
 |                        WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
 |   wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP, | 
 |                        WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
 | } | 
 |  | 
 | const uint16_t div_lut[DIV_LUT_NUM + 1] = { | 
 |   16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768, | 
 |   15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142, | 
 |   15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564, | 
 |   14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028, | 
 |   13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530, | 
 |   13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066, | 
 |   13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633, | 
 |   12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228, | 
 |   12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848, | 
 |   11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491, | 
 |   11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155, | 
 |   11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838, | 
 |   10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538, | 
 |   10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255, | 
 |   10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986, | 
 |   9963,  9939,  9916,  9892,  9869,  9846,  9823,  9800,  9777,  9754,  9732, | 
 |   9709,  9687,  9664,  9642,  9620,  9598,  9576,  9554,  9533,  9511,  9489, | 
 |   9468,  9447,  9425,  9404,  9383,  9362,  9341,  9321,  9300,  9279,  9259, | 
 |   9239,  9218,  9198,  9178,  9158,  9138,  9118,  9098,  9079,  9059,  9039, | 
 |   9020,  9001,  8981,  8962,  8943,  8924,  8905,  8886,  8867,  8849,  8830, | 
 |   8812,  8793,  8775,  8756,  8738,  8720,  8702,  8684,  8666,  8648,  8630, | 
 |   8613,  8595,  8577,  8560,  8542,  8525,  8508,  8490,  8473,  8456,  8439, | 
 |   8422,  8405,  8389,  8372,  8355,  8339,  8322,  8306,  8289,  8273,  8257, | 
 |   8240,  8224,  8208,  8192, | 
 | }; | 
 |  | 
 | static int is_affine_valid(const WarpedMotionParams *const wm) { | 
 |   const int32_t *mat = wm->wmmat; | 
 |   return (mat[2] > 0); | 
 | } | 
 |  | 
 | static int is_affine_shear_allowed(int16_t alpha, int16_t beta, int16_t gamma, | 
 |                                    int16_t delta) { | 
 |   if ((4 * abs(alpha) + 7 * abs(beta) >= (1 << WARPEDMODEL_PREC_BITS)) || | 
 |       (4 * abs(gamma) + 4 * abs(delta) >= (1 << WARPEDMODEL_PREC_BITS))) | 
 |     return 0; | 
 |   else | 
 |     return 1; | 
 | } | 
 |  | 
 | // Returns 1 on success or 0 on an invalid affine set | 
 | int av1_get_shear_params(WarpedMotionParams *wm) { | 
 |   const int32_t *mat = wm->wmmat; | 
 |   if (!is_affine_valid(wm)) return 0; | 
 |   wm->alpha = | 
 |       clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX); | 
 |   wm->beta = clamp(mat[3], INT16_MIN, INT16_MAX); | 
 |   int16_t shift; | 
 |   int16_t y = resolve_divisor_32(abs(mat[2]), &shift) * (mat[2] < 0 ? -1 : 1); | 
 |   int64_t v = ((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) * y; | 
 |   wm->gamma = | 
 |       clamp((int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift), INT16_MIN, INT16_MAX); | 
 |   v = ((int64_t)mat[3] * mat[4]) * y; | 
 |   wm->delta = clamp(mat[5] - (int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift) - | 
 |                         (1 << WARPEDMODEL_PREC_BITS), | 
 |                     INT16_MIN, INT16_MAX); | 
 |  | 
 |   // Note(rachelbarker): | 
 |   // In extreme cases, the `clamp` operations in the previous block can set | 
 |   // parameters equal to to INT16_MAX == 32767. | 
 |   // | 
 |   // The following round-then-multiply, which is intended to reduce the bit | 
 |   // storage requirement in hardware, then rounds to 32768, which is outside | 
 |   // the range of an int16_t. But casting to int16_t is okay - it will cause | 
 |   // this value to become -32768, and so the model will be rejected | 
 |   // by is_affine_shear_allowed(), so the outcome is the same. | 
 |   // | 
 |   // However, we must make this cast explicit, because otherwise the integer | 
 |   // sanitizer (correctly) complains about overflow during an implicit cast | 
 |   wm->alpha = | 
 |       (int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->alpha, WARP_PARAM_REDUCE_BITS) * | 
 |                 (1 << WARP_PARAM_REDUCE_BITS)); | 
 |   wm->beta = | 
 |       (int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->beta, WARP_PARAM_REDUCE_BITS) * | 
 |                 (1 << WARP_PARAM_REDUCE_BITS)); | 
 |   wm->gamma = | 
 |       (int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->gamma, WARP_PARAM_REDUCE_BITS) * | 
 |                 (1 << WARP_PARAM_REDUCE_BITS)); | 
 |   wm->delta = | 
 |       (int16_t)(ROUND_POWER_OF_TWO_SIGNED(wm->delta, WARP_PARAM_REDUCE_BITS) * | 
 |                 (1 << WARP_PARAM_REDUCE_BITS)); | 
 |  | 
 | #if CONFIG_EXT_WARP_FILTER | 
 |   wm->use_affine_filter = | 
 |       is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta); | 
 | #else | 
 |   if (!is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta)) | 
 |     return 0; | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // Reduce the precision of a warp model, ready for use in the warp filter | 
 | // and for storage. This should be called after the non-translational parameters | 
 | // are calculated, but before av1_set_warp_translation() or | 
 | // av1_get_shear_params() are called | 
 | // | 
 | // This also clamps the values, ensuring that hardware can store each value | 
 | // in a signed integer with (WARPEDMODEL_PREC_BITS - WARP_PARAM_REDUCE_BITS) | 
 | // total bits | 
 | void av1_reduce_warp_model(WarpedMotionParams *wm) { | 
 | #if CONFIG_EXT_WARP_FILTER | 
 |   // Constrain parameters so that they lie within the range of +/- 1/2 | 
 |   // relative to the identity model. | 
 |   // | 
 |   // In order to avoid needing one extra bit, we limit the maximum to one | 
 |   // unit less than 1/2, similarly to how an int<n> can only go up to | 
 |   // 2^(n-1) - 1. However, unlike an int<n>, the allowable range must | 
 |   // remain symmetric, so that ROTZOOM models can maintain the constraint | 
 |   // that wmmat[4] == -wmmat[3]. | 
 |   const int max_value = | 
 |       (1 << (WARPEDMODEL_PREC_BITS - 1)) - (1 << WARP_PARAM_REDUCE_BITS); | 
 |   const int min_value = -max_value; | 
 | #else | 
