| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <stddef.h> | 
 |  | 
 | #include "av1/common/av1_common_int.h" | 
 | #include "av1/common/blockd.h" | 
 | #include "av1/common/enums.h" | 
 | #include "av1/common/filter.h" | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 | #include "config/aom_scale_rtcd.h" | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom/aom_codec.h" | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_dsp/binary_codes_reader.h" | 
 | #include "aom_dsp/bitreader.h" | 
 | #include "aom_dsp/bitreader_buffer.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "aom_ports/aom_timer.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_ports/mem_ops.h" | 
 | #include "aom_scale/aom_scale.h" | 
 | #include "aom_util/aom_thread.h" | 
 |  | 
 | #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG | 
 | #include "aom_util/debug_util.h" | 
 | #endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG | 
 |  | 
 | #include "av1/common/alloccommon.h" | 
 | #include "av1/common/cdef.h" | 
 | #include "av1/common/ccso.h" | 
 | #include "av1/common/cfl.h" | 
 | #if CONFIG_INSPECTION | 
 | #include "av1/decoder/inspection.h" | 
 | #endif | 
 | #include "av1/common/common.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/entropymv.h" | 
 | #include "av1/common/frame_buffers.h" | 
 | #include "av1/common/idct.h" | 
 | #include "av1/common/mvref_common.h" | 
 | #include "av1/common/pred_common.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/reconinter.h" | 
 | #include "av1/common/reconintra.h" | 
 | #include "av1/common/resize.h" | 
 | #include "av1/common/seg_common.h" | 
 | #include "av1/common/thread_common.h" | 
 | #include "av1/common/tile_common.h" | 
 | #include "av1/common/tip.h" | 
 | #include "av1/common/warped_motion.h" | 
 | #include "av1/common/obmc.h" | 
 | #include "av1/decoder/decodeframe.h" | 
 | #include "av1/decoder/decodemv.h" | 
 | #include "av1/decoder/decoder.h" | 
 | #include "av1/decoder/decodetxb.h" | 
 | #include "av1/decoder/detokenize.h" | 
 |  | 
 | #define AOM_MIN_THREADS_PER_TILE 1 | 
 | #define AOM_MAX_THREADS_PER_TILE 2 | 
 |  | 
 | // This is needed by ext_tile related unit tests. | 
 | #define EXT_TILE_DEBUG 1 | 
 | #define MC_TEMP_BUF_PELS                       \ | 
 |   (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \ | 
 |    ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2)) | 
 |  | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 | static void read_wienerns_framefilters(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                        int plane, aom_reader *rb, | 
 |                                        int16_t *frame_filter_dictionary, | 
 |                                        int dict_stride); | 
 |  | 
 | void copy_frame_filters_to_runits_if_needed(AV1_COMMON *cm) { | 
 |   RestorationInfo *rsi = &cm->rst_info[AOM_PLANE_Y]; | 
 |   if ((rsi->frame_restoration_type == RESTORE_WIENER_NONSEP || | 
 |        rsi->frame_restoration_type == RESTORE_SWITCHABLE) && | 
 |       rsi->frame_filters_on) { | 
 |     assert(rsi->frame_filters_initialized); | 
 |     for (int runit_idx = 0; runit_idx < rsi->units_per_tile; ++runit_idx) { | 
 |       RestorationUnitInfo *rui = &rsi->unit_info[runit_idx]; | 
 |       if (rui->restoration_type == RESTORE_WIENER_NONSEP) { | 
 |         copy_nsfilter_taps(&rui->wienerns_info, &rsi->frame_filters); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |  | 
 | #if CONFIG_THROUGHPUT_ANALYSIS | 
 | int64_t tot_ctx_syms = { 0 }; | 
 | int64_t tot_bypass_syms = { 0 }; | 
 | int64_t max_ctx_syms = { 0 }; | 
 | int64_t max_bypass_syms = { 0 }; | 
 | int64_t max_bits = { 0 }; | 
 | int64_t tot_bits = { 0 }; | 
 | int64_t tot_frames = { 0 }; | 
 | int64_t total_context_switch = { 0 }; | 
 | int64_t total_total_hits = { 0 }; | 
 | #endif  // CONFIG_THROUGHPUT_ANALYSIS | 
 |  | 
 | // Checks that the remaining bits start with a 1 and ends with 0s. | 
 | // It consumes an additional byte, if already byte aligned before the check. | 
 | int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   // bit_offset is set to 0 (mod 8) when the reader is already byte aligned | 
 |   int bits_before_alignment = 8 - rb->bit_offset % 8; | 
 |   int trailing = aom_rb_read_literal(rb, bits_before_alignment); | 
 |   if (trailing != (1 << (bits_before_alignment - 1))) { | 
 |     cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
 |     return -1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Use only_chroma = 1 to only set the chroma planes | 
 | static AOM_INLINE void set_planes_to_neutral_grey( | 
 |     const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf, | 
 |     int only_chroma) { | 
 |   const int val = 1 << (seq_params->bit_depth - 1); | 
 |   for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { | 
 |     const int is_uv = plane > 0; | 
 |     uint16_t *const base = buf->buffers[plane]; | 
 |     // Set the first row to neutral grey. Then copy the first row to all | 
 |     // subsequent rows. | 
 |     if (buf->crop_heights[is_uv] > 0) { | 
 |       aom_memset16(base, val, buf->crop_widths[is_uv]); | 
 |       for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) { | 
 |         memcpy(&base[row_idx * buf->strides[is_uv]], base, | 
 |                sizeof(*base) * buf->crop_widths[is_uv]); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void loop_restoration_read_sb_coeffs(AV1_COMMON *cm, | 
 |                                                        MACROBLOCKD *xd, | 
 |                                                        aom_reader *const r, | 
 |                                                        int plane, | 
 |                                                        int runit_idx); | 
 |  | 
 | static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { | 
 |   return len != 0 && len <= (size_t)(end - start); | 
 | } | 
 |  | 
 | static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb, | 
 |                             int coded_lossless) { | 
 |   if (coded_lossless) return ONLY_4X4; | 
 |   return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST; | 
 | } | 
 |  | 
 | static REFERENCE_MODE read_frame_reference_mode( | 
 |     const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   if (frame_is_intra_only(cm)) { | 
 |     return SINGLE_REFERENCE; | 
 |   } else { | 
 |     return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void inverse_transform_block(DecoderCodingBlock *dcb, | 
 |                                                const AV1_COMMON *cm, int plane, | 
 |                                                const TX_TYPE tx_type, | 
 |                                                const TX_SIZE tx_size, | 
 |                                                uint16_t *dst, int stride, | 
 |                                                int reduced_tx_set) { | 
 |   tran_low_t *dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane]; | 
 |   eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; | 
 |   uint16_t scan_line = eob_data->max_scan_line; | 
 |   uint16_t eob = eob_data->eob; | 
 |   // Update eob and scan_line according to those of the other chroma plane | 
 |   if (plane && is_cctx_allowed(cm, &dcb->xd)) { | 
 |     eob_info *eob_data_c1 = | 
 |         dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U]; | 
 |     eob_info *eob_data_c2 = | 
 |         dcb->eob_data[AOM_PLANE_V] + dcb->txb_offset[AOM_PLANE_V]; | 
 |     scan_line = AOMMAX(eob_data_c1->max_scan_line, eob_data_c2->max_scan_line); | 
 |     eob = AOMMAX(eob_data_c1->eob, eob_data_c2->eob); | 
 |   } | 
 |   av1_inverse_transform_block( | 
 |       &dcb->xd, dqcoeff, plane, tx_type, tx_size, dst, stride, eob, | 
 | #if CONFIG_INTER_DDT | 
 |       replace_adst_by_ddt(cm->seq_params.enable_inter_ddt, | 
 |                           cm->features.allow_screen_content_tools, &dcb->xd), | 
 | #endif  // CONFIG_INTER_DDT | 
 |       reduced_tx_set); | 
 |   const int width = tx_size_wide[tx_size] <= 32 ? tx_size_wide[tx_size] : 32; | 
 |   const int height = tx_size_high[tx_size] <= 32 ? tx_size_high[tx_size] : 32; | 
 |   const int sbSize = (width >= 8 && height >= 8) ? 8 : 4; | 
 |   int32_t nz0 = (sbSize - 1) * tx_size_wide[tx_size] + sbSize; | 
 |   int32_t nz1 = (scan_line + 1); | 
 |   memset(dqcoeff, 0, AOMMAX(nz0, nz1) * sizeof(dqcoeff[0])); | 
 | } | 
 |  | 
 | static AOM_INLINE void read_coeffs_tx_intra_block( | 
 |     const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, | 
 |     const int plane, const int row, const int col, const TX_SIZE tx_size) { | 
 |   MB_MODE_INFO *mbmi = dcb->xd.mi[0]; | 
 |   if (!mbmi->skip_txfm[dcb->xd.tree_type == CHROMA_PART]) { | 
 | #if TXCOEFF_TIMER | 
 |     struct aom_usec_timer timer; | 
 |     aom_usec_timer_start(&timer); | 
 | #endif | 
 |     av1_read_coeffs_txb_facade(cm, dcb, r, plane, row, col, tx_size); | 
 | #if TXCOEFF_TIMER | 
 |     aom_usec_timer_mark(&timer); | 
 |     const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); | 
 |     cm->txcoeff_timer += elapsed_time; | 
 |     ++cm->txb_count; | 
 | #endif | 
 |   } else { | 
 |     // all tx blocks are skipped. | 
 |     av1_update_txk_skip_array(cm, dcb->xd.mi_row, dcb->xd.mi_col, | 
 |                               dcb->xd.tree_type, &mbmi->chroma_ref_info, plane, | 
 |                               row, col, tx_size); | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_block_void(const AV1_COMMON *const cm, | 
 |                                          DecoderCodingBlock *dcb, | 
 |                                          aom_reader *const r, const int plane, | 
 |                                          const int row, const int col, | 
 |                                          const TX_SIZE tx_size) { | 
 |   (void)cm; | 
 |   (void)dcb; | 
 |   (void)r; | 
 |   (void)plane; | 
 |   (void)row; | 
 |   (void)col; | 
 |   (void)tx_size; | 
 | } | 
 |  | 
 | static AOM_INLINE void predict_inter_block_void(AV1_COMMON *const cm, | 
 |                                                 DecoderCodingBlock *dcb, | 
 |                                                 BLOCK_SIZE bsize) { | 
 |   (void)cm; | 
 |   (void)dcb; | 
 |   (void)bsize; | 
 | } | 
 |  | 
 | static AOM_INLINE void cfl_store_inter_block_void(AV1_COMMON *const cm, | 
 |                                                   MACROBLOCKD *const xd) { | 
 |   (void)cm; | 
 |   (void)xd; | 
 | } | 
 |  | 
 | static AOM_INLINE void predict_and_reconstruct_intra_block( | 
 |     const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, | 
 |     const int plane, const int row, const int col, const TX_SIZE tx_size) { | 
 |   (void)r; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   PLANE_TYPE plane_type = get_plane_type(plane); | 
 |  | 
 |   av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); | 
 | #if CONFIG_INSPECTION | 
 |   { | 
 |     const int txwpx = tx_size_wide[tx_size]; | 
 |     const int txhpx = tx_size_high[tx_size]; | 
 |  | 
 |     struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |     const int dst_stride = pd->dst.stride; | 
 |     uint16_t *dst = &pd->dst.buf[(row * dst_stride + col) << MI_SIZE_LOG2]; | 
 |     for (int i = 0; i < txhpx; i++) { | 
 |       for (int j = 0; j < txwpx; j++) { | 
 |         uint16_t pixel = dst[i * dst_stride + j]; | 
 |         int stride = cm->predicted_pixels.strides[plane > 0]; | 
 |         int pixel_c, pixel_r; | 
 |  | 
 |         if (plane) { | 
 |           mi_to_pixel_loc(&pixel_c, &pixel_r, | 
 |                           mbmi->chroma_ref_info.mi_col_chroma_base, | 
 |                           mbmi->chroma_ref_info.mi_row_chroma_base, col, row, | 
 |                           pd->subsampling_x, pd->subsampling_y); | 
 |         } else { | 
 |           mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, col, row, | 
 |                           pd->subsampling_x, pd->subsampling_y); | 
 |         } | 
 |  | 
 |         pixel_c += j; | 
 |         pixel_r += i; | 
 |         cm->predicted_pixels.buffers[plane][pixel_r * stride + pixel_c] = pixel; | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_INSPECTION | 
 |  | 
 | #if CONFIG_MISMATCH_DEBUG | 
 |   const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); | 
 |   const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); | 
 |   int pixel_c, pixel_r; | 
 |   BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; | 
 |   int blk_w = block_size_wide[bsize]; | 
 |   int blk_h = block_size_high[bsize]; | 
 |   if (plane == 0 || xd->is_chroma_ref) { | 
 |     struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |     if (plane) { | 
 |       mi_to_pixel_loc(&pixel_c, &pixel_r, | 
 |                       mbmi->chroma_ref_info.mi_col_chroma_base, | 
 |                       mbmi->chroma_ref_info.mi_row_chroma_base, col, row, | 
 |                       pd->subsampling_x, pd->subsampling_y); | 
 |     } else { | 
 |       mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row, | 
 |                       pd->subsampling_x, pd->subsampling_y); | 
 |     } | 
 |     mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                              cm->current_frame.display_order_hint, | 
 | #else | 
 |                              cm->current_frame.order_hint, | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                              plane, pixel_c, pixel_r, blk_w, blk_h); | 
 |   } | 
 | #endif  // CONFIG_MISMATCH_DEBUG | 
 |  | 
 |   if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) { | 
 |     eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; | 
 |     // In CCTX, when C2 eob = 0 but C1 eob > 0, plane V reconstruction is | 
 |     // still needed | 
 |     int recon_with_cctx = 0; | 
 |     if (is_cctx_allowed(cm, xd) && plane == AOM_PLANE_V && | 
 |         av1_get_cctx_type(xd, row, col) > CCTX_NONE) { | 
 |       eob_info *eob_data_c1 = | 
 |           dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U]; | 
 |       recon_with_cctx = eob_data_c1->eob > 0; | 
 |     } | 
 |     if (eob_data->eob || recon_with_cctx) { | 
 |       const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; | 
 |       // tx_type was read out in av1_read_coeffs_txb. | 
 |       const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size, | 
 |                                               reduced_tx_set_used); | 
 |       struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |       uint16_t *dst = | 
 |           &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; | 
 |       inverse_transform_block(dcb, cm, plane, tx_type, tx_size, dst, | 
 |                               pd->dst.stride, reduced_tx_set_used); | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_MISMATCH_DEBUG | 
 |   { | 
 |     struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |     uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; | 
 |     if (plane) { | 
 |       mi_to_pixel_loc(&pixel_c, &pixel_r, | 
 |                       mbmi->chroma_ref_info.mi_col_chroma_base, | 
 |                       mbmi->chroma_ref_info.mi_row_chroma_base, col, row, | 
 |                       pd->subsampling_x, pd->subsampling_y); | 
 |     } else { | 
 |       mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row, | 
 |                       pd->subsampling_x, pd->subsampling_y); | 
 |     } | 
 |     mismatch_check_block_tx(dst, pd->dst.stride, | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                             cm->current_frame.display_order_hint, | 
 | #else | 
 |                             cm->current_frame.order_hint, | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                             plane, pixel_c, pixel_r, blk_w, blk_h); | 
 |   } | 
 | #endif  // CONFIG_MISMATCH_DEBUG | 
 |  | 
 |   if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd) && | 
 |       xd->tree_type == SHARED_PART) { | 
 |     cfl_store_tx(xd, row, col, tx_size, cm->seq_params.enable_cfl_ds_filter); | 
 |   } | 
 | } | 
 |  | 
 | // Facade function for inverse cross chroma component transform | 
 | static AOM_INLINE void inverse_cross_chroma_transform_block( | 
 |     const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, | 
 |     const int plane, const int blk_row, const int blk_col, | 
 |     const TX_SIZE tx_size) { | 
 |   (void)cm; | 
 |   (void)r; | 
 |   (void)plane; | 
 |   tran_low_t *dqcoeff_c1 = | 
 |       dcb->dqcoeff_block[AOM_PLANE_U] + dcb->cb_offset[AOM_PLANE_U]; | 
 |   tran_low_t *dqcoeff_c2 = | 
 |       dcb->dqcoeff_block[AOM_PLANE_V] + dcb->cb_offset[AOM_PLANE_V]; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   const CctxType cctx_type = av1_get_cctx_type(xd, blk_row, blk_col); | 
 |   av1_inv_cross_chroma_tx_block(dqcoeff_c1, dqcoeff_c2, tx_size, cctx_type); | 
 | } | 
 |  | 
 | static AOM_INLINE void inverse_transform_inter_block( | 
 |     const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, | 
 |     const int plane, const int blk_row, const int blk_col, | 
 |     const TX_SIZE tx_size) { | 
 |   (void)r; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   PLANE_TYPE plane_type = get_plane_type(plane); | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; | 
 |   // tx_type was read out in av1_read_coeffs_txb. | 
 |   const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, | 
 |                                           tx_size, reduced_tx_set_used); | 
 |  | 
 |   uint16_t *dst = | 
 |       &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; | 
 |   inverse_transform_block(dcb, cm, plane, tx_type, tx_size, dst, pd->dst.stride, | 
 |                           reduced_tx_set_used); | 
 | #if CONFIG_MISMATCH_DEBUG | 
 |   int pixel_c, pixel_r; | 
 |   BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; | 
 |   int blk_w = block_size_wide[bsize]; | 
 |   int blk_h = block_size_high[bsize]; | 
 |   const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); | 
 |   const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); | 
 |   if (plane) { | 
 |     MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |     mi_to_pixel_loc(&pixel_c, &pixel_r, | 
 |                     mbmi->chroma_ref_info.mi_col_chroma_base, | 
 |                     mbmi->chroma_ref_info.mi_row_chroma_base, blk_col, blk_row, | 
 |                     pd->subsampling_x, pd->subsampling_y); | 
 |   } else { | 
 |     mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, | 
 |                     pd->subsampling_x, pd->subsampling_y); | 
 |   } | 
 |   mismatch_check_block_tx(dst, pd->dst.stride, | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                           cm->current_frame.display_order_hint, | 
 | #else | 
 |                           cm->current_frame.order_hint, | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                           plane, pixel_c, pixel_r, blk_w, blk_h); | 
 | #endif  // CONFIG_MISMATCH_DEBUG | 
 | } | 
 |  | 
 | static AOM_INLINE void set_cb_buffer_offsets(DecoderCodingBlock *dcb, | 
 |                                              TX_SIZE tx_size, int plane) { | 
 |   dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size]; | 
 |   dcb->txb_offset[plane] = | 
 |       dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_reconstruct_tx(AV1_COMMON *cm, | 
 |                                              ThreadData *const td, | 
 |                                              aom_reader *r, | 
 |                                              MB_MODE_INFO *const mbmi, | 
 |                                              int plane, BLOCK_SIZE plane_bsize, | 
 |                                              int blk_row, int blk_col, | 
 | #if !CONFIG_NEW_TX_PARTITION | 
 |                                              int block, | 
 | #endif  // !CONFIG_NEW_TX_PARTITION | 
 |                                              TX_SIZE tx_size, int *eob_total) { | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) return; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 | #if CONFIG_NEW_TX_PARTITION | 
 |   const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); | 
 |   const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); | 
 |   const TX_SIZE plane_tx_size = | 
 |       plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, | 
 |                                     pd->subsampling_y) | 
 |             : mbmi->inter_tx_size[index]; | 
 | #else | 
 |   const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); | 
 |   const TX_SIZE plane_tx_size = | 
 |       plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, | 
 |                                     pd->subsampling_y) | 
 |             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, | 
 |                                                          blk_col)]; | 
 | #endif  // CONFIG_NEW_TX_PARTITION | 
 | #else | 
 |   if (xd->tree_type == SHARED_PART) | 
 |     assert(mbmi->sb_type[PLANE_TYPE_Y] == mbmi->sb_type[PLANE_TYPE_UV]); | 
 |   const TX_SIZE plane_tx_size = | 
 |       plane ? av1_get_max_uv_txsize(mbmi->sb_type[plane > 0], pd->subsampling_x, | 
 |                                     pd->subsampling_y) | 
 |             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, | 
 |                                                          blk_col)]; | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |   // Scale to match transform block unit. | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |  | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |  | 
 |   if (tx_size == plane_tx_size || plane) { | 
 |     if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { | 
 |       td->read_coeffs_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_U, blk_row, | 
 |                                            blk_col, tx_size); | 
 |       td->read_coeffs_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_V, blk_row, | 
 |                                            blk_col, tx_size); | 
 |       td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col, tx_size); | 
 |       td->inverse_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_U, blk_row, | 
 |                                        blk_col, tx_size); | 
 |       td->inverse_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_V, blk_row, | 
 |                                        blk_col, tx_size); | 
 |       eob_info *eob_data_c1 = | 
 |           dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U]; | 
 |       eob_info *eob_data_c2 = | 
 |           dcb->eob_data[AOM_PLANE_V] + dcb->txb_offset[AOM_PLANE_V]; | 
 |       *eob_total += eob_data_c1->eob + eob_data_c2->eob; | 
 |       set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U); | 
 |       set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V); | 
 |     } else { | 
 |       assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)); | 
 |       td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, | 
 |                                            tx_size); | 
 |  | 
 |       td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, | 
 |                                        tx_size); | 
 |       eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; | 
 |       *eob_total += eob_data->eob; | 
 |       set_cb_buffer_offsets(dcb, tx_size, plane); | 
 |     } | 
 |   } else { | 
 | #if CONFIG_NEW_TX_PARTITION | 
 |     get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, | 
 |                            &mbmi->txb_pos, mbmi->sub_txs); | 
 |  | 
 |     for (int txb_idx = 0; txb_idx < mbmi->txb_pos.n_partitions; ++txb_idx) { | 
 |       mbmi->txb_idx = 0; | 
 |       const TX_SIZE sub_tx = mbmi->sub_txs[txb_idx]; | 
 |       const int offsetr = blk_row + mbmi->txb_pos.row_offset[txb_idx]; | 
 |       const int offsetc = blk_col + mbmi->txb_pos.col_offset[txb_idx]; | 
 |       if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
 |  | 
 |       td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, offsetr, offsetc, | 
 |                                            sub_tx); | 
 |       td->inverse_tx_inter_block_visit(cm, dcb, r, plane, offsetr, offsetc, | 
 |                                        sub_tx); | 
 |       eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; | 
 |       *eob_total += eob_data->eob; | 
 |       set_cb_buffer_offsets(dcb, sub_tx, plane); | 
 |     } | 
 | #else | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
 |     assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); | 
 |     assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); | 
 |     const int bsw = tx_size_wide_unit[sub_txs]; | 
 |     const int bsh = tx_size_high_unit[sub_txs]; | 
 |     const int sub_step = bsw * bsh; | 
 |  | 
 |     assert(bsw > 0 && bsh > 0); | 
 |  | 
 |     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { | 
 |       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
 |         const int offsetr = blk_row + row; | 
 |         const int offsetc = blk_col + col; | 
 |  | 
 |         if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
 |  | 
 |         decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr, | 
 |                               offsetc, block, sub_txs, eob_total); | 
 |         block += sub_step; | 
 |       } | 
 |     } | 
 | #endif  // CONFIG_NEW_TX_PARTITION | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
 |                                    BLOCK_SIZE bsize, int mi_row, int mi_col, | 
 |                                    int bw, int bh, int x_inside_boundary, | 
 |                                    int y_inside_boundary, | 
 |                                    PARTITION_TREE *parent, int index) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   const TileInfo *const tile = &xd->tile; | 
 |  | 
 |   set_mi_offsets(mi_params, xd, mi_row, mi_col | 
 | #if CONFIG_C071_SUBBLK_WARPMV | 
 |                  , | 
 |                  x_inside_boundary, y_inside_boundary | 
 | #endif  // CONFIG_C071_SUBBLK_WARPMV | 
 |   ); | 
 |   xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART] = bsize; | 
 | #if CONFIG_RD_DEBUG | 
 |   xd->mi[0]->mi_row = mi_row; | 
 |   xd->mi[0]->mi_col = mi_col; | 
 | #endif | 
 |  | 
 |   if (xd->tree_type == SHARED_PART) { | 
 |     assert(x_inside_boundary && y_inside_boundary); | 
 |     for (int x = 1; x < x_inside_boundary; ++x) xd->mi[x] = xd->mi[0]; | 
 |     int idx = mi_params->mi_stride; | 
 |     for (int y = 1; y < y_inside_boundary; ++y) { | 
 |       memcpy(&xd->mi[idx], &xd->mi[0], x_inside_boundary * sizeof(xd->mi[0])); | 
 |       idx += mi_params->mi_stride; | 
 |     } | 
 |   } | 
 |  | 
 |   CHROMA_REF_INFO *chroma_ref_info = &xd->mi[0]->chroma_ref_info; | 
 |   set_chroma_ref_info(xd->tree_type, mi_row, mi_col, index, bsize, | 
 |                       chroma_ref_info, parent ? &parent->chroma_ref_info : NULL, | 
 |                       parent ? parent->bsize : BLOCK_INVALID, | 
 |                       parent ? parent->partition : PARTITION_NONE, | 
 |                       xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); | 
 |   set_plane_n4(xd, bw, bh, num_planes, chroma_ref_info); | 
 |   set_entropy_context(xd, mi_row, mi_col, num_planes, chroma_ref_info); | 
 |  | 
 |   // Distance of Mb to the various image edges. These are specified to 8th pel | 
 |   // as they are always compared to values that are in 1/8th pel units | 
 |   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, | 
 |                  mi_params->mi_cols, chroma_ref_info); | 
 |  | 
 |   av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, | 
 |                        num_planes, chroma_ref_info); | 
 | } | 
 |  | 
 | #if !CONFIG_REFINEMV | 
 | typedef struct PadBlock { | 
 |   int x0; | 
 |   int x1; | 
 |   int y0; | 
 |   int y1; | 
 | } PadBlock; | 
 | #endif  //! CONFIG_REFINEMV | 
 |  | 
 | static AOM_INLINE void highbd_build_mc_border(const uint16_t *src, | 
 |                                               int src_stride, uint16_t *dst, | 
 |                                               int dst_stride, int x, int y, | 
 |                                               int b_w, int b_h, int w, int h) { | 
 |   // Get a pointer to the start of the real data for this row. | 
 |   const uint16_t *ref_row = src - x - y * src_stride; | 
 |  | 
 |   if (y >= h) | 
 |     ref_row += (h - 1) * src_stride; | 
 |   else if (y > 0) | 
 |     ref_row += y * src_stride; | 
 |  | 
 |   do { | 
 |     int right = 0, copy; | 
 |     int left = x < 0 ? -x : 0; | 
 |  | 
 |     if (left > b_w) left = b_w; | 
 |  | 
 |     if (x + b_w > w) right = x + b_w - w; | 
 |  | 
 |     if (right > b_w) right = b_w; | 
 |  | 
 |     copy = b_w - left - right; | 
 |  | 
 |     if (left) aom_memset16(dst, ref_row[0], left); | 
 |  | 
 |     if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); | 
 |  | 
 |     if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right); | 
 |  | 
 |     dst += dst_stride; | 
 |     ++y; | 
 |  | 
 |     if (y > 0 && y < h) ref_row += src_stride; | 
 |   } while (--b_h); | 
 | } | 
 |  | 
 | #if !CONFIG_REFINEMV | 
 | int update_extend_mc_border_params(const struct scale_factors *const sf, | 
 |                                    struct buf_2d *const pre_buf, MV32 scaled_mv, | 
 |                                    PadBlock *block, int subpel_x_mv, | 
 |                                    int subpel_y_mv, int do_warp, int is_intrabc, | 
 |                                    int *x_pad, int *y_pad) { | 
 |   // Get reference width and height. | 
 |   int frame_width = pre_buf->width; | 
 |   int frame_height = pre_buf->height; | 
 |  | 
 |   // Do border extension if there is motion or | 
 |   // width/height is not a multiple of 8 pixels. | 
 |   // Extension is needed in optical flow refinement to obtain MV offsets | 
 |   (void)scaled_mv; | 
 |   if (!is_intrabc && !do_warp) { | 
 |     if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { | 
 |       block->x0 -= AOM_INTERP_EXTEND - 1; | 
 |       block->x1 += AOM_INTERP_EXTEND; | 
 |       *x_pad = 1; | 
 |     } | 
 |  | 
 |     if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { | 
 |       block->y0 -= AOM_INTERP_EXTEND - 1; | 
 |       block->y1 += AOM_INTERP_EXTEND; | 
 |       *y_pad = 1; | 
 |     } | 
 |  | 
 |     // Skip border extension if block is inside the frame. | 
 |     if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || | 
 |         block->y1 > frame_height - 1) { | 
 |       return 1; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 | #endif  //! CONFIG_REFINEMV | 
 |  | 
 | static INLINE void extend_mc_border(const struct scale_factors *const sf, | 
 |                                     struct buf_2d *const pre_buf, | 
 |                                     MV32 scaled_mv, PadBlock block, | 
 |                                     int subpel_x_mv, int subpel_y_mv, | 
 |                                     int do_warp, int is_intrabc, | 
 |                                     uint16_t *mc_buf, uint16_t **pre, | 
 |                                     int *src_stride) { | 
 |   int x_pad = 0, y_pad = 0; | 
 |   if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, | 
 |                                      subpel_x_mv, subpel_y_mv, do_warp, | 
 |                                      is_intrabc, &x_pad, &y_pad | 
 | #if CONFIG_REFINEMV | 
 |                                      , | 
 |                                      NULL | 
 | #endif  // CONFIG_REFINEMV | 
 |  | 
 |                                      )) { | 
 |     // Get reference block pointer. | 
 |     const uint16_t *const buf_ptr = | 
 |         pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; | 
 |     int buf_stride = pre_buf->stride; | 
 |     const int b_w = block.x1 - block.x0; | 
 |     const int b_h = block.y1 - block.y0; | 
 |  | 
 |     // Extend the border. | 
 |     highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, | 
 |                            b_w, b_h, pre_buf->width, pre_buf->height); | 
 |  | 
 |     *src_stride = b_w; | 
 |     *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w + | 
 |            x_pad * (AOM_INTERP_EXTEND - 1); | 
 |   } | 
 | } | 
 | #if !CONFIG_REFINEMV | 
 | static void dec_calc_subpel_params(const MV *const src_mv, | 
 |                                    InterPredParams *const inter_pred_params, | 
 |                                    const MACROBLOCKD *const xd, int mi_x, | 
 |                                    int mi_y, uint16_t **pre, | 
 |                                    SubpelParams *subpel_params, int *src_stride, | 
 |                                    PadBlock *block, int use_optflow_refinement, | 
 |                                    MV32 *scaled_mv, int *subpel_x_mv, | 
 |                                    int *subpel_y_mv) { | 
 |   const struct scale_factors *sf = inter_pred_params->scale_factors; | 
 |   struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; | 
 |   // Use original block size to clamp MV and to extend block boundary | 
 |   const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width | 
 |                                         : inter_pred_params->block_width; | 
 |   const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height | 
 |                                         : inter_pred_params->block_height; | 
 |   const int is_scaled = av1_is_scaled(sf); | 