 |   // Think of this range as an int<N>, multiplied by (1 << | 
 |   // WARP_PARAM_REDUCE_BITS). In other words, the max is -2^(N-1) and max is | 
 |   // (2^(N-1) - 1), but with an extra multiplier applied to both terms | 
 |   const int min_value = -(1 << (WARPEDMODEL_PREC_BITS - 1)); | 
 |   const int max_value = | 
 |       (1 << (WARPEDMODEL_PREC_BITS - 1)) - (1 << WARP_PARAM_REDUCE_BITS); | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 |  | 
 |   for (int i = 2; i < 6; i++) { | 
 |     int offset = (i == 2 || i == 5) ? (1 << WARPEDMODEL_PREC_BITS) : 0; | 
 |  | 
 |     int original = wm->wmmat[i] - offset; | 
 |     int rounded = ROUND_POWER_OF_TWO_SIGNED(original, WARP_PARAM_REDUCE_BITS) * | 
 |                   (1 << WARP_PARAM_REDUCE_BITS); | 
 |     int clamped = clamp(rounded, min_value, max_value); | 
 |  | 
 |     wm->wmmat[i] = clamped + offset; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_EXT_WARP_FILTER | 
 | // Check if a model is already properly reduced, according to the same logic | 
 | // used in av1_reduce_warp_model() | 
 | bool av1_is_warp_model_reduced(WarpedMotionParams *wm) { | 
 |   // Constrain parameters so that they lie within the range of +/- 1/2 | 
 |   // relative to the identity model. | 
 |   // | 
 |   // In order to avoid needing one extra bit, we limit the maximum to one | 
 |   // unit less than 1/2, similarly to how an int<n> can only go up to | 
 |   // 2^(n-1) - 1. However, unlike an int<n>, the allowable range must | 
 |   // remain symmetric, so that ROTZOOM models can maintain the constraint | 
 |   // that wmmat[4] == -wmmat[3]. | 
 |   const int max_value = | 
 |       (1 << (WARPEDMODEL_PREC_BITS - 1)) - (1 << WARP_PARAM_REDUCE_BITS); | 
 |   const int min_value = -max_value; | 
 |  | 
 |   for (int i = 2; i < 6; i++) { | 
 |     int offset = (i == 2 || i == 5) ? (1 << WARPEDMODEL_PREC_BITS) : 0; | 
 |  | 
 |     int original = wm->wmmat[i] - offset; | 
 |     int rounded = ROUND_POWER_OF_TWO_SIGNED(original, WARP_PARAM_REDUCE_BITS) * | 
 |                   (1 << WARP_PARAM_REDUCE_BITS); | 
 |     int clamped = clamp(rounded, min_value, max_value); | 
 |  | 
 |     if (clamped != original) return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 |  | 
 | /* The warp filter for ROTZOOM and AFFINE models works as follows: | 
 |    * Split the input into 8x8 blocks | 
 |    * For each block, project the point (4, 4) within the block, to get the | 
 |      overall block position. Split into integer and fractional coordinates, | 
 |      maintaining full WARPEDMODEL precision | 
 |    * Filter horizontally: Generate 15 rows of 8 pixels each. Each pixel gets a | 
 |      variable horizontal offset. This means that, while the rows of the | 
 |      intermediate buffer align with the rows of the *reference* image, the | 
 |      columns align with the columns of the *destination* image. | 
 |    * Filter vertically: Generate the output block (up to 8x8 pixels, but if the | 
 |      destination is too small we crop the output at this stage). Each pixel has | 
 |      a variable vertical offset, so that the resulting rows are aligned with | 
 |      the rows of the destination image. | 
 |  | 
 |    To accomplish these alignments, we factor the warp matrix as a | 
 |    product of two shear / asymmetric zoom matrices: | 
 |    / a b \  = /   1       0    \ * / 1+alpha  beta \ | 
 |    \ c d /    \ gamma  1+delta /   \    0      1   / | 
 |    where a, b, c, d are wmmat[2], wmmat[3], wmmat[4], wmmat[5] respectively. | 
 |    The horizontal shear (with alpha and beta) is applied first, | 
 |    then the vertical shear (with gamma and delta) is applied second. | 
 |  | 
 |    The only limitation is that, to fit this in a fixed 8-tap filter size, | 
 |    the fractional pixel offsets must be at most +-1. Since the horizontal filter | 
 |    generates 15 rows of 8 columns, and the initial point we project is at (4, 4) | 
 |    within the block, the parameters must satisfy | 
 |    4 * |alpha| + 7 * |beta| <= 1   and   4 * |gamma| + 4 * |delta| <= 1 | 
 |    for this filter to be applicable. | 
 |  | 
 |    Note: This function assumes that the caller has done all of the relevant | 
 |    checks, ie. that we have a ROTZOOM or AFFINE model, that wm[4] and wm[5] | 
 |    are set appropriately (if using a ROTZOOM model), and that alpha, beta, | 
 |    gamma, delta are all in range. | 
 |  | 
 |    TODO(rachelbarker): Maybe support scaled references? | 
 | */ | 
 | /* A note on hardware implementation: | 
 |     The warp filter is intended to be implementable using the same hardware as | 
 |     the high-precision convolve filters from the loop-restoration and | 
 |     convolve-round experiments. | 
 |  | 
 |     For a single filter stage, considering all of the coefficient sets for the | 
 |     warp filter and the regular convolution filter, an input in the range | 
 |     [0, 2^k - 1] is mapped into the range [-56 * (2^k - 1), 184 * (2^k - 1)] | 
 |     before rounding. | 
 |  | 
 |     Allowing for some changes to the filter coefficient sets, call the range | 
 |     [-64 * 2^k, 192 * 2^k]. Then, if we initialize the accumulator to 64 * 2^k, | 
 |     we can replace this by the range [0, 256 * 2^k], which can be stored in an | 
 |     unsigned value with 8 + k bits. | 
 |  | 
 |     This allows the derivation of the appropriate bit widths and offsets for | 
 |     the various intermediate values: If | 
 |  | 
 |     F := FILTER_BITS = 7 (or else the above ranges need adjusting) | 
 |          So a *single* filter stage maps a k-bit input to a (k + F + 1)-bit | 
 |          intermediate value. | 
 |     H := ROUND0_BITS | 
 |     V := VERSHEAR_REDUCE_PREC_BITS | 
 |     (and note that we must have H + V = 2*F for the output to have the same | 
 |      scale as the input) | 
 |  | 
 |     then we end up with the following offsets and ranges: | 
 |     Horizontal filter: Apply an offset of 1 << (bd + F - 1), sum fits into a | 
 |                        uint{bd + F + 1} | 
 |     After rounding: The values stored in 'tmp' fit into a uint{bd + F + 1 - H}. | 
 |     Vertical filter: Apply an offset of 1 << (bd + 2*F - H), sum fits into a | 
 |                      uint{bd + 2*F + 2 - H} | 
 |     After rounding: The final value, before undoing the offset, fits into a | 
 |                     uint{bd + 2}. | 
 |  | 
 |     Then we need to undo the offsets before clamping to a pixel. Note that, | 
 |     if we do this at the end, the amount to subtract is actually independent | 
 |     of H and V: | 
 |  | 
 |     offset to subtract = (1 << ((bd + F - 1) - H + F - V)) + | 
 |                          (1 << ((bd + 2*F - H) - V)) | 
 |                       == (1 << (bd - 1)) + (1 << bd) | 
 |  | 
 |     This allows us to entirely avoid clamping in both the warp filter and | 
 |     the convolve-round experiment. As of the time of writing, the Wiener filter | 
 |     from loop-restoration can encode a central coefficient up to 216, which | 
 |     leads to a maximum value of about 282 * 2^k after applying the offset. | 
 |     So in that case we still need to clamp. | 
 | */ | 
 | void av1_highbd_warp_affine_c(const int32_t *mat, const uint16_t *ref, | 
 |                               int width, int height, int stride, uint16_t *pred, | 
 |                               int p_col, int p_row, int p_width, int p_height, | 
 |                               int p_stride, int subsampling_x, | 
 |                               int subsampling_y, int bd, | 
 |                               ConvolveParams *conv_params, int16_t alpha, | 
 |                               int16_t beta, int16_t gamma, int16_t delta) { | 
 |   int32_t tmp[15 * 8]; | 
 |   const int reduce_bits_horiz = conv_params->round_0; | 
 |   const int reduce_bits_vert = conv_params->is_compound | 
 |                                    ? conv_params->round_1 | 
 |                                    : 2 * FILTER_BITS - reduce_bits_horiz; | 
 |   const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz; | 
 |   const int offset_bits_horiz = bd + FILTER_BITS - 1; | 
 |   const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz; | 
 |   const int round_bits = | 
 |       2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; | 
 |   const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; | 
 |   const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params); | 
 |   (void)max_bits_horiz; | 
 |   assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); | 
 |  | 
 |   // Check that, even with 12-bit input, the intermediate values will fit | 
 |   // into an unsigned 16-bit intermediate array. | 
 |   assert(bd + FILTER_BITS + 2 - conv_params->round_0 <= 16); | 
 |   const int taps = 8; | 
 |   const int taps_half = taps >> 1; | 
 |  | 
 |   for (int i = p_row; i < p_row + p_height; i += 8) { | 
 |     for (int j = p_col; j < p_col + p_width; j += 8) { | 
 |       // Calculate the center of this 8x8 block, | 
 |       // project to luma coordinates (if in a subsampled chroma plane), | 
 |       // apply the affine transformation, | 
 |       // then convert back to the original coordinates (if necessary) | 
 |       const int32_t src_x = (j + 4) << subsampling_x; | 
 |       const int32_t src_y = (i + 4) << subsampling_y; | 
 |       const int64_t dst_x = | 
 |           (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; | 
 |       const int64_t dst_y = | 
 |           (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; | 
 |       const int64_t x4 = dst_x >> subsampling_x; | 
 |       const int64_t y4 = dst_y >> subsampling_y; | 
 |  | 
 |       const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); | 
 |       int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
 |       const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); | 
 |       int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
 |  | 
 |       sx4 += alpha * (-4) + beta * (-4); | 
 |       sy4 += gamma * (-4) + delta * (-4); | 
 |  | 
 |       sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); | 
 |       sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); | 
 |  | 
 |       // Horizontal filter | 
 |       for (int k = -7; k < 8; ++k) { | 
 |         const int iy = clamp(iy4 + k, 0, height - 1); | 
 |  | 
 |         int sx = sx4 + beta * (k + 4); | 
 |         for (int l = -4; l < 4; ++l) { | 
 |           int ix = ix4 + l - (taps_half - 1); | 
 |           const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) + | 
 |                            WARPEDPIXEL_PREC_SHIFTS; | 
 |           assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3); | 
 |           const int16_t *coeffs = av1_warped_filter[offs]; | 
 |           int32_t sum = 1 << offset_bits_horiz; | 
 |           for (int m = 0; m < taps; ++m) { | 
 |             const int sample_x = clamp(ix + m, 0, width - 1); | 
 |             sum += ref[iy * stride + sample_x] * coeffs[m]; | 
 |           } | 
 |           sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz); | 
 |           assert(0 <= sum && sum < (1 << max_bits_horiz)); | 
 |           tmp[(k + 7) * 8 + (l + 4)] = sum; | 
 |           sx += alpha; | 
 |         } | 
 |       } | 
 |  | 
 |       // Vertical filter | 
 |       for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) { | 
 |         int sy = sy4 + delta * (k + 4); | 
 |         for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) { | 
 |           const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) + | 
 |                            WARPEDPIXEL_PREC_SHIFTS; | 
 |           assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3); | 
 |           const int16_t *coeffs = av1_warped_filter[offs]; | 
 |  | 
 |           int32_t sum = 1 << offset_bits_vert; | 
 |           for (int m = 0; m < taps; ++m) { | 
 |             sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m]; | 
 |           } | 
 |  | 
 |           if (conv_params->is_compound) { | 
 |             CONV_BUF_TYPE *p = | 
 |                 &conv_params | 
 |                      ->dst[(i - p_row + k + 4) * conv_params->dst_stride + | 
 |                            (j - p_col + l + 4)]; | 
 |             sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); | 
 |             if (conv_params->do_average) { | 
 |               uint16_t *dst16 = | 
 |                   &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)]; | 
 |               int32_t tmp32 = *p; | 
 |               if (use_wtd_comp_avg) { | 
 |                 tmp32 = tmp32 * conv_params->fwd_offset + | 
 |                         sum * conv_params->bck_offset; | 
 |                 tmp32 = tmp32 >> DIST_PRECISION_BITS; | 
 |               } else { | 
 |                 tmp32 += sum; | 
 |                 tmp32 = tmp32 >> 1; | 
 |               } | 