 |   if (is_scaled) { | 
 |     int ssx = inter_pred_params->subsampling_x; | 
 |     int ssy = inter_pred_params->subsampling_y; | 
 |     int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; | 
 |     int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; | 
 |     if (use_optflow_refinement) { | 
 |       orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS), | 
 |                                               MV_REFINE_PREC_BITS + ssy); | 
 |       orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS), | 
 |                                               MV_REFINE_PREC_BITS + ssx); | 
 |     } else { | 
 |       orig_pos_y += src_mv->row * (1 << (1 - ssy)); | 
 |       orig_pos_x += src_mv->col * (1 << (1 - ssx)); | 
 |     } | 
 |     int pos_y = sf->scale_value_y(orig_pos_y, sf); | 
 |     int pos_x = sf->scale_value_x(orig_pos_x, sf); | 
 |     pos_x += SCALE_EXTRA_OFF; | 
 |     pos_y += SCALE_EXTRA_OFF; | 
 |  | 
 |     const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); | 
 |     const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); | 
 |     const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) | 
 |                        << SCALE_SUBPEL_BITS; | 
 |     const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; | 
 |     pos_y = clamp(pos_y, top, bottom); | 
 |     pos_x = clamp(pos_x, left, right); | 
 |  | 
 |     subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; | 
 |     subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; | 
 |     subpel_params->xs = sf->x_step_q4; | 
 |     subpel_params->ys = sf->y_step_q4; | 
 |  | 
 |     // Get reference block top left coordinate. | 
 |     block->x0 = pos_x >> SCALE_SUBPEL_BITS; | 
 |     block->y0 = pos_y >> SCALE_SUBPEL_BITS; | 
 |  | 
 |     // Get reference block bottom right coordinate. | 
 |     block->x1 = | 
 |         ((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >> | 
 |          SCALE_SUBPEL_BITS) + | 
 |         1; | 
 |     block->y1 = | 
 |         ((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >> | 
 |          SCALE_SUBPEL_BITS) + | 
 |         1; | 
 |  | 
 |     MV temp_mv; | 
 |     temp_mv = clamp_mv_to_umv_border_sb( | 
 |         xd, src_mv, bw, bh, use_optflow_refinement, | 
 |         inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); | 
 |     *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); | 
 |     scaled_mv->row += SCALE_EXTRA_OFF; | 
 |     scaled_mv->col += SCALE_EXTRA_OFF; | 
 |  | 
 |     *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; | 
 |     *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; | 
 |   } else { | 
 |     // Get block position in current frame. | 
 |     int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; | 
 |     int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; | 
 |  | 
 |     const MV mv_q4 = clamp_mv_to_umv_border_sb( | 
 |         xd, src_mv, bw, bh, use_optflow_refinement, | 
 |         inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); | 
 |     subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; | 
 |     subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; | 
 |     subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; | 
 |  | 
 |     // Get reference block top left coordinate. | 
 |     pos_x += mv_q4.col; | 
 |     pos_y += mv_q4.row; | 
 |     block->x0 = pos_x >> SUBPEL_BITS; | 
 |     block->y0 = pos_y >> SUBPEL_BITS; | 
 |  | 
 |     // Get reference block bottom right coordinate. | 
 |     block->x1 = | 
 |         (pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1; | 
 |     block->y1 = | 
 |         (pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1; | 
 |  | 
 |     scaled_mv->row = mv_q4.row; | 
 |     scaled_mv->col = mv_q4.col; | 
 |     *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; | 
 |     *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; | 
 |   } | 
 |   *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; | 
 |   *src_stride = pre_buf->stride; | 
 |  | 
 | #if CONFIG_D071_IMP_MSK_BLD | 
 |   if (inter_pred_params->border_data.enable_bacp) { | 
 |     subpel_params->x0 = block->x0; | 
 |     subpel_params->x1 = block->x1; | 
 |     subpel_params->y0 = block->y0; | 
 |     subpel_params->y1 = block->y1; | 
 |   } | 
 | #endif  // CONFIG_D071_IMP_MSK_BLD | 
 | } | 
 | #endif  //! CONFIG_REFINEMV | 
 | static void dec_calc_subpel_params_and_extend( | 
 |     const MV *const src_mv, InterPredParams *const inter_pred_params, | 
 |     MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, | 
 |     int use_optflow_refinement, uint16_t **mc_buf, uint16_t **pre, | 
 |     SubpelParams *subpel_params, int *src_stride) { | 
 | #if CONFIG_REFINEMV | 
 |   if (inter_pred_params->use_ref_padding) { | 
 |     common_calc_subpel_params_and_extend( | 
 |         src_mv, inter_pred_params, xd, mi_x, mi_y, ref, use_optflow_refinement, | 
 |         mc_buf, pre, subpel_params, src_stride); | 
 |     return; | 
 |   } | 
 | #endif | 
 |  | 
 |   PadBlock block; | 
 |   MV32 scaled_mv; | 
 |   int subpel_x_mv, subpel_y_mv; | 
 |   dec_calc_subpel_params( | 
 |       src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride, | 
 |       &block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv); | 
 |   extend_mc_border(inter_pred_params->scale_factors, | 
 |                    &inter_pred_params->ref_frame_buf, scaled_mv, block, | 
 |                    subpel_x_mv, subpel_y_mv, | 
 |                    inter_pred_params->mode == WARP_PRED, | 
 |                    inter_pred_params->is_intrabc, mc_buf[ref], pre, src_stride); | 
 | } | 
 |  | 
 | static void av1_dec_setup_tip_frame(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                     uint16_t **mc_buf, | 
 |                                     CONV_BUF_TYPE *tmp_conv_dst) { | 
 |   av1_setup_tip_motion_field(cm, 0); | 
 |   av1_setup_tip_frame(cm, xd, mc_buf, tmp_conv_dst, | 
 |                       dec_calc_subpel_params_and_extend); | 
 | #if CONFIG_TIP_IMPLICIT_QUANT | 
 |   if (cm->seq_params.enable_tip_explicit_qp == 0) { | 
 |     const int avg_u_ac_delta_q = | 
 |         (cm->tip_ref.ref_frame_buffer[0]->u_ac_delta_q + | 
 |          cm->tip_ref.ref_frame_buffer[1]->u_ac_delta_q + 1) >> | 
 |         1; | 
 |     const int avg_v_ac_delta_q = | 
 |         (cm->tip_ref.ref_frame_buffer[0]->v_ac_delta_q + | 
 |          cm->tip_ref.ref_frame_buffer[1]->v_ac_delta_q + 1) >> | 
 |         1; | 
 |     const int base_qindex = | 
 |         (cm->tip_ref.ref_frame_buffer[0]->base_qindex + | 
 |          cm->tip_ref.ref_frame_buffer[1]->base_qindex + 1) >> | 
 |         1; | 
 |     cm->cur_frame->base_qindex = cm->quant_params.base_qindex = base_qindex; | 
 |     cm->cur_frame->u_ac_delta_q = cm->quant_params.u_ac_delta_q = | 
 |         avg_u_ac_delta_q; | 
 |     cm->cur_frame->v_ac_delta_q = cm->quant_params.v_ac_delta_q = | 
 |         avg_v_ac_delta_q; | 
 |   } | 
 | #endif  // CONFIG_TIP_IMPLICIT_QUANT | 
 | #if CONFIG_TIP_DIRECT_FRAME_MV && CONFIG_LF_SUB_PU | 
 |   if (cm->seq_params.enable_lf_sub_pu && cm->features.allow_lf_sub_pu) { | 
 |     init_tip_lf_parameter(cm, 0, av1_num_planes(cm)); | 
 |     loop_filter_tip_frame(cm, 0, av1_num_planes(cm)); | 
 |     aom_extend_frame_borders(&cm->tip_ref.tip_frame->buf, av1_num_planes(cm)); | 
 |   } | 
 | #endif  // CONFIG_TIP_DIRECT_FRAME_MV && CONFIG_LF_SUB_PU | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_mbmi_block(AV1Decoder *const pbi, | 
 |                                          DecoderCodingBlock *dcb, int mi_row, | 
 |                                          int mi_col, aom_reader *r, | 
 |                                          PARTITION_TYPE partition, | 
 |                                          BLOCK_SIZE bsize, | 
 |                                          PARTITION_TREE *parent, int index) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col); | 
 |   const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row); | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |  | 
 | #if CONFIG_ACCOUNTING | 
 |   aom_accounting_set_context(&pbi->accounting, mi_col, mi_row, xd->tree_type); | 
 | #endif | 
 |   set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, parent, | 
 |               index); | 
 |   xd->mi[0]->partition = partition; | 
 | #if CONFIG_EXTENDED_SDP | 
 |   // set region_type for each mbmi | 
 |   xd->mi[0]->region_type = parent->region_type; | 
 |   // set tree_type for each mbmi | 
 |   xd->mi[0]->tree_type = xd->tree_type; | 
 | #endif  // CONFIG_EXTENDED_SDP | 
 |   av1_read_mode_info(pbi, dcb, r, x_mis, y_mis); | 
 |  | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |   if (xd->tree_type != LUMA_PART) { | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |     const struct macroblockd_plane *const pd_u = &xd->plane[1]; | 
 |     const BLOCK_SIZE chroma_bsize_base = | 
 |         get_bsize_base(xd, xd->mi[0], AOM_PLANE_U); | 
 |     assert(chroma_bsize_base < BLOCK_SIZES_ALL); | 
 |     if (get_plane_block_size(chroma_bsize_base, pd_u->subsampling_x, | 
 |                              pd_u->subsampling_y) == BLOCK_INVALID) { | 
 |       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Block size %dx%d invalid with this subsampling mode", | 
 |                          block_size_wide[chroma_bsize_base], | 
 |                          block_size_high[chroma_bsize_base]); | 
 |     } | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |   } | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 | } | 
 |  | 
 | static void dec_build_inter_predictors(const AV1_COMMON *cm, | 
 |                                        DecoderCodingBlock *dcb, int plane, | 
 |                                        MB_MODE_INFO *mi, int build_for_obmc, | 
 |                                        int bw, int bh, int mi_x, int mi_y | 
 | #if CONFIG_REFINEMV | 
 |                                        , | 
 |                                        int build_for_refine_mv_only | 
 | #endif  // CONFIG_REFINEMV | 
 | ) { | 
 |   av1_build_inter_predictors(cm, &dcb->xd, plane, mi, | 
 | #if CONFIG_BAWP | 
 |                              NULL, | 
 | #endif | 
 | #if CONFIG_REFINEMV | 
 |                              build_for_refine_mv_only, | 
 | #endif  // CONFIG_REFINEMV | 
 |                              build_for_obmc, bw, bh, mi_x, mi_y, dcb->mc_buf, | 
 |                              dec_calc_subpel_params_and_extend); | 
 | } | 
 |  | 
 | static AOM_INLINE void dec_build_inter_predictor(const AV1_COMMON *cm, | 
 |                                                  DecoderCodingBlock *dcb, | 
 |                                                  int mi_row, int mi_col, | 
 |                                                  BLOCK_SIZE bsize) { | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |  | 
 | #if CONFIG_REFINEMV | 
 |   int need_subblock_mvs = xd->is_chroma_ref && mbmi->refinemv_flag && | 
 |                           !is_intrabc_block(mbmi, xd->tree_type); | 
 |   assert(IMPLIES(need_subblock_mvs, !is_interintra_pred(mbmi))); | 
 | #if CONFIG_AFFINE_REFINEMENT | 
 |   if (need_subblock_mvs && default_refinemv_modes(cm, mbmi)) | 
 | #else | 
 |   if (need_subblock_mvs && default_refinemv_modes(mbmi)) | 
 | #endif  // CONFIG_AFFINE_REFINEMENT | 
 |     need_subblock_mvs &= (mbmi->comp_group_idx == 0 && | 
 |                           mbmi->interinter_comp.type == COMPOUND_AVERAGE); | 
 |   if (need_subblock_mvs) { | 
 |     fill_subblock_refine_mv(xd->refinemv_subinfo, xd->plane[0].width, | 
 |                             xd->plane[0].height, mbmi->mv[0].as_mv, | 
 |                             mbmi->mv[1].as_mv); | 
 |   } | 
 | #endif  // CONFIG_REFINEMV | 
 |  | 
 |   for (int plane = 0; plane < num_planes; ++plane) { | 
 |     if (plane && !xd->is_chroma_ref) break; | 
 |     const int mi_x = mi_col * MI_SIZE; | 
 |     const int mi_y = mi_row * MI_SIZE; | 
 |     dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0, | 
 |                                xd->plane[plane].width, xd->plane[plane].height, | 
 |                                mi_x, mi_y | 
 | #if CONFIG_REFINEMV | 
 |                                , | 
 |                                0 | 
 | #endif  // CONFIG_REFINEMV | 
 |     ); | 
 |  | 
 |     assert(IMPLIES(!is_interintra_allowed(xd->mi[0]), | 
 |                    !is_interintra_mode(xd->mi[0]))); | 
 |  | 
 |     if (is_interintra_pred(xd->mi[0])) { | 
 |       BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, | 
 |                            xd->plane[2].dst.buf }, | 
 |                          { xd->plane[0].dst.stride, xd->plane[1].dst.stride, | 
 |                            xd->plane[2].dst.stride } }; | 
 |       av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf, | 
 |                                      xd->plane[plane].dst.stride, &ctx, plane, | 
 |                                      bsize); | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_MORPH_PRED | 
 |   if (mbmi->morph_pred) { | 
 | #if CONFIG_ENABLE_IBC_NAT | 
 |     assert(av1_allow_intrabc(cm, xd, bsize)); | 
 | #else | 
 |     assert(av1_allow_intrabc(cm, xd)); | 
 | #endif  // CONFIG_ENABLE_IBC_NAT | 
 | #if CONFIG_IMPROVED_MORPH_PRED | 
 |     assert(av1_allow_intrabc_morph_pred(cm)); | 
 | #endif  // CONFIG_IMPROVED_MORPH_PRED | 
 |     assert(is_intrabc_block(mbmi, xd->tree_type)); | 
 |     av1_build_morph_pred(cm, xd, bsize, mi_row, mi_col); | 
 |   } | 
 | #endif  // CONFIG_MORPH_PRED | 
 | } | 
 |  | 
 | static INLINE void dec_build_prediction_by_above_pred( | 
 |     MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, | 
 |     int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { | 
 |   struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; | 
 |   const int above_mi_col = xd->mi_col + rel_mi_col; | 
 |   int mi_x, mi_y; | 
 |   MB_MODE_INFO backup_mbmi = *above_mbmi; | 
 |  | 
 |   (void)rel_mi_row; | 
 |   (void)dir; | 
 |  | 
 |   av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size, | 
 |                                            &backup_mbmi, ctxt, num_planes); | 
 |   mi_x = above_mi_col << MI_SIZE_LOG2; | 
 |   mi_y = xd->mi_row << MI_SIZE_LOG2; | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; | 
 |  | 
 |   for (int j = 0; j < num_planes; ++j) { | 
 |     const struct macroblockd_plane *pd = &xd->plane[j]; | 
 |     int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; | 
 |     int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, | 
 |                    block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); | 
 |  | 
 |     if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; | 
 |     dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, | 
 |                                &backup_mbmi, 1, bw, bh, mi_x, mi_y | 
 | #if CONFIG_REFINEMV | 
 |                                , | 
 |                                0 | 
 | #endif  // CONFIG_REFINEMV | 
 |     ); | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void dec_build_prediction_by_above_preds( | 
 |     const AV1_COMMON *cm, DecoderCodingBlock *dcb, | 
 |     uint16_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], | 
 |     int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   if (!xd->up_available) return; | 
 |  | 
 |   // Adjust mb_to_bottom_edge to have the correct value for the OBMC | 
 |   // prediction block. This is half the height of the original block, | 
 |   // except for 128-wide blocks, where we only use a height of 32. | 
 |   const int this_height = xd->height * MI_SIZE; | 
 |   const int pred_height = AOMMIN(this_height / 2, 32); | 
 |   xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height); | 
 |   struct build_prediction_ctxt ctxt = { | 
 |     cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb | 
 |   }; | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; | 
 |   foreach_overlappable_nb_above( | 
 |       cm, xd, max_neighbor_obmc[mi_size_wide_log2[bsize]], | 
 |       dec_build_prediction_by_above_pred, &ctxt, false); | 
 |  | 
 |   xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE); | 
 |   xd->mb_to_right_edge = ctxt.mb_to_far_edge; | 
 |   xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height); | 
 | } | 
 |  | 
 | static INLINE void dec_build_prediction_by_left_pred( | 
 |     MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, | 
 |     int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { | 
 |   struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; | 
 |   const int left_mi_row = xd->mi_row + rel_mi_row; | 
 |   int mi_x, mi_y; | 
 |   MB_MODE_INFO backup_mbmi = *left_mbmi; | 
 |  | 
 |   (void)rel_mi_col; | 
 |   (void)dir; | 
 |  | 
 |   av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size, | 
 |                                           &backup_mbmi, ctxt, num_planes); | 
 |   mi_x = xd->mi_col << MI_SIZE_LOG2; | 
 |   mi_y = left_mi_row << MI_SIZE_LOG2; | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; | 
 |  | 
 |   for (int j = 0; j < num_planes; ++j) { | 
 |     const struct macroblockd_plane *pd = &xd->plane[j]; | 
 |     int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, | 
 |                    block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); | 
 |     int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y; | 
 |  | 
 |     if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; | 
 |     dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, | 
 |                                &backup_mbmi, 1, bw, bh, mi_x, mi_y | 
 | #if CONFIG_REFINEMV | 
 |                                , | 
 |                                0 | 
 | #endif  // CONFIG_REFINEMV | 
 |     ); | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void dec_build_prediction_by_left_preds( | 
 |     const AV1_COMMON *cm, DecoderCodingBlock *dcb, | 
 |     uint16_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], | 
 |     int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   if (!xd->left_available) return; | 
 |  | 
 |   // Adjust mb_to_right_edge to have the correct value for the OBMC | 
 |   // prediction block. This is half the width of the original block, | 
 |   // except for 128-wide blocks, where we only use a width of 32. | 
 |   const int this_width = xd->width * MI_SIZE; | 
 |   const int pred_width = AOMMIN(this_width / 2, 32); | 
 |   xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width); | 
 |  | 
 |   struct build_prediction_ctxt ctxt = { | 
 |     cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb | 
 |   }; | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; | 
 |   foreach_overlappable_nb_left(cm, xd, | 
 |                                max_neighbor_obmc[mi_size_high_log2[bsize]], | 
 |                                dec_build_prediction_by_left_pred, &ctxt); | 
 |  | 
 |   xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE); | 
 |   xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width); | 
 |   xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; | 
 | } | 
 |  | 
 | static AOM_INLINE void dec_build_obmc_inter_predictors_sb( | 
 |     const AV1_COMMON *cm, DecoderCodingBlock *dcb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   uint16_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; | 
 |   int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |  | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2); | 
 |  | 
 |   dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1, | 
 |                                       dst_height1, dst_stride1); | 
 |   dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2, | 
 |                                      dst_stride2); | 
 |   const int mi_row = xd->mi_row; | 
 |   const int mi_col = xd->mi_col; | 
 |   av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, | 
 |                        num_planes, &xd->mi[0]->chroma_ref_info); | 
 |   av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2, | 
 |                                   dst_stride2); | 
 | } | 
 |  | 
 | static AOM_INLINE void cfl_store_inter_block(AV1_COMMON *const cm, | 
 |                                              MACROBLOCKD *const xd) { | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   if (store_cfl_required(cm, xd) && xd->tree_type == SHARED_PART) { | 
 |     cfl_store_block(xd, mbmi->sb_type[PLANE_TYPE_Y], mbmi->tx_size, | 
 |                     cm->seq_params.enable_cfl_ds_filter); | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void predict_inter_block(AV1_COMMON *const cm, | 
 |                                            DecoderCodingBlock *dcb, | 
 |                                            BLOCK_SIZE bsize) { | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const int mi_row = xd->mi_row; | 
 |   const int mi_col = xd->mi_col; | 
 |   const int is_compound = | 
 |       has_second_ref(mbmi) || is_tip_ref_frame(mbmi->ref_frame[0]); | 
 |   for (int ref = 0; ref < 1 + is_compound; ++ref) { | 
 |     const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; | 
 |     if (frame == INTRA_FRAME) { | 
 |       assert(is_intrabc_block(mbmi, xd->tree_type)); | 
 |       assert(ref == 0); | 
 |     } else { | 
 |       const RefCntBuffer *ref_buf = is_tip_ref_frame(mbmi->ref_frame[0]) | 
 |                                         ? cm->tip_ref.ref_frame_buffer[ref] | 
 |                                         : get_ref_frame_buf(cm, frame); | 
 |       const struct scale_factors *ref_scale_factors = | 
 |           get_ref_scale_factors_const(cm, frame); | 
 |  | 
 |       xd->block_ref_scale_factors[ref] = ref_scale_factors; | 
 |       av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col, | 
 |                            ref_scale_factors, num_planes, | 
 |                            &mbmi->chroma_ref_info); | 
 |     } | 
 |   } | 
 |  | 
 |   dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize); | 
 |   if (mbmi->motion_mode == OBMC_CAUSAL) { | 
 |     dec_build_obmc_inter_predictors_sb(cm, dcb); | 
 |   } | 
 |  | 
 | #if CONFIG_MISMATCH_DEBUG | 
 |   const int plane_start = get_partition_plane_start(xd->tree_type); | 
 |   const int plane_end = get_partition_plane_end(xd->tree_type, num_planes); | 
 |   for (int plane = plane_start; plane < plane_end; ++plane) { | 
 |     const struct macroblockd_plane *pd = &xd->plane[plane]; | 
 |     int pixel_c, pixel_r; | 
 |     if (plane && !xd->is_chroma_ref) continue; | 
 |     if (plane) { | 
 |       mi_to_pixel_loc(&pixel_c, &pixel_r, | 
 |                       mbmi->chroma_ref_info.mi_col_chroma_base, | 
 |                       mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0, | 
 |                       pd->subsampling_x, pd->subsampling_y); | 
 |     } else { | 
 |       mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, | 
 |                       pd->subsampling_x, pd->subsampling_y); | 
 |     } | 
 |     mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                              cm->current_frame.display_order_hint, | 
 | #else | 
 |                              cm->current_frame.order_hint, | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |                              plane, pixel_c, pixel_r, pd->width, pd->height); | 
 |   } | 
 | #endif  // CONFIG_MISMATCH_DEBUG | 
 |  | 
 | #if CONFIG_INSPECTION | 
 |   for (int plane = 0; plane < num_planes; plane++) { | 
 |     struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |     const int dst_stride = pd->dst.stride; | 
 |     const int plane_block_size = | 
 |         get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); | 
 |     const int plane_width = mi_size_wide[plane_block_size]; | 
 |     const int plane_height = mi_size_high[plane_block_size]; | 
 |     for (int i = 0; i < plane_height * MI_SIZE; i++) { | 
 |       for (int j = 0; j < plane_width * MI_SIZE; j++) { | 
 |         uint16_t pixel = pd->dst.buf[i * dst_stride + j]; | 
 |         int stride = cm->predicted_pixels.strides[plane > 0]; | 
 |         int pixel_c, pixel_r; | 
 |         if (plane) { | 
 |           mi_to_pixel_loc(&pixel_c, &pixel_r, | 
 |                           mbmi->chroma_ref_info.mi_col_chroma_base, | 
 |                           mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0, | 
 |                           pd->subsampling_x, pd->subsampling_y); | 
 |         } else { | 
 |           mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, 0, 0, | 
 |                           pd->subsampling_x, pd->subsampling_y); | 
 |         } | 
 |         pixel_c += j; | 
 |         pixel_r += i; | 
 |         cm->predicted_pixels.buffers[plane][pixel_r * stride + pixel_c] = pixel; | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_INSPECTION | 
 | } | 
 |  | 
 | static AOM_INLINE void set_color_index_map_offset(MACROBLOCKD *const xd, | 
 |                                                   int plane, aom_reader *r) { | 
 |   (void)r; | 
 |   Av1ColorMapParam params; | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   av1_get_block_dimensions(mbmi->sb_type[plane > 0], plane, xd, | 
 |                            ¶ms.plane_width, ¶ms.plane_height, NULL, | 
 |                            NULL); | 
 |   xd->color_index_map_offset[plane] += params.plane_width * params.plane_height; | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_token_recon_block(AV1Decoder *const pbi, | 
 |                                                 ThreadData *const td, | 
 |                                                 aom_reader *r, | 
 |                                                 PARTITION_TYPE partition, | 
 |                                                 BLOCK_SIZE bsize) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   xd->mi[0]->partition = partition; | 
 |   const int plane_start = get_partition_plane_start(xd->tree_type); | 
 |   const int plane_end = | 
 |       get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); | 
 |   if (!is_inter_block(mbmi, xd->tree_type)) { | 
 |     // When row_mt is used, this function can be called with | 
 |     // td->read_coeffs_tx_intra_block_visit == decode_block_void. | 
 |     // In that case do not reset since it will erase previously set | 
 |     // values. | 
 |     if (td->read_coeffs_tx_intra_block_visit != decode_block_void) | 
 |       av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 0, | 
 |                               xd->tree_type, &mbmi->chroma_ref_info, | 
 |                               plane_start, plane_end); | 
 |     int row, col; | 
 |  | 
 |     xd->cfl.use_dc_pred_cache = 0; | 
 |     xd->cfl.dc_pred_is_cached[0] = 0; | 
 |     xd->cfl.dc_pred_is_cached[1] = 0; | 
 |     assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, | 
 |                                          xd->plane[0].subsampling_y)); | 
 |     const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |     const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |     const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; | 
 |     int mu_blocks_wide = mi_size_wide[max_unit_bsize]; | 
 |     int mu_blocks_high = mi_size_high[max_unit_bsize]; | 
 |     mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); | 
 |     mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); | 
 |  | 
 |     for (row = 0; row < max_blocks_high; row += mu_blocks_high) { | 
 |       for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { | 
 |         for (int plane = plane_start; plane < plane_end; ++plane) { | 
 | #if CONFIG_NEW_TX_PARTITION | 
 |           if (plane == AOM_PLANE_Y && !xd->lossless[mbmi->segment_id]) { | 
 |             const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |             const int ss_x = pd->subsampling_x; | 
 |             const int ss_y = pd->subsampling_y; | 
 |             const BLOCK_SIZE plane_bsize = | 
 |                 get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); | 
 |             const int plane_unit_height = | 
 |                 get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); | 
 |             const int plane_unit_width = | 
 |                 get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); | 
 |  | 
 |             const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; | 
 |             get_tx_partition_sizes(mbmi->tx_partition_type[0], max_tx_size, | 
 |                                    &mbmi->txb_pos, mbmi->sub_txs); | 
 |  | 
 |             for (int txb_idx = 0; txb_idx < mbmi->txb_pos.n_partitions; | 
 |                  ++txb_idx) { | 
 |               const TX_SIZE tx_size = mbmi->sub_txs[txb_idx]; | 
 |               mbmi->txb_idx = txb_idx; | 
 |               int blk_row = row + mbmi->txb_pos.row_offset[txb_idx]; | 
 |               int blk_col = col + mbmi->txb_pos.col_offset[txb_idx]; | 
 |  | 
 |               if (blk_row >= plane_unit_height || blk_col >= plane_unit_width) | 
 |                 continue; | 
 |  | 
 |               td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row, | 
 |                                                    blk_col, tx_size); | 
 |               td->predict_and_recon_intra_block_visit( | 
 |                   cm, dcb, r, plane, blk_row, blk_col, tx_size); | 
 |               set_cb_buffer_offsets(dcb, tx_size, plane); | 
 |             } | 
 |             // finish luma coding | 
 |           } else { | 
 |             if (plane && !xd->is_chroma_ref) break; | 
 |             const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |             const int ss_x = pd->subsampling_x; | 
 |             const int ss_y = pd->subsampling_y; | 
 |             const BLOCK_SIZE plane_bsize = | 
 |                 get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); | 
 |             const TX_SIZE tx_size = av1_get_tx_size(plane, xd); | 
 |             if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue; | 
 |             const int stepr = tx_size_high_unit[tx_size]; | 
 |             const int stepc = tx_size_wide_unit[tx_size]; | 
 |             const int plane_unit_height = | 
 |                 get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); | 
 |             const int plane_unit_width = | 
 |                 get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); | 
 |             for (int blk_row = row >> ss_y; blk_row < plane_unit_height; | 
 |                  blk_row += stepr) { | 
 |               for (int blk_col = col >> ss_x; blk_col < plane_unit_width; | 
 |                    blk_col += stepc) { | 
 |                 if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { | 
 |                   td->read_coeffs_tx_intra_block_visit( | 
 |                       cm, dcb, r, AOM_PLANE_U, blk_row, blk_col, tx_size); | 
 |                   td->read_coeffs_tx_intra_block_visit( | 
 |                       cm, dcb, r, AOM_PLANE_V, blk_row, blk_col, tx_size); | 
 |                   td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col, | 
 |                                                tx_size); | 
 |                   td->predict_and_recon_intra_block_visit( | 
 |                       cm, dcb, r, AOM_PLANE_U, blk_row, blk_col, tx_size); | 
 |                   td->predict_and_recon_intra_block_visit( | 
 |                       cm, dcb, r, AOM_PLANE_V, blk_row, blk_col, tx_size); | 
 |                   set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U); | 
 |                   set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V); | 
 |                 } else { | 
 |                   assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)); | 
 |                   td->read_coeffs_tx_intra_block_visit( | 
 |                       cm, dcb, r, plane, blk_row, blk_col, tx_size); | 
 |                   td->predict_and_recon_intra_block_visit( | 
 |                       cm, dcb, r, plane, blk_row, blk_col, tx_size); | 
 |                   set_cb_buffer_offsets(dcb, tx_size, plane); | 
 |                 } | 
 |               } | 
 |             } | 
 |             // finish coding of the chroma components | 
 |           } | 
 | #else | 
 |           if (plane && !xd->is_chroma_ref) break; | 
 |           const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |           const int ss_x = pd->subsampling_x; | 
 |           const int ss_y = pd->subsampling_y; | 
 |           const BLOCK_SIZE plane_bsize = | 
 |               get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); | 
 |           const TX_SIZE tx_size = av1_get_tx_size(plane, xd); | 
 |           if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue; | 
 |           const int stepr = tx_size_high_unit[tx_size]; | 
 |           const int stepc = tx_size_wide_unit[tx_size]; | 
 |           const int plane_unit_height = | 
 |               get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); | 
 |           const int plane_unit_width = | 
 |               get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); | 
 |           for (int blk_row = row >> ss_y; blk_row < plane_unit_height; | 
 |                blk_row += stepr) { | 
 |             for (int blk_col = col >> ss_x; blk_col < plane_unit_width; | 
 |                  blk_col += stepc) { | 
 |               if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { | 
 |                 td->read_coeffs_tx_intra_block_visit(cm, dcb, r, AOM_PLANE_U, | 
 |                                                      blk_row, blk_col, tx_size); | 
 |                 td->read_coeffs_tx_intra_block_visit(cm, dcb, r, AOM_PLANE_V, | 
 |                                                      blk_row, blk_col, tx_size); | 
 |                 td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col, | 
 |                                              tx_size); | 
 |                 td->predict_and_recon_intra_block_visit( | 
 |                     cm, dcb, r, AOM_PLANE_U, blk_row, blk_col, tx_size); | 
 |                 td->predict_and_recon_intra_block_visit( | 
 |                     cm, dcb, r, AOM_PLANE_V, blk_row, blk_col, tx_size); | 
 |                 set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U); | 
 |                 set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V); | 
 |               } else { | 
 |                 assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)); | 
 |                 td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row, | 
 |                                                      blk_col, tx_size); | 
 |                 td->predict_and_recon_intra_block_visit( | 
 |                     cm, dcb, r, plane, blk_row, blk_col, tx_size); | 
 |                 set_cb_buffer_offsets(dcb, tx_size, plane); | 
 |               } | 
 |             } | 
 |           } | 
 | #endif  // CONFIG_NEW_TX_PARTITION | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // When row_mt is used, this function can be called with | 
 |     // td->read_coeffs_tx_inter_block_visit == decode_block_void. | 
 |     // In that case do not reset since it will erase previously set | 
 |     // values. | 
 |     if (td->read_coeffs_tx_inter_block_visit != decode_block_void) | 
 |       av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 0, | 
 |                               xd->tree_type, &mbmi->chroma_ref_info, | 
 |                               plane_start, plane_end); | 
 |     td->predict_inter_block_visit(cm, dcb, bsize); | 
 |     // Reconstruction | 
 |     if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) { | 
 |       int eobtotal = 0; | 
 |  | 
 |       const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |       const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |       int row, col; | 
 |  | 
 |       const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; | 
 |       assert(max_unit_bsize == | 
 |              get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, | 
 |                                   xd->plane[0].subsampling_y)); | 
 |       int mu_blocks_wide = mi_size_wide[max_unit_bsize]; | 
 |       int mu_blocks_high = mi_size_high[max_unit_bsize]; | 
 |  | 
 |       mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); | 
 |       mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); | 
 |  | 
 |       for (row = 0; row < max_blocks_high; row += mu_blocks_high) { | 
 |         for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { | 
 |           for (int plane = plane_start; plane < plane_end; ++plane) { | 
 |             if (plane && !xd->is_chroma_ref) break; | 
 |             const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |             const int ss_x = pd->subsampling_x; | 
 |             const int ss_y = pd->subsampling_y; | 
 |             const BLOCK_SIZE plane_bsize = | 
 |                 get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); | 
 | #if !CONFIG_EXT_RECUR_PARTITIONS | 
 |             assert(plane_bsize == get_plane_block_size(bsize, ss_x, ss_y)); | 
 | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
 |             const TX_SIZE max_tx_size = | 
 |                 get_vartx_max_txsize(xd, plane_bsize, plane); | 
 |             const int bh_var_tx = tx_size_high_unit[max_tx_size]; | 
 |             const int bw_var_tx = tx_size_wide_unit[max_tx_size]; | 
 | #if !CONFIG_NEW_TX_PARTITION | 
 |             int block = 0; | 
 |             int step = | 
 |                 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; | 
 | #endif  // !CONFIG_NEW_TX_PARTITION | 
 |             const int plane_unit_height = | 
 |                 get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); | 
 |             const int plane_unit_width = | 
 |                 get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); | 
 |  | 
 |             for (int blk_row = row >> ss_y; blk_row < plane_unit_height; | 
 |                  blk_row += bh_var_tx) { | 
 |               for (int blk_col = col >> ss_x; blk_col < plane_unit_width; | 
 |                    blk_col += bw_var_tx) { | 
 |                 decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, | 
 |                                       blk_row, blk_col, | 
 | #if !CONFIG_NEW_TX_PARTITION | 
 |                                       block, | 
 | #endif  // !CONFIG_NEW_TX_PARTITION | 
 |                                       max_tx_size, &eobtotal); | 
 | #if !CONFIG_NEW_TX_PARTITION | 
 |                 block += step; | 
 | #endif  // !CONFIG_NEW_TX_PARTITION | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } else if (is_cctx_enabled(cm, xd) && xd->is_chroma_ref && | 
 |                xd->tree_type != LUMA_PART) { | 
 |       av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 1, | 
 |                               xd->tree_type, &mbmi->chroma_ref_info, | 
 |                               plane_start, plane_end); | 
 |       // fill cctx_type_map with CCTX_NONE for skip blocks so their | 
 |       // neighbors can derive cctx contexts | 
 |       const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; | 
 |       const int ss_x = pd->subsampling_x; | 
 |       const int ss_y = pd->subsampling_y; | 
 |       const BLOCK_SIZE uv_plane_bsize = | 
 |           get_mb_plane_block_size(xd, mbmi, AOM_PLANE_U, ss_x, ss_y); | 
 |       const TX_SIZE max_tx_size = | 
 |           get_vartx_max_txsize(xd, uv_plane_bsize, AOM_PLANE_U); | 
 |       const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |       const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |       const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; | 
 |       int mu_blocks_wide = mi_size_wide[max_unit_bsize]; | 
 |       int mu_blocks_high = mi_size_high[max_unit_bsize]; | 
 |       for (int row = 0; row < max_blocks_high; row += mu_blocks_high) { | 
 |         for (int col = 0; col < max_blocks_wide; col += mu_blocks_wide) { | 
 |           int row_offset, col_offset; | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |           get_chroma_mi_offsets(xd, &row_offset, &col_offset); | 
 | #else | 
 |           get_chroma_mi_offsets(xd, max_tx_size, &row_offset, &col_offset); | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |           update_cctx_array(xd, 0, 0, row_offset, col_offset, max_tx_size, | 
 |                             CCTX_NONE); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 1, | 
 |                               xd->tree_type, &mbmi->chroma_ref_info, | 
 |                               plane_start, plane_end); | 
 |     } | 
 |     td->cfl_store_inter_block_visit(cm, xd); | 
 |   } | 
 |  | 
 |   av1_visit_palette(pbi, xd, r, set_color_index_map_offset); | 
 |   av1_mark_block_as_coded(xd, bsize, cm->sb_size); | 
 | } | 
 |  | 
 | #if !CONFIG_NEW_TX_PARTITION | 
 | static AOM_INLINE void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2, | 
 |                                          int tx_w_log2, int tx_h_log2, | 
 |                                          int min_txs, int split_size, int txs, | 
 |                                          int blk_row, int blk_col) { | 
 |   for (int idy = 0; idy < tx_size_high_unit[split_size]; | 
 |        idy += tx_size_high_unit[min_txs]) { | 
 |     for (int idx = 0; idx < tx_size_wide_unit[split_size]; | 
 |          idx += tx_size_wide_unit[min_txs]) { | 
 |       const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) + | 
 |                         ((blk_col + idx) >> tx_w_log2); | 
 |       mbmi->inter_tx_size[index] = txs; | 
 |     } | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | #if CONFIG_NEW_TX_PARTITION | 
 | static TX_SIZE read_tx_partition(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, | 
 |                                  TX_SIZE max_tx_size, int blk_row, int blk_col, | 
 |                                  aom_reader *r) { | 
 |   int plane_type = (xd->tree_type == CHROMA_PART); | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type[plane_type]; | 
 |   const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
 |   const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |   const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |   if (is_inter && (blk_row >= max_blocks_high || blk_col >= max_blocks_wide)) | 
 |     return TX_INVALID; | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 | #if !CONFIG_TX_PARTITION_CTX | 
 |   const int is_rect = is_rect_tx(max_tx_size); | 
 | #endif  // !CONFIG_TX_PARTITION_CTX | 
 |   const int allow_horz = allow_tx_horz_split(max_tx_size); | 
 |   const int allow_vert = allow_tx_vert_split(max_tx_size); | 
 |   TX_PARTITION_TYPE partition = 0; | 
 | #if CONFIG_IMPROVEIDTX | 
 |   const int is_fsc = (xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] && | 
 |                       plane_type == PLANE_TYPE_Y); | 
 | #endif  // CONFIG_IMPROVEIDTX | 
 | #if CONFIG_TX_PARTITION_CTX | 
 |   const int bsize_group = size_to_tx_part_group_lookup[bsize]; | 
 |   const int txsize_group = size_to_tx_type_group_lookup[bsize]; | 
 |   int do_partition = 0; | 
 |   if (allow_horz || allow_vert) { | 
 |     aom_cdf_prob *do_partition_cdf = | 
 | #if CONFIG_IMPROVEIDTX | 
 |         ec_ctx->txfm_do_partition_cdf[is_fsc][is_inter][bsize_group]; | 
 | #else | 
 |         ec_ctx->txfm_do_partition_cdf[is_inter][bsize_group]; | 
 | #endif  // CONFIG_IMPROVEIDTX | 
 |     do_partition = | 
 |         aom_read_symbol(r, do_partition_cdf, 2, ACCT_INFO("do_partition")); | 
 |   } | 
 |  | 
 |   if (do_partition) { | 
 |     if (allow_horz && allow_vert) { | 
 |       // Read 4way tree type | 
 |       assert(txsize_group > 0); | 
 |       aom_cdf_prob *partition_type_cdf = | 
 | #if CONFIG_IMPROVEIDTX | 
 |           ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] | 
 |                                               [txsize_group - 1]; | 
 | #else | 
 |           ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; | 
 | #endif  // CONFIG_IMPROVEIDTX | 
 |       const TX_PARTITION_TYPE partition_type = | 
 |           aom_read_symbol(r, partition_type_cdf, TX_PARTITION_TYPE_NUM, | 
 |                           ACCT_INFO("partition_type")); | 
 |       partition = partition_type + 1; | 
 |     } else if (txsize_group) { | 
 |       aom_cdf_prob *partition_type_cdf = | 
 | #if CONFIG_IMPROVEIDTX | 
 |           ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] | 
 |                                               [txsize_group - 1]; | 
 | #else | 
 |           ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; | 
 | #endif  // CONFIG_IMPROVEIDTX | 
 |       const TX_PARTITION_TYPE partition_type = | 
 |           aom_read_symbol(r, partition_type_cdf, TX_PARTITION_TYPE_NUM, | 
 |                           ACCT_INFO("partition_type")); | 
 |  | 
 |       if (allow_horz) { | 
 |         switch (partition_type) { | 
 |           case 0: partition = TX_PARTITION_HORZ; break; | 
 |           case 1: partition = TX_PARTITION_HORZ_M; break; | 
 |           default: assert(0); break; | 
 |         } | 
 |       } else { | 
 |         switch (partition_type) { | 
 |           case 0: partition = TX_PARTITION_VERT; break; | 
 |           case 1: partition = TX_PARTITION_VERT_M; break; | 
 |           default: assert(0); break; | 
 |         } | 
 |       } | 
 |     } else { | 
 |       partition = allow_horz ? TX_PARTITION_HORZ : TX_PARTITION_VERT; | 
 |     } | 
 |   } else { | 
 |     partition = TX_PARTITION_NONE; | 
 |   } | 
 |  | 
 | #else | 
 |   /* | 
 |   If both horizontal and vertical splits are allowed for this block, | 
 |   first signal using a 4 way tree to indicate TX_PARTITION_NONE, | 
 |   TX_PARTITION_SPLIT, TX_PARTITION_HORZ or TX_PARTITION_VERT. If the | 
 |   actual tx partition type is HORZ4 or VERT4, we read an additional | 
 |   bit to indicate to split further. | 
 |   */ | 
 |   if (allow_horz && allow_vert) { | 
 |     // Read 4way tree type | 
 |     const int split4_ctx = | 
 |         is_inter ? txfm_partition_split4_inter_context( | 
 |                        xd->above_txfm_context + blk_col, | 
 |                        xd->left_txfm_context + blk_row, bsize, max_tx_size) | 
 |                  : get_tx_size_context(xd); | 
 |     aom_cdf_prob *split4_cdf = | 
 |         is_inter ? ec_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx] | 
 |                  : ec_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx]; | 
 |     const TX_PARTITION_TYPE split4_partition = | 
 |         aom_read_symbol(r, split4_cdf, 4, ACCT_INFO("split4_partition")); | 
 |     partition = split4_partition; | 
 |  | 
 |     /* | 
 |     If only one split type (horizontal or vertical) is allowed for this block, | 
 |     first signal a bit indicating whether there is any split at all. If | 
 |     the partition has a split, and this block is able to be split further, | 
 |     we send a second bit to indicate if the type should be HORZ4 or VERT4. | 
 |     */ | 
 |   } else if (allow_horz || allow_vert) { | 
 |     // Read bit to indicate if there is any split at all | 
 |     aom_cdf_prob *split2_cdf = is_inter ? ec_ctx->inter_2way_txfm_partition_cdf | 
 |                                         : ec_ctx->intra_2way_txfm_partition_cdf; | 
 |     const int has_first_split = | 
 |         aom_read_symbol(r, split2_cdf, 2, ACCT_INFO("has_first_split")); | 
 |     partition = has_first_split | 
 |                     ? (allow_horz ? TX_PARTITION_HORZ : TX_PARTITION_VERT) | 
 |                     : TX_PARTITION_NONE; | 
 |   } else { | 
 |     assert(!allow_horz && !allow_vert); | 
 |     partition = TX_PARTITION_NONE; | 
 |   } | 
 | #endif  // CONFIG_TX_PARTITION_CTX | 
 |   TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; | 
 |   int num_txfm_blocks = | 
 |       get_tx_partition_sizes(partition, max_tx_size, &mbmi->txb_pos, sub_txs); | 
 |   mbmi->tx_size = sub_txs[num_txfm_blocks - 1]; | 
 |   int index = is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; | 
 |   mbmi->tx_partition_type[index] = partition; | 
 |   if (is_inter) { | 
 |     mbmi->inter_tx_size[index] = mbmi->tx_size; | 
 | #if !CONFIG_TX_PARTITION_CTX | 
 |     txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                           xd->left_txfm_context + blk_row, mbmi->tx_size, | 
 |                           max_tx_size); | 
 | #endif  // !CONFIG_TX_PARTITION_CTX | 
 |   } | 
 |  | 
 |   return sub_txs[num_txfm_blocks - 1]; | 
 | } | 
 | #else | 
 | static AOM_INLINE void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, | 
 |                                           TX_SIZE tx_size, int depth, | 
 | #if CONFIG_LPF_MASK | 
 |                                           AV1_COMMON *cm, int mi_row, | 
 |                                           int mi_col, int store_bitmask, | 
 | #endif | 
 |                                           int blk_row, int blk_col, | 
 |                                           aom_reader *r) { | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   int is_split = 0; | 
 |   int plane_type = (xd->tree_type == CHROMA_PART); | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type[plane_type]; | 
 |   const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |   const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |   assert(tx_size > TX_4X4); | 
 |   TX_SIZE txs = max_txsize_rect_lookup[bsize]; | 
 |   for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) | 
 |     txs = sub_tx_size_map[txs]; | 
 |   const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; | 
 |   const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; | 
 |   const int bw_log2 = mi_size_wide_log2[bsize]; | 
 |   const int stride_log2 = bw_log2 - tx_w_log2; | 
 |  | 
 |   if (depth == MAX_VARTX_DEPTH) { | 
 |     set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, | 
 |                       tx_size, blk_row, blk_col); | 
 |     mbmi->tx_size = tx_size; | 
 |     txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                           xd->left_txfm_context + blk_row, tx_size, tx_size); | 
 |     return; | 
 |   } | 
 |   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, | 
 |                                          xd->left_txfm_context + blk_row, | 
 |                                          mbmi->sb_type[plane_type], tx_size); | 
 |   is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, | 
 |                              ACCT_INFO("is_split")); | 
 |  | 
 |   if (is_split) { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
 |     const int bsw = tx_size_wide_unit[sub_txs]; | 
 |     const int bsh = tx_size_high_unit[sub_txs]; | 
 |  | 
 |     if (sub_txs == TX_4X4) { | 
 |       set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, | 
 |                         sub_txs, blk_row, blk_col); | 
 |       mbmi->tx_size = sub_txs; | 
 |       txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                             xd->left_txfm_context + blk_row, sub_txs, tx_size); | 
 | #if CONFIG_LPF_MASK | 
 |       if (store_bitmask) { | 
 |         av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, | 
 |                                 txsize_to_bsize[tx_size], TX_4X4, mbmi); | 
 |       } | 
 | #endif | 
 |       return; | 
 |     } | 
 | #if CONFIG_LPF_MASK | 
 |     if (depth + 1 == MAX_VARTX_DEPTH && store_bitmask) { | 
 |       av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, | 
 |                               txsize_to_bsize[tx_size], sub_txs, mbmi); | 
 |       store_bitmask = 0; | 
 |     } | 
 | #endif | 
 |  | 
 |     assert(bsw > 0 && bsh > 0); | 
 |     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { | 
 |       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
 |         int offsetr = blk_row + row; | 
 |         int offsetc = blk_col + col; | 
 |         read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, | 
 | #if CONFIG_LPF_MASK | 
 |                            cm, mi_row, mi_col, store_bitmask, | 
 | #endif | 
 |                            offsetr, offsetc, r); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, | 
 |                       tx_size, blk_row, blk_col); | 
 |     mbmi->tx_size = tx_size; | 
 |     txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                           xd->left_txfm_context + blk_row, tx_size, tx_size); | 
 | #if CONFIG_LPF_MASK | 
 |     if (store_bitmask) { | 
 |       av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, | 
 |                               txsize_to_bsize[tx_size], tx_size, mbmi); | 
 |     } | 
 | #endif | 
 |   } | 
 | } | 
 |  | 
 | static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd, | 
 |                                      aom_reader *r) { | 
 |   // TODO(debargha): Clean up the logic here. This function should only | 
 |   // be called for intra. | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; | 
 |   const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); | 
 |   const int max_depths = bsize_to_max_depth(bsize); | 
 |   const int ctx = get_tx_size_context(xd); | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx], | 
 |                                     max_depths + 1, ACCT_INFO("depth")); | 
 |   assert(depth >= 0 && depth <= max_depths); | 
 |   const TX_SIZE tx_size = depth_to_tx_size(depth, bsize); | 
 |   return tx_size; | 
 | } | 
 | #endif  // CONFIG_NEW_TX_PARTITION | 
 |  | 
 | static TX_SIZE read_tx_size(MACROBLOCKD *xd, TX_MODE tx_mode, int is_inter, | 
 |                             int allow_select_inter, aom_reader *r) { | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; | 
 |   if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; | 
 |  | 
 |   if (block_signals_txsize(bsize)) { | 
 |     if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) { | 
 | #if CONFIG_NEW_TX_PARTITION | 
 |       MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |       const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; | 
 |       return read_tx_partition(xd, mbmi, max_tx_size, 0, 0, r); | 
 | #else | 
 |       const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r); | 
 |       return coded_tx_size; | 
 | #endif  // CONFIG_NEW_TX_PARTITION | 
 |     } else { | 
 |       return tx_size_from_tx_mode(bsize, tx_mode); | 
 |     } | 
 |   } else { | 
 |     assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4)); | 
 |     return max_txsize_rect_lookup[bsize]; | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void parse_decode_block(AV1Decoder *const pbi, | 
 |                                           ThreadData *const td, int mi_row, | 
 |                                           int mi_col, aom_reader *r, | 
 |                                           PARTITION_TYPE partition, | 
 |                                           BLOCK_SIZE bsize, | 
 |                                           PARTITION_TREE *parent, int index) { | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize, parent, | 
 |                     index); | 
 |  | 
 |   av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens); | 
 |  | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |  | 
 |   int inter_block_tx = is_inter_block(mbmi, xd->tree_type) || | 
 |                        is_intrabc_block(mbmi, xd->tree_type); | 
 |   if (xd->tree_type != CHROMA_PART) { | 
 | #if CONFIG_NEW_TX_PARTITION | 
 |     memset(mbmi->tx_partition_type, TX_PARTITION_NONE, | 
 |            sizeof(mbmi->tx_partition_type)); | 
 | #endif  // CONFIG_NEW_TX_PARTITION | 
 |     if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && | 
 |         !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && inter_block_tx && | 
 |         !xd->lossless[mbmi->segment_id]) { | 
 |       const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; | 
 |       const int bh = tx_size_high_unit[max_tx_size]; | 
 |       const int bw = tx_size_wide_unit[max_tx_size]; | 
 |       const int width = mi_size_wide[bsize]; | 
 |       const int height = mi_size_high[bsize]; | 
 |  | 
 |       for (int idy = 0; idy < height; idy += bh) | 
 |         for (int idx = 0; idx < width; idx += bw) | 
 | #if CONFIG_NEW_TX_PARTITION | 
 |           read_tx_partition(xd, mbmi, max_tx_size, idy, idx, r); | 
 | #else | 
 |           read_tx_size_vartx(xd, mbmi, max_tx_size, 0, | 
 | #if CONFIG_LPF_MASK | 
 |                              cm, mi_row, mi_col, 1, | 
 | #endif | 
 |                              idy, idx, r); | 
 | #endif  // CONFIG_NEW_TX_PARTITION | 
 |     } else { | 
 |       mbmi->tx_size = | 
 |           read_tx_size(xd, cm->features.tx_mode, inter_block_tx, | 
 |                        !mbmi->skip_txfm[xd->tree_type == CHROMA_PART], r); | 
 |       if (inter_block_tx) | 
 |         memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); | 
 | #if !CONFIG_TX_PARTITION_CTX | 
 |       set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, | 
 |                     mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && | 
 |                         is_inter_block(mbmi, xd->tree_type), | 
 |                     xd); | 
 | #endif  // !CONFIG_TX_PARTITION_CTX | 
 | #if CONFIG_LPF_MASK | 
 |       const int w = mi_size_wide[bsize]; | 
 |       const int h = mi_size_high[bsize]; | 
 |       if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { | 
 |         av1_store_bitmask_univariant_tx(cm, mi_row, mi_col, bsize, mbmi); | 
 |       } else { | 
 |         for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { | 
 |           for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { | 
 |             av1_store_bitmask_univariant_tx(cm, mi_row + row, mi_col + col, | 
 |                                             BLOCK_64X64, mbmi); | 
 |           } | 
 |         } | 
 |       } | 
 | #endif | 
 |     } | 
 |   } | 
 | #if CONFIG_LPF_MASK | 
 |   const int w = mi_size_wide[bsize]; | 
 |   const int h = mi_size_high[bsize]; | 
 |   if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { | 
 |     av1_store_bitmask_other_info(cm, mi_row, mi_col, bsize, mbmi, 1, 1); | 
 |   } else { | 
 |     for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { | 
 |       for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { | 
 |         av1_store_bitmask_other_info(cm, mi_row + row, mi_col + col, | 
 |                                      BLOCK_64X64, mbmi, row == 0, col == 0); | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   if (cm->delta_q_info.delta_q_present_flag) { | 
 |     for (int i = 0; i < MAX_SEGMENTS; i++) { | 
 |       const int current_qindex = av1_get_qindex( | 
 |           &cm->seg, i, xd->current_base_qindex, cm->seq_params.bit_depth); | 
 |  | 
 |       const CommonQuantParams *const quant_params = &cm->quant_params; | 
 |       for (int j = 0; j < num_planes; ++j) { | 
 |         const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q | 
 |                                       : (j == 1 ? quant_params->u_dc_delta_q | 
 |                                                 : quant_params->v_dc_delta_q); | 
 |         const int ac_delta_q = j == 0 ? 0 | 
 |                                       : (j == 1 ? quant_params->u_ac_delta_q | 
 |                                                 : quant_params->v_ac_delta_q); | 
 |         xd->plane[j].seg_dequant_QTX[i][0] = | 
 |             av1_dc_quant_QTX(current_qindex, dc_delta_q, | 
 |                              j == 0 ? cm->seq_params.base_y_dc_delta_q | 
 |                                     : cm->seq_params.base_uv_dc_delta_q, | 
 |                              cm->seq_params.bit_depth); | 
 |         xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX( | 
 |             current_qindex, ac_delta_q, cm->seq_params.bit_depth); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   assert(bsize == mbmi->sb_type[av1_get_sdp_idx(xd->tree_type)]); | 
 |   if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) | 
 |     av1_reset_entropy_context(xd, bsize, num_planes); | 
 |   decode_token_recon_block(pbi, td, r, partition, bsize); | 
 |  | 
 | #if CONFIG_REFINED_MVS_IN_TMVP | 
 |   if (!frame_is_intra_only(cm) && | 
 |       cm->seq_params.order_hint_info.enable_ref_frame_mvs) { | 
 |     MB_MODE_INFO *const mi = xd->mi[0]; | 
 |     if (opfl_allowed_for_cur_block(cm, | 
 | #if CONFIG_COMPOUND_4XN | 
 |                                    xd, | 
 | #endif  // CONFIG_COMPOUND_4XN | 
 |                                    mi) | 
 | #if CONFIG_REFINEMV | 
 |         || (mi->refinemv_flag && mi->interinter_comp.type == COMPOUND_AVERAGE) | 
 | #endif  // CONFIG_REFINEMV | 
 |     ) { | 
 |       const int bw = mi_size_wide[bsize]; | 
 |       const int bh = mi_size_high[bsize]; | 
 |       const int x_inside_boundary = AOMMIN(bw, cm->mi_params.mi_cols - mi_col); | 
 |       const int y_inside_boundary = AOMMIN(bh, cm->mi_params.mi_rows - mi_row); | 
 |       av1_copy_frame_refined_mvs(cm, xd, mi, xd->mi_row, xd->mi_col, | 
 |                                  x_inside_boundary, y_inside_boundary); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_REFINED_MVS_IN_TMVP | 
 |  | 
 |   if (xd->tree_type != SHARED_PART) { | 
 |     const int bh = mi_size_high[bsize]; | 
 |     const int bw = mi_size_wide[bsize]; | 
 |     const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |     const int x_inside_boundary = AOMMIN(bw, mi_params->mi_cols - mi_col); | 
 |     const int y_inside_boundary = AOMMIN(bh, mi_params->mi_rows - mi_row); | 
 |     int idx = mi_params->mi_stride; | 
 |     assert(x_inside_boundary && y_inside_boundary); | 
 |     if (xd->tree_type != CHROMA_PART) { | 
 |       for (int y = 0; y < y_inside_boundary; ++y) { | 
 |         for (int x = 0; x < x_inside_boundary; ++x) { | 
 |           if (x == 0 && y == 0) continue; | 
 |           set_blk_offsets(mi_params, xd, mi_row, mi_col, y, x); | 
 |           *(xd->mi[y * idx + x]) = *(xd->mi[0]); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       assert(x_inside_boundary && y_inside_boundary); | 
 |       for (int y = 0; y < y_inside_boundary; ++y) { | 
 |         for (int x = 0; x < x_inside_boundary; ++x) { | 
 |           if (x == 0 && y == 0) continue; | 
 |           set_blk_offsets(mi_params, xd, mi_row, mi_col, y, x); | 
 |           xd->mi[y * idx + x]->sb_type[PLANE_TYPE_UV] = | 
 |               xd->mi[0]->sb_type[PLANE_TYPE_UV]; | 
 |           xd->mi[y * idx + x]->uv_mode = xd->mi[0]->uv_mode; | 
 |           xd->mi[y * idx + x]->angle_delta[PLANE_TYPE_UV] = | 
 |               xd->mi[0]->angle_delta[PLANE_TYPE_UV]; | 
 |           if (av1_allow_palette(cm->features.allow_screen_content_tools, | 
 |                                 bsize)) { | 
 |             xd->mi[y * idx + x]->palette_mode_info.palette_size[PLANE_TYPE_UV] = | 
 |                 xd->mi[0]->palette_mode_info.palette_size[PLANE_TYPE_UV]; | 
 |             for (int i = PALETTE_MAX_SIZE; i < 3 * PALETTE_MAX_SIZE; i++) | 
 |               xd->mi[y * idx + x]->palette_mode_info.palette_colors[i] = | 
 |                   xd->mi[0]->palette_mode_info.palette_colors[i]; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void set_offsets_for_pred_and_recon(AV1Decoder *const pbi, | 
 |                                                       ThreadData *const td, | 
 |                                                       int mi_row, int mi_col, | 
 |                                                       BLOCK_SIZE bsize) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   const int offset = mi_row * mi_params->mi_stride + mi_col; | 
 |   const TileInfo *const tile = &xd->tile; | 
 |  | 
 |   xd->mi = mi_params->mi_grid_base + offset; | 
 |   xd->tx_type_map = | 
 |       &mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col]; | 
 |   xd->tx_type_map_stride = mi_params->mi_stride; | 
 |   xd->cctx_type_map = | 
 |       &mi_params->cctx_type_map[mi_row * mi_params->mi_stride + mi_col]; | 
 |   xd->cctx_type_map_stride = mi_params->mi_stride; | 
 |  | 
 |   // It is assumed that CHROMA_REF_INFO is already set (during parsing stage). | 
 |   CHROMA_REF_INFO *chroma_ref_info = &xd->mi[0]->chroma_ref_info; | 
 |   set_plane_n4(xd, bw, bh, num_planes, chroma_ref_info); | 
 |  | 
 |   // Distance of Mb to the various image edges. These are specified to 8th pel | 
 |   // as they are always compared to values that are in 1/8th pel units | 
 |   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, | 
 |                  mi_params->mi_cols, chroma_ref_info); | 
 |  | 
 |   av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, | 
 |                        num_planes, chroma_ref_info); | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_block(AV1Decoder *const pbi, ThreadData *const td, | 
 |                                     int mi_row, int mi_col, aom_reader *r, | 
 |                                     PARTITION_TYPE partition, BLOCK_SIZE bsize, | 
 |                                     PARTITION_TREE *parent, int index) { | 
 |   (void)partition; | 
 |   (void)parent; | 
 |   (void)index; | 
 |   set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); | 
 |   decode_token_recon_block(pbi, td, r, partition, bsize); | 
 | } | 
 |  | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 | /*!\brief Maps (ext_part, 4way, 4way_type, rect_type) to partition_type. */ | 
 | static PARTITION_TYPE | 
 |     rect_part_table[2][2][NUM_UNEVEN_4WAY_PARTS][NUM_RECT_PARTS] = { | 
 |       { | 
 |           // !do_ext_partition | 
 |           { | 
 |               // !do_4way | 
 |               { // UNEVEN_4A | 
 |                 PARTITION_HORZ, PARTITION_VERT }, | 
 |               { // UNEVEN_4B | 
 |                 PARTITION_HORZ, PARTITION_VERT }, | 
 |           }, | 
 |           { | 
 |               // do_4way | 
 |               { // UNEVEN_4A | 
 |                 PARTITION_HORZ, PARTITION_VERT }, | 
 |               { // UNEVEN_4B | 
 |                 PARTITION_HORZ, PARTITION_VERT }, | 
 |           }, | 
 |       }, | 
 |       { | 
 |           // do_ext_partition | 
 |           { | 
 |               // !do_4way | 
 |               { // UNEVEN_4A | 
 |                 PARTITION_HORZ_3, PARTITION_VERT_3 }, | 
 |               { // UNEVEN_4B | 
 |                 PARTITION_HORZ_3, PARTITION_VERT_3 }, | 
 |           }, | 
 |           { | 
 |               // do_4way | 
 |               { // UNEVEN_4A | 
 |                 PARTITION_HORZ_4A, PARTITION_VERT_4A }, | 
 |               { // UNEVEN_4B | 
 |                 PARTITION_HORZ_4B, PARTITION_VERT_4B }, | 
 |           }, | 
 |       }, | 
 |     }; | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |  | 
 | static PARTITION_TYPE read_partition(const AV1_COMMON *const cm, | 
 |                                      MACROBLOCKD *xd, int mi_row, int mi_col, | 