 |               tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) - | 
 |                       (1 << (offset_bits - conv_params->round_1 - 1)); | 
 |               *dst16 = | 
 |                   clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp32, round_bits), bd); | 
 |             } else { | 
 |               *p = sum; | 
 |             } | 
 |           } else { | 
 |             uint16_t *p = | 
 |                 &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)]; | 
 |             sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); | 
 |             assert(0 <= sum && sum < (1 << (bd + 2))); | 
 |             *p = clip_pixel_highbd(sum - (1 << (bd - 1)) - (1 << bd), bd); | 
 |           } | 
 |           sy += gamma; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_EXT_WARP_FILTER | 
 | /* Extended-range warp filter, used for strong warps where the regular | 
 |    affine filter (av1_highbd_warp_affine) is not usable. | 
 |  | 
 |    This filter operates by splitting the prediction unit into 4x4 pixel | 
 |    chunks. Then, for each chunk, the following process is applied: | 
 |  | 
 |    * Compute the effective motion vector at the center of the 4x4 chunk | 
 |      (actually at pixel offset (1, 1) into the chunk), at 1/64 pel precision | 
 |  | 
 |    * Translate the entire 4x4 pixel chunk by this compute motion vector | 
 |  | 
 |    This generates a prediction of intermediate quality - better than translating | 
 |    the prediction unit as a whole, but worse than a full affine shear. | 
 |    However, it is able to handle any encode-able warp model, and is not | 
 |    constrained in the same way as the regular warp filter. | 
 |  | 
 |    Note that this will produce blocking between adjacent 4x4 units, so we need | 
 |    apply some form of deblocking to the output of this function. This is handled | 
 |    separately. | 
 | */ | 
 | void av1_ext_highbd_warp_affine_c(const int32_t *mat, const uint16_t *ref, | 
 |                                   int width, int height, int stride, | 
 |                                   uint16_t *pred, int p_col, int p_row, | 
 |                                   int p_width, int p_height, int p_stride, | 
 |                                   int subsampling_x, int subsampling_y, int bd, | 
 |                                   ConvolveParams *conv_params) { | 
 |   int32_t im_block[(4 + EXT_WARP_TAPS - 1) * 4]; | 
 |   const int reduce_bits_horiz = conv_params->round_0; | 
 |   const int reduce_bits_vert = conv_params->is_compound | 
 |                                    ? conv_params->round_1 | 
 |                                    : 2 * FILTER_BITS - reduce_bits_horiz; | 
 |   const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz; | 
 |   const int offset_bits_horiz = bd + FILTER_BITS - 1; | 
 |   const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz; | 
 |   const int round_bits = | 
 |       2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; | 
 |   const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; | 
 |   const int use_wtd_comp_avg = is_uneven_wtd_comp_avg(conv_params); | 
 |   (void)max_bits_horiz; | 
 |   assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); | 
 |  | 
 |   // Check that, even with 12-bit input, the intermediate values will fit | 
 |   // into an unsigned 16-bit intermediate array. | 
 |   assert(bd + FILTER_BITS + 2 - conv_params->round_0 <= 16); | 
 |   const int taps = EXT_WARP_TAPS; | 
 |   const int taps_half = taps >> 1; | 
 |  | 
 |   for (int i = p_row; i < p_row + p_height; i += 4) { | 
 |     for (int j = p_col; j < p_col + p_width; j += 4) { | 
 |       // Calculate the center of this 4x4 block, | 
 |       // project to luma coordinates (if in a subsampled chroma plane), | 
 |       // apply the affine transformation, | 
 |       // then convert back to the original coordinates (if necessary) | 
 |       const int32_t src_x = (j + 2) << subsampling_x; | 
 |       const int32_t src_y = (i + 2) << subsampling_y; | 
 |       const int64_t dst_x = | 
 |           (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; | 
 |       const int64_t dst_y = | 
 |           (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; | 
 |       const int64_t x4 = dst_x >> subsampling_x; | 
 |       const int64_t y4 = dst_y >> subsampling_y; | 
 |  | 
 |       const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); | 
 |       int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
 |       const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); | 
 |       int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
 |  | 
 |       // Horizontal Filter | 
 |       const int offs_x = ROUND_POWER_OF_TWO(sx4, EXT_WARP_ROUND_BITS); | 
 |       assert(offs_x >= 0 && offs_x <= EXT_WARP_PHASES); | 
 |       const int16_t *coeffs_x = av1_ext_warped_filter[offs_x]; | 
 |  | 
 |       for (int k = -(taps_half + 1); k < taps_half + 2; ++k) { | 
 |         const int iy = clamp(iy4 + k, 0, height - 1); | 
 |  | 
 |         for (int l = -2; l < 2; ++l) { | 
 |           int ix = ix4 + l - (taps_half - 1); | 
 |  | 
 |           int32_t sum = 1 << offset_bits_horiz; | 
 |           for (int m = 0; m < taps; ++m) { | 
 |             const int sample_x = clamp(ix + m, 0, width - 1); | 
 |             sum += ref[iy * stride + sample_x] * coeffs_x[m]; | 
 |           } | 
 |           sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz); | 
 |           assert(0 <= sum && sum < (1 << max_bits_horiz)); | 
 |           im_block[(k + (taps_half + 1)) * 4 + (l + 2)] = sum; | 
 |         } | 
 |       } | 
 |  | 
 |       // Vertical filter | 
 |       const int offs_y = ROUND_POWER_OF_TWO(sy4, WARPEDDIFF_PREC_BITS); | 
 |       assert(offs_y >= 0 && offs_y <= WARPEDPIXEL_PREC_SHIFTS); | 
 |       const int16_t *coeffs_y = av1_ext_warped_filter[offs_y]; | 
 |  | 
 |       for (int k = -2; k < AOMMIN(2, p_row + p_height - i - 2); ++k) { | 
 |         for (int l = -2; l < AOMMIN(2, p_col + p_width - j - 2); ++l) { | 
 |           int32_t sum = 1 << offset_bits_vert; | 
 |           for (int m = 0; m < taps; ++m) { | 
 |             sum += im_block[(k + m + 2) * 4 + (l + 2)] * coeffs_y[m]; | 
 |           } | 
 |  | 
 |           if (conv_params->is_compound) { | 
 |             CONV_BUF_TYPE *p = | 
 |                 &conv_params | 
 |                      ->dst[(i - p_row + k + 2) * conv_params->dst_stride + | 