 |                                      aom_reader *r, int has_rows, int has_cols, | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |                                      const PARTITION_TREE *ptree, | 
 |                                      const PARTITION_TREE *ptree_luma, | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |                                      BLOCK_SIZE bsize) { | 
 | #if CONFIG_PARTITION_CONTEXT_REDUCE | 
 |   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize, 1); | 
 |   const int rect_type_ctx = | 
 |       partition_plane_context(xd, mi_row, mi_col, bsize, 0); | 
 | #else | 
 |   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); | 
 |   const int rect_type_ctx = ctx; | 
 | #endif | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |  | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |   (void)has_rows; | 
 |   (void)has_cols; | 
 |   const int plane = xd->tree_type == CHROMA_PART; | 
 |   const int ssx = cm->seq_params.subsampling_x; | 
 |   const int ssy = cm->seq_params.subsampling_y; | 
 |   const PARTITION_TYPE derived_partition = | 
 |       av1_get_normative_forced_partition_type( | 
 |           &cm->mi_params, xd->tree_type, ssx, ssy, mi_row, mi_col, bsize, | 
 |           ptree_luma, &ptree->chroma_ref_info); | 
 |   if (derived_partition != PARTITION_INVALID) { | 
 |     return derived_partition; | 
 |   } | 
 |  | 
 |   const bool do_split = aom_read_symbol(r, ec_ctx->do_split_cdf[plane][ctx], 2, | 
 |                                         ACCT_INFO("do_split")); | 
 |   if (!do_split) { | 
 |     return PARTITION_NONE; | 
 |   } | 
 |   const int square_split_ctx = square_split_context(xd, mi_row, mi_col, bsize); | 
 |   if (is_square_split_eligible(bsize, cm->sb_size)) { | 
 |     const bool do_square_split = | 
 |         aom_read_symbol(r, ec_ctx->do_square_split_cdf[plane][square_split_ctx], | 
 |                         2, ACCT_INFO("do_square_split")); | 
 |     if (do_square_split) { | 
 |       return PARTITION_SPLIT; | 
 |     } | 
 |   } | 
 |  | 
 |   RECT_PART_TYPE rect_type = rect_type_implied_by_bsize(bsize, xd->tree_type); | 
 |   if (rect_type == RECT_INVALID) { | 
 |     rect_type = aom_read_symbol(r, ec_ctx->rect_type_cdf[plane][rect_type_ctx], | 
 |                                 NUM_RECT_PARTS, ACCT_INFO("rect_type")); | 
 |   } | 
 |  | 
 |   bool do_ext_partition = false; | 
 |   bool do_uneven_4way_partition = false; | 
 |   UNEVEN_4WAY_PART_TYPE uneven_4way_partition_type = UNEVEN_4A; | 
 |  | 
 |   const bool ext_partition_allowed = | 
 |       cm->seq_params.enable_ext_partitions && | 
 |       is_ext_partition_allowed(bsize, rect_type, xd->tree_type); | 
 |   if (ext_partition_allowed) { | 
 |     do_ext_partition = | 
 |         aom_read_symbol(r, ec_ctx->do_ext_partition_cdf[plane][rect_type][ctx], | 
 |                         2, ACCT_INFO("do_ext_partition")); | 
 |     if (do_ext_partition) { | 
 |       const bool uneven_4way_partition_allowed = | 
 |           is_uneven_4way_partition_allowed(bsize, rect_type, xd->tree_type); | 
 |       if (uneven_4way_partition_allowed) { | 
 |         do_uneven_4way_partition = aom_read_symbol( | 
 |             r, ec_ctx->do_uneven_4way_partition_cdf[plane][rect_type][ctx], 2, | 
 |             ACCT_INFO("do_uneven_4way_partition")); | 
 |         if (do_uneven_4way_partition) { | 
 |           uneven_4way_partition_type = aom_read_symbol( | 
 |               r, ec_ctx->uneven_4way_partition_type_cdf[plane][rect_type][ctx], | 
 |               NUM_UNEVEN_4WAY_PARTS, ACCT_INFO("uneven_4way_partition_type")); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return rect_part_table[do_ext_partition][do_uneven_4way_partition] | 
 |                         [uneven_4way_partition_type][rect_type]; | 
 | #else   // !CONFIG_EXT_RECUR_PARTITIONS | 
 |   if (!has_rows && !has_cols) return PARTITION_SPLIT; | 
 |  | 
 |   const int plane = xd->tree_type == CHROMA_PART; | 
 |   if (plane == 1 && bsize == BLOCK_8X8) { | 
 |     return PARTITION_NONE; | 
 |   } | 
 |   int parent_block_width = block_size_wide[bsize]; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   if (plane && parent_block_width >= SHARED_PART_SIZE) { | 
 |     int luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); | 
 |     // if luma blocks uses smaller blocks, then chroma will also split | 
 |     if (luma_split_flag > 3) return PARTITION_SPLIT; | 
 |   } | 
 |  | 
 |   assert(ctx >= 0); | 
 |   aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[plane][ctx]; | 
 |   if (has_rows && has_cols) { | 
 |     return (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, | 
 |                                            partition_cdf_length(bsize), | 
 |                                            ACCT_INFO("partition_cdf")); | 
 |   } else if (!has_rows && has_cols) { | 
 |     assert(bsize > BLOCK_8X8); | 
 |     aom_cdf_prob cdf[2]; | 
 |     partition_gather_vert_alike(cdf, partition_cdf, bsize); | 
 |     assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); | 
 |     return aom_read_cdf(r, cdf, 2, ACCT_INFO("partition_cdf")) ? PARTITION_SPLIT | 
 |                                                                : PARTITION_HORZ; | 
 |   } else { | 
 |     assert(has_rows && !has_cols); | 
 |     assert(bsize > BLOCK_8X8); | 
 |     aom_cdf_prob cdf[2]; | 
 |     partition_gather_horz_alike(cdf, partition_cdf, bsize); | 
 |     assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); | 
 |     return aom_read_cdf(r, cdf, 2, ACCT_INFO("partition_cdf")) ? PARTITION_SPLIT | 
 |                                                                : PARTITION_VERT; | 
 |   } | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 | } | 
 |  | 
 | // Set the superblock level parameters | 
 | static void set_sb_mv_precision(SB_INFO *sbi, AV1Decoder *const pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   sbi->sb_mv_precision = cm->features.fr_mv_precision; | 
 | } | 
 |  | 
 | // TODO(slavarnway): eliminate bsize and subsize in future commits | 
 | static AOM_INLINE void decode_partition(AV1Decoder *const pbi, | 
 |                                         ThreadData *const td, int mi_row, | 
 |                                         int mi_col, aom_reader *reader, | 
 |                                         BLOCK_SIZE bsize, SB_INFO *sbi, | 
 |                                         PARTITION_TREE *ptree, | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |                                         const PARTITION_TREE *ptree_luma, | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |                                         int parse_decode_flag) { | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   const int ss_x = xd->plane[1].subsampling_x; | 
 |   const int ss_y = xd->plane[1].subsampling_y; | 
 |   // Half block width/height. | 
 |   const int hbs_w = mi_size_wide[bsize] / 2; | 
 |   const int hbs_h = mi_size_high[bsize] / 2; | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |   // One-eighth block width/height. | 
 |   const int ebs_w = mi_size_wide[bsize] / 8; | 
 |   const int ebs_h = mi_size_high[bsize] / 8; | 
 | #else | 
 |   // Quarter block width/height. | 
 |   const int qbs_w = mi_size_wide[bsize] / 4; | 
 |   const int qbs_h = mi_size_high[bsize] / 4; | 
 | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
 |   PARTITION_TYPE partition; | 
 |   const int has_rows = (mi_row + hbs_h) < cm->mi_params.mi_rows; | 
 |   const int has_cols = (mi_col + hbs_w) < cm->mi_params.mi_cols; | 
 |  | 
 |   if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) | 
 |     return; | 
 |  | 
 |   // parse_decode_flag takes the following values : | 
 |   // 01 - do parse only | 
 |   // 10 - do decode only | 
 |   // 11 - do parse and decode | 
 |   static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block, | 
 |                                                      decode_block, | 
 |                                                      parse_decode_block }; | 
 |   const int is_sb_root = bsize == cm->sb_size; | 
 |  | 
 | #if CONFIG_EXTENDED_SDP | 
 |   if (is_sb_root) { | 
 |     if (!frame_is_intra_only(cm)) { | 
 |       ptree->region_type = MIXED_INTER_INTRA_REGION; | 
 |       ptree->extended_sdp_allowed_flag = cm->seq_params.enable_sdp; | 
 |     } else { | 
 |       ptree->region_type = INTRA_REGION; | 
 |       ptree->extended_sdp_allowed_flag = 0; | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_EXTENDED_SDP | 
 |  | 
 |   if (parse_decode_flag & 1) { | 
 |     if (is_sb_root) { | 
 |       set_sb_mv_precision(sbi, pbi); | 
 |     } | 
 |     const int plane_start = get_partition_plane_start(xd->tree_type); | 
 |     const int plane_end = | 
 |         get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); | 
 |     for (int plane = plane_start; plane < plane_end; ++plane) { | 
 |       int rcol0, rcol1, rrow0, rrow1; | 
 |       if ((cm->rst_info[plane].frame_restoration_type != RESTORE_NONE) && | 
 |           av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, | 
 |                                              &rcol0, &rcol1, &rrow0, &rrow1)) { | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 |         int16_t *frame_filter_dictionary = NULL; | 
 |         int dict_stride = 0; | 
 |         if (plane == AOM_PLANE_Y && | 
 |             to_readwrite_framefilters(&cm->rst_info[plane], mi_row, mi_col)) { | 
 |           frame_filter_dictionary = cm->frame_filter_dictionary; | 
 |           dict_stride = cm->frame_filter_dictionary_stride; | 
 |           assert(frame_filter_dictionary != NULL); | 
 |           assert(dict_stride > 0); | 
 |           read_wienerns_framefilters(cm, xd, plane, reader, | 
 |                                      frame_filter_dictionary, dict_stride); | 
 |         } | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |         const int rstride = cm->rst_info[plane].horz_units_per_tile; | 
 |         for (int rrow = rrow0; rrow < rrow1; ++rrow) { | 
 |           for (int rcol = rcol0; rcol < rcol1; ++rcol) { | 
 |             const int runit_idx = rcol + rrow * rstride; | 
 |             loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     ptree->bsize = bsize; | 
 |     ptree->mi_row = mi_row; | 
 |     ptree->mi_col = mi_col; | 
 |     ptree->is_settled = 1; | 
 |     PARTITION_TREE *parent = ptree->parent; | 
 |     set_chroma_ref_info( | 
 |         xd->tree_type, mi_row, mi_col, ptree->index, bsize, | 
 |         &ptree->chroma_ref_info, parent ? &parent->chroma_ref_info : NULL, | 
 |         parent ? parent->bsize : BLOCK_INVALID, | 
 |         parent ? parent->partition : PARTITION_NONE, ss_x, ss_y); | 
 |  | 
 |     partition = | 
 |         !is_partition_point(bsize) | 
 |             ? PARTITION_NONE | 
 |             : read_partition(cm, xd, mi_row, mi_col, reader, has_rows, has_cols, | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |                              ptree, ptree_luma, | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |                              bsize); | 
 |  | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |     if (!is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, | 
 |                                              bsize)) { | 
 |       ptree_luma = NULL; | 
 |     } | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |  | 
 |     ptree->partition = partition; | 
 |  | 
 | #if CONFIG_EXTENDED_SDP | 
 |     if (!is_sb_root && parent) { | 
 |       if (parent->extended_sdp_allowed_flag) | 
 |         ptree->extended_sdp_allowed_flag = | 
 |             cm->seq_params.enable_sdp && | 
 |             is_extended_sdp_allowed(parent->bsize, parent->partition); | 
 |       else | 
 |         ptree->extended_sdp_allowed_flag = 0; | 
 |       if (!frame_is_intra_only(cm) && ptree->partition && | 
 |           parent->region_type != INTRA_REGION && | 
 |           ptree->extended_sdp_allowed_flag && | 
 |           is_bsize_allowed_for_extended_sdp(bsize, ptree->partition)) { | 
 |         const int ctx = get_intra_region_context(bsize); | 
 |         ptree->region_type = | 
 |             aom_read_symbol(reader, xd->tile_ctx->region_type_cdf[ctx], | 
 |                             REGION_TYPES, ACCT_INFO("region_type")); | 
 |         if (ptree->region_type == INTRA_REGION) xd->tree_type = LUMA_PART; | 
 |       } else if (!frame_is_intra_only(cm)) { | 
 |         ptree->region_type = parent->region_type; | 
 |       } else { | 
 |         ptree->region_type = INTRA_REGION; | 
 |       } | 
 |     } | 
 | #endif  // CONFIG_EXTENDED_SDP | 
 |  | 
 |     switch (partition) { | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |       case PARTITION_HORZ_4A: | 
 |       case PARTITION_HORZ_4B: | 
 |       case PARTITION_VERT_4A: | 
 |       case PARTITION_VERT_4B: | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |       case PARTITION_SPLIT: | 
 |         ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
 |         ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
 |         ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); | 
 |         ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); | 
 |         break; | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |       case PARTITION_HORZ: | 
 |       case PARTITION_VERT: | 
 |         ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
 |         ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
 |         break; | 
 |       case PARTITION_HORZ_3: | 
 |       case PARTITION_VERT_3: | 
 |         ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); | 
 |         ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); | 
 |         ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); | 
 |         ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); | 
 |         break; | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |       default: break; | 
 |     } | 
 |   } else { | 
 |     partition = ptree->partition; | 
 |   } | 
 |  | 
 |   const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
 |   if (subsize == BLOCK_INVALID) { | 
 |     aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Partition %d is invalid for block size %dx%d", | 
 |                        partition, block_size_wide[bsize], | 
 |                        block_size_high[bsize]); | 
 |     assert(0); | 
 |   } | 
 |   // Check the bitstream is conformant: if there is subsampling on the | 
 |   // chroma planes, subsize must subsample to a valid block size. | 
 |   const struct macroblockd_plane *const pd_u = &xd->plane[1]; | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |   BLOCK_SIZE test_subsize = subsize; | 
 |   if (xd->tree_type == SHARED_PART) { | 
 |     const PARTITION_TREE *parent = ptree; | 
 |     CHROMA_REF_INFO chroma_ref_info; | 
 |     const int index = | 
 |         (partition == PARTITION_HORZ || partition == PARTITION_VERT) ? 1 : 0; | 
 |     set_chroma_ref_info(xd->tree_type, mi_row, mi_col, index, subsize, | 
 |                         &chroma_ref_info, | 
 |                         parent ? &parent->chroma_ref_info : NULL, | 
 |                         parent ? parent->bsize : BLOCK_INVALID, | 
 |                         parent ? parent->partition : PARTITION_NONE, | 
 |                         xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); | 
 |     test_subsize = chroma_ref_info.bsize_base; | 
 |     assert(test_subsize != BLOCK_INVALID); | 
 |   } | 
 |   if (xd->tree_type != LUMA_PART && | 
 |       get_plane_block_size(test_subsize, pd_u->subsampling_x, | 
 |                            pd_u->subsampling_y) == BLOCK_INVALID) { | 
 |     aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Block size %dx%d invalid with this subsampling mode", | 
 |                        block_size_wide[test_subsize], | 
 |                        block_size_high[test_subsize]); | 
 |   } | 
 | #else | 
 |   if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) == | 
 |       BLOCK_INVALID) { | 
 |     aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Block size %dx%d invalid with this subsampling mode", | 
 |                        block_size_wide[subsize], block_size_high[subsize]); | 
 |   } | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |  | 
 | #define DEC_BLOCK_STX_ARG | 
 | #define DEC_BLOCK_EPT_ARG partition, | 
 | #define DEC_BLOCK(db_r, db_c, db_subsize, index)                               \ | 
 |   block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c),     \ | 
 |                                  reader, DEC_BLOCK_EPT_ARG(db_subsize), ptree, \ | 
 |                                  index) | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 | #define DEC_PARTITION(db_r, db_c, db_subsize, index)                 \ | 
 |   decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \ | 
 |                    (db_subsize), sbi, ptree->sub_tree[(index)],      \ | 
 |                    get_partition_subtree_const(ptree_luma, index),   \ | 
 |                    parse_decode_flag) | 
 | #else | 
 | #define DEC_PARTITION(db_r, db_c, db_subsize, index)                 \ | 
 |   decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \ | 
 |                    (db_subsize), sbi, ptree->sub_tree[(index)],      \ | 
 |                    parse_decode_flag) | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |  | 
 | #if !CONFIG_EXT_RECUR_PARTITIONS | 
 |   const BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
 |  | 
 |   switch (partition) { | 
 |     case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize, 0); break; | 
 |     case PARTITION_HORZ: | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |       DEC_PARTITION(mi_row, mi_col, subsize, 0); | 
 |       if ((mi_row + hbs_h) < cm->mi_params.mi_rows) | 
 |         DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 1); | 
 | #else | 
 |       DEC_BLOCK(mi_row, mi_col, subsize, 0); | 
 |       if (has_rows) DEC_BLOCK(mi_row + hbs_h, mi_col, subsize, 1); | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |       break; | 
 |     case PARTITION_VERT: | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |       DEC_PARTITION(mi_row, mi_col, subsize, 0); | 
 |       if ((mi_col + hbs_w) < cm->mi_params.mi_cols) | 
 |         DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1); | 
 | #else | 
 |       DEC_BLOCK(mi_row, mi_col, subsize, 0); | 
 |       if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs_w, subsize, 1); | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |       break; | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |     case PARTITION_HORZ_4A: { | 
 |       const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
 |       const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; | 
 |       assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); | 
 |       int this_mi_row = mi_row; | 
 |       DEC_PARTITION(this_mi_row, mi_col, subsize, 0); | 
 |       this_mi_row += ebs_h; | 
 |       if (this_mi_row >= cm->mi_params.mi_rows) break; | 
 |       DEC_PARTITION(this_mi_row, mi_col, bsize_med, 1); | 
 |       this_mi_row += 2 * ebs_h; | 
 |       if (this_mi_row >= cm->mi_params.mi_rows) break; | 
 |       DEC_PARTITION(this_mi_row, mi_col, bsize_big, 2); | 
 |       this_mi_row += 4 * ebs_h; | 
 |       if (this_mi_row >= cm->mi_params.mi_rows) break; | 
 |       DEC_PARTITION(this_mi_row, mi_col, subsize, 3); | 
 |       break; | 
 |     } | 
 |     case PARTITION_HORZ_4B: { | 
 |       const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
 |       const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; | 
 |       assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); | 
 |       int this_mi_row = mi_row; | 
 |       DEC_PARTITION(this_mi_row, mi_col, subsize, 0); | 
 |       this_mi_row += ebs_h; | 
 |       if (this_mi_row >= cm->mi_params.mi_rows) break; | 
 |       DEC_PARTITION(this_mi_row, mi_col, bsize_big, 1); | 
 |       this_mi_row += 4 * ebs_h; | 
 |       if (this_mi_row >= cm->mi_params.mi_rows) break; | 
 |       DEC_PARTITION(this_mi_row, mi_col, bsize_med, 2); | 
 |       this_mi_row += 2 * ebs_h; | 
 |       if (this_mi_row >= cm->mi_params.mi_rows) break; | 
 |       DEC_PARTITION(this_mi_row, mi_col, subsize, 3); | 
 |       break; | 
 |     } | 
 |     case PARTITION_VERT_4A: { | 
 |       const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
 |       const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; | 
 |       assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); | 
 |       int this_mi_col = mi_col; | 
 |       DEC_PARTITION(mi_row, this_mi_col, subsize, 0); | 
 |       this_mi_col += ebs_w; | 
 |       if (this_mi_col >= cm->mi_params.mi_cols) break; | 
 |       DEC_PARTITION(mi_row, this_mi_col, bsize_med, 1); | 
 |       this_mi_col += 2 * ebs_w; | 
 |       if (this_mi_col >= cm->mi_params.mi_cols) break; | 
 |       DEC_PARTITION(mi_row, this_mi_col, bsize_big, 2); | 
 |       this_mi_col += 4 * ebs_w; | 
 |       if (this_mi_col >= cm->mi_params.mi_cols) break; | 
 |       DEC_PARTITION(mi_row, this_mi_col, subsize, 3); | 
 |       break; | 
 |     } | 
 |     case PARTITION_VERT_4B: { | 
 |       const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
 |       const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; | 
 |       assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); | 
 |       int this_mi_col = mi_col; | 
 |       DEC_PARTITION(mi_row, this_mi_col, subsize, 0); | 
 |       this_mi_col += ebs_w; | 
 |       if (this_mi_col >= cm->mi_params.mi_cols) break; | 
 |       DEC_PARTITION(mi_row, this_mi_col, bsize_big, 1); | 
 |       this_mi_col += 4 * ebs_w; | 
 |       if (this_mi_col >= cm->mi_params.mi_cols) break; | 
 |       DEC_PARTITION(mi_row, this_mi_col, bsize_med, 2); | 
 |       this_mi_col += 2 * ebs_w; | 
 |       if (this_mi_col >= cm->mi_params.mi_cols) break; | 
 |       DEC_PARTITION(mi_row, this_mi_col, subsize, 3); | 
 |       break; | 
 |     } | 
 |     case PARTITION_HORZ_3: | 
 |     case PARTITION_VERT_3: { | 
 |       for (int i = 0; i < 4; ++i) { | 
 |         BLOCK_SIZE this_bsize = get_h_partition_subsize(bsize, i, partition); | 
 |         const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition); | 
 |         const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition); | 
 |  | 
 |         assert(this_bsize != BLOCK_INVALID); | 
 |         assert(offset_r >= 0 && offset_c >= 0); | 
 |  | 
 |         const int this_mi_row = mi_row + offset_r; | 
 |         const int this_mi_col = mi_col + offset_c; | 
 |         if (partition == PARTITION_HORZ_3) { | 
 |           if (this_mi_row >= cm->mi_params.mi_rows) break; | 
 |         } else { | 
 |           if (this_mi_col >= cm->mi_params.mi_cols) break; | 
 |         } | 
 |  | 
 |         DEC_PARTITION(this_mi_row, this_mi_col, this_bsize, i); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case PARTITION_SPLIT: | 
 |       DEC_PARTITION(mi_row, mi_col, subsize, 0); | 
 |       DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1); | 
 |       DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 2); | 
 |       DEC_PARTITION(mi_row + hbs_h, mi_col + hbs_w, subsize, 3); | 
 |       break; | 
 | #else   // !CONFIG_EXT_RECUR_PARTITIONS | 
 |     case PARTITION_SPLIT: | 
 |       DEC_PARTITION(mi_row, mi_col, subsize, 0); | 
 |       DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1); | 
 |       DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 2); | 
 |       DEC_PARTITION(mi_row + hbs_h, mi_col + hbs_w, subsize, 3); | 
 |       break; | 
 |     case PARTITION_HORZ_A: | 
 |       DEC_BLOCK(mi_row, mi_col, bsize2, 0); | 
 |       DEC_BLOCK(mi_row, mi_col + hbs_w, bsize2, 1); | 
 |       DEC_BLOCK(mi_row + hbs_h, mi_col, subsize, 2); | 
 |       break; | 
 |     case PARTITION_HORZ_B: | 
 |       DEC_BLOCK(mi_row, mi_col, subsize, 0); | 
 |       DEC_BLOCK(mi_row + hbs_h, mi_col, bsize2, 1); | 
 |       DEC_BLOCK(mi_row + hbs_h, mi_col + hbs_w, bsize2, 2); | 
 |       break; | 
 |     case PARTITION_VERT_A: | 
 |       DEC_BLOCK(mi_row, mi_col, bsize2, 0); | 
 |       DEC_BLOCK(mi_row + hbs_h, mi_col, bsize2, 1); | 
 |       DEC_BLOCK(mi_row, mi_col + hbs_w, subsize, 2); | 
 |       break; | 
 |     case PARTITION_VERT_B: | 
 |       DEC_BLOCK(mi_row, mi_col, subsize, 0); | 
 |       DEC_BLOCK(mi_row, mi_col + hbs_w, bsize2, 1); | 
 |       DEC_BLOCK(mi_row + hbs_h, mi_col + hbs_w, bsize2, 2); | 
 |       break; | 
 |     case PARTITION_HORZ_4: | 
 |       for (int i = 0; i < 4; ++i) { | 
 |         int this_mi_row = mi_row + i * qbs_h; | 
 |         if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break; | 
 |         DEC_BLOCK(this_mi_row, mi_col, subsize, i); | 
 |       } | 
 |       break; | 
 |     case PARTITION_VERT_4: | 
 |       for (int i = 0; i < 4; ++i) { | 
 |         int this_mi_col = mi_col + i * qbs_w; | 
 |         if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break; | 
 |         DEC_BLOCK(mi_row, this_mi_col, subsize, i); | 
 |       } | 
 |       break; | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |     default: assert(0 && "Invalid partition type"); | 
 |   } | 
 |  | 
 | #if CONFIG_EXTENDED_SDP | 
 |   PARTITION_TREE *parent = ptree->parent; | 
 |   if (!is_sb_root && parent) { | 
 |     if (!frame_is_intra_only(cm) && !cm->seq_params.monochrome && | 
 |         ptree->partition && parent->region_type != INTRA_REGION && | 
 |         ptree->region_type == INTRA_REGION) { | 
 |       // decode chroma part in one intra region | 
 |       xd->tree_type = CHROMA_PART; | 
 |       DEC_BLOCK(mi_row, mi_col, bsize, 0); | 
 |       // reset back to shared part | 
 |       xd->tree_type = SHARED_PART; | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_EXTENDED_SDP | 
 |  | 
 | #undef DEC_PARTITION | 
 | #undef DEC_BLOCK | 
 | #undef DEC_BLOCK_EPT_ARG | 
 | #undef DEC_BLOCK_STX_ARG | 
 |  | 
 |   if (parse_decode_flag & 1) | 
 |     update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_bool_decoder( | 
 |     const uint8_t *data, const uint8_t *data_end, const size_t read_size, | 
 |     struct aom_internal_error_info *error_info, aom_reader *r, | 
 |     uint8_t allow_update_cdf) { | 
 |   // Validate the calculated partition length. If the buffer | 
 |   // described by the partition can't be fully read, then restrict | 
 |   // it to the portion that can be (for EC mode) or throw an error. | 
 |   if (!read_is_valid(data, read_size, data_end)) | 
 |     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Truncated packet or corrupt tile length"); | 
 |  | 
 |   if (aom_reader_init(r, data, read_size)) | 
 |     aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, | 
 |                        "Failed to allocate bool decoder %d", 1); | 
 |  | 
 |   r->allow_update_cdf = allow_update_cdf; | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_partition_sb(AV1Decoder *const pbi, | 
 |                                            ThreadData *const td, int mi_row, | 
 |                                            int mi_col, aom_reader *reader, | 
 |                                            BLOCK_SIZE bsize, | 
 |                                            int parse_decode_flag) { | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   const int total_loop_num = | 
 |       (frame_is_intra_only(cm) && !cm->seq_params.monochrome && | 
 |        cm->seq_params.enable_sdp) | 
 |           ? 2 | 
 |           : 1; | 
 |   xd->tree_type = (total_loop_num == 1 ? SHARED_PART : LUMA_PART); | 
 |   if (parse_decode_flag & 1) { | 
 |     av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type); | 
 |   } | 
 |   decode_partition(pbi, td, mi_row, mi_col, reader, bsize, xd->sbi, | 
 |                    td->dcb.xd.sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |                    NULL, | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |                    parse_decode_flag); | 
 |   if (total_loop_num == 2) { | 
 |     xd->tree_type = CHROMA_PART; | 
 |     if (parse_decode_flag & 1) { | 
 |       av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type); | 
 |     } | 
 |     decode_partition(pbi, td, mi_row, mi_col, reader, bsize, xd->sbi, | 
 |                      td->dcb.xd.sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |                      td->dcb.xd.sbi->ptree_root[0], | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 |                      parse_decode_flag); | 
 |     xd->tree_type = SHARED_PART; | 
 |   } | 
 | #if CONFIG_INSPECTION | 
 |   if (pbi->inspect_sb_cb != NULL) { | 
 |     (*pbi->inspect_sb_cb)(pbi, pbi->inspect_ctx); | 
 |   } | 
 | #endif  // CONFIG_INSPECTION | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_segmentation(AV1_COMMON *const cm, | 
 |                                           struct aom_read_bit_buffer *rb) { | 
 |   struct segmentation *const seg = &cm->seg; | 
 |  | 
 |   seg->update_map = 0; | 
 |   seg->update_data = 0; | 
 |   seg->temporal_update = 0; | 
 |  | 
 |   seg->enabled = aom_rb_read_bit(rb); | 
 |   if (!seg->enabled) { | 
 |     if (cm->cur_frame->seg_map) { | 
 |       memset(cm->cur_frame->seg_map, 0, | 
 |              (cm->cur_frame->mi_rows * cm->cur_frame->mi_cols)); | 
 |     } | 
 |  | 
 |     memset(seg, 0, sizeof(*seg)); | 
 |     segfeatures_copy(&cm->cur_frame->seg, seg); | 
 |     return; | 
 |   } | 
 |   if (cm->seg.enabled && cm->prev_frame && | 
 |       (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) && | 
 |       (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) { | 
 |     cm->last_frame_seg_map = cm->prev_frame->seg_map; | 
 |   } else { | 
 |     cm->last_frame_seg_map = NULL; | 
 |   } | 
 |   // Read update flags | 
 | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
 |   if (cm->features.derived_primary_ref_frame == PRIMARY_REF_NONE) { | 
 | #else | 
 |   if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { | 
 | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
 |     // These frames can't use previous frames, so must signal map + features | 
 |     seg->update_map = 1; | 
 |     seg->temporal_update = 0; | 
 |     seg->update_data = 1; | 
 |   } else { | 
 |     seg->update_map = aom_rb_read_bit(rb); | 
 |     if (seg->update_map) { | 
 |       seg->temporal_update = aom_rb_read_bit(rb); | 
 |     } else { | 
 |       seg->temporal_update = 0; | 
 |     } | 
 |     seg->update_data = aom_rb_read_bit(rb); | 
 |   } | 
 |  | 
 |   // Segmentation data update | 
 |   if (seg->update_data) { | 
 |     av1_clearall_segfeatures(seg); | 
 |  | 
 |     for (int i = 0; i < MAX_SEGMENTS; i++) { | 
 |       for (int j = 0; j < SEG_LVL_MAX; j++) { | 
 |         int data = 0; | 
 |         const int feature_enabled = aom_rb_read_bit(rb); | 
 |         if (feature_enabled) { | 
 |           av1_enable_segfeature(seg, i, j); | 
 |  | 
 |           const int data_max = av1_seg_feature_data_max(j); | 
 |           const int data_min = -data_max; | 
 |           const int ubits = get_unsigned_bits(data_max); | 
 |  | 
 |           if (av1_is_segfeature_signed(j)) { | 
 |             data = aom_rb_read_inv_signed_literal(rb, ubits); | 
 |           } else { | 
 |             data = aom_rb_read_literal(rb, ubits); | 
 |           } | 
 |  | 
 |           data = clamp(data, data_min, data_max); | 
 |         } | 
 |         av1_set_segdata(seg, i, j, data); | 
 |       } | 
 |     } | 
 |     av1_calculate_segdata(seg); | 
 |   } else if (cm->prev_frame) { | 
 |     segfeatures_copy(seg, &cm->prev_frame->seg); | 
 |   } | 
 |   segfeatures_copy(&cm->cur_frame->seg, seg); | 
 | } | 
 |  | 
 | // Same function as av1_read_uniform but reading from uncompressed header rb | 
 | static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) { | 
 |   const int l = get_unsigned_bits(n); | 
 |   const int m = (1 << l) - n; | 
 |   const int v = aom_rb_read_literal(rb, l - 1); | 
 |   assert(l != 0); | 
 |   if (v < m) | 
 |     return v; | 
 |   else | 
 |     return (v << 1) - m + aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | // Converts decoded index to frame restoration type depending on lr tools | 
 | // that are enabled for the frame for a given plane. | 
 | static RestorationType index_to_frame_restoration_type( | 
 |     const AV1_COMMON *const cm, int plane, int ndx) { | 
 |   RestorationType r = RESTORE_NONE; | 
 |   for (r = RESTORE_NONE; r < RESTORE_TYPES; ++r) { | 
 |     if (((cm->features.lr_tools_disable_mask[plane] >> r) & 1) == 0) { | 
 |       ndx--; | 
 |       if (ndx < 0) break; | 
 |     } | 
 |   } | 
 |   assert(r < RESTORE_TYPES); | 
 |   return r; | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_restoration_mode(AV1_COMMON *cm, | 
 |                                                struct aom_read_bit_buffer *rb) { | 
 |   assert(!cm->features.all_lossless); | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   if (is_global_intrabc_allowed(cm)) return; | 
 |   int luma_none = 1, chroma_none = 1; | 
 |   for (int p = 0; p < num_planes; ++p) { | 
 |     RestorationInfo *rsi = &cm->rst_info[p]; | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 |     rsi->frame_filters_on = 0; | 
 |     cm->cur_frame->rst_info[p].frame_filters_on = 0; | 
 | #if CONFIG_TEMP_LR | 
 |     rsi->temporal_pred_flag = 0; | 
 | #endif  // CONFIG_TEMP_LR | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |     uint8_t plane_lr_tools_disable_mask = | 
 |         cm->seq_params.lr_tools_disable_mask[p > 0]; | 
 |     av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features); | 
 |     const int ndx = rb_read_uniform(rb, cm->features.lr_frame_tools_count[p]); | 
 |     rsi->frame_restoration_type = index_to_frame_restoration_type(cm, p, ndx); | 
 |     if (rsi->frame_restoration_type == RESTORE_SWITCHABLE && | 
 |         cm->features.lr_tools_count[p] > 2) { | 
 |       if (aom_rb_read_bit(rb)) { | 
 |         int tools_count = cm->features.lr_tools_count[p]; | 
 |         for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { | 
 |           if (!(plane_lr_tools_disable_mask & (1 << i))) { | 
 |             const int disable_tool = aom_rb_read_bit(rb); | 
 |             plane_lr_tools_disable_mask |= (disable_tool << i); | 
 |             tools_count -= disable_tool; | 
 |             // if tools_count becomes 2 break from the loop since we | 
 |             // do not allow any other tool to be disabled. | 
 |             if (tools_count == 2) break; | 
 |           } | 
 |         } | 
 |         av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features); | 
 |       } | 
 |     } | 
 |  | 
 |     if (rsi->frame_restoration_type != RESTORE_NONE) { | 
 |       luma_none &= p > 0; | 
 |       chroma_none &= p == 0; | 
 |     } | 
 |     const int is_wiener_nonsep_possible = | 
 |         rsi->frame_restoration_type == RESTORE_WIENER_NONSEP || | 
 |         rsi->frame_restoration_type == RESTORE_SWITCHABLE; | 
 |     if (is_wiener_nonsep_possible) { | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 |       rsi->frame_filters_initialized = 0; | 
 |       if (p == AOM_PLANE_Y) { | 
 |         int read_num_classes = 1; | 
 |         read_num_classes = read_num_classes && NUM_WIENERNS_CLASS_INIT_LUMA > 1; | 
 |         if (read_num_classes) { | 
 |           rsi->frame_filters_on = aom_rb_read_literal(rb, 1); | 
 | #if CONFIG_TEMP_LR | 
 |           rsi->rst_ref_pic_idx = 0; | 
 |           if (rsi->frame_filters_on) { | 
 |             const int num_ref_frames = | 
 |                 (frame_is_intra_only(cm) || cm->features.error_resilient_mode) | 
 |                     ? 0 | 
 |                     : cm->ref_frames_info.num_total_refs; | 
 |  | 
 |             if (num_ref_frames > 0) | 
 |               rsi->temporal_pred_flag = aom_rb_read_bit(rb); | 
 |             if (rsi->temporal_pred_flag && num_ref_frames > 1) { | 
 |               rsi->rst_ref_pic_idx = aom_rb_read_literal( | 
 |                   rb, | 
 |                   av1_ceil_log2(num_ref_frames));  // read_lr_reference_idx | 
 |             } | 
 |           } | 
 |  | 
 |           if (rsi->temporal_pred_flag) { | 
 |             av1_copy_rst_frame_filters( | 
 |                 rsi, &get_ref_frame_buf(cm, rsi->rst_ref_pic_idx)->rst_info[p]); | 
 |             rsi->frame_filters_initialized = 1; | 
 |  | 
 |             av1_copy_rst_frame_filters(&cm->cur_frame->rst_info[p], rsi); | 
 |           } else { | 
 | #endif  // CONFIG_TEMP_LR | 
 |             if (rsi->frame_filters_on) | 
 |               rsi->num_filter_classes = decode_num_filter_classes( | 
 |                   aom_rb_read_literal(rb, NUM_FILTER_CLASSES_BITS)); | 
 |             else | 
 |               rsi->num_filter_classes = 1; | 
 | #if CONFIG_TEMP_LR | 
 |           } | 
 | #endif  // CONFIG_TEMP_LR | 
 |           if (cm->frame_filter_dictionary == NULL) { | 
 |             allocate_frame_filter_dictionary(cm); | 
 |             translate_pcwiener_filters_to_wienerns(cm); | 
 |           } | 
 |           if (rsi->frame_filters_on) { | 
 |             set_frame_filter_dictionary(cm, rsi->num_filter_classes, | 
 |                                         cm->frame_filter_dictionary, | 
 |                                         cm->frame_filter_dictionary_stride); | 
 |           } | 
 |         } else { | 
 |           rsi->frame_filters_on = 0; | 
 |           rsi->num_filter_classes = NUM_WIENERNS_CLASS_INIT_LUMA; | 
 |           assert(rsi->num_filter_classes == 1); | 
 |         } | 
 |       } else { | 
 |         rsi->frame_filters_on = 0; | 
 |         rsi->num_filter_classes = NUM_WIENERNS_CLASS_INIT_CHROMA; | 
 |       } | 
 | #else | 
 |       rsi->num_filter_classes = (p == AOM_PLANE_Y) | 
 |                                     ? NUM_WIENERNS_CLASS_INIT_LUMA | 
 |                                     : NUM_WIENERNS_CLASS_INIT_CHROMA; | 
 |       rsi->frame_filters_on = 0; | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |     } | 
 | #if CONFIG_COMBINE_PC_NS_WIENER && CONFIG_TEMP_LR | 
 |     assert(IMPLIES(!rsi->frame_filters_on, !rsi->temporal_pred_flag)); | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER && CONFIG_TEMP_LR | 
 |   } | 
 |   const int frame_width = cm->superres_upscaled_width; | 
 |   const int frame_height = cm->superres_upscaled_height; | 
 |   set_restoration_unit_size(frame_width, frame_height, | 
 |                             cm->seq_params.subsampling_x, | 
 |                             cm->seq_params.subsampling_y, cm->rst_info); | 
 |   int size = cm->rst_info[0].max_restoration_unit_size; | 
 |  | 
 |   cm->rst_info[0].restoration_unit_size = | 
 |       cm->rst_info[0].max_restoration_unit_size; | 
 |   if (!luma_none) { | 
 |     if (aom_rb_read_bit(rb)) | 
 |       cm->rst_info[0].restoration_unit_size = size >> 1; | 
 |     else { | 
 |       if (aom_rb_read_bit(rb)) | 
 |         cm->rst_info[0].restoration_unit_size = size; | 
 |       else | 
 |         cm->rst_info[0].restoration_unit_size = size >> 2; | 
 |     } | 
 |   } | 
 |   if (num_planes > 1) { | 
 |     cm->rst_info[1].restoration_unit_size = | 
 |         cm->rst_info[1].max_restoration_unit_size; | 
 |     if (!chroma_none) { | 
 |       size = cm->rst_info[1].max_restoration_unit_size; | 
 |       if (aom_rb_read_bit(rb)) | 
 |         cm->rst_info[1].restoration_unit_size = size >> 1; | 
 |       else { | 
 |         if (aom_rb_read_bit(rb)) | 
 |           cm->rst_info[1].restoration_unit_size = size; | 
 |         else | 
 |           cm->rst_info[1].restoration_unit_size = size >> 2; | 
 |       } | 
 |     } | 
 |     cm->rst_info[2].restoration_unit_size = | 
 |         cm->rst_info[1].restoration_unit_size; | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void read_wiener_filter(MACROBLOCKD *xd, int wiener_win, | 
 |                                           WienerInfo *wiener_info, | 
 |                                           WienerInfoBank *bank, | 
 |                                           aom_reader *rb) { | 
 |   const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, 2, | 
 |                                           ACCT_INFO("exact_match")); | 
 |   int k; | 
 |   for (k = 0; k < bank->bank_size - 1; ++k) { | 
 |     if (aom_read_literal(rb, 1, ACCT_INFO("bank_size"))) break; | 
 |   } | 
 |   const int ref = k; | 
 |   if (exact_match) { | 
 |     memcpy(wiener_info, av1_constref_from_wiener_bank(bank, ref), | 
 |            sizeof(*wiener_info)); | 
 |     wiener_info->bank_ref = ref; | 
 |     if (bank->bank_size == 0) av1_add_to_wiener_bank(bank, wiener_info); | 
 |     return; | 
 |   } | 
 |   WienerInfo *ref_wiener_info = av1_ref_from_wiener_bank(bank, ref); | 
 |   memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter)); | 
 |   memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter)); | 
 |  | 
 |   if (wiener_win == WIENER_WIN) | 
 |     wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
 |             WIENER_FILT_TAP0_SUBEXP_K, | 
 |             ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, | 
 |             ACCT_INFO("vfilter[0]")) + | 
 |         WIENER_FILT_TAP0_MINV; | 
 |   else | 
 |     wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0; | 
 |   wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
 |           WIENER_FILT_TAP1_SUBEXP_K, | 
 |           ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, | 
 |           ACCT_INFO("vfilter[1]")) + | 
 |       WIENER_FILT_TAP1_MINV; | 
 |   wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
 |           WIENER_FILT_TAP2_SUBEXP_K, | 
 |           ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, | 
 |           ACCT_INFO("vfilter[2]")) + | 
 |       WIENER_FILT_TAP2_MINV; | 
 |   // The central element has an implicit +WIENER_FILT_STEP | 
 |   wiener_info->vfilter[WIENER_HALFWIN] = | 
 |       -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + | 
 |             wiener_info->vfilter[2]); | 
 |  | 
 |   if (wiener_win == WIENER_WIN) | 
 |     wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
 |             WIENER_FILT_TAP0_SUBEXP_K, | 
 |             ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, | 
 |             ACCT_INFO("hfilter[0]")) + | 
 |         WIENER_FILT_TAP0_MINV; | 
 |   else | 
 |     wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0; | 
 |   wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
 |           WIENER_FILT_TAP1_SUBEXP_K, | 
 |           ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, | 
 |           ACCT_INFO("hfilter[1]")) + | 
 |       WIENER_FILT_TAP1_MINV; | 
 |   wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
 |           WIENER_FILT_TAP2_SUBEXP_K, | 
 |           ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, | 
 |           ACCT_INFO("hfilter[2]")) + | 
 |       WIENER_FILT_TAP2_MINV; | 
 |   // The central element has an implicit +WIENER_FILT_STEP | 
 |   wiener_info->hfilter[WIENER_HALFWIN] = | 
 |       -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + | 
 |             wiener_info->hfilter[2]); | 
 |   av1_add_to_wiener_bank(bank, wiener_info); | 
 | } | 
 |  | 
 | static AOM_INLINE void read_sgrproj_filter(MACROBLOCKD *xd, | 
 |                                            SgrprojInfo *sgrproj_info, | 
 |                                            SgrprojInfoBank *bank, | 
 |                                            aom_reader *rb) { | 
 |   const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, 2, | 
 |                                           ACCT_INFO("exact_match")); | 
 |   int k; | 
 |   for (k = 0; k < bank->bank_size - 1; ++k) { | 
 |     if (aom_read_literal(rb, 1, ACCT_INFO("bank"))) break; | 
 |   } | 
 |   const int ref = k; | 
 |   if (exact_match) { | 
 |     memcpy(sgrproj_info, av1_constref_from_sgrproj_bank(bank, ref), | 
 |            sizeof(*sgrproj_info)); | 
 |     sgrproj_info->bank_ref = ref; | 
 |     if (bank->bank_size == 0) av1_add_to_sgrproj_bank(bank, sgrproj_info); | 
 |     return; | 
 |   } | 
 |   SgrprojInfo *ref_sgrproj_info = av1_ref_from_sgrproj_bank(bank, ref); | 
 |  | 
 |   sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_INFO("ep")); | 
 |   const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; | 
 |  | 
 |   if (params->r[0] == 0) { | 
 |     sgrproj_info->xqd[0] = 0; | 
 |     sgrproj_info->xqd[1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_INFO()) + | 
 |         SGRPROJ_PRJ_MIN1; | 
 |   } else if (params->r[1] == 0) { | 
 |     sgrproj_info->xqd[0] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_INFO()) + | 
 |         SGRPROJ_PRJ_MIN0; | 
 |     sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0], | 
 |                                  SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); | 
 |   } else { | 
 |     sgrproj_info->xqd[0] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_INFO()) + | 
 |         SGRPROJ_PRJ_MIN0; | 
 |     sgrproj_info->xqd[1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_INFO()) + | 
 |         SGRPROJ_PRJ_MIN1; | 
 |   } | 
 |  | 
 |   av1_add_to_sgrproj_bank(bank, sgrproj_info); | 
 | } | 
 |  | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 | static void read_match_indices(WienerNonsepInfo *wienerns_info, | 
 |                                aom_reader *rb) { | 
 |   for (int c_id = 0; c_id < wienerns_info->num_classes; ++c_id) { | 
 |     int decoded_match = aom_read_literal( | 
 |         rb, first_match_bits(wienerns_info->num_classes), ACCT_INFO("match")); | 
 |     int first_match = decode_first_match(decoded_match); | 
 |     wienerns_info->match_indices[c_id] = first_match; | 
 |     assert(first_match == | 
 |            get_first_match_index(wienerns_info->match_indices[c_id], | 
 |                                  wienerns_info->num_classes)); | 
 |   } | 
 | } | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |  | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 | static void read_wienerns_framefilters(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                        int plane, aom_reader *rb, | 
 |                                        int16_t *frame_filter_dictionary, | 
 |                                        int dict_stride) { | 
 |   const int base_qindex = cm->quant_params.base_qindex; | 
 |   const int is_uv = plane != AOM_PLANE_Y; | 
 |   RestorationInfo *rsi = &cm->rst_info[plane]; | 
 |   assert(!is_uv); | 
 |   assert(rsi->frame_filters_on && !rsi->frame_filters_initialized); | 
 |   int skip_filter_read_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
 |   const int num_classes = rsi->num_filter_classes; | 
 |   rsi->frame_filters.num_classes = num_classes; | 
 |   assert(num_classes <= WIENERNS_MAX_CLASSES); | 
 | #if CONFIG_TEMP_LR | 
 |   assert(!rsi->temporal_pred_flag); | 
 | #endif  // CONFIG_TEMP_LR | 
 |   read_match_indices(&rsi->frame_filters, rb); | 
 |   for (int c_id = 0; c_id < num_classes; ++c_id) { | 
 |     const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, | 
 |                                             2, ACCT_INFO("exact_match")); | 
 |     skip_filter_read_for_class[c_id] = exact_match; | 
 |   } | 
 |   const WienernsFilterParameters *nsfilter_params = | 
 |       get_wienerns_parameters(base_qindex, is_uv); | 
 |   const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; | 
 |   WienerNonsepInfoBank bank = { 0 }; | 
 |   bank.filter[0].num_classes = num_classes; | 
 |   for (int c_id = 0; c_id < num_classes; ++c_id) { | 
 |     fill_first_slot_of_bank_with_filter_match( | 
 |         &bank, &rsi->frame_filters, rsi->frame_filters.match_indices, | 
 |         base_qindex, c_id, frame_filter_dictionary, dict_stride); | 
 |     if (skip_filter_read_for_class[c_id]) { | 
 |       copy_nsfilter_taps_for_class( | 
 |           &rsi->frame_filters, av1_constref_from_wienerns_bank(&bank, 0, c_id), | 
 |           c_id); | 
 |       continue; | 
 |     } | 
 |     const WienerNonsepInfo *ref_wienerns_info = | 
 |         av1_constref_from_wienerns_bank(&bank, 0, c_id); | 
 |     assert(ref_wienerns_info->num_classes == num_classes); | 
 |     int16_t *wienerns_info_nsfilter = nsfilter_taps(&rsi->frame_filters, c_id); | 
 |     const int16_t *ref_wienerns_info_nsfilter = | 
 |         const_nsfilter_taps(ref_wienerns_info, c_id); | 
 |  | 
 |     memset(wienerns_info_nsfilter, 0, | 
 |            nsfilter_params->ncoeffs * sizeof(wienerns_info_nsfilter[0])); | 
 |  | 
 |     const int beg_feat = 0; | 
 |     int end_feat = nsfilter_params->ncoeffs; | 
 |     if (end_feat > 6) { | 
 |       const int filter_length_bit = | 
 |           aom_read_symbol(rb, xd->tile_ctx->wienerns_length_cdf[is_uv], 2, | 
 |                           ACCT_INFO("wienerns_length")); | 
 |       end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6; | 
 |     } | 
 |     assert((end_feat & 1) == 0); | 
 |  | 
 |     int uv_sym = 0; | 
 |     if (is_uv && end_feat > 6) { | 
 |       uv_sym = aom_read_symbol(rb, xd->tile_ctx->wienerns_uv_sym_cdf, 2, | 
 |                                ACCT_INFO("wienerns_uv_sym")); | 
 |     } | 
 |  | 
 |     for (int i = beg_feat; i < end_feat; ++i) { | 
 |       wienerns_info_nsfilter[i] = | 
 |           aom_read_4part_wref( | 
 |               rb, | 
 |               ref_wienerns_info_nsfilter[i] - | 
 |                   wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
 |               xd->tile_ctx->wienerns_4part_cdf | 
 |                   [wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID]], | 
 |               wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID], | 
 |               ACCT_INFO("wienerns_info_nsfilter")) + | 
 |           wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]; | 
 |       if (uv_sym && i >= 6) { | 
 |         // Fill in symmetrical tap without reading it | 
 |         wienerns_info_nsfilter[i + 1] = wienerns_info_nsfilter[i]; | 
 |         i++; | 
 |       } | 
 |     } | 
 |   } | 
 |   rsi->frame_filters_initialized = 1; | 
 | #if CONFIG_TEMP_LR | 
 |   av1_copy_rst_frame_filters(&cm->cur_frame->rst_info[plane], rsi); | 
 | #endif  // CONFIG_TEMP_LR | 
 | } | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |  | 
 | static void read_wienerns_filter(MACROBLOCKD *xd, int is_uv, | 
 |                                  const RestorationInfo *rsi, | 
 |                                  WienerNonsepInfo *wienerns_info, | 
 |                                  WienerNonsepInfoBank *bank, aom_reader *rb) { | 
 |   int skip_filter_read_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
 |   int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
 |   const int num_classes = wienerns_info->num_classes; | 
 |   assert(num_classes <= WIENERNS_MAX_CLASSES); | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 |   if (rsi->frame_filters_on) return; | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |   for (int c_id = 0; c_id < num_classes; ++c_id) { | 
 |     const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, | 
 |                                             2, ACCT_INFO("exact_match")); | 
 |     int ref; | 
 |     for (ref = 0; ref < bank->bank_size_for_class[c_id] - 1; ++ref) { | 
 |       if (aom_read_literal(rb, 1, ACCT_INFO("bank"))) break; | 
 |     } | 
 |     wienerns_info->bank_ref_for_class[c_id] = ref; | 
 |     skip_filter_read_for_class[c_id] = exact_match; | 
 |     ref_for_class[c_id] = ref; | 
 |   } | 
 |   const WienernsFilterParameters *nsfilter_params = | 
 |       get_wienerns_parameters(xd->current_base_qindex, is_uv); | 
 |   const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; | 
 |   for (int c_id = 0; c_id < num_classes; ++c_id) { | 
 |     if (skip_filter_read_for_class[c_id]) { | 
 |       copy_nsfilter_taps_for_class( | 
 |           wienerns_info, | 
 |           av1_constref_from_wienerns_bank(bank, ref_for_class[c_id], c_id), | 
 |           c_id); | 
 |       continue; | 
 |     } | 
 |     const int ref = ref_for_class[c_id]; | 
 |  | 
 |     const WienerNonsepInfo *ref_wienerns_info = | 
 |         av1_constref_from_wienerns_bank(bank, ref, c_id); | 
 |     assert(ref_wienerns_info->num_classes == num_classes); | 
 |     int16_t *wienerns_info_nsfilter = nsfilter_taps(wienerns_info, c_id); | 
 |     const int16_t *ref_wienerns_info_nsfilter = | 
 |         const_nsfilter_taps(ref_wienerns_info, c_id); | 
 |  | 
 |     memset(wienerns_info_nsfilter, 0, | 
 |            nsfilter_params->ncoeffs * sizeof(wienerns_info_nsfilter[0])); | 
 |  | 
 |     const int beg_feat = 0; | 
 |     int end_feat = nsfilter_params->ncoeffs; | 
 |     if (end_feat > 6) { | 
 |       const int filter_length_bit = | 
 |           aom_read_symbol(rb, xd->tile_ctx->wienerns_length_cdf[is_uv], 2, | 
 |                           ACCT_INFO("wienerns_length")); | 
 |       end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6; | 
 |     } | 
 |     assert((end_feat & 1) == 0); | 
 |  | 
 |     int uv_sym = 0; | 
 |     if (is_uv && end_feat > 6) { | 
 |       uv_sym = aom_read_symbol(rb, xd->tile_ctx->wienerns_uv_sym_cdf, 2, | 
 |                                ACCT_INFO("wienerns_uv_sym")); | 
 |     } | 
 |  | 
 |     for (int i = beg_feat; i < end_feat; ++i) { | 
 |       wienerns_info_nsfilter[i] = | 
 |           aom_read_4part_wref( | 
 |               rb, | 
 |               ref_wienerns_info_nsfilter[i] - | 
 |                   wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
 |               xd->tile_ctx->wienerns_4part_cdf | 
 |                   [wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID]], | 
 |               wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID], | 
 |               ACCT_INFO("wienerns_info_nsfilter")) + | 
 |           wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]; | 
 |       if (uv_sym && i >= 6) { | 
 |         // Fill in symmetrical tap without reading it | 
 |         wienerns_info_nsfilter[i + 1] = wienerns_info_nsfilter[i]; | 
 |         i++; | 
 |       } | 
 |     } | 
 |     av1_add_to_wienerns_bank(bank, wienerns_info, c_id); | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void loop_restoration_read_sb_coeffs(AV1_COMMON *cm, | 
 |                                                        MACROBLOCKD *xd, | 
 |                                                        aom_reader *const r, | 
 |                                                        int plane, | 
 |                                                        int runit_idx) { | 
 |   RestorationInfo *rsi = &cm->rst_info[plane]; | 
 |   RestorationUnitInfo *rui = &rsi->unit_info[runit_idx]; | 
 |   assert(rsi->frame_restoration_type != RESTORE_NONE); | 
 |  | 
 |   assert(!cm->features.all_lossless); | 
 |  | 
 |   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; | 
 |   rui->wienerns_info.num_classes = rsi->num_filter_classes; | 
 |  | 
 |   if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { | 
 |     rui->restoration_type = cm->features.lr_last_switchable_ndx_0_type[plane]; | 
 |     for (int re = 0; re <= cm->features.lr_last_switchable_ndx[plane]; re++) { | 
 |       if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue; | 
 |       const int found = aom_read_symbol( | 
 |           r, xd->tile_ctx->switchable_flex_restore_cdf[re][plane], 2, | 
 |           ACCT_INFO("found")); | 
 |       if (found) { | 
 |         rui->restoration_type = re; | 
 |         break; | 
 |       } | 
 |     } | 
 |     switch (rui->restoration_type) { | 
 |       case RESTORE_WIENER: | 
 |         read_wiener_filter(xd, wiener_win, &rui->wiener_info, | 
 |                            &xd->wiener_info[plane], r); | 
 |         break; | 
 |       case RESTORE_SGRPROJ: | 
 |         read_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], | 
 |                             r); | 
 |         break; | 
 |       case RESTORE_WIENER_NONSEP: | 
 |         read_wienerns_filter(xd, plane != AOM_PLANE_Y, rsi, &rui->wienerns_info, | 
 |                              &xd->wienerns_info[plane], r); | 
 |         break; | 
 |       case RESTORE_PC_WIENER: | 
 |         // No side-information for now. | 
 |         break; | 
 |       default: assert(rui->restoration_type == RESTORE_NONE); break; | 
 |     } | 
 |   } else if (rsi->frame_restoration_type == RESTORE_WIENER) { | 
 |     if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, | 
 |                         ACCT_INFO("wiener_restore_cdf"))) { | 
 |       rui->restoration_type = RESTORE_WIENER; | 
 |       read_wiener_filter(xd, wiener_win, &rui->wiener_info, | 
 |                          &xd->wiener_info[plane], r); | 
 |     } else { | 
 |       rui->restoration_type = RESTORE_NONE; | 
 |     } | 
 |   } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { | 
 |     if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, | 
 |                         ACCT_INFO("sgrproj_restore_cdf"))) { | 
 |       rui->restoration_type = RESTORE_SGRPROJ; | 
 |       read_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], r); | 
 |     } else { | 
 |       rui->restoration_type = RESTORE_NONE; | 
 |     } | 
 |   } else if (rsi->frame_restoration_type == RESTORE_WIENER_NONSEP) { | 
 |     if (aom_read_symbol(r, xd->tile_ctx->wienerns_restore_cdf, 2, | 
 |                         ACCT_INFO("wienerns_restore_cdf"))) { | 
 |       rui->restoration_type = RESTORE_WIENER_NONSEP; | 
 |       read_wienerns_filter(xd, plane != AOM_PLANE_Y, rsi, &rui->wienerns_info, | 
 |                            &xd->wienerns_info[plane], r); | 
 |     } else { | 
 |       rui->restoration_type = RESTORE_NONE; | 
 |     } | 
 |   } else if (rsi->frame_restoration_type == RESTORE_PC_WIENER) { | 
 |     if (aom_read_symbol(r, xd->tile_ctx->pc_wiener_restore_cdf, 2, | 
 |                         ACCT_INFO("pc_wiener_restore_cdf"))) { | 
 |       rui->restoration_type = RESTORE_PC_WIENER; | 
 |       // No side-information for now. | 
 |     } else { | 
 |       rui->restoration_type = RESTORE_NONE; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(((cm->features.lr_tools_disable_mask[plane] >> rui->restoration_type) & | 
 |           1) == 0); | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_loopfilter(AV1_COMMON *cm, | 
 |                                         struct aom_read_bit_buffer *rb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   struct loopfilter *lf = &cm->lf; | 
 |  | 
 |   if (is_global_intrabc_allowed(cm) || cm->features.coded_lossless) { | 
 |     // write default deltas to frame buffer | 
 |     av1_set_default_ref_deltas(cm->cur_frame->ref_deltas); | 
 |     av1_set_default_mode_deltas(cm->cur_frame->mode_deltas); | 
 |     return; | 
 |   } | 
 |   assert(!cm->features.coded_lossless); | 
 |  | 
 |   if (cm->prev_frame) { | 
 |     // write deltas to frame buffer | 
 |     memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, SINGLE_REF_FRAMES); | 
 |     memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); | 
 |   } else { | 
 |     av1_set_default_ref_deltas(lf->ref_deltas); | 
 |     av1_set_default_mode_deltas(lf->mode_deltas); | 
 |   } | 
 |  | 
 |   lf->filter_level[0] = aom_rb_read_bit(rb); | 
 | #if DF_DUAL | 
 |   lf->filter_level[1] = aom_rb_read_bit(rb); | 
 | #else | 
 |   lf->filter_level[1] = lf->filter_level[0]; | 
 | #endif  // DF_DUAL | 
 |   if (num_planes > 1) { | 
 |     if (lf->filter_level[0] || lf->filter_level[1]) { | 
 |       lf->filter_level_u = aom_rb_read_bit(rb); | 
 |       lf->filter_level_v = aom_rb_read_bit(rb); | 
 |     } else { | 
 |       lf->filter_level_u = lf->filter_level_v = 0; | 
 |     } | 
 |   } | 
 |   //  lf->sharpness_level = 0; | 
 |  | 
 | #if DF_DUAL | 
 |   if (lf->filter_level[0]) { | 
 |     int luma_delta_q = aom_rb_read_bit(rb); | 
 |     if (luma_delta_q) { | 
 |       lf->delta_q_luma[0] = | 
 |           aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_q_luma[0] = 0; | 
 |     } | 
 | #if DF_TWO_PARAM | 
 |     int luma_delta_side = aom_rb_read_bit(rb); | 
 |     if (luma_delta_side) { | 
 |       lf->delta_side_luma[0] = | 
 |           aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_side_luma[0] = 0; | 
 |     } | 
 | #else | 
 |     lf->delta_side_luma[0] = lf->delta_q_luma[0]; | 
 | #endif  // DF_TWO_PARAM | 
 |   } else { | 
 |     lf->delta_q_luma[0] = 0; | 
 |     lf->delta_side_luma[0] = 0; | 
 |   } | 
 |   if (lf->filter_level[1]) { | 
 |     int luma_delta_q = aom_rb_read_bit(rb); | 
 |     if (luma_delta_q) { | 
 |       lf->delta_q_luma[1] = | 
 |           aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_q_luma[1] = lf->delta_q_luma[0]; | 
 |     } | 
 | #if DF_TWO_PARAM | 
 |     int luma_delta_side = aom_rb_read_bit(rb); | 
 |     if (luma_delta_side) { | 
 |       lf->delta_side_luma[1] = | 
 |           aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_side_luma[1] = lf->delta_side_luma[0]; | 
 |     } | 
 | #else | 
 |     lf->delta_side_luma[1] = lf->delta_q_luma[1]; | 
 | #endif  // DF_TWO_PARAM | 
 |   } else { | 
 |     lf->delta_q_luma[1] = 0; | 
 |     lf->delta_side_luma[1] = 0; | 
 |   } | 
 | #else | 
 |   if (lf->filter_level[0] || lf->filter_level[1]) { | 
 |     int luma_delta_q = aom_rb_read_bit(rb); | 
 |     if (luma_delta_q) { | 
 |       lf->delta_q_luma = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_q_luma = 0; | 
 |     } | 
 | #if DF_TWO_PARAM | 
 |     int luma_delta_side = aom_rb_read_bit(rb); | 
 |     if (luma_delta_side) { | 
 |       lf->delta_side_luma = | 
 |           aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_side_luma = 0; | 
 |     } | 
 | #else | 
 |     lf->delta_side_luma = lf->delta_q_luma; | 
 | #endif  // DF_TWO_PARAM | 
 |   } else { | 
 |     lf->delta_q_luma = 0; | 
 |     lf->delta_side_luma = 0; | 
 |   } | 
 | #endif  // DF_DUAL | 
 |  | 
 |   if (lf->filter_level_u) { | 
 |     int u_delta_q = aom_rb_read_bit(rb); | 
 |     if (u_delta_q) { | 
 |       lf->delta_q_u = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_q_u = 0; | 
 |     } | 
 | #if DF_TWO_PARAM | 
 |     int u_delta_side = aom_rb_read_bit(rb); | 
 |     if (u_delta_side) { | 
 |       lf->delta_side_u = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_side_u = 0; | 
 |     } | 
 | #else | 
 |     lf->delta_side_u = lf->delta_q_u; | 
 | #endif  // DF_TWO_PARAM | 
 |   } else { | 
 |     lf->delta_q_u = 0; | 
 |     lf->delta_side_u = 0; | 
 |   } | 
 |   if (lf->filter_level_v) { | 
 |     int v_delta_q = aom_rb_read_bit(rb); | 
 |     if (v_delta_q) { | 
 |       lf->delta_q_v = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_q_v = 0; | 
 |     } | 
 | #if DF_TWO_PARAM | 
 |     int v_delta_side = aom_rb_read_bit(rb); | 
 |     if (v_delta_side) { | 
 |       lf->delta_side_v = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; | 
 |     } else { | 
 |       lf->delta_side_v = 0; | 
 |     } | 
 | #else | 
 |     lf->delta_side_v = lf->delta_q_v; | 
 | #endif  // DF_TWO_PARAM | 
 |   } else { | 
 |     lf->delta_q_v = 0; | 
 |     lf->delta_side_v = 0; | 
 |   } | 
 |   lf->mode_ref_delta_update = 0; | 
 |   lf->mode_ref_delta_enabled = 0; | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_cdef(AV1_COMMON *cm, | 
 |                                   struct aom_read_bit_buffer *rb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   CdefInfo *const cdef_info = &cm->cdef_info; | 
 |  | 
 |   if (is_global_intrabc_allowed(cm)) return; | 
 | #if CONFIG_FIX_CDEF_SYNTAX | 
 |   cdef_info->cdef_frame_enable = aom_rb_read_bit(rb); | 
 |   if (!cdef_info->cdef_frame_enable) return; | 
 | #endif  // CONFIG_FIX_CDEF_SYNTAX | 
 |   cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3; | 
 |   cdef_info->cdef_bits = aom_rb_read_literal(rb, 2); | 
 |   cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits; | 
 |   for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) { | 
 |     cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); | 
 |     cdef_info->cdef_uv_strengths[i] = | 
 |         num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0; | 
 |   } | 
 | } | 
 |  | 
 | // read offset idx using truncated unary coding | 
 | static AOM_INLINE int read_ccso_offset_idx(struct aom_read_bit_buffer *rb) { | 
 |   int offset_idx = 0; | 
 |   for (int idx = 0; idx < 7; ++idx) { | 
 |     const int cur_bit = aom_rb_read_bit(rb); | 
 |     if (!cur_bit) break; | 
 |     offset_idx++; | 
 |   } | 
 |   return offset_idx; | 
 | } | 
 | static AOM_INLINE void setup_ccso(AV1_COMMON *cm, | 
 |                                   struct aom_read_bit_buffer *rb) { | 
 |   if (is_global_intrabc_allowed(cm)) return; | 
 |   const int ccso_offset[8] = { 0, 1, -1, 3, -3, 7, -7, -10 }; | 
 | #if CONFIG_D143_CCSO_FM_FLAG | 
 |   cm->ccso_info.ccso_frame_flag = aom_rb_read_literal(rb, 1); | 
 |   if (cm->ccso_info.ccso_frame_flag) { | 
 | #endif  // CONFIG_D143_CCSO_FM_FLAG | 
 |     for (int plane = 0; plane < av1_num_planes(cm); plane++) { | 
 |       cm->ccso_info.ccso_enable[plane] = aom_rb_read_literal(rb, 1); | 
 |       if (cm->ccso_info.ccso_enable[plane]) { | 
 |         cm->ccso_info.ccso_bo_only[plane] = aom_rb_read_literal(rb, 1); | 
 | #if !CONFIG_CCSO_SIGFIX | 
 |         cm->ccso_info.quant_idx[plane] = aom_rb_read_literal(rb, 2); | 
 |         cm->ccso_info.ext_filter_support[plane] = aom_rb_read_literal(rb, 3); | 
 | #endif  // !CONFIG_CCSO_SIGFIX | 
 |         if (cm->ccso_info.ccso_bo_only[plane]) { | 
 | #if CONFIG_CCSO_SIGFIX | 
 |           cm->ccso_info.quant_idx[plane] = 0; | 
 |           cm->ccso_info.ext_filter_support[plane] = 0; | 
 |           cm->ccso_info.edge_clf[plane] = 0; | 
 | #endif  // CONFIG_CCSO_SIGFIX | 
 |           cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 3); | 
 |         } else { | 
 | #if CONFIG_CCSO_SIGFIX | 
 |           cm->ccso_info.quant_idx[plane] = aom_rb_read_literal(rb, 2); | 
 |           cm->ccso_info.ext_filter_support[plane] = aom_rb_read_literal(rb, 3); | 
 |           cm->ccso_info.edge_clf[plane] = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_CCSO_SIGFIX | 
 |           cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 2); | 
 |         } | 
 |         const int max_band = 1 << cm->ccso_info.max_band_log2[plane]; | 
 | #if !CONFIG_CCSO_SIGFIX | 
 |         cm->ccso_info.edge_clf[plane] = aom_rb_read_bit(rb); | 
 | #endif  // !CONFIG_CCSO_SIGFIX | 
 |         const int edge_clf = cm->ccso_info.edge_clf[plane]; | 
 |         const int max_edge_interval = edge_clf_to_edge_interval[edge_clf]; | 
 |         const int num_edge_offset_intervals = | 
 |             cm->ccso_info.ccso_bo_only[plane] ? 1 : max_edge_interval; | 
 |         for (int d0 = 0; d0 < num_edge_offset_intervals; d0++) { | 