 |                            (j - p_col + l + 2)]; | 
 |             sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); | 
 |             if (conv_params->do_average) { | 
 |               uint16_t *dst16 = | 
 |                   &pred[(i - p_row + k + 2) * p_stride + (j - p_col + l + 2)]; | 
 |               int32_t tmp32 = *p; | 
 |               if (use_wtd_comp_avg) { | 
 |                 tmp32 = tmp32 * conv_params->fwd_offset + | 
 |                         sum * conv_params->bck_offset; | 
 |                 tmp32 = tmp32 >> DIST_PRECISION_BITS; | 
 |               } else { | 
 |                 tmp32 += sum; | 
 |                 tmp32 = tmp32 >> 1; | 
 |               } | 
 |               tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) - | 
 |                       (1 << (offset_bits - conv_params->round_1 - 1)); | 
 |               *dst16 = | 
 |                   clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp32, round_bits), bd); | 
 |             } else { | 
 |               *p = sum; | 
 |             } | 
 |           } else { | 
 |             uint16_t *p = | 
 |                 &pred[(i - p_row + k + 2) * p_stride + (j - p_col + l + 2)]; | 
 |             sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); | 
 |             assert(0 <= sum && sum < (1 << (bd + 2))); | 
 |             *p = clip_pixel_highbd(sum - (1 << (bd - 1)) - (1 << bd), bd); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_AFFINE_REFINEMENT | 
 | void av1_warp_plane_ext(WarpedMotionParams *wm, int bd, const uint16_t *ref, | 
 |                         int width, int height, int stride, uint16_t *pred, | 
 |                         int p_col, int p_row, int p_width, int p_height, | 
 |                         int p_stride, int subsampling_x, int subsampling_y, | 
 |                         ConvolveParams *conv_params) { | 
 |   assert(wm->wmtype <= AFFINE); | 
 |   if (wm->wmtype == ROTZOOM) { | 
 |     wm->wmmat[5] = wm->wmmat[2]; | 
 |     wm->wmmat[4] = -wm->wmmat[3]; | 
 |   } | 
 |   const int32_t *const mat = wm->wmmat; | 
 |  | 
 |   av1_ext_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, | 
 |                              p_row, p_width, p_height, p_stride, subsampling_x, | 
 |                              subsampling_y, bd, conv_params); | 
 | } | 
 | #endif  // CONFIG_AFFINE_REFINEMENT | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 |  | 
 | void highbd_warp_plane(WarpedMotionParams *wm, const uint16_t *const ref, | 
 |                        int width, int height, int stride, uint16_t *const pred, | 
 |                        int p_col, int p_row, int p_width, int p_height, | 
 |                        int p_stride, int subsampling_x, int subsampling_y, | 
 |                        int bd, ConvolveParams *conv_params) { | 
 |   assert(wm->wmtype <= AFFINE); | 
 |   if (wm->wmtype == ROTZOOM) { | 
 |     wm->wmmat[5] = wm->wmmat[2]; | 
 |     wm->wmmat[4] = -wm->wmmat[3]; | 
 |   } | 
 |   const int32_t *const mat = wm->wmmat; | 
 |   const int16_t alpha = wm->alpha; | 
 |   const int16_t beta = wm->beta; | 
 |   const int16_t gamma = wm->gamma; | 
 |   const int16_t delta = wm->delta; | 
 |  | 
 | #if CONFIG_EXT_WARP_FILTER | 
 |   assert(wm->use_affine_filter == | 
 |          is_affine_shear_allowed(alpha, beta, gamma, delta)); | 
 |  | 
 |   if (!wm->use_affine_filter | 
 | #if CONFIG_AFFINE_REFINEMENT | 
 |       || p_width < 8 || p_height < 8 | 
 | #endif  // CONFIG_AFFINE_REFINEMENT | 
 |   ) | 
 |     av1_ext_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, | 
 |                                p_row, p_width, p_height, p_stride, | 
 |                                subsampling_x, subsampling_y, bd, conv_params); | 
 |   else | 
 | #endif  // CONFIG_EXT_WARP_FILTER | 
 |     av1_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row, | 
 |                            p_width, p_height, p_stride, subsampling_x, | 
 |                            subsampling_y, bd, conv_params, alpha, beta, gamma, | 
 |                            delta); | 
 | } | 
 |  | 
 | void av1_warp_plane(WarpedMotionParams *wm, int bd, const uint16_t *ref, | 
 |                     int width, int height, int stride, uint16_t *pred, | 
 |                     int p_col, int p_row, int p_width, int p_height, | 
 |                     int p_stride, int subsampling_x, int subsampling_y, | 
 |                     ConvolveParams *conv_params) { | 
 |   highbd_warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width, | 
 |                     p_height, p_stride, subsampling_x, subsampling_y, bd, | 
 |                     conv_params); | 
 | } | 
 |  | 
 | #define LS_MV_MAX 256  // max mv in 1/8-pel | 
 | // Use LS_STEP = 8 so that 2 less bits needed for A, Bx, By. | 
 | #define LS_STEP 8 | 
 |  | 
 | // Assuming LS_MV_MAX is < MAX_SB_SIZE * 8, | 
 | // the precision needed is: | 
 | //   (MAX_SB_SIZE_LOG2 + 3) [for sx * sx magnitude] + | 
 | //   (MAX_SB_SIZE_LOG2 + 4) [for sx * dx magnitude] + | 
 | //   1 [for sign] + | 
 | //   LEAST_SQUARES_SAMPLES_MAX_BITS | 
 | //        [for adding up to LEAST_SQUARES_SAMPLES_MAX samples] | 
 | // The value is 23 | 
 | #define LS_MAT_RANGE_BITS \ | 
 |   ((MAX_SB_SIZE_LOG2 + 4) * 2 + LEAST_SQUARES_SAMPLES_MAX_BITS) | 
 |  | 
 | // Bit-depth reduction from the full-range | 
 | #define LS_MAT_DOWN_BITS 2 | 
 |  | 
 | // bits range of A, Bx and By after downshifting | 
 | #define LS_MAT_BITS (LS_MAT_RANGE_BITS - LS_MAT_DOWN_BITS) | 
 | #define LS_MAT_MIN (-(1 << (LS_MAT_BITS - 1))) | 
 | #define LS_MAT_MAX ((1 << (LS_MAT_BITS - 1)) - 1) | 
 |  | 
 | // By setting LS_STEP = 8, the least 2 bits of every elements in A, Bx, By are | 
 | // 0. So, we can reduce LS_MAT_RANGE_BITS(2) bits here. | 
 | #define LS_SQUARE(a)                                          \ | 
 |   (((a) * (a)*4 + (a)*4 * LS_STEP + LS_STEP * LS_STEP * 2) >> \ | 
 |    (2 + LS_MAT_DOWN_BITS)) | 
 | #define LS_PRODUCT1(a, b)                                           \ | 
 |   (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP) >> \ | 
 |    (2 + LS_MAT_DOWN_BITS)) | 
 | #define LS_PRODUCT2(a, b)                                               \ | 
 |   (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP * 2) >> \ | 
 |    (2 + LS_MAT_DOWN_BITS)) | 
 |  | 
 | #define USE_LIMITED_PREC_MULT 0 | 
 |  | 
 | #if USE_LIMITED_PREC_MULT | 
 |  | 
 | #define MUL_PREC_BITS 16 | 
 | static uint16_t resolve_multiplier_64(uint64_t D, int16_t *shift) { | 
 |   int msb = 0; | 
 |   uint16_t mult = 0; | 
 |   *shift = 0; | 
 |   if (D != 0) { | 
 |     msb = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32 | 
 |                               : get_msb((unsigned int)D)); | 
 |     if (msb >= MUL_PREC_BITS) { | 
 |       mult = (uint16_t)ROUND_POWER_OF_TWO_64(D, msb + 1 - MUL_PREC_BITS); | 
 |       *shift = msb + 1 - MUL_PREC_BITS; | 
 |     } else { | 
 |       mult = (uint16_t)D; | 
 |       *shift = 0; | 
 |     } | 
 |   } | 
 |   return mult; | 
 | } | 
 |  | 
 | static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) { | 
 |   int32_t ret; | 
 |   int16_t mshift; | 
 |   uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift); | 
 |   int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1); | 
 |   shift -= mshift; | 
 |   if (shift > 0) { | 
 |     return (int32_t)clamp(ROUND_POWER_OF_TWO_SIGNED(v, shift), | 
 |                           -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, | 
 |                           WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); | 
 |   } else { | 
 |     return (int32_t)clamp(v * (1 << (-shift)), | 
 |                           -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, | 
 |                           WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) { | 
 |   int16_t mshift; | 
 |   uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift); | 
 |   int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1); | 
 |   shift -= mshift; | 
 |   if (shift > 0) { | 
 |     return (int32_t)clamp( | 
 |         ROUND_POWER_OF_TWO_SIGNED(v, shift), | 
 |         (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, | 
 |         (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); | 
 |   } else { | 
 |     return (int32_t)clamp( | 
 |         v * (1 << (-shift)), | 
 |         (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, | 
 |         (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); | 
 |   } | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) { | 
 |   int64_t v = Px * (int64_t)iDet; | 
 |   return (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(v, shift), | 
 |                           -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, | 
 |                           WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); | 
 | } | 
 |  | 
 | static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) { | 
 |   int64_t v = Px * (int64_t)iDet; | 
 |   return (int32_t)clamp64( | 
 |       ROUND_POWER_OF_TWO_SIGNED_64(v, shift), | 
 |       (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, | 
 |       (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); | 
 | } | 
 | #endif  // USE_LIMITED_PREC_MULT | 
 |  | 
 | static int find_affine_int(int np, const int *pts1, const int *pts2, | 
 |                            BLOCK_SIZE bsize, MV mv, WarpedMotionParams *wm, | 
 |                            int mi_row, int mi_col) { | 
 |   int32_t A[2][2] = { { 0, 0 }, { 0, 0 } }; | 
 |   int32_t Bx[2] = { 0, 0 }; | 
 |   int32_t By[2] = { 0, 0 }; | 
 |  | 
 |   const int bw = block_size_wide[bsize]; | 
 |   const int bh = block_size_high[bsize]; | 
 |   const int rsuy = bh / 2 - 1; | 
 |   const int rsux = bw / 2 - 1; | 
 |   const int suy = rsuy * 8; | 
 |   const int sux = rsux * 8; | 
 |   const int duy = suy + mv.row; | 
 |   const int dux = sux + mv.col; | 
 |  | 
 |   // Assume the center pixel of the block has exactly the same motion vector | 
 |   // as transmitted for the block. First shift the origin of the source | 
 |   // points to the block center, and the origin of the destination points to | 
 |   // the block center added to the motion vector transmitted. | 
 |   // Let (xi, yi) denote the source points and (xi', yi') denote destination | 
 |   // points after origin shfifting, for i = 0, 1, 2, .... n-1. | 
 |   // Then if  P = [x0, y0, | 
 |   //               x1, y1 | 
 |   //               x2, y1, | 
 |   //                .... | 
 |   //              ] | 
 |   //          q = [x0', x1', x2', ... ]' | 
 |   //          r = [y0', y1', y2', ... ]' | 
 |   // the least squares problems that need to be solved are: | 
 |   //          [h1, h2]' = inv(P'P)P'q and | 
 |   //          [h3, h4]' = inv(P'P)P'r | 
 |   // where the affine transformation is given by: | 
 |   //          x' = h1.x + h2.y | 
 |   //          y' = h3.x + h4.y | 
 |   // | 
 |   // The loop below computes: A = P'P, Bx = P'q, By = P'r | 
 |   // We need to just compute inv(A).Bx and inv(A).By for the solutions. | 
 |   // Contribution from neighbor block | 
 |   for (int i = 0; i < np; i++) { | 
 |     const int dx = pts2[i * 2] - dux; | 
 |     const int dy = pts2[i * 2 + 1] - duy; | 
 |     const int sx = pts1[i * 2] - sux; | 
 |     const int sy = pts1[i * 2 + 1] - suy; | 
 |     // (TODO)yunqing: This comparison wouldn't be necessary if the sample | 
 |     // selection is done in find_samples(). Also, global offset can be removed | 
 |     // while collecting samples. | 
 |     if (abs(sx - dx) < LS_MV_MAX && abs(sy - dy) < LS_MV_MAX) { | 
 |       A[0][0] += LS_SQUARE(sx); | 
 |       A[0][1] += LS_PRODUCT1(sx, sy); | 
 |       A[1][1] += LS_SQUARE(sy); | 
 |       Bx[0] += LS_PRODUCT2(sx, dx); | 
 |       Bx[1] += LS_PRODUCT1(sy, dx); | 
 |       By[0] += LS_PRODUCT1(sx, dy); | 
 |       By[1] += LS_PRODUCT2(sy, dy); | 
 |     } | 
 |   } | 
 |  | 
 |   // Just for debugging, and can be removed later. | 
 |   assert(A[0][0] >= LS_MAT_MIN && A[0][0] <= LS_MAT_MAX); | 
 |   assert(A[0][1] >= LS_MAT_MIN && A[0][1] <= LS_MAT_MAX); | 
 |   assert(A[1][1] >= LS_MAT_MIN && A[1][1] <= LS_MAT_MAX); | 
 |   assert(Bx[0] >= LS_MAT_MIN && Bx[0] <= LS_MAT_MAX); | 
 |   assert(Bx[1] >= LS_MAT_MIN && Bx[1] <= LS_MAT_MAX); | 
 |   assert(By[0] >= LS_MAT_MIN && By[0] <= LS_MAT_MAX); | 
 |   assert(By[1] >= LS_MAT_MIN && By[1] <= LS_MAT_MAX); | 
 |  | 
 |   // Compute Determinant of A | 
 |   const int64_t Det = (int64_t)A[0][0] * A[1][1] - (int64_t)A[0][1] * A[0][1]; | 
 |   if (Det == 0) return 1; | 
 |  | 
 |   int16_t shift; | 
 |   int16_t iDet = resolve_divisor_64(llabs(Det), &shift) * (Det < 0 ? -1 : 1); | 
 |   shift -= WARPEDMODEL_PREC_BITS; | 
 |   if (shift < 0) { | 
 |     iDet <<= (-shift); | 
 |     shift = 0; | 
 |   } | 
 |  | 
 |   int64_t Px[2], Py[2]; | 
 |   // These divided by the Det, are the least squares solutions | 