 |           for (int d1 = 0; d1 < num_edge_offset_intervals; d1++) { | 
 |             for (int band_num = 0; band_num < max_band; band_num++) { | 
 |               const int lut_idx_ext = (band_num << 4) + (d0 << 2) + d1; | 
 |               const int offset_idx = read_ccso_offset_idx(rb); | 
 |               cm->ccso_info.filter_offset[plane][lut_idx_ext] = | 
 |                   ccso_offset[offset_idx]; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 | #if CONFIG_D143_CCSO_FM_FLAG | 
 |   } else { | 
 |     cm->ccso_info.ccso_enable[0] = 0; | 
 |     cm->ccso_info.ccso_enable[1] = 0; | 
 |     cm->ccso_info.ccso_enable[2] = 0; | 
 |   } | 
 | #endif  // CONFIG_D143_CCSO_FM_FLAG | 
 | } | 
 |  | 
 | static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { | 
 |   return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_quantization(CommonQuantParams *quant_params, | 
 |                                           int num_planes, | 
 |                                           aom_bit_depth_t bit_depth, | 
 |                                           bool separate_uv_delta_q, | 
 |                                           struct aom_read_bit_buffer *rb) { | 
 |   quant_params->base_qindex = aom_rb_read_literal( | 
 |       rb, bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS); | 
 |   quant_params->y_dc_delta_q = read_delta_q(rb); | 
 |   if (num_planes > 1) { | 
 |     int diff_uv_delta = 0; | 
 |     if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb); | 
 |     quant_params->u_dc_delta_q = read_delta_q(rb); | 
 |     quant_params->u_ac_delta_q = read_delta_q(rb); | 
 |     if (diff_uv_delta) { | 
 |       quant_params->v_dc_delta_q = read_delta_q(rb); | 
 |       quant_params->v_ac_delta_q = read_delta_q(rb); | 
 |     } else { | 
 |       quant_params->v_dc_delta_q = quant_params->u_dc_delta_q; | 
 |       quant_params->v_ac_delta_q = quant_params->u_ac_delta_q; | 
 |     } | 
 |   } else { | 
 |     quant_params->u_dc_delta_q = 0; | 
 |     quant_params->u_ac_delta_q = 0; | 
 |     quant_params->v_dc_delta_q = 0; | 
 |     quant_params->v_ac_delta_q = 0; | 
 |   } | 
 |   quant_params->using_qmatrix = aom_rb_read_bit(rb); | 
 |   if (quant_params->using_qmatrix) { | 
 |     quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
 |     quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
 |     if (!separate_uv_delta_q) | 
 |       quant_params->qmatrix_level_v = quant_params->qmatrix_level_u; | 
 |     else | 
 |       quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
 |   } else { | 
 |     quant_params->qmatrix_level_y = 0; | 
 |     quant_params->qmatrix_level_u = 0; | 
 |     quant_params->qmatrix_level_v = 0; | 
 |   } | 
 | } | 
 |  | 
 | // Build y/uv dequant values based on segmentation. | 
 | static AOM_INLINE void setup_segmentation_dequant(AV1_COMMON *const cm, | 
 |                                                   MACROBLOCKD *const xd) { | 
 |   const int bit_depth = cm->seq_params.bit_depth; | 
 |   // When segmentation is disabled, only the first value is used.  The | 
 |   // remaining are don't cares. | 
 |   const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1; | 
 |   CommonQuantParams *const quant_params = &cm->quant_params; | 
 |   for (int i = 0; i < max_segments; ++i) { | 
 |     const int qindex = xd->qindex[i]; | 
 |     quant_params->y_dequant_QTX[i][0] = | 
 |         av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, | 
 |                          cm->seq_params.base_y_dc_delta_q, bit_depth); | 
 |     quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth); | 
 |     quant_params->u_dequant_QTX[i][0] = | 
 |         av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, | 
 |                          cm->seq_params.base_uv_dc_delta_q, bit_depth); | 
 |     quant_params->u_dequant_QTX[i][1] = | 
 |         av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth); | 
 |     quant_params->v_dequant_QTX[i][0] = | 
 |         av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, | 
 |                          cm->seq_params.base_uv_dc_delta_q, bit_depth); | 
 |     quant_params->v_dequant_QTX[i][1] = | 
 |         av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth); | 
 |     const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i); | 
 |     // NB: depends on base index so there is only 1 set per frame | 
 |     // No quant weighting when lossless or signalled not using QM | 
 |     const int qmlevel_y = | 
 |         use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1; | 
 |     for (int j = 0; j < TX_SIZES_ALL; ++j) { | 
 |       quant_params->y_iqmatrix[i][j] = | 
 |           av1_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j); | 
 |     } | 
 |     const int qmlevel_u = | 
 |         use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1; | 
 |     for (int j = 0; j < TX_SIZES_ALL; ++j) { | 
 |       quant_params->u_iqmatrix[i][j] = | 
 |           av1_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j); | 
 |     } | 
 |     const int qmlevel_v = | 
 |         use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1; | 
 |     for (int j = 0; j < TX_SIZES_ALL; ++j) { | 
 |       quant_params->v_iqmatrix[i][j] = | 
 |           av1_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { | 
 |   return aom_rb_read_bit(rb) ? SWITCHABLE | 
 |                              : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_render_size(AV1_COMMON *cm, | 
 |                                          struct aom_read_bit_buffer *rb) { | 
 |   cm->render_width = cm->superres_upscaled_width; | 
 |   cm->render_height = cm->superres_upscaled_height; | 
 |   if (aom_rb_read_bit(rb)) | 
 |     av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height); | 
 | } | 
 |  | 
 | // TODO(afergs): make "struct aom_read_bit_buffer *const rb"? | 
 | static AOM_INLINE void setup_superres(AV1_COMMON *const cm, | 
 |                                       struct aom_read_bit_buffer *rb, | 
 |                                       int *width, int *height) { | 
 |   cm->superres_upscaled_width = *width; | 
 |   cm->superres_upscaled_height = *height; | 
 |   cm->superres_scale_denominator = SCALE_NUMERATOR; | 
 |  | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   if (!seq_params->enable_superres) return; | 
 |  | 
 |   if (aom_rb_read_bit(rb)) { | 
 |     cm->superres_scale_denominator = | 
 |         (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS); | 
 |     cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN; | 
 |     // Don't edit cm->width or cm->height directly, or the buffers won't get | 
 |     // resized correctly | 
 |     av1_calculate_scaled_superres_size(width, height, | 
 |                                        cm->superres_scale_denominator); | 
 |   } else { | 
 |     // 1:1 scaling - ie. no scaling, scale not provided | 
 |     cm->superres_scale_denominator = SCALE_NUMERATOR; | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void resize_context_buffers(AV1_COMMON *cm, int width, | 
 |                                               int height) { | 
 | #if CONFIG_SIZE_LIMIT | 
 |   if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Dimensions of %dx%d beyond allowed size of %dx%d.", | 
 |                        width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); | 
 | #endif | 
 |   if (cm->width != width || cm->height != height) { | 
 |     const int new_mi_rows = | 
 |         ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; | 
 |     const int new_mi_cols = | 
 |         ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; | 
 |  | 
 |     // Allocations in av1_alloc_context_buffers() depend on individual | 
 |     // dimensions as well as the overall size. | 
 |     if (new_mi_cols > cm->mi_params.mi_cols || | 
 |         new_mi_rows > cm->mi_params.mi_rows) { | 
 |       if (av1_alloc_context_buffers(cm, width, height)) { | 
 |         // The cm->mi_* values have been cleared and any existing context | 
 |         // buffers have been freed. Clear cm->width and cm->height to be | 
 |         // consistent and to force a realloc next time. | 
 |         cm->width = 0; | 
 |         cm->height = 0; | 
 |         aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                            "Failed to allocate context buffers"); | 
 |       } | 
 |     } else { | 
 |       cm->mi_params.set_mb_mi(&cm->mi_params, width, height); | 
 |     } | 
 |     av1_init_mi_buffers(&cm->mi_params); | 
 |     cm->width = width; | 
 |     cm->height = height; | 
 |   } | 
 |  | 
 |   ensure_mv_buffer(cm->cur_frame, cm); | 
 |   cm->cur_frame->width = cm->width; | 
 |   cm->cur_frame->height = cm->height; | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_tip_frame_size(AV1_COMMON *cm) { | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tip_frame->buf; | 
 |   if (aom_realloc_frame_buffer( | 
 |           tip_frame_buf, cm->width, cm->height, seq_params->subsampling_x, | 
 |           seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS, | 
 |           cm->features.byte_alignment, NULL, NULL, NULL, false)) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                        "Failed to allocate frame buffer"); | 
 |   } | 
 |  | 
 |   if (tip_frame_buf) { | 
 |     tip_frame_buf->bit_depth = (unsigned int)seq_params->bit_depth; | 
 |     tip_frame_buf->color_primaries = seq_params->color_primaries; | 
 |     tip_frame_buf->transfer_characteristics = | 
 |         seq_params->transfer_characteristics; | 
 |     tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients; | 
 |     tip_frame_buf->monochrome = seq_params->monochrome; | 
 |     tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position; | 
 |     tip_frame_buf->color_range = seq_params->color_range; | 
 |     tip_frame_buf->render_width = cm->render_width; | 
 |     tip_frame_buf->render_height = cm->render_height; | 
 |   } | 
 |  | 
 | #if CONFIG_TIP_DIRECT_FRAME_MV | 
 |   tip_frame_buf = &cm->tip_ref.tmp_tip_frame->buf; | 
 |   if (aom_realloc_frame_buffer( | 
 |           tip_frame_buf, cm->width, cm->height, seq_params->subsampling_x, | 
 |           seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS, | 
 |           cm->features.byte_alignment, NULL, NULL, NULL, false)) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                        "Failed to allocate frame buffer"); | 
 |   } | 
 |  | 
 |   if (tip_frame_buf) { | 
 |     tip_frame_buf->bit_depth = (unsigned int)seq_params->bit_depth; | 
 |     tip_frame_buf->color_primaries = seq_params->color_primaries; | 
 |     tip_frame_buf->transfer_characteristics = | 
 |         seq_params->transfer_characteristics; | 
 |     tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients; | 
 |     tip_frame_buf->monochrome = seq_params->monochrome; | 
 |     tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position; | 
 |     tip_frame_buf->color_range = seq_params->color_range; | 
 |     tip_frame_buf->render_width = cm->render_width; | 
 |     tip_frame_buf->render_height = cm->render_height; | 
 |   } | 
 | #endif  // CONFIG_TIP_DIRECT_FRAME_MV | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_buffer_pool(AV1_COMMON *cm) { | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |  | 
 |   lock_buffer_pool(pool); | 
 |   if (aom_realloc_frame_buffer( | 
 |           &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, | 
 |           seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS, | 
 |           cm->features.byte_alignment, &cm->cur_frame->raw_frame_buffer, | 
 |           pool->get_fb_cb, pool->cb_priv, false)) { | 
 |     unlock_buffer_pool(pool); | 
 |     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                        "Failed to allocate frame buffer"); | 
 |   } | 
 |   unlock_buffer_pool(pool); | 
 |  | 
 |   cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth; | 
 |   cm->cur_frame->buf.color_primaries = seq_params->color_primaries; | 
 |   cm->cur_frame->buf.transfer_characteristics = | 
 |       seq_params->transfer_characteristics; | 
 |   cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; | 
 |   cm->cur_frame->buf.monochrome = seq_params->monochrome; | 
 |   cm->cur_frame->buf.chroma_sample_position = | 
 |       seq_params->chroma_sample_position; | 
 |   cm->cur_frame->buf.color_range = seq_params->color_range; | 
 |   cm->cur_frame->buf.render_width = cm->render_width; | 
 |   cm->cur_frame->buf.render_height = cm->render_height; | 
 |   if (cm->seq_params.enable_tip) { | 
 |     const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, TIP_FRAME); | 
 |     if (ref_buf == NULL || (ref_buf->buf.y_crop_width != cm->width || | 
 |                             ref_buf->buf.y_crop_height != cm->height)) { | 
 |       setup_tip_frame_size(cm); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_frame_size(AV1_COMMON *cm, | 
 |                                         int frame_size_override_flag, | 
 |                                         struct aom_read_bit_buffer *rb) { | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   int width, height; | 
 |  | 
 |   if (frame_size_override_flag) { | 
 |     int num_bits_width = seq_params->num_bits_width; | 
 |     int num_bits_height = seq_params->num_bits_height; | 
 |     av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); | 
 |     if (width > seq_params->max_frame_width || | 
 |         height > seq_params->max_frame_height) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Frame dimensions are larger than the maximum values"); | 
 |     } | 
 |   } else { | 
 |     width = seq_params->max_frame_width; | 
 |     height = seq_params->max_frame_height; | 
 |   } | 
 |  | 
 |   setup_superres(cm, rb, &width, &height); | 
 |   resize_context_buffers(cm, width, height); | 
 |   setup_render_size(cm, rb); | 
 |   setup_buffer_pool(cm); | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_seq_sb_size(SequenceHeader *seq_params, | 
 |                                          struct aom_read_bit_buffer *rb) { | 
 |   static const BLOCK_SIZE sb_sizes[] = { | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |     BLOCK_256X256, | 
 | #endif | 
 |     BLOCK_128X128, | 
 |     BLOCK_64X64 | 
 |   }; | 
 |   int index = 0; | 
 |   bool bit = aom_rb_read_bit(rb); | 
 |   if (!bit) { | 
 |     index++; | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |     bit = aom_rb_read_bit(rb); | 
 |     if (!bit) { | 
 |       index++; | 
 |     } | 
 | #endif | 
 |   } | 
 |   BLOCK_SIZE sb_size = sb_sizes[index]; | 
 |   seq_params->sb_size = sb_size; | 
 |   seq_params->mib_size = mi_size_wide[sb_size]; | 
 |   seq_params->mib_size_log2 = mi_size_wide_log2[sb_size]; | 
 | } | 
 |  | 
 | static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, | 
 |                                           int ref_xss, int ref_yss, | 
 |                                           aom_bit_depth_t this_bit_depth, | 
 |                                           int this_xss, int this_yss) { | 
 |   return ref_bit_depth == this_bit_depth && ref_xss == this_xss && | 
 |          ref_yss == this_yss; | 
 | } | 
 |  | 
 | static AOM_INLINE void setup_frame_size_with_refs( | 
 |     AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   int width, height; | 
 |   int found = 0; | 
 |   int has_valid_ref_frame = 0; | 
 |   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |     if (aom_rb_read_bit(rb)) { | 
 |       const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); | 
 |       // This will never be NULL in a normal stream, as streams are required to | 
 |       // have a shown keyframe before any inter frames, which would refresh all | 
 |       // the reference buffers. However, it might be null if we're starting in | 
 |       // the middle of a stream, and static analysis will error if we don't do | 
 |       // a null check here. | 
 |       if (ref_buf == NULL) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Invalid condition: invalid reference buffer"); | 
 |       } else { | 
 |         const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf; | 
 |         width = buf->y_crop_width; | 
 |         height = buf->y_crop_height; | 
 |         cm->render_width = buf->render_width; | 
 |         cm->render_height = buf->render_height; | 
 |         setup_superres(cm, rb, &width, &height); | 
 |         resize_context_buffers(cm, width, height); | 
 |         found = 1; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   if (!found) { | 
 |     int num_bits_width = seq_params->num_bits_width; | 
 |     int num_bits_height = seq_params->num_bits_height; | 
 |  | 
 |     av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); | 
 |     setup_superres(cm, rb, &width, &height); | 
 |     resize_context_buffers(cm, width, height); | 
 |     setup_render_size(cm, rb); | 
 |   } | 
 |  | 
 |   if (width <= 0 || height <= 0) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Invalid frame size"); | 
 |  | 
 |   // Check to make sure at least one of frames that this frame references has | 
 |   // valid dimensions. | 
 |   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |     const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); | 
 |     has_valid_ref_frame |= | 
 |         valid_ref_frame_size(ref_frame->buf.y_crop_width, | 
 |                              ref_frame->buf.y_crop_height, width, height); | 
 |   } | 
 |   if (!has_valid_ref_frame) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Referenced frame has invalid size"); | 
 |   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |     const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); | 
 |     if (!valid_ref_frame_img_fmt( | 
 |             ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x, | 
 |             ref_frame->buf.subsampling_y, seq_params->bit_depth, | 
 |             seq_params->subsampling_x, seq_params->subsampling_y)) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Referenced frame has incompatible color format"); | 
 |   } | 
 |   setup_buffer_pool(cm); | 
 | } | 
 |  | 
 | static AOM_INLINE void read_tile_info_max_tile( | 
 |     AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) { | 
 |   CommonTileParams *const tiles = &cm->tiles; | 
 |   int width_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->mib_size_log2); | 
 |   int height_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->mib_size_log2); | 
 |   int width_sb = width_mi >> cm->mib_size_log2; | 
 |   int height_sb = height_mi >> cm->mib_size_log2; | 
 |  | 
 |   av1_get_tile_limits(cm); | 
 |   tiles->uniform_spacing = aom_rb_read_bit(rb); | 
 |  | 
 |   // Read tile columns | 
 |   if (tiles->uniform_spacing) { | 
 |     tiles->log2_cols = tiles->min_log2_cols; | 
 |     while (tiles->log2_cols < tiles->max_log2_cols) { | 
 |       if (!aom_rb_read_bit(rb)) { | 
 |         break; | 
 |       } | 
 |       tiles->log2_cols++; | 
 |     } | 
 |   } else { | 
 |     int i; | 
 |     int start_sb; | 
 |     for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) { | 
 |       const int size_sb = | 
 |           1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb)); | 
 |       tiles->col_start_sb[i] = start_sb; | 
 |       start_sb += size_sb; | 
 |       width_sb -= size_sb; | 
 |     } | 
 |     tiles->cols = i; | 
 |     tiles->col_start_sb[i] = start_sb + width_sb; | 
 |   } | 
 |   av1_calculate_tile_cols(cm, cm->mi_params.mi_rows, cm->mi_params.mi_cols, | 
 |                           tiles); | 
 |  | 
 |   // Read tile rows | 
 |   if (tiles->uniform_spacing) { | 
 |     tiles->log2_rows = tiles->min_log2_rows; | 
 |     while (tiles->log2_rows < tiles->max_log2_rows) { | 
 |       if (!aom_rb_read_bit(rb)) { | 
 |         break; | 
 |       } | 
 |       tiles->log2_rows++; | 
 |     } | 
 |   } else { | 
 |     int i; | 
 |     int start_sb; | 
 |     for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) { | 
 |       const int size_sb = | 
 |           1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb)); | 
 |       tiles->row_start_sb[i] = start_sb; | 
 |       start_sb += size_sb; | 
 |       height_sb -= size_sb; | 
 |     } | 
 |     tiles->rows = i; | 
 |     tiles->row_start_sb[i] = start_sb + height_sb; | 
 |   } | 
 |   av1_calculate_tile_rows(cm, cm->mi_params.mi_rows, tiles); | 
 | } | 
 |  | 
 | void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) { | 
 |   cm->tiles.single_tile_decoding = 0; | 
 |   if (cm->tiles.large_scale) { | 
 |     struct loopfilter *lf = &cm->lf; | 
 |     RestorationInfo *const rst_info = cm->rst_info; | 
 |     const CdefInfo *const cdef_info = &cm->cdef_info; | 
 |  | 
 |     // Figure out single_tile_decoding by loopfilter_level. | 
 |     const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]); | 
 |     const int no_cdef = cdef_info->cdef_bits == 0 && | 
 |                         cdef_info->cdef_strengths[0] == 0 && | 
 |                         cdef_info->cdef_uv_strengths[0] == 0; | 
 |     const int no_restoration = | 
 |         rst_info[0].frame_restoration_type == RESTORE_NONE && | 
 |         rst_info[1].frame_restoration_type == RESTORE_NONE && | 
 |         rst_info[2].frame_restoration_type == RESTORE_NONE; | 
 |     assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef)); | 
 |     assert(IMPLIES(cm->features.all_lossless, no_restoration)); | 
 |     cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration; | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void read_tile_info(AV1Decoder *const pbi, | 
 |                                       struct aom_read_bit_buffer *const rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   read_tile_info_max_tile(cm, rb); | 
 |  | 
 |   pbi->context_update_tile_id = 0; | 
 |   if (cm->tiles.rows * cm->tiles.cols > 1) { | 
 |     // tile to use for cdf update | 
 |     pbi->context_update_tile_id = | 
 |         aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols); | 
 |     if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Invalid context_update_tile_id"); | 
 |     } | 
 |     // tile size magnitude | 
 |     pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
 |   } | 
 | } | 
 |  | 
 | #if EXT_TILE_DEBUG | 
 | static AOM_INLINE void read_ext_tile_info( | 
 |     AV1Decoder *const pbi, struct aom_read_bit_buffer *const rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   // This information is stored as a separate byte. | 
 |   int mod = rb->bit_offset % CHAR_BIT; | 
 |   if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod); | 
 |   assert(rb->bit_offset % CHAR_BIT == 0); | 
 |  | 
 |   if (cm->tiles.cols * cm->tiles.rows > 1) { | 
 |     // Read the number of bytes used to store tile size | 
 |     pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
 |     pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
 |   } | 
 | } | 
 | #endif  // EXT_TILE_DEBUG | 
 |  | 
 | static size_t mem_get_varsize(const uint8_t *src, int sz) { | 
 |   switch (sz) { | 
 |     case 1: return src[0]; | 
 |     case 2: return mem_get_le16(src); | 
 |     case 3: return mem_get_le24(src); | 
 |     case 4: return mem_get_le32(src); | 
 |     default: assert(0 && "Invalid size"); return -1; | 
 |   } | 
 | } | 
 |  | 
 | #if EXT_TILE_DEBUG | 
 | // Reads the next tile returning its size and adjusting '*data' accordingly | 
 | // based on 'is_last'. On return, '*data' is updated to point to the end of the | 
 | // raw tile buffer in the bit stream. | 
 | static AOM_INLINE void get_ls_tile_buffer( | 
 |     const uint8_t *const data_end, struct aom_internal_error_info *error_info, | 
 |     const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], | 
 |     int tile_size_bytes, int col, int row, int tile_copy_mode) { | 
 |   size_t size; | 
 |  | 
 |   size_t copy_size = 0; | 
 |   const uint8_t *copy_data = NULL; | 
 |  | 
 |   if (!read_is_valid(*data, tile_size_bytes, data_end)) | 
 |     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Truncated packet or corrupt tile length"); | 
 |   size = mem_get_varsize(*data, tile_size_bytes); | 
 |  | 
 |   // If tile_copy_mode = 1, then the top bit of the tile header indicates copy | 
 |   // mode. | 
 |   if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) { | 
 |     // The remaining bits in the top byte signal the row offset | 
 |     int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; | 
 |  | 
 |     // Currently, only use tiles in same column as reference tiles. | 
 |     copy_data = tile_buffers[row - offset][col].data; | 
 |     copy_size = tile_buffers[row - offset][col].size; | 
 |     size = 0; | 
 |   } else { | 
 |     size += AV1_MIN_TILE_SIZE_BYTES; | 
 |   } | 
 |  | 
 |   *data += tile_size_bytes; | 
 |  | 
 |   if (size > (size_t)(data_end - *data)) | 
 |     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Truncated packet or corrupt tile size"); | 
 |  | 
 |   if (size > 0) { | 
 |     tile_buffers[row][col].data = *data; | 
 |     tile_buffers[row][col].size = size; | 
 |   } else { | 
 |     tile_buffers[row][col].data = copy_data; | 
 |     tile_buffers[row][col].size = copy_size; | 
 |   } | 
 |  | 
 |   *data += size; | 
 | } | 
 |  | 
 | // Returns the end of the last tile buffer | 
 | // (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]). | 
 | static const uint8_t *get_ls_tile_buffers( | 
 |     AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, | 
 |     TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int tile_cols = cm->tiles.cols; | 
 |   const int tile_rows = cm->tiles.rows; | 
 |   const int have_tiles = tile_cols * tile_rows > 1; | 
 |   const uint8_t *raw_data_end;  // The end of the last tile buffer | 
 |  | 
 |   if (!have_tiles) { | 
 |     const size_t tile_size = data_end - data; | 
 |     tile_buffers[0][0].data = data; | 
 |     tile_buffers[0][0].size = tile_size; | 
 |     raw_data_end = NULL; | 
 |   } else { | 
 |     // We locate only the tile buffers that are required, which are the ones | 
 |     // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always | 
 |     // need the last (bottom right) tile buffer, as we need to know where the | 
 |     // end of the compressed frame buffer is for proper superframe decoding. | 
 |  | 
 |     const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL }; | 
 |     const uint8_t *const data_start = data; | 
 |  | 
 |     const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
 |     const int single_row = pbi->dec_tile_row >= 0; | 
 |     const int tile_rows_start = single_row ? dec_tile_row : 0; | 
 |     const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; | 
 |     const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
 |     const int single_col = pbi->dec_tile_col >= 0; | 
 |     const int tile_cols_start = single_col ? dec_tile_col : 0; | 
 |     const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
 |  | 
 |     const int tile_col_size_bytes = pbi->tile_col_size_bytes; | 
 |     const int tile_size_bytes = pbi->tile_size_bytes; | 
 |     int tile_width, tile_height; | 
 |     av1_get_uniform_tile_size(cm, &tile_width, &tile_height); | 
 |     const int tile_copy_mode = | 
 |         ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0; | 
 |     // Read tile column sizes for all columns (we need the last tile buffer) | 
 |     for (int c = 0; c < tile_cols; ++c) { | 
 |       const int is_last = c == tile_cols - 1; | 
 |       size_t tile_col_size; | 
 |  | 
 |       if (!is_last) { | 
 |         tile_col_size = mem_get_varsize(data, tile_col_size_bytes); | 
 |         data += tile_col_size_bytes; | 
 |         tile_col_data_end[c] = data + tile_col_size; | 
 |       } else { | 
 |         tile_col_size = data_end - data; | 
 |         tile_col_data_end[c] = data_end; | 
 |       } | 
 |       data += tile_col_size; | 
 |     } | 
 |  | 
 |     data = data_start; | 
 |  | 
 |     // Read the required tile sizes. | 
 |     for (int c = tile_cols_start; c < tile_cols_end; ++c) { | 
 |       const int is_last = c == tile_cols - 1; | 
 |  | 
 |       if (c > 0) data = tile_col_data_end[c - 1]; | 
 |  | 
 |       if (!is_last) data += tile_col_size_bytes; | 
 |  | 
 |       // Get the whole of the last column, otherwise stop at the required tile. | 
 |       for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { | 
 |         get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, | 
 |                            tile_buffers, tile_size_bytes, c, r, tile_copy_mode); | 
 |       } | 
 |     } | 
 |  | 
 |     // If we have not read the last column, then read it to get the last tile. | 
 |     if (tile_cols_end != tile_cols) { | 
 |       const int c = tile_cols - 1; | 
 |  | 
 |       data = tile_col_data_end[c - 1]; | 
 |  | 
 |       for (int r = 0; r < tile_rows; ++r) { | 
 |         get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, | 
 |                            tile_buffers, tile_size_bytes, c, r, tile_copy_mode); | 
 |       } | 
 |     } | 
 |     raw_data_end = data; | 
 |   } | 
 |   return raw_data_end; | 
 | } | 
 | #endif  // EXT_TILE_DEBUG | 
 |  | 
 | static const uint8_t *get_ls_single_tile_buffer( | 
 |     AV1Decoder *pbi, const uint8_t *data, | 
 |     TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { | 
 |   assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0); | 
 |   tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data; | 
 |   tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size = | 
 |       (size_t)pbi->coded_tile_data_size; | 
 |   return data + pbi->coded_tile_data_size; | 
 | } | 
 |  | 
 | // Reads the next tile returning its size and adjusting '*data' accordingly | 
 | // based on 'is_last'. | 
 | static AOM_INLINE void get_tile_buffer( | 
 |     const uint8_t *const data_end, const int tile_size_bytes, int is_last, | 
 |     struct aom_internal_error_info *error_info, const uint8_t **data, | 
 |     TileBufferDec *const buf) { | 
 |   size_t size; | 
 |  | 
 |   if (!is_last) { | 
 |     if (!read_is_valid(*data, tile_size_bytes, data_end)) | 
 |       aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Not enough data to read tile size"); | 
 |  | 
 |     size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES; | 
 |     *data += tile_size_bytes; | 
 |  | 
 |     if (size > (size_t)(data_end - *data)) | 
 |       aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Truncated packet or corrupt tile size"); | 
 |   } else { | 
 |     size = data_end - *data; | 
 |   } | 
 |  | 
 |   buf->data = *data; | 
 |   buf->size = size; | 
 |  | 
 |   *data += size; | 
 | } | 
 |  | 
 | static AOM_INLINE void get_tile_buffers( | 
 |     AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, | 
 |     TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile, | 
 |     int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int tile_cols = cm->tiles.cols; | 
 |   const int tile_rows = cm->tiles.rows; | 
 |   int tc = 0; | 
 |  | 
 |   for (int r = 0; r < tile_rows; ++r) { | 
 |     for (int c = 0; c < tile_cols; ++c, ++tc) { | 
 |       TileBufferDec *const buf = &tile_buffers[r][c]; | 
 |  | 
 |       const int is_last = (tc == end_tile); | 
 |       const size_t hdr_offset = 0; | 
 |  | 
 |       if (tc < start_tile || tc > end_tile) continue; | 
 |  | 
 |       if (data + hdr_offset >= data_end) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Data ended before all tiles were read."); | 
 |       data += hdr_offset; | 
 |       get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, | 
 |                       &pbi->common.error, &data, buf); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb, | 
 |                                      CB_BUFFER *cb_buffer_base, | 
 |                                      const int num_planes, int mi_row, | 
 |                                      int mi_col) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   int mib_size_log2 = cm->mib_size_log2; | 
 |   int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1; | 
 |   int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); | 
 |   CB_BUFFER *cb_buffer = cb_buffer_base + offset; | 
 |  | 
 |   for (int plane = 0; plane < num_planes; ++plane) { | 
 |     dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane]; | 
 | #if CONFIG_INSPECTION | 
 |     dcb->dqcoeff_block_copy[plane] = cb_buffer->dqcoeff_copy[plane]; | 
 |     dcb->qcoeff_block[plane] = cb_buffer->qcoeff[plane]; | 
 |     dcb->dequant_values[plane] = cb_buffer->dequant_values[plane]; | 
 | #endif  // CONFIG_INSPECTION | 
 |     dcb->eob_data[plane] = cb_buffer->eob_data[plane]; | 
 |     dcb->bob_data[plane] = cb_buffer->bob_data[plane]; | 
 |     dcb->cb_offset[plane] = 0; | 
 |     dcb->txb_offset[plane] = 0; | 
 |   } | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |   xd->plane[0].color_index_map = cb_buffer->color_index_map[0]; | 
 |   xd->plane[1].color_index_map = cb_buffer->color_index_map[1]; | 
 |   xd->color_index_map_offset[0] = 0; | 
 |   xd->color_index_map_offset[1] = 0; | 
 | } | 
 |  | 
 | static AOM_INLINE void decoder_alloc_tile_data(AV1Decoder *pbi, | 
 |                                                const int n_tiles) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   aom_free(pbi->tile_data); | 
 |   CHECK_MEM_ERROR(cm, pbi->tile_data, | 
 |                   aom_memalign(32, n_tiles * sizeof(*pbi->tile_data))); | 
 |   pbi->allocated_tiles = n_tiles; | 
 |   for (int i = 0; i < n_tiles; i++) { | 
 |     TileDataDec *const tile_data = pbi->tile_data + i; | 
 |     av1_zero(tile_data->dec_row_mt_sync); | 
 |   } | 
 |   pbi->allocated_row_mt_sync_rows = 0; | 
 | } | 
 |  | 
 | // Set up nsync by width. | 
 | static INLINE int get_sync_range(int width) { | 
 | // nsync numbers are picked by testing. | 
 | #if 0 | 
 |   if (width < 640) | 
 |     return 1; | 
 |   else if (width <= 1280) | 
 |     return 2; | 
 |   else if (width <= 4096) | 
 |     return 4; | 
 |   else | 
 |     return 8; | 
 | #else | 
 |   (void)width; | 
 | #endif | 
 |   return 1; | 
 | } | 
 |  | 
 | // Allocate memory for decoder row synchronization | 
 | static AOM_INLINE void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync, | 
 |                                         AV1_COMMON *cm, int rows) { | 
 |   dec_row_mt_sync->allocated_sb_rows = rows; | 
 | #if CONFIG_MULTITHREAD | 
 |   { | 
 |     int i; | 
 |  | 
 |     CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_, | 
 |                     aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows)); | 
 |     if (dec_row_mt_sync->mutex_) { | 
 |       for (i = 0; i < rows; ++i) { | 
 |         pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL); | 
 |       } | 
 |     } | 
 |  | 
 |     CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_, | 
 |                     aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows)); | 
 |     if (dec_row_mt_sync->cond_) { | 
 |       for (i = 0; i < rows; ++i) { | 
 |         pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL); | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |  | 
 |   CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col, | 
 |                   aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows)); | 
 |  | 
 |   // Set up nsync. | 
 |   dec_row_mt_sync->sync_range = get_sync_range(cm->width); | 
 | } | 
 |  | 
 | // Deallocate decoder row synchronization related mutex and data | 
 | void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) { | 
 |   if (dec_row_mt_sync != NULL) { | 
 | #if CONFIG_MULTITHREAD | 
 |     int i; | 
 |     if (dec_row_mt_sync->mutex_ != NULL) { | 
 |       for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { | 
 |         pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]); | 
 |       } | 
 |       aom_free(dec_row_mt_sync->mutex_); | 
 |     } | 
 |     if (dec_row_mt_sync->cond_ != NULL) { | 
 |       for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { | 
 |         pthread_cond_destroy(&dec_row_mt_sync->cond_[i]); | 
 |       } | 
 |       aom_free(dec_row_mt_sync->cond_); | 
 |     } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |     aom_free(dec_row_mt_sync->cur_sb_col); | 
 |  | 
 |     // clear the structure as the source of this call may be a resize in which | 
 |     // case this call will be followed by an _alloc() which may fail. | 
 |     av1_zero(*dec_row_mt_sync); | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r, | 
 |                              int c) { | 
 | #if CONFIG_MULTITHREAD | 
 |   const int nsync = dec_row_mt_sync->sync_range; | 
 |  | 
 |   if (r && !(c & (nsync - 1))) { | 
 |     pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1]; | 
 |     pthread_mutex_lock(mutex); | 
 |  | 
 |     while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync) { | 
 |       pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex); | 
 |     } | 
 |     pthread_mutex_unlock(mutex); | 
 |   } | 
 | #else | 
 |   (void)dec_row_mt_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | static INLINE void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r, | 
 |                               int c, const int sb_cols) { | 
 | #if CONFIG_MULTITHREAD | 
 |   const int nsync = dec_row_mt_sync->sync_range; | 
 |   int cur; | 
 |   int sig = 1; | 
 |  | 
 |   if (c < sb_cols - 1) { | 
 |     cur = c; | 
 |     if (c % nsync) sig = 0; | 
 |   } else { | 
 |     cur = sb_cols + nsync; | 
 |   } | 
 |  | 
 |   if (sig) { | 
 |     pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]); | 
 |  | 
 |     dec_row_mt_sync->cur_sb_col[r] = cur; | 
 |  | 
 |     pthread_cond_signal(&dec_row_mt_sync->cond_[r]); | 
 |     pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]); | 
 |   } | 
 | #else | 
 |   (void)dec_row_mt_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 |   (void)sb_cols; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td, | 
 |                                           TileInfo tile_info, | 
 |                                           const int mi_row) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   TileDataDec *const tile_data = | 
 |       pbi->tile_data + tile_info.tile_row * cm->tiles.cols + tile_info.tile_col; | 
 |   const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); | 
 |   const int sb_row_in_tile = | 
 |       (mi_row - tile_info.mi_row_start) >> cm->mib_size_log2; | 
 |   int sb_col_in_tile = 0; | 
 |  | 
 | #if CONFIG_BANK_IMPROVE | 
 |   av1_zero(td->dcb.xd.ref_mv_bank); | 
 |   av1_zero(td->dcb.xd.warp_param_bank); | 
 | #endif  // CONFIG_BANK_IMPROVE | 
 |  | 
 |   for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
 |        mi_col += cm->mib_size, sb_col_in_tile++) { | 
 |     av1_reset_is_mi_coded_map(&td->dcb.xd, cm->mib_size); | 
 |     td->dcb.xd.sbi = av1_get_sb_info(cm, mi_row, mi_col); | 
 |     set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row, | 
 |                   mi_col); | 
 |  | 
 |     sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile); | 
 |  | 
 |     DecoderCodingBlock *const dcb = &td->dcb; | 
 |     MACROBLOCKD *const xd = &dcb->xd; | 
 |  | 
 | #if CONFIG_BANK_IMPROVE | 
 |     av1_reset_refmv_bank(cm, xd, &tile_info, mi_row, mi_col); | 
 | #else | 
 |     xd->ref_mv_bank.rmb_sb_hits = 0; | 
 | #endif  // CONFIG_BANK_IMPROVE | 
 |  | 
 | #if !CONFIG_BANK_IMPROVE | 
 |     xd->warp_param_bank.wpb_sb_hits = 0; | 
 | #endif  // !CONFIG_BANK_IMPROVE | 
 |  | 
 |     // Decoding of the super-block | 
 |     decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size, | 
 |                         0x2); | 
 |  | 
 |     sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile, | 
 |                sb_cols_in_tile); | 
 |   } | 
 | } | 
 |  | 
 | static int check_trailing_bits_after_symbol_coder(aom_reader *r) { | 
 |   if (aom_reader_has_overflowed(r)) return -1; | 
 |  | 
 |   uint32_t nb_bits = aom_reader_tell(r); | 
 |   uint32_t nb_bytes = (nb_bits + 7) >> 3; | 
 |   const uint8_t *p = aom_reader_find_begin(r) + nb_bytes; | 
 |  | 
 |   // aom_reader_tell() returns 1 for a newly initialized decoder, and the | 
 |   // return value only increases as values are decoded. So nb_bits > 0, and | 
 |   // thus p > p_begin. Therefore accessing p[-1] is safe. | 
 |   uint8_t last_byte = p[-1]; | 
 |   uint8_t pattern = 128 >> ((nb_bits - 1) & 7); | 
 |   if ((last_byte & (2 * pattern - 1)) != pattern) return -1; | 
 |  | 
 |   // Make sure that all padding bytes are zero as required by the spec. | 
 |   const uint8_t *p_end = aom_reader_find_end(r); | 
 |   while (p < p_end) { | 
 |     if (*p != 0) return -1; | 
 |     p++; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | static AOM_INLINE void set_decode_func_pointers(ThreadData *td, | 
 |                                                 int parse_decode_flag) { | 
 |   td->read_coeffs_tx_intra_block_visit = decode_block_void; | 
 |   td->predict_and_recon_intra_block_visit = decode_block_void; | 
 |   td->read_coeffs_tx_inter_block_visit = decode_block_void; | 
 |   td->inverse_tx_inter_block_visit = decode_block_void; | 
 |   td->inverse_cctx_block_visit = decode_block_void; | 
 |   td->predict_inter_block_visit = predict_inter_block_void; | 
 |   td->cfl_store_inter_block_visit = cfl_store_inter_block_void; | 
 |  | 
 |   if (parse_decode_flag & 0x1) { | 
 |     td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block; | 
 |     td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade; | 
 |   } | 
 |   if (parse_decode_flag & 0x2) { | 
 |     td->predict_and_recon_intra_block_visit = | 
 |         predict_and_reconstruct_intra_block; | 
 |     td->inverse_tx_inter_block_visit = inverse_transform_inter_block; | 
 |     td->inverse_cctx_block_visit = inverse_cross_chroma_transform_block; | 
 |     td->predict_inter_block_visit = predict_inter_block; | 
 |     td->cfl_store_inter_block_visit = cfl_store_inter_block; | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_tile(AV1Decoder *pbi, ThreadData *const td, | 
 |                                    int tile_row, int tile_col) { | 
 |   TileInfo tile_info; | 
 |  | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   av1_tile_set_row(&tile_info, cm, tile_row); | 
 |   av1_tile_set_col(&tile_info, cm, tile_col); | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |  | 
 |   av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end, | 
 |                          tile_row); | 
 |   av1_reset_loop_filter_delta(xd, num_planes); | 
 |   int num_filter_classes[MAX_MB_PLANE]; | 
 |   for (int p = 0; p < num_planes; ++p) | 
 |     num_filter_classes[p] = cm->rst_info[p].num_filter_classes; | 
 |   av1_reset_loop_restoration(xd, 0, num_planes, num_filter_classes); | 
 |  | 
 |   for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; | 
 |        mi_row += cm->mib_size) { | 
 |     av1_zero_left_context(xd); | 
 |     av1_zero(xd->ref_mv_bank); | 
 | #if !CONFIG_MVP_IMPROVEMENT | 
 |     xd->ref_mv_bank_pt = &td->ref_mv_bank; | 
 | #endif | 
 |  | 
 |     av1_zero(xd->warp_param_bank); | 
 | #if !WARP_CU_BANK | 
 |     xd->warp_param_bank_pt = &td->warp_param_bank; | 
 | #endif  //! WARP_CU_BANK | 
 |  | 
 |     for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
 |          mi_col += cm->mib_size) { | 
 |       av1_reset_is_mi_coded_map(xd, cm->mib_size); | 
 |       av1_set_sb_info(cm, xd, mi_row, mi_col); | 
 |       set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0); | 
 |       // td->ref_mv_bank is initialized as xd->ref_mv_bank, and used | 
 |       // for MV referencing during decoding the tile. | 
 |       // xd->ref_mv_bank is updated as decoding goes. | 
 | #if CONFIG_BANK_IMPROVE | 
 |       av1_reset_refmv_bank(cm, xd, &tile_info, mi_row, mi_col); | 
 | #else | 
 |       xd->ref_mv_bank.rmb_sb_hits = 0; | 
 | #endif  // CONFIG_BANK_IMPROVE | 
 | #if !CONFIG_MVP_IMPROVEMENT | 
 |       td->ref_mv_bank = xd->ref_mv_bank; | 
 | #endif  // !CONFIG_MVP_IMPROVEMENT | 
 |  | 
 | #if !CONFIG_BANK_IMPROVE | 
 |       xd->warp_param_bank.wpb_sb_hits = 0; | 
 | #if !WARP_CU_BANK | 
 |       td->warp_param_bank = xd->warp_param_bank; | 
 | #endif  //! WARP_CU_BANK | 
 | #endif  // !CONFIG_BANK_IMPROVE | 
 |       decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size, | 
 |                           0x3); | 
 |  | 
 |       if (aom_reader_has_overflowed(td->bit_reader)) { | 
 |         aom_merge_corrupted_flag(&dcb->corrupted, 1); | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   int corrupted = | 
 |       (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; | 
 |   aom_merge_corrupted_flag(&dcb->corrupted, corrupted); | 
 | } | 
 |  | 
 | #if CONFIG_THROUGHPUT_ANALYSIS | 
 | static void aom_accounting_cal_total(AV1Decoder *pbi) { | 
 |   if (pbi->decoding_first_frame) { | 
 |     pbi->common.sym_stats.frame_dec_order = 0; | 
 |     pbi->common.sym_stats.tot_ctx_syms = 0; | 
 |     pbi->common.sym_stats.total_total_hits = 0; | 
 |     pbi->common.sym_stats.total_context_switch = 0; | 
 |     pbi->common.sym_stats.tot_bypass_syms = 0; | 
 |     pbi->common.sym_stats.tot_bits = 0; | 
 |     pbi->common.sym_stats.peak_ctx_syms = 0; | 
 |     pbi->common.sym_stats.peak_bypass_syms = 0; | 
 |     pbi->common.sym_stats.peak_bits = 0; | 
 |   } | 
 |   Accounting accounting = pbi->accounting; | 
 |   int64_t frm_ctx_syms = accounting.syms.num_ctx_coded; | 
 |   int64_t frm_bypass_syms = accounting.syms.num_bypass_coded; | 
 |   int64_t frm_context_switch = accounting.syms.context_switch; | 
 |   int64_t frm_total_hits = accounting.syms.total_hits; | 
 |   int64_t frm_bits = 0; | 
 |   for (int i = 0; i < accounting.syms.num_syms; i++) { | 
 |     AccountingSymbol sym = accounting.syms.syms[i]; | 
 |     frm_bits += sym.bits; | 
 |   } | 
 |   int64_t peak_ctx_syms = pbi->common.sym_stats.peak_ctx_syms; | 
 |   int64_t peak_bypass_syms = pbi->common.sym_stats.peak_bypass_syms; | 
 |   pbi->common.sym_stats.tot_ctx_syms += frm_ctx_syms; | 
 |   pbi->common.sym_stats.total_context_switch += frm_context_switch; | 
 |   pbi->common.sym_stats.total_total_hits += frm_total_hits; | 
 |   pbi->common.sym_stats.tot_bypass_syms += frm_bypass_syms; | 
 |   pbi->common.sym_stats.frame_dec_order += 1; | 
 |   pbi->common.sym_stats.tot_bits += frm_bits; | 
 |   if (frm_ctx_syms * 4 + frm_bypass_syms > | 
 |       peak_ctx_syms * 4 + peak_bypass_syms) { | 
 |     pbi->common.sym_stats.peak_ctx_syms = frm_ctx_syms; | 
 |     pbi->common.sym_stats.peak_bypass_syms = frm_bypass_syms; | 
 |     pbi->common.sym_stats.peak_bits = frm_bits; | 
 |   } | 
 |   tot_ctx_syms = pbi->common.sym_stats.tot_ctx_syms; | 
 |   tot_bypass_syms = pbi->common.sym_stats.tot_bypass_syms; | 
 |   tot_bits = pbi->common.sym_stats.tot_bits; | 
 |   total_context_switch = pbi->common.sym_stats.total_context_switch; | 
 |   total_total_hits = pbi->common.sym_stats.total_total_hits; | 
 |   max_ctx_syms = pbi->common.sym_stats.peak_ctx_syms; | 
 |   max_bypass_syms = pbi->common.sym_stats.peak_bypass_syms; | 
 |   max_bits = pbi->common.sym_stats.peak_bits; | 
 |   tot_frames = pbi->common.sym_stats.frame_dec_order; | 
 | } | 
 | #endif  // CONFIG_THROUGHPUT_ANALYSIS | 
 |  | 
 | static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, | 
 |                                    const uint8_t *data_end, int start_tile, | 
 |                                    int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   ThreadData *const td = &pbi->td; | 
 |   CommonTileParams *const tiles = &cm->tiles; | 
 |   const int tile_cols = tiles->cols; | 
 |   const int tile_rows = tiles->rows; | 
 |   const int n_tiles = tile_cols * tile_rows; | 
 |   TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; | 
 |   const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
 |   const int single_row = pbi->dec_tile_row >= 0; | 
 |   const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
 |   const int single_col = pbi->dec_tile_col >= 0; | 
 |   int tile_rows_start; | 
 |   int tile_rows_end; | 
 |   int tile_cols_start; | 
 |   int tile_cols_end; | 
 |   int inv_col_order; | 
 |   int inv_row_order; | 
 |   int tile_row, tile_col; | 
 |   uint8_t allow_update_cdf; | 
 |   const uint8_t *raw_data_end = NULL; | 
 |  | 
 |   if (tiles->large_scale) { | 
 |     tile_rows_start = single_row ? dec_tile_row : 0; | 
 |     tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; | 
 |     tile_cols_start = single_col ? dec_tile_col : 0; | 
 |     tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
 |     inv_col_order = pbi->inv_tile_order && !single_col; | 
 |     inv_row_order = pbi->inv_tile_order && !single_row; | 
 |     allow_update_cdf = 0; | 
 |   } else { | 
 |     tile_rows_start = 0; | 
 |     tile_rows_end = tile_rows; | 
 |     tile_cols_start = 0; | 
 |     tile_cols_end = tile_cols; | 
 |     inv_col_order = pbi->inv_tile_order; | 
 |     inv_row_order = pbi->inv_tile_order; | 
 |     allow_update_cdf = 1; | 
 |   } | 
 |  | 
 |   // No tiles to decode. | 
 |   if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || | 
 |       // First tile is larger than end_tile. | 
 |       tile_rows_start * tiles->cols + tile_cols_start > end_tile || | 
 |       // Last tile is smaller than start_tile. | 
 |       (tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile) | 
 |     return data; | 
 |  | 
 |   allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; | 
 |  | 
 |   assert(tile_rows <= MAX_TILE_ROWS); | 
 |   assert(tile_cols <= MAX_TILE_COLS); | 
 |  | 
 | #if EXT_TILE_DEBUG | 
 |   if (tiles->large_scale && !pbi->ext_tile_debug) | 
 |     raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers); | 
 |   else if (tiles->large_scale && pbi->ext_tile_debug) | 
 |     raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); | 
 |   else | 
 | #endif  // EXT_TILE_DEBUG | 
 |     get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); | 
 |  | 
 |   if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { | 
 |     decoder_alloc_tile_data(pbi, n_tiles); | 
 |   } | 
 | #if CONFIG_ACCOUNTING | 
 |   if (pbi->acct_enabled) { | 
 |     aom_accounting_reset(&pbi->accounting); | 
 |   } | 
 | #endif | 
 |  | 
 |   set_decode_func_pointers(&pbi->td, 0x3); | 
 |  | 
 |   // Load all tile information into thread_data. | 
 |   td->dcb = pbi->dcb; | 
 |  | 
 |   td->dcb.corrupted = 0; | 
 |   td->dcb.mc_buf[0] = td->mc_buf[0]; | 
 |   td->dcb.mc_buf[1] = td->mc_buf[1]; | 
 |   td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst; | 
 |  | 
 |   // Temporary buffers used during the DMVR and OPFL processing. | 
 |   td->dcb.xd.opfl_vxy_bufs = td->opfl_vxy_bufs; | 
 |   td->dcb.xd.opfl_gxy_bufs = td->opfl_gxy_bufs; | 
 |   td->dcb.xd.opfl_dst_bufs = td->opfl_dst_bufs; | 
 |   for (int j = 0; j < 2; ++j) { | 
 |     td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j]; | 
 |   } | 
 |  | 
 |   for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { | 
 |     const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; | 
 |  | 
 |     for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { | 
 |       const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; | 
 |       TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col; | 
 |       const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col]; | 
 |  | 
 |       if (row * tiles->cols + col < start_tile || | 
 |           row * tiles->cols + col > end_tile) | 
 |         continue; | 
 |  | 
 |       td->bit_reader = &tile_data->bit_reader; | 
 |       // av1_zero(td->cb_buffer_base.dqcoeff); | 
 |       av1_tile_init(&td->dcb.xd.tile, cm, row, col); | 
 |       td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex; | 
 |       setup_bool_decoder(tile_bs_buf->data, data_end, tile_bs_buf->size, | 
 |                          &cm->error, td->bit_reader, allow_update_cdf); | 
 | #if CONFIG_ACCOUNTING | 
 |       if (pbi->acct_enabled) { | 
 |         td->bit_reader->accounting = &pbi->accounting; | 
 |         td->bit_reader->accounting->last_tell_frac = | 
 |             aom_reader_tell_frac(td->bit_reader); | 
 |       } else { | 
 |         td->bit_reader->accounting = NULL; | 
 |       } | 
 | #endif | 
 |       av1_init_macroblockd(cm, &td->dcb.xd); | 
 |       av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row, | 
 |                              &td->dcb.xd); | 
 |  | 
 |       // Initialise the tile context from the frame context | 
 |       tile_data->tctx = *cm->fc; | 
 |       td->dcb.xd.tile_ctx = &tile_data->tctx; | 
 |  | 
 |       // decode tile | 
 |       decode_tile(pbi, td, row, col); | 
 |       aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted); | 
 |       if (pbi->dcb.corrupted) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Failed to decode tile data"); | 
 |     } | 
 |   } | 
 |  | 
 |   if (tiles->large_scale) { | 
 |     if (n_tiles == 1) { | 
 |       // Find the end of the single tile buffer | 
 |       return aom_reader_find_end(&pbi->tile_data->bit_reader); | 
 |     } | 
 |     // Return the end of the last tile buffer | 
 |     return raw_data_end; | 
 |   } | 
 |   TileDataDec *const tile_data = pbi->tile_data + end_tile; | 
 | #if CONFIG_THROUGHPUT_ANALYSIS | 
 |   if (pbi->acct_enabled) { | 
 |     aom_accounting_cal_total(pbi); | 
 |   } | 
 | #endif  // CONFIG_THROUGHPUT_ANALYSIS | 
 |   return aom_reader_find_end(&tile_data->bit_reader); | 
 | } | 
 |  | 
 | static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) { | 
 |   TileJobsDec *cur_job_info = NULL; | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_lock(tile_mt_info->job_mutex); | 
 |  | 
 |   if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) { | 
 |     cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued; | 
 |     tile_mt_info->jobs_dequeued++; | 
 |   } | 
 |  | 
 |   pthread_mutex_unlock(tile_mt_info->job_mutex); | 
 | #else | 
 |   (void)tile_mt_info; | 
 | #endif | 
 |   return cur_job_info; | 
 | } | 
 |  | 
 | static AOM_INLINE void tile_worker_hook_init( | 
 |     AV1Decoder *const pbi, DecWorkerData *const thread_data, | 
 |     const TileBufferDec *const tile_buffer, TileDataDec *const tile_data, | 
 |     uint8_t allow_update_cdf) { | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   ThreadData *const td = thread_data->td; | 
 |   int tile_row = tile_data->tile_info.tile_row; | 
 |   int tile_col = tile_data->tile_info.tile_col; | 
 |  | 
 |   td->bit_reader = &tile_data->bit_reader; | 
 |   av1_zero(td->cb_buffer_base.dqcoeff); | 
 |  | 
 |   MACROBLOCKD *const xd = &td->dcb.xd; | 
 |   av1_tile_init(&xd->tile, cm, tile_row, tile_col); | 
 |   xd->current_base_qindex = cm->quant_params.base_qindex; | 
 |   setup_bool_decoder(tile_buffer->data, thread_data->data_end, | 
 |                      tile_buffer->size, &thread_data->error_info, | 
 |                      td->bit_reader, allow_update_cdf); | 
 | #if CONFIG_ACCOUNTING | 
 |   if (pbi->acct_enabled) { | 
 |     td->bit_reader->accounting = &pbi->accounting; | 
 |     td->bit_reader->accounting->last_tell_frac = | 
 |         aom_reader_tell_frac(td->bit_reader); | 
 |   } else { | 
 |     td->bit_reader->accounting = NULL; | 
 |   } | 
 | #endif | 
 |   av1_init_macroblockd(cm, xd); | 
 |   xd->error_info = &thread_data->error_info; | 
 |   av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd); | 
 |  | 
 |   // Initialise the tile context from the frame context | 
 |   tile_data->tctx = *cm->fc; | 
 |   xd->tile_ctx = &tile_data->tctx; | 
 | #if CONFIG_ACCOUNTING | 
 |   if (pbi->acct_enabled) { | 
 |     tile_data->bit_reader.accounting->last_tell_frac = | 
 |         aom_reader_tell_frac(&tile_data->bit_reader); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | static int tile_worker_hook(void *arg1, void *arg2) { | 
 |   DecWorkerData *const thread_data = (DecWorkerData *)arg1; | 
 |   AV1Decoder *const pbi = (AV1Decoder *)arg2; | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   ThreadData *const td = thread_data->td; | 
 |   uint8_t allow_update_cdf; | 
 |  | 
 |   // The jmp_buf is valid only for the duration of the function that calls | 
 |   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 | 
 |   // before it returns. | 
 |   if (setjmp(thread_data->error_info.jmp)) { | 
 |     thread_data->error_info.setjmp = 0; | 
 |     thread_data->td->dcb.corrupted = 1; | 
 |     return 0; | 
 |   } | 
 |   thread_data->error_info.setjmp = 1; | 
 |  | 
 |   allow_update_cdf = cm->tiles.large_scale ? 0 : 1; | 
 |   allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; | 
 |  | 
 |   set_decode_func_pointers(td, 0x3); | 
 |  | 
 |   assert(cm->tiles.cols > 0); | 
 |   while (!td->dcb.corrupted) { | 
 |     TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); | 
 |  | 
 |     if (cur_job_info != NULL) { | 
 |       const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; | 
 |       TileDataDec *const tile_data = cur_job_info->tile_data; | 
 |       tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, | 
 |                             allow_update_cdf); | 
 |       // decode tile | 
 |       int tile_row = tile_data->tile_info.tile_row; | 
 |       int tile_col = tile_data->tile_info.tile_col; | 
 |       decode_tile(pbi, td, tile_row, tile_col); | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 |   thread_data->error_info.setjmp = 0; | 
 |   return !td->dcb.corrupted; | 
 | } | 
 |  | 
 | static INLINE int get_max_row_mt_workers_per_tile(AV1_COMMON *cm, | 
 |                                                   TileInfo tile) { | 
 |   // NOTE: Currently value of max workers is calculated based | 
 |   // on the parse and decode time. As per the theoretical estimate | 
 |   // when percentage of parse time is equal to percentage of decode | 
 |   // time, number of workers needed to parse + decode a tile can not | 
 |   // exceed more than 2. | 
 |   // TODO(any): Modify this value if parsing is optimized in future. | 
 |   int sb_rows = av1_get_sb_rows_in_tile(cm, tile); | 
 |   int max_workers = | 
 |       sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE; | 
 |   return max_workers; | 
 | } | 
 |  | 
 | // The caller must hold pbi->row_mt_mutex_ when calling this function. | 
 | // Returns 1 if either the next job is stored in *next_job_info or 1 is stored | 
 | // in *end_of_frame. | 
 | // NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0. | 
 | // The return value of this function depends on the following variables: | 
 | // - frame_row_mt_info->mi_rows_parse_done | 
 | // - frame_row_mt_info->mi_rows_decode_started | 
 | // - frame_row_mt_info->row_mt_exit | 
 | // Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of | 
 | // these variables is modified. | 
 | static int get_next_job_info(AV1Decoder *const pbi, | 
 |                              AV1DecRowMTJobInfo *next_job_info, | 
 |                              int *end_of_frame) { | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   TileDataDec *tile_data; | 
 |   AV1DecRowMTSync *dec_row_mt_sync; | 
 |   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; | 
 |   TileInfo tile_info; | 
 |   const int tile_rows_start = frame_row_mt_info->tile_rows_start; | 
 |   const int tile_rows_end = frame_row_mt_info->tile_rows_end; | 
 |   const int tile_cols_start = frame_row_mt_info->tile_cols_start; | 
 |   const int tile_cols_end = frame_row_mt_info->tile_cols_end; | 
 |   const int start_tile = frame_row_mt_info->start_tile; | 
 |   const int end_tile = frame_row_mt_info->end_tile; | 
 |   const int sb_mi_size = mi_size_wide[cm->sb_size]; | 
 |   int num_mis_to_decode, num_threads_working; | 
 |   int num_mis_waiting_for_decode; | 
 |   int min_threads_working = INT_MAX; | 
 |   int max_mis_to_decode = 0; | 
 |   int tile_row_idx, tile_col_idx; | 
 |   int tile_row = -1; | 
 |   int tile_col = -1; | 
 |  | 
 |   memset(next_job_info, 0, sizeof(*next_job_info)); | 
 |  | 
 |   // Frame decode is completed or error is encountered. | 
 |   *end_of_frame = (frame_row_mt_info->mi_rows_decode_started == | 
 |                    frame_row_mt_info->mi_rows_to_decode) || | 
 |                   (frame_row_mt_info->row_mt_exit == 1); | 
 |   if (*end_of_frame) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   // Decoding cannot start as bit-stream parsing is not complete. | 
 |   assert(frame_row_mt_info->mi_rows_parse_done >= | 
 |          frame_row_mt_info->mi_rows_decode_started); | 
 |   if (frame_row_mt_info->mi_rows_parse_done == | 
 |       frame_row_mt_info->mi_rows_decode_started) | 
 |     return 0; | 
 |  | 
 |   // Choose the tile to decode. | 
 |   for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end; | 
 |        ++tile_row_idx) { | 
 |     for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end; | 
 |          ++tile_col_idx) { | 
 |       if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile || | 
 |           tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile) | 
 |         continue; | 
 |  | 
 |       tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx; | 
 |       dec_row_mt_sync = &tile_data->dec_row_mt_sync; | 
 |  | 
 |       num_threads_working = dec_row_mt_sync->num_threads_working; | 
 |       num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done - | 
 |                                     dec_row_mt_sync->mi_rows_decode_started) * | 
 |                                    dec_row_mt_sync->mi_cols; | 
 |       num_mis_to_decode = | 
 |           (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) * | 
 |           dec_row_mt_sync->mi_cols; | 
 |  | 
 |       assert(num_mis_to_decode >= num_mis_waiting_for_decode); | 
 |  | 
 |       // Pick the tile which has minimum number of threads working on it. | 
 |       if (num_mis_waiting_for_decode > 0) { | 
 |         if (num_threads_working < min_threads_working) { | 
 |           min_threads_working = num_threads_working; | 
 |           max_mis_to_decode = 0; | 
 |         } | 
 |         if (num_threads_working == min_threads_working && | 
 |             num_mis_to_decode > max_mis_to_decode && | 
 |             num_threads_working < | 
 |                 get_max_row_mt_workers_per_tile(cm, tile_data->tile_info)) { | 
 |           max_mis_to_decode = num_mis_to_decode; | 
 |           tile_row = tile_row_idx; | 
 |           tile_col = tile_col_idx; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   // No job found to process | 
 |   if (tile_row == -1 || tile_col == -1) return 0; | 
 |  | 
 |   tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col; | 
 |   tile_info = tile_data->tile_info; | 
 |   dec_row_mt_sync = &tile_data->dec_row_mt_sync; | 
 |  | 
 |   next_job_info->tile_row = tile_row; | 
 |   next_job_info->tile_col = tile_col; | 
 |   next_job_info->mi_row = | 
 |       dec_row_mt_sync->mi_rows_decode_started + tile_info.mi_row_start; | 
 |  | 
 |   dec_row_mt_sync->num_threads_working++; | 
 |   dec_row_mt_sync->mi_rows_decode_started += sb_mi_size; | 
 |   frame_row_mt_info->mi_rows_decode_started += sb_mi_size; | 
 |   assert(frame_row_mt_info->mi_rows_parse_done >= | 
 |          frame_row_mt_info->mi_rows_decode_started); | 
 | #if CONFIG_MULTITHREAD | 
 |   if (frame_row_mt_info->mi_rows_decode_started == | 
 |       frame_row_mt_info->mi_rows_to_decode) { | 
 |     pthread_cond_broadcast(pbi->row_mt_cond_); | 
 |   } | 
 | #endif | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static INLINE void signal_parse_sb_row_done(AV1Decoder *const pbi, | 
 |                                             TileDataDec *const tile_data, | 
 |                                             const int sb_mi_size) { | 
 |   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_lock(pbi->row_mt_mutex_); | 
 | #endif | 
 |   assert(frame_row_mt_info->mi_rows_parse_done >= | 
 |          frame_row_mt_info->mi_rows_decode_started); | 
 |   tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size; | 
 |   frame_row_mt_info->mi_rows_parse_done += sb_mi_size; | 
 | #if CONFIG_MULTITHREAD | 
 |   // A new decode job is available. Wake up one worker thread to handle the | 
 |   // new decode job. | 
 |   // NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started | 
 |   // by the same increment (sb_mi_size). | 
 |   pthread_cond_signal(pbi->row_mt_cond_); | 
 |   pthread_mutex_unlock(pbi->row_mt_mutex_); | 
 | #endif | 
 | } | 
 |  | 
 | // This function is very similar to decode_tile(). It would be good to figure | 
 | // out how to share code. | 
 | static AOM_INLINE void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td, | 
 |                                          TileDataDec *const tile_data) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int sb_mi_size = mi_size_wide[cm->sb_size]; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   TileInfo tile_info = tile_data->tile_info; | 
 |   int tile_row = tile_info.tile_row; | 
 |   DecoderCodingBlock *const dcb = &td->dcb; | 
 |   MACROBLOCKD *const xd = &dcb->xd; | 
 |  | 
 |   av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end, | 
 |                          tile_row); | 
 |   av1_reset_loop_filter_delta(xd, num_planes); | 
 |   int num_filter_classes[MAX_MB_PLANE]; | 
 |   for (int p = 0; p < num_planes; ++p) | 
 |     num_filter_classes[p] = cm->rst_info[p].num_filter_classes; | 
 |   av1_reset_loop_restoration(xd, 0, num_planes, num_filter_classes); | 
 |  | 
 |   for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; | 
 |        mi_row += cm->mib_size) { | 
 |     av1_zero_left_context(xd); | 
 |     av1_zero(xd->ref_mv_bank); | 
 | #if !CONFIG_MVP_IMPROVEMENT | 
 |     xd->ref_mv_bank_pt = &td->ref_mv_bank; | 
 | #endif | 
 |  | 
 |     av1_zero(xd->warp_param_bank); | 
 | #if !WARP_CU_BANK | 
 |     xd->warp_param_bank_pt = &td->warp_param_bank; | 
 | #endif  //! WARP_CU_BANK | 
 |  | 
 |     for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
 |          mi_col += cm->mib_size) { | 
 |       av1_reset_is_mi_coded_map(xd, cm->mib_size); | 
 |       av1_set_sb_info(cm, xd, mi_row, mi_col); | 
 |       set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col); | 
 |  | 
 | #if CONFIG_BANK_IMPROVE | 
 |       av1_reset_refmv_bank(cm, xd, &tile_info, mi_row, mi_col); | 
 | #else | 
 |       xd->ref_mv_bank.rmb_sb_hits = 0; | 
 | #endif  // CONFIG_BANK_IMPROVE | 
 | #if !CONFIG_MVP_IMPROVEMENT | 
 |       td->ref_mv_bank = xd->ref_mv_bank; | 
 | #endif  // !CONFIG_MVP_IMPROVEMENT | 
 |  | 
 | #if !CONFIG_BANK_IMPROVE | 
 |       xd->warp_param_bank.wpb_sb_hits = 0; | 
 | #if !WARP_CU_BANK | 
 |       td->warp_param_bank = xd->warp_param_bank; | 
 | #endif  //! WARP_CU_BANK | 
 | #endif  // !CONFIG_BANK_IMPROVE | 
 |  | 
 |       // Bit-stream parsing of the superblock | 