 |   Px[0] = (int64_t)A[1][1] * Bx[0] - (int64_t)A[0][1] * Bx[1]; | 
 |   Px[1] = -(int64_t)A[0][1] * Bx[0] + (int64_t)A[0][0] * Bx[1]; | 
 |   Py[0] = (int64_t)A[1][1] * By[0] - (int64_t)A[0][1] * By[1]; | 
 |   Py[1] = -(int64_t)A[0][1] * By[0] + (int64_t)A[0][0] * By[1]; | 
 |  | 
 |   wm->wmmat[2] = get_mult_shift_diag(Px[0], iDet, shift); | 
 |   wm->wmmat[3] = get_mult_shift_ndiag(Px[1], iDet, shift); | 
 |   wm->wmmat[4] = get_mult_shift_ndiag(Py[0], iDet, shift); | 
 |   wm->wmmat[5] = get_mult_shift_diag(Py[1], iDet, shift); | 
 |  | 
 |   av1_reduce_warp_model(wm); | 
 |   // check compatibility with the fast warp filter | 
 |   if (!av1_get_shear_params(wm)) return 1; | 
 |   av1_set_warp_translation(mi_row, mi_col, bsize, mv, wm); | 
 |   wm->wmmat[6] = wm->wmmat[7] = 0; | 
 |   return 0; | 
 | } | 
 |  | 
 | int av1_find_projection(int np, const int *pts1, const int *pts2, | 
 |                         BLOCK_SIZE bsize, MV mv, WarpedMotionParams *wm_params, | 
 |                         int mi_row, int mi_col) { | 
 |   assert(wm_params->wmtype == AFFINE); | 
 |  | 
 |   if (find_affine_int(np, pts1, pts2, bsize, mv, wm_params, mi_row, mi_col)) | 
 |     return 1; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Given a neighboring block's warp model and the motion vector at the center | 
 |    of the current block, construct a new warp model which is continuous with | 
 |    the neighbor at the common edge but which has the given motion vector at | 
 |    the center of the block. | 
 |  | 
 |     The `neighbor_is_above` parameter should be true if the neighboring block | 
 |     is above the current block, or false if it is to the left of the current | 
 |     block. | 
 |  | 
 |     Returns 0 if the resulting model can be used with the warp filter, | 
 |     1 if not. | 
 | */ | 
 | int av1_extend_warp_model(const bool neighbor_is_above, const BLOCK_SIZE bsize, | 
 |                           const MV *center_mv, const int mi_row, | 
 |                           const int mi_col, | 
 |                           const WarpedMotionParams *neighbor_wm, | 
 |                           WarpedMotionParams *wm_params) { | 
 |   const int half_width_log2 = mi_size_wide_log2[bsize] + MI_SIZE_LOG2 - 1; | 
 |   const int half_height_log2 = mi_size_high_log2[bsize] + MI_SIZE_LOG2 - 1; | 
 |   const int center_x = (mi_col * MI_SIZE) + (1 << half_width_log2) - 1; | 
 |   const int center_y = (mi_row * MI_SIZE) + (1 << half_height_log2) - 1; | 
 |   // Calculate the point (at warp model precision) where the center of the | 
 |   // current block should be mapped to | 
 |   int proj_center_x = (center_x * (1 << WARPEDMODEL_PREC_BITS)) + | 
 |                       (center_mv->col * (1 << (WARPEDMODEL_PREC_BITS - 3))); | 
 |   int proj_center_y = (center_y * (1 << WARPEDMODEL_PREC_BITS)) + | 
 |                       (center_mv->row * (1 << (WARPEDMODEL_PREC_BITS - 3))); | 
 |  | 
 |   *wm_params = default_warp_params; | 
 |   wm_params->wmtype = AFFINE; | 
 |  | 
 |   if (neighbor_is_above) { | 
 |     // We want to construct a model which will project the block center | 
 |     // according to the signaled motion vector, and which matches the | 
 |     // neighbor's warp model along the top edge of the block. | 
 |     // | 
 |     // We do this in three steps: | 
 |     // 1) Since the models should match along the whole top edge of the block, | 
 |     //    the coefficients of x in the warp model must be the same as for the | 
 |     //    neighboring block | 
 |     // | 
 |     // 2) The coefficients of y in the warp model can then be determined from | 
 |     //    the difference in projected positions between a point on the edge | 
 |     //    and the block center | 
 |     // | 
 |     // 3) The translational part can be derived (outside of this `if`) | 
 |     //    by subtracting the linear part of the model from the signaled MV. | 
 |  | 
 |     wm_params->wmmat[2] = neighbor_wm->wmmat[2]; | 
 |     wm_params->wmmat[4] = neighbor_wm->wmmat[4]; | 
 |  | 
 |     // Project above point | 
 |     int above_x = center_x; | 
 |     int above_y = center_y - (1 << half_height_log2); | 
 |     int proj_above_x = neighbor_wm->wmmat[2] * above_x + | 
 |                        neighbor_wm->wmmat[3] * above_y + neighbor_wm->wmmat[0]; | 
 |     int proj_above_y = neighbor_wm->wmmat[4] * above_x + | 
 |                        neighbor_wm->wmmat[5] * above_y + neighbor_wm->wmmat[1]; | 
 |  | 
 |     // y coefficients are (project(center) - project(above)) / (center.y - | 
 |     // above.y), which simplifies to (project(center) - project(above)) / | 
 |     // 2^(half_height_log2) | 
 |     wm_params->wmmat[3] = | 
 |         ROUND_POWER_OF_TWO(proj_center_x - proj_above_x, half_height_log2); | 
 |     wm_params->wmmat[5] = | 
 |         ROUND_POWER_OF_TWO(proj_center_y - proj_above_y, half_height_log2); | 
 |   } else { | 
 |     // If the neighboring block is to the left of the current block, we do the | 
 |     // same thing as for the above case, but with x and y axes interchanged | 
 |  | 
 |     wm_params->wmmat[3] = neighbor_wm->wmmat[3]; | 
 |     wm_params->wmmat[5] = neighbor_wm->wmmat[5]; | 
 |  | 
 |     // Project left point | 
 |     int left_x = center_x - (1 << half_width_log2); | 
 |     int left_y = center_y; | 
 |     int proj_left_x = neighbor_wm->wmmat[2] * left_x + | 
 |                       neighbor_wm->wmmat[3] * left_y + neighbor_wm->wmmat[0]; | 
 |     int proj_left_y = neighbor_wm->wmmat[4] * left_x + | 
 |                       neighbor_wm->wmmat[5] * left_y + neighbor_wm->wmmat[1]; | 
 |  | 
 |     // y coefficients are | 
 |     //    (project(center) - project(left)) / (center.y - left.y) | 
 |     // which simplifies to | 
 |     //    (project(center) - project(left)) / 2^(half_width_log2) | 
 |     wm_params->wmmat[2] = | 
 |         ROUND_POWER_OF_TWO(proj_center_x - proj_left_x, half_width_log2); | 
 |     wm_params->wmmat[4] = | 
 |         ROUND_POWER_OF_TWO(proj_center_y - proj_left_y, half_width_log2); | 
 |   } | 
 |  | 
 |   av1_reduce_warp_model(wm_params); | 
 |   // check compatibility with the fast warp filter | 
 |   if (!av1_get_shear_params(wm_params)) return 1; | 
 |  | 
 |   // Derive translational part from signaled MV | 
 |   av1_set_warp_translation(mi_row, mi_col, bsize, *center_mv, wm_params); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // From the warp model, derive the MV in (x,y) position. | 
 | // (x,y) is the horizontal and vertical position of the frame | 
 | //(0,0) is the top-left co-ordinate of the frame | 
 | int_mv get_warp_motion_vector_xy_pos(const WarpedMotionParams *model, | 
 |                                      const int x, const int y, | 
 |                                      MvSubpelPrecision precision) { | 
 |   int_mv res; | 
 |  | 
 | #if CONFIG_COMPOUND_WARP_CAUSAL | 
 |   if (model->invalid || model->wmtype == IDENTITY) { | 
 | #else | 
 |   if (model->wmtype == IDENTITY) { | 
 | #endif  // CONFIG_COMPOUND_WARP_CAUSAL | 
 |     res.as_int = 0; | 
 |     return res; | 
 |   } | 
 |  | 
 |   if (model->wmtype == TRANSLATION) { | 
 |     // All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16) | 
 |     // bits of fractional precision. The offset for a translation is stored in | 
 |     // entries 0 and 1. For translations, all but the top three (two if | 
 |     // precision < MV_SUBPEL_EIGHTH) fractional bits are always | 
 |     // zero. | 
 |     // | 
 |     // After the right shifts, there are 3 fractional bits of precision. If | 
 |     // precision < MV_SUBPEL_EIGHTH is false, the bottom bit is always zero | 
 |     // (so we don't need a call to convert_to_trans_prec here) | 
 |     res.as_mv.col = model->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF; | 
 |     res.as_mv.row = model->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF; | 
 |  | 
 | #if CONFIG_C071_SUBBLK_WARPMV | 
 |     if (precision < MV_PRECISION_HALF_PEL) | 
 | #endif  // CONFIG_C071_SUBBLK_WARPMV | 
 |       lower_mv_precision(&res.as_mv, precision); | 
 |     return res; | 
 |   } | 
 |  | 
 |   const int32_t *mat = model->wmmat; | 
 |   int tx, ty; | 
 |  | 
 |   if (model->wmtype == ROTZOOM) { | 
 |     assert(model->wmmat[5] == model->wmmat[2]); | 
 |     assert(model->wmmat[4] == -model->wmmat[3]); | 
 |   } | 
 |  | 
 |   int xc = | 
 |       (mat[2] * x + mat[3] * y + mat[0]) - (1 << WARPEDMODEL_PREC_BITS) * x; | 
 |   int yc = | 
 |       (mat[4] * x + mat[5] * y + mat[1]) - (1 << WARPEDMODEL_PREC_BITS) * y; | 
 |  | 
 |   tx = convert_to_trans_prec(precision, xc); | 
 |   ty = convert_to_trans_prec(precision, yc); | 
 |  | 
 |   res.as_mv.row = ty; | 
 |   res.as_mv.col = tx; | 
 |  | 
 | #if CONFIG_C071_SUBBLK_WARPMV | 
 |   if (precision < MV_PRECISION_HALF_PEL) | 
 | #endif  // CONFIG_C071_SUBBLK_WARPMV | 
 |     lower_mv_precision(&res.as_mv, precision); | 
 |   return res; | 
 | } | 
 |  | 
 | // return 0 if the model is invalid | 
 | // pts (col, row) is the array of source points in the unit of integer pixel | 
 | // mvs are the array of the MVs corresponding to the source points | 
 | // for nth point, | 
 | //  pts[2*n] is the col value of the source position. pts[2*n + 1] is the row | 
 | //  value of the source position mvs[2*n] is the col value of mv. mvs[2*n + 1] | 
 | //  is the row value of mv pts_inref[2*n] is the col value of the projected | 
 | //  position. pts_inref[2*n + 1] is the row value of the projected position | 
 | int get_model_from_corner_mvs(WarpedMotionParams *derive_model, int *pts, | 
 |                               int np, int *mvs, const BLOCK_SIZE bsize) { | 
 |   // In order to derive the warp model we need 3 projected points | 
 |   // If the number of projected points (np) is not equal to 3, model is not | 
 |   // valid. | 
 |   if (np != 3) { | 
 |     derive_model->invalid = 1; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int x0, y0; | 
 |   int ref_x0, ref_x1, ref_x2, ref_y0, ref_y1, ref_y2; | 
 |   int pts_inref[2 * 3]; | 
 |   const int width_log2 = mi_size_wide_log2[bsize] + MI_SIZE_LOG2; | 
 |   const int height_log2 = mi_size_high_log2[bsize] + MI_SIZE_LOG2; | 
 |  | 
 |   assert(derive_model != NULL); | 
 |  | 
 |   for (int n = 0; n < np; n++) { | 
 |     pts_inref[2 * n] = pts[2 * n] * (1 << WARPEDMODEL_PREC_BITS) + | 
 |                        mvs[2 * n] * (1 << GM_TRANS_ONLY_PREC_DIFF); | 
 |     pts_inref[2 * n + 1] = pts[2 * n + 1] * (1 << WARPEDMODEL_PREC_BITS) + | 
 |                            mvs[2 * n + 1] * (1 << GM_TRANS_ONLY_PREC_DIFF); | 
 |     int valid_point = (pts[2 * n] >= 0 && pts[2 * n + 1] >= 0 && | 
 |                        pts_inref[2 * n] >= 0 && pts_inref[2 * n + 1] >= 0); | 
 |     if (!valid_point) return 0; | 
 |   } | 
 |  | 
 |   int all_mvs_same = 1; | 
 |   for (int k = 1; k < np; k++) { | 
 |     all_mvs_same &= (mvs[0] == mvs[2 * k]) & (mvs[1] == mvs[2 * k + 1]); | 
 |   } | 
 |   if (all_mvs_same) { | 
 |     derive_model->invalid = 1; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Top-left point | 
 |   x0 = pts[2 * 0]; | 
 |   y0 = pts[2 * 0 + 1]; | 
 |   ref_x0 = pts_inref[2 * 0]; | 
 |   ref_y0 = pts_inref[2 * 0 + 1]; | 
 |  | 
 |   // Top-right point | 
 |   ref_x1 = pts_inref[2 * 1]; | 
 |   ref_y1 = pts_inref[2 * 1 + 1]; | 
 |  | 
 |   // Bottom-left point | 
 |   ref_x2 = pts_inref[2 * 2]; | 
 |   ref_y2 = pts_inref[2 * 2 + 1]; | 
 |  | 
 |   derive_model->wmmat[2] = (ref_x1 - ref_x0) >> width_log2; | 
 |   derive_model->wmmat[4] = (ref_y1 - ref_y0) >> width_log2; | 
 |  | 
 |   derive_model->wmmat[3] = (ref_x2 - ref_x0) >> height_log2; | 
 |   derive_model->wmmat[5] = (ref_y2 - ref_y0) >> height_log2; | 
 |  | 
 |   int64_t wmmat0 = (int64_t)ref_x0 - | 
 |                    (int64_t)derive_model->wmmat[2] * (int64_t)x0 - | 
 |                    (int64_t)derive_model->wmmat[3] * (int64_t)y0; | 
 |   int64_t wmmat1 = (int64_t)ref_y0 - | 
 |                    (int64_t)derive_model->wmmat[4] * (int64_t)x0 - | 
 |                    (int64_t)derive_model->wmmat[5] * (int64_t)y0; | 
 |  | 
 |   derive_model->wmtype = AFFINE; | 
 |   derive_model->invalid = 0; | 
 |  | 
 |   av1_reduce_warp_model(derive_model); | 
 |  | 
 |   // check compatibility with the fast warp filter | 
 |   if (!av1_get_shear_params(derive_model)) { | 
 |     derive_model->invalid = 1; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   derive_model->wmmat[0] = (int32_t)clamp64(wmmat0, -WARPEDMODEL_TRANS_CLAMP, | 
 |                                             WARPEDMODEL_TRANS_CLAMP - 1); | 
 |   derive_model->wmmat[1] = (int32_t)clamp64(wmmat1, -WARPEDMODEL_TRANS_CLAMP, | 
 |                                             WARPEDMODEL_TRANS_CLAMP - 1); | 
 |  | 
 |   derive_model->wmmat[6] = derive_model->wmmat[7] = 0; | 
 |  | 
 |   return 1; | 
 | } |