 |       decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size, | 
 |                           0x1); | 
 |       if (aom_reader_has_overflowed(td->bit_reader)) { | 
 |         aom_merge_corrupted_flag(&dcb->corrupted, 1); | 
 |         return; | 
 |       } | 
 |     } | 
 |     signal_parse_sb_row_done(pbi, tile_data, sb_mi_size); | 
 |   } | 
 |  | 
 |   int corrupted = | 
 |       (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; | 
 |   aom_merge_corrupted_flag(&dcb->corrupted, corrupted); | 
 | } | 
 |  | 
 | static int row_mt_worker_hook(void *arg1, void *arg2) { | 
 |   DecWorkerData *const thread_data = (DecWorkerData *)arg1; | 
 |   AV1Decoder *const pbi = (AV1Decoder *)arg2; | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   ThreadData *const td = thread_data->td; | 
 |   uint8_t allow_update_cdf; | 
 |   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; | 
 |   td->dcb.corrupted = 0; | 
 |  | 
 |   // The jmp_buf is valid only for the duration of the function that calls | 
 |   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 | 
 |   // before it returns. | 
 |   if (setjmp(thread_data->error_info.jmp)) { | 
 |     thread_data->error_info.setjmp = 0; | 
 |     thread_data->td->dcb.corrupted = 1; | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_mutex_lock(pbi->row_mt_mutex_); | 
 | #endif | 
 |     frame_row_mt_info->row_mt_exit = 1; | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_cond_broadcast(pbi->row_mt_cond_); | 
 |     pthread_mutex_unlock(pbi->row_mt_mutex_); | 
 | #endif | 
 |     return 0; | 
 |   } | 
 |   thread_data->error_info.setjmp = 1; | 
 |  | 
 |   allow_update_cdf = cm->tiles.large_scale ? 0 : 1; | 
 |   allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; | 
 |  | 
 |   set_decode_func_pointers(td, 0x1); | 
 |  | 
 |   assert(cm->tiles.cols > 0); | 
 |   while (!td->dcb.corrupted) { | 
 |     TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); | 
 |  | 
 |     if (cur_job_info != NULL) { | 
 |       const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; | 
 |       TileDataDec *const tile_data = cur_job_info->tile_data; | 
 |       tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, | 
 |                             allow_update_cdf); | 
 | #if CONFIG_MULTITHREAD | 
 |       pthread_mutex_lock(pbi->row_mt_mutex_); | 
 | #endif | 
 |       tile_data->dec_row_mt_sync.num_threads_working++; | 
 | #if CONFIG_MULTITHREAD | 
 |       pthread_mutex_unlock(pbi->row_mt_mutex_); | 
 | #endif | 
 |       // decode tile | 
 |       parse_tile_row_mt(pbi, td, tile_data); | 
 | #if CONFIG_MULTITHREAD | 
 |       pthread_mutex_lock(pbi->row_mt_mutex_); | 
 | #endif | 
 |       tile_data->dec_row_mt_sync.num_threads_working--; | 
 | #if CONFIG_MULTITHREAD | 
 |       pthread_mutex_unlock(pbi->row_mt_mutex_); | 
 | #endif | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (td->dcb.corrupted) { | 
 |     thread_data->error_info.setjmp = 0; | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_mutex_lock(pbi->row_mt_mutex_); | 
 | #endif | 
 |     frame_row_mt_info->row_mt_exit = 1; | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_cond_broadcast(pbi->row_mt_cond_); | 
 |     pthread_mutex_unlock(pbi->row_mt_mutex_); | 
 | #endif | 
 |     return 0; | 
 |   } | 
 |  | 
 |   set_decode_func_pointers(td, 0x2); | 
 |  | 
 |   while (1) { | 
 |     AV1DecRowMTJobInfo next_job_info; | 
 |     int end_of_frame = 0; | 
 |  | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_mutex_lock(pbi->row_mt_mutex_); | 
 | #endif | 
 |     while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) { | 
 | #if CONFIG_MULTITHREAD | 
 |       pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_); | 
 | #endif | 
 |     } | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_mutex_unlock(pbi->row_mt_mutex_); | 
 | #endif | 
 |  | 
 |     if (end_of_frame) break; | 
 |  | 
 |     int tile_row = next_job_info.tile_row; | 
 |     int tile_col = next_job_info.tile_col; | 
 |     int mi_row = next_job_info.mi_row; | 
 |  | 
 |     TileDataDec *tile_data = | 
 |         pbi->tile_data + tile_row * cm->tiles.cols + tile_col; | 
 |     AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync; | 
 |     TileInfo tile_info = tile_data->tile_info; | 
 |  | 
 |     av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col); | 
 |     av1_init_macroblockd(cm, &td->dcb.xd); | 
 |     td->dcb.xd.error_info = &thread_data->error_info; | 
 |  | 
 |     decode_tile_sb_row(pbi, td, tile_info, mi_row); | 
 |  | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_mutex_lock(pbi->row_mt_mutex_); | 
 | #endif | 
 |     dec_row_mt_sync->num_threads_working--; | 
 | #if CONFIG_MULTITHREAD | 
 |     pthread_mutex_unlock(pbi->row_mt_mutex_); | 
 | #endif | 
 |   } | 
 |   thread_data->error_info.setjmp = 0; | 
 |   return !td->dcb.corrupted; | 
 | } | 
 |  | 
 | // sorts in descending order | 
 | static int compare_tile_buffers(const void *a, const void *b) { | 
 |   const TileJobsDec *const buf1 = (const TileJobsDec *)a; | 
 |   const TileJobsDec *const buf2 = (const TileJobsDec *)b; | 
 |   return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size)); | 
 | } | 
 |  | 
 | static AOM_INLINE void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm, | 
 |                                          int tile_rows_start, int tile_rows_end, | 
 |                                          int tile_cols_start, int tile_cols_end, | 
 |                                          int start_tile, int end_tile) { | 
 |   AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info; | 
 |   TileJobsDec *tile_job_queue = tile_mt_info->job_queue; | 
 |   tile_mt_info->jobs_enqueued = 0; | 
 |   tile_mt_info->jobs_dequeued = 0; | 
 |  | 
 |   for (int row = tile_rows_start; row < tile_rows_end; row++) { | 
 |     for (int col = tile_cols_start; col < tile_cols_end; col++) { | 
 |       if (row * cm->tiles.cols + col < start_tile || | 
 |           row * cm->tiles.cols + col > end_tile) | 
 |         continue; | 
 |       tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col]; | 
 |       tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col; | 
 |       tile_job_queue++; | 
 |       tile_mt_info->jobs_enqueued++; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, | 
 |                                       AV1_COMMON *cm, int tile_rows, | 
 |                                       int tile_cols) { | 
 |   tile_mt_info->alloc_tile_rows = tile_rows; | 
 |   tile_mt_info->alloc_tile_cols = tile_cols; | 
 |   int num_tiles = tile_rows * tile_cols; | 
 | #if CONFIG_MULTITHREAD | 
 |   { | 
 |     CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex, | 
 |                     aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles)); | 
 |  | 
 |     for (int i = 0; i < num_tiles; i++) { | 
 |       pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL); | 
 |     } | 
 |   } | 
 | #endif | 
 |   CHECK_MEM_ERROR(cm, tile_mt_info->job_queue, | 
 |                   aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles)); | 
 | } | 
 |  | 
 | void av1_free_mc_tmp_buf(ThreadData *thread_data) { | 
 |   int ref; | 
 |   for (ref = 0; ref < 2; ref++) { | 
 |     aom_free(thread_data->mc_buf[ref]); | 
 |     thread_data->mc_buf[ref] = NULL; | 
 |   } | 
 |   thread_data->mc_buf_size = 0; | 
 |  | 
 |   aom_free(thread_data->tmp_conv_dst); | 
 |   thread_data->tmp_conv_dst = NULL; | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     aom_free(thread_data->tmp_obmc_bufs[i]); | 
 |     thread_data->tmp_obmc_bufs[i] = NULL; | 
 |   } | 
 | } | 
 |  | 
 | // Free-up the temporary buffers created for DMVR and OPFL processing. | 
 | void av1_free_opfl_tmp_bufs(ThreadData *thread_data) { | 
 |   aom_free(thread_data->opfl_vxy_bufs); | 
 |   thread_data->opfl_vxy_bufs = NULL; | 
 |  | 
 |   aom_free(thread_data->opfl_gxy_bufs); | 
 |   thread_data->opfl_gxy_bufs = NULL; | 
 |  | 
 |   aom_free(thread_data->opfl_dst_bufs); | 
 |   thread_data->opfl_dst_bufs = NULL; | 
 | } | 
 |  | 
 | // Allocate memory for temporary buffers used during the DMVR and OPFL | 
 | // processing. | 
 | static AOM_INLINE void allocate_opfl_tmp_bufs(AV1_COMMON *const cm, | 
 |                                               ThreadData *thread_data) { | 
 |   CHECK_MEM_ERROR( | 
 |       cm, thread_data->opfl_vxy_bufs, | 
 |       aom_memalign(32, N_OF_OFFSETS * 4 * sizeof(*thread_data->opfl_vxy_bufs))); | 
 |  | 
 |   CHECK_MEM_ERROR(cm, thread_data->opfl_gxy_bufs, | 
 |                   aom_memalign(32, MAX_SB_SQUARE * 4 * | 
 |                                        sizeof(*thread_data->opfl_gxy_bufs))); | 
 |  | 
 |   CHECK_MEM_ERROR(cm, thread_data->opfl_dst_bufs, | 
 |                   aom_memalign(32, MAX_SB_SQUARE * 2 * | 
 |                                        sizeof(*thread_data->opfl_dst_bufs))); | 
 | } | 
 |  | 
 | static AOM_INLINE void allocate_mc_tmp_buf(AV1_COMMON *const cm, | 
 |                                            ThreadData *thread_data, | 
 |                                            int buf_size) { | 
 |   for (int ref = 0; ref < 2; ref++) { | 
 |     // The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error | 
 |     // 'Conditional jump or move depends on uninitialised value' from the loop | 
 |     // filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in | 
 |     // av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the | 
 |     // potential reason for this issue. | 
 |     uint16_t *hbd_mc_buf; | 
 |     CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size)); | 
 |     memset(hbd_mc_buf, 0, buf_size); | 
 |     thread_data->mc_buf[ref] = hbd_mc_buf; | 
 |   } | 
 |   thread_data->mc_buf_size = buf_size; | 
 |  | 
 |   CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst, | 
 |                   aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * | 
 |                                        sizeof(*thread_data->tmp_conv_dst))); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     CHECK_MEM_ERROR( | 
 |         cm, thread_data->tmp_obmc_bufs[i], | 
 |         aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * | 
 |                              sizeof(*thread_data->tmp_obmc_bufs[i]))); | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void reset_dec_workers(AV1Decoder *pbi, | 
 |                                          AVxWorkerHook worker_hook, | 
 |                                          int num_workers) { | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |  | 
 |   // Reset tile decoding hook | 
 |   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { | 
 |     AVxWorker *const worker = &pbi->tile_workers[worker_idx]; | 
 |     DecWorkerData *const thread_data = pbi->thread_data + worker_idx; | 
 |     thread_data->td->dcb = pbi->dcb; | 
 |     thread_data->td->dcb.corrupted = 0; | 
 |     thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0]; | 
 |     thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1]; | 
 |     thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst; | 
 |     // Temporary buffers used during the DMVR and OPFL processing. | 
 |     thread_data->td->dcb.xd.opfl_vxy_bufs = thread_data->td->opfl_vxy_bufs; | 
 |     thread_data->td->dcb.xd.opfl_gxy_bufs = thread_data->td->opfl_gxy_bufs; | 
 |     thread_data->td->dcb.xd.opfl_dst_bufs = thread_data->td->opfl_dst_bufs; | 
 |  | 
 |     for (int j = 0; j < 2; ++j) { | 
 |       thread_data->td->dcb.xd.tmp_obmc_bufs[j] = | 
 |           thread_data->td->tmp_obmc_bufs[j]; | 
 |     } | 
 |     winterface->sync(worker); | 
 |  | 
 |     worker->hook = worker_hook; | 
 |     worker->data1 = thread_data; | 
 |     worker->data2 = pbi; | 
 |   } | 
 | #if CONFIG_ACCOUNTING | 
 |   if (pbi->acct_enabled) { | 
 | #if CONFIG_THROUGHPUT_ANALYSIS | 
 |     aom_accounting_cal_total(pbi); | 
 | #else | 
 |     aom_accounting_dump(&pbi->accounting); | 
 | #endif  // CONFIG_THROUGHPUT_ANALYSIS | 
 |     aom_accounting_reset(&pbi->accounting); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | static AOM_INLINE void launch_dec_workers(AV1Decoder *pbi, | 
 |                                           const uint8_t *data_end, | 
 |                                           int num_workers) { | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |  | 
 |   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { | 
 |     AVxWorker *const worker = &pbi->tile_workers[worker_idx]; | 
 |     DecWorkerData *const thread_data = (DecWorkerData *)worker->data1; | 
 |  | 
 |     thread_data->data_end = data_end; | 
 |  | 
 |     worker->had_error = 0; | 
 |     if (worker_idx == num_workers - 1) { | 
 |       winterface->execute(worker); | 
 |     } else { | 
 |       winterface->launch(worker); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void sync_dec_workers(AV1Decoder *pbi, int num_workers) { | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |   int corrupted = 0; | 
 |  | 
 |   for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) { | 
 |     AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1]; | 
 |     aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker)); | 
 |   } | 
 |  | 
 |   pbi->dcb.corrupted = corrupted; | 
 | } | 
 |  | 
 | static AOM_INLINE void decode_mt_init(AV1Decoder *pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |   int worker_idx; | 
 |  | 
 |   // Create workers and thread_data | 
 |   if (pbi->num_workers == 0) { | 
 |     const int num_threads = pbi->max_threads; | 
 |     CHECK_MEM_ERROR(cm, pbi->tile_workers, | 
 |                     aom_malloc(num_threads * sizeof(*pbi->tile_workers))); | 
 |     CHECK_MEM_ERROR(cm, pbi->thread_data, | 
 |                     aom_malloc(num_threads * sizeof(*pbi->thread_data))); | 
 |  | 
 |     for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) { | 
 |       AVxWorker *const worker = &pbi->tile_workers[worker_idx]; | 
 |       DecWorkerData *const thread_data = pbi->thread_data + worker_idx; | 
 |       ++pbi->num_workers; | 
 |  | 
 |       winterface->init(worker); | 
 |       worker->thread_name = "aom tile worker"; | 
 |       if (worker_idx < num_threads - 1 && !winterface->reset(worker)) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
 |                            "Tile decoder thread creation failed"); | 
 |       } | 
 |  | 
 |       if (worker_idx < num_threads - 1) { | 
 |         // Allocate thread data. | 
 |         CHECK_MEM_ERROR(cm, thread_data->td, | 
 |                         aom_memalign(32, sizeof(*thread_data->td))); | 
 |         av1_zero(*thread_data->td); | 
 |       } else { | 
 |         // Main thread acts as a worker and uses the thread data in pbi | 
 |         thread_data->td = &pbi->td; | 
 |       } | 
 |       thread_data->error_info.error_code = AOM_CODEC_OK; | 
 |       thread_data->error_info.setjmp = 0; | 
 |     } | 
 |   } | 
 |   const int buf_size = MC_TEMP_BUF_PELS << 1; | 
 |   for (worker_idx = 0; worker_idx < pbi->max_threads - 1; ++worker_idx) { | 
 |     DecWorkerData *const thread_data = pbi->thread_data + worker_idx; | 
 |     if (thread_data->td->mc_buf_size != buf_size) { | 
 |       av1_free_mc_tmp_buf(thread_data->td); | 
 |       av1_free_opfl_tmp_bufs(thread_data->td); | 
 |  | 
 |       allocate_mc_tmp_buf(cm, thread_data->td, buf_size); | 
 |       allocate_opfl_tmp_bufs(cm, thread_data->td); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void tile_mt_queue(AV1Decoder *pbi, int tile_cols, | 
 |                                      int tile_rows, int tile_rows_start, | 
 |                                      int tile_rows_end, int tile_cols_start, | 
 |                                      int tile_cols_end, int start_tile, | 
 |                                      int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   if (pbi->tile_mt_info.alloc_tile_cols != tile_cols || | 
 |       pbi->tile_mt_info.alloc_tile_rows != tile_rows) { | 
 |     av1_dealloc_dec_jobs(&pbi->tile_mt_info); | 
 |     alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols); | 
 |   } | 
 |   enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start, | 
 |                     tile_cols_end, start_tile, end_tile); | 
 |   qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued, | 
 |         sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers); | 
 | } | 
 |  | 
 | static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, | 
 |                                       const uint8_t *data_end, int start_tile, | 
 |                                       int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   CommonTileParams *const tiles = &cm->tiles; | 
 |   const int tile_cols = tiles->cols; | 
 |   const int tile_rows = tiles->rows; | 
 |   const int n_tiles = tile_cols * tile_rows; | 
 |   TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; | 
 |   const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
 |   const int single_row = pbi->dec_tile_row >= 0; | 
 |   const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
 |   const int single_col = pbi->dec_tile_col >= 0; | 
 |   int tile_rows_start; | 
 |   int tile_rows_end; | 
 |   int tile_cols_start; | 
 |   int tile_cols_end; | 
 |   int tile_count_tg; | 
 |   int num_workers; | 
 |   const uint8_t *raw_data_end = NULL; | 
 |  | 
 |   if (tiles->large_scale) { | 
 |     tile_rows_start = single_row ? dec_tile_row : 0; | 
 |     tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; | 
 |     tile_cols_start = single_col ? dec_tile_col : 0; | 
 |     tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
 |   } else { | 
 |     tile_rows_start = 0; | 
 |     tile_rows_end = tile_rows; | 
 |     tile_cols_start = 0; | 
 |     tile_cols_end = tile_cols; | 
 |   } | 
 |   tile_count_tg = end_tile - start_tile + 1; | 
 |   num_workers = AOMMIN(pbi->max_threads, tile_count_tg); | 
 |  | 
 |   // No tiles to decode. | 
 |   if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || | 
 |       // First tile is larger than end_tile. | 
 |       tile_rows_start * tile_cols + tile_cols_start > end_tile || | 
 |       // Last tile is smaller than start_tile. | 
 |       (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) | 
 |     return data; | 
 |  | 
 |   assert(tile_rows <= MAX_TILE_ROWS); | 
 |   assert(tile_cols <= MAX_TILE_COLS); | 
 |   assert(tile_count_tg > 0); | 
 |   assert(num_workers > 0); | 
 |   assert(start_tile <= end_tile); | 
 |   assert(start_tile >= 0 && end_tile < n_tiles); | 
 |  | 
 |   decode_mt_init(pbi); | 
 |  | 
 |   // get tile size in tile group | 
 | #if EXT_TILE_DEBUG | 
 |   if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); | 
 |   if (tiles->large_scale) | 
 |     raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); | 
 |   else | 
 | #endif  // EXT_TILE_DEBUG | 
 |     get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); | 
 |  | 
 |   if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { | 
 |     decoder_alloc_tile_data(pbi, n_tiles); | 
 |   } | 
 |  | 
 |   for (int row = 0; row < tile_rows; row++) { | 
 |     for (int col = 0; col < tile_cols; col++) { | 
 |       TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; | 
 |       av1_tile_init(&tile_data->tile_info, cm, row, col); | 
 |     } | 
 |   } | 
 |  | 
 |   tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, | 
 |                 tile_cols_start, tile_cols_end, start_tile, end_tile); | 
 |  | 
 |   reset_dec_workers(pbi, tile_worker_hook, num_workers); | 
 |   launch_dec_workers(pbi, data_end, num_workers); | 
 |   sync_dec_workers(pbi, num_workers); | 
 |  | 
 |   if (pbi->dcb.corrupted) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Failed to decode tile data"); | 
 |  | 
 |   if (tiles->large_scale) { | 
 |     if (n_tiles == 1) { | 
 |       // Find the end of the single tile buffer | 
 |       return aom_reader_find_end(&pbi->tile_data->bit_reader); | 
 |     } | 
 |     // Return the end of the last tile buffer | 
 |     return raw_data_end; | 
 |   } | 
 |   TileDataDec *const tile_data = pbi->tile_data + end_tile; | 
 |  | 
 |   return aom_reader_find_end(&tile_data->bit_reader); | 
 | } | 
 |  | 
 | static AOM_INLINE void dec_alloc_cb_buf(AV1Decoder *pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   int size = ((cm->mi_params.mi_rows >> cm->mib_size_log2) + 1) * | 
 |              ((cm->mi_params.mi_cols >> cm->mib_size_log2) + 1); | 
 |  | 
 |   if (pbi->cb_buffer_alloc_size < size) { | 
 |     av1_dec_free_cb_buf(pbi); | 
 |     CHECK_MEM_ERROR(cm, pbi->cb_buffer_base, | 
 |                     aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size)); | 
 |     memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size); | 
 |     pbi->cb_buffer_alloc_size = size; | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start, | 
 |                                          int tile_rows_end, int tile_cols_start, | 
 |                                          int tile_cols_end, int start_tile, | 
 |                                          int end_tile, int max_sb_rows) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; | 
 |  | 
 |   frame_row_mt_info->tile_rows_start = tile_rows_start; | 
 |   frame_row_mt_info->tile_rows_end = tile_rows_end; | 
 |   frame_row_mt_info->tile_cols_start = tile_cols_start; | 
 |   frame_row_mt_info->tile_cols_end = tile_cols_end; | 
 |   frame_row_mt_info->start_tile = start_tile; | 
 |   frame_row_mt_info->end_tile = end_tile; | 
 |   frame_row_mt_info->mi_rows_to_decode = 0; | 
 |   frame_row_mt_info->mi_rows_parse_done = 0; | 
 |   frame_row_mt_info->mi_rows_decode_started = 0; | 
 |   frame_row_mt_info->row_mt_exit = 0; | 
 |  | 
 |   for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { | 
 |     for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { | 
 |       if (tile_row * cm->tiles.cols + tile_col < start_tile || | 
 |           tile_row * cm->tiles.cols + tile_col > end_tile) | 
 |         continue; | 
 |  | 
 |       TileDataDec *const tile_data = | 
 |           pbi->tile_data + tile_row * cm->tiles.cols + tile_col; | 
 |       TileInfo tile_info = tile_data->tile_info; | 
 |  | 
 |       tile_data->dec_row_mt_sync.mi_rows_parse_done = 0; | 
 |       tile_data->dec_row_mt_sync.mi_rows_decode_started = 0; | 
 |       tile_data->dec_row_mt_sync.num_threads_working = 0; | 
 |       tile_data->dec_row_mt_sync.mi_rows = ALIGN_POWER_OF_TWO( | 
 |           tile_info.mi_row_end - tile_info.mi_row_start, cm->mib_size_log2); | 
 |       tile_data->dec_row_mt_sync.mi_cols = ALIGN_POWER_OF_TWO( | 
 |           tile_info.mi_col_end - tile_info.mi_col_start, cm->mib_size_log2); | 
 |  | 
 |       frame_row_mt_info->mi_rows_to_decode += | 
 |           tile_data->dec_row_mt_sync.mi_rows; | 
 |  | 
 |       // Initialize cur_sb_col to -1 for all SB rows. | 
 |       memset(tile_data->dec_row_mt_sync.cur_sb_col, -1, | 
 |              sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows); | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_MULTITHREAD | 
 |   if (pbi->row_mt_mutex_ == NULL) { | 
 |     CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_, | 
 |                     aom_malloc(sizeof(*(pbi->row_mt_mutex_)))); | 
 |     if (pbi->row_mt_mutex_) { | 
 |       pthread_mutex_init(pbi->row_mt_mutex_, NULL); | 
 |     } | 
 |   } | 
 |  | 
 |   if (pbi->row_mt_cond_ == NULL) { | 
 |     CHECK_MEM_ERROR(cm, pbi->row_mt_cond_, | 
 |                     aom_malloc(sizeof(*(pbi->row_mt_cond_)))); | 
 |     if (pbi->row_mt_cond_) { | 
 |       pthread_cond_init(pbi->row_mt_cond_, NULL); | 
 |     } | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data, | 
 |                                           const uint8_t *data_end, | 
 |                                           int start_tile, int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   CommonTileParams *const tiles = &cm->tiles; | 
 |   const int tile_cols = tiles->cols; | 
 |   const int tile_rows = tiles->rows; | 
 |   const int n_tiles = tile_cols * tile_rows; | 
 |   TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; | 
 |   const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
 |   const int single_row = pbi->dec_tile_row >= 0; | 
 |   const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
 |   const int single_col = pbi->dec_tile_col >= 0; | 
 |   int tile_rows_start; | 
 |   int tile_rows_end; | 
 |   int tile_cols_start; | 
 |   int tile_cols_end; | 
 |   int tile_count_tg; | 
 |   int num_workers = 0; | 
 |   int max_threads; | 
 |   const uint8_t *raw_data_end = NULL; | 
 |   int max_sb_rows = 0; | 
 |  | 
 |   if (tiles->large_scale) { | 
 |     tile_rows_start = single_row ? dec_tile_row : 0; | 
 |     tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; | 
 |     tile_cols_start = single_col ? dec_tile_col : 0; | 
 |     tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
 |   } else { | 
 |     tile_rows_start = 0; | 
 |     tile_rows_end = tile_rows; | 
 |     tile_cols_start = 0; | 
 |     tile_cols_end = tile_cols; | 
 |   } | 
 |   tile_count_tg = end_tile - start_tile + 1; | 
 |   max_threads = pbi->max_threads; | 
 |  | 
 |   // No tiles to decode. | 
 |   if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || | 
 |       // First tile is larger than end_tile. | 
 |       tile_rows_start * tile_cols + tile_cols_start > end_tile || | 
 |       // Last tile is smaller than start_tile. | 
 |       (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) | 
 |     return data; | 
 |  | 
 |   assert(tile_rows <= MAX_TILE_ROWS); | 
 |   assert(tile_cols <= MAX_TILE_COLS); | 
 |   assert(tile_count_tg > 0); | 
 |   assert(max_threads > 0); | 
 |   assert(start_tile <= end_tile); | 
 |   assert(start_tile >= 0 && end_tile < n_tiles); | 
 |  | 
 |   (void)tile_count_tg; | 
 |  | 
 |   decode_mt_init(pbi); | 
 |  | 
 |   // get tile size in tile group | 
 | #if EXT_TILE_DEBUG | 
 |   if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); | 
 |   if (tiles->large_scale) | 
 |     raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); | 
 |   else | 
 | #endif  // EXT_TILE_DEBUG | 
 |     get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); | 
 |  | 
 |   if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { | 
 |     if (pbi->tile_data != NULL) { | 
 |       for (int i = 0; i < pbi->allocated_tiles; i++) { | 
 |         TileDataDec *const tile_data = pbi->tile_data + i; | 
 |         av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); | 
 |       } | 
 |     } | 
 |     decoder_alloc_tile_data(pbi, n_tiles); | 
 |   } | 
 |  | 
 |   for (int row = 0; row < tile_rows; row++) { | 
 |     for (int col = 0; col < tile_cols; col++) { | 
 |       TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; | 
 |       av1_tile_init(&tile_data->tile_info, cm, row, col); | 
 |  | 
 |       max_sb_rows = AOMMAX(max_sb_rows, | 
 |                            av1_get_sb_rows_in_tile(cm, tile_data->tile_info)); | 
 |       num_workers += get_max_row_mt_workers_per_tile(cm, tile_data->tile_info); | 
 |     } | 
 |   } | 
 |   num_workers = AOMMIN(num_workers, max_threads); | 
 |  | 
 |   if (pbi->allocated_row_mt_sync_rows != max_sb_rows) { | 
 |     for (int i = 0; i < n_tiles; ++i) { | 
 |       TileDataDec *const tile_data = pbi->tile_data + i; | 
 |       av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); | 
 |       dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows); | 
 |     } | 
 |     pbi->allocated_row_mt_sync_rows = max_sb_rows; | 
 |   } | 
 |  | 
 |   tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, | 
 |                 tile_cols_start, tile_cols_end, start_tile, end_tile); | 
 |  | 
 |   dec_alloc_cb_buf(pbi); | 
 |  | 
 |   row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start, | 
 |                     tile_cols_end, start_tile, end_tile, max_sb_rows); | 
 |  | 
 |   reset_dec_workers(pbi, row_mt_worker_hook, num_workers); | 
 |   launch_dec_workers(pbi, data_end, num_workers); | 
 |   sync_dec_workers(pbi, num_workers); | 
 |  | 
 |   if (pbi->dcb.corrupted) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Failed to decode tile data"); | 
 |  | 
 |   if (tiles->large_scale) { | 
 |     if (n_tiles == 1) { | 
 |       // Find the end of the single tile buffer | 
 |       return aom_reader_find_end(&pbi->tile_data->bit_reader); | 
 |     } | 
 |     // Return the end of the last tile buffer | 
 |     return raw_data_end; | 
 |   } | 
 |   TileDataDec *const tile_data = pbi->tile_data + end_tile; | 
 |  | 
 |   return aom_reader_find_end(&tile_data->bit_reader); | 
 | } | 
 |  | 
 | static AOM_INLINE void error_handler(void *data) { | 
 |   AV1_COMMON *const cm = (AV1_COMMON *)data; | 
 |   aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); | 
 | } | 
 |  | 
 | // Reads the high_bitdepth and twelve_bit fields in color_config() and sets | 
 | // seq_params->bit_depth based on the values of those fields and | 
 | // seq_params->profile. Reports errors by calling rb->error_handler() or | 
 | // aom_internal_error(). | 
 | static AOM_INLINE void read_bitdepth( | 
 |     struct aom_read_bit_buffer *rb, SequenceHeader *seq_params, | 
 |     struct aom_internal_error_info *error_info) { | 
 |   const int high_bitdepth = aom_rb_read_bit(rb); | 
 |   if (seq_params->profile == PROFILE_2 && high_bitdepth) { | 
 |     const int twelve_bit = aom_rb_read_bit(rb); | 
 |     seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10; | 
 |   } else if (seq_params->profile <= PROFILE_2) { | 
 |     seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8; | 
 |   } else { | 
 |     aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                        "Unsupported profile/bit-depth combination"); | 
 |   } | 
 | } | 
 |  | 
 | void av1_read_film_grain_params(AV1_COMMON *cm, | 
 |                                 struct aom_read_bit_buffer *rb) { | 
 |   aom_film_grain_t *pars = &cm->film_grain_params; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |  | 
 |   pars->apply_grain = aom_rb_read_bit(rb); | 
 |   if (!pars->apply_grain) { | 
 |     memset(pars, 0, sizeof(*pars)); | 
 |     return; | 
 |   } | 
 |  | 
 |   pars->random_seed = aom_rb_read_literal(rb, 16); | 
 |   if (cm->current_frame.frame_type == INTER_FRAME) | 
 |     pars->update_parameters = aom_rb_read_bit(rb); | 
 |   else | 
 |     pars->update_parameters = 1; | 
 |  | 
 |   pars->bit_depth = seq_params->bit_depth; | 
 |  | 
 |   if (!pars->update_parameters) { | 
 |     // inherit parameters from a previous reference frame | 
 |     int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3); | 
 |     // Section 6.8.20: It is a requirement of bitstream conformance that | 
 |     // film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value | 
 |     // of j in the range 0 to REFS_PER_FRAME - 1. | 
 |     int found = 0; | 
 |     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |       if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) { | 
 |         found = 1; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (!found) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Invalid film grain reference idx %d. ref_frame_idx = " | 
 |                          "{%d, %d, %d, %d, %d, %d, %d}", | 
 |                          film_grain_params_ref_idx, cm->remapped_ref_idx[0], | 
 |                          cm->remapped_ref_idx[1], cm->remapped_ref_idx[2], | 
 |                          cm->remapped_ref_idx[3], cm->remapped_ref_idx[4], | 
 |                          cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]); | 
 |     } | 
 |     RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx]; | 
 |     if (buf == NULL) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Invalid Film grain reference idx"); | 
 |     } | 
 |     if (!buf->film_grain_params_present) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Film grain reference parameters not available"); | 
 |     } | 
 |     uint16_t random_seed = pars->random_seed; | 
 |     *pars = buf->film_grain_params;   // inherit paramaters | 
 |     pars->random_seed = random_seed;  // with new random seed | 
 |     return; | 
 |   } | 
 |  | 
 |   // Scaling functions parameters | 
 |   pars->num_y_points = aom_rb_read_literal(rb, 4);  // max 14 | 
 |   if (pars->num_y_points > 14) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                        "Number of points for film grain luma scaling function " | 
 |                        "exceeds the maximum value."); | 
 |   for (int i = 0; i < pars->num_y_points; i++) { | 
 |     pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8); | 
 |     if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0]) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "First coordinate of the scaling function points " | 
 |                          "shall be increasing."); | 
 |     pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8); | 
 |   } | 
 |  | 
 |   if (!seq_params->monochrome) | 
 |     pars->chroma_scaling_from_luma = aom_rb_read_bit(rb); | 
 |   else | 
 |     pars->chroma_scaling_from_luma = 0; | 
 |  | 
 |   if (seq_params->monochrome || pars->chroma_scaling_from_luma || | 
 |       ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && | 
 |        (pars->num_y_points == 0))) { | 
 |     pars->num_cb_points = 0; | 
 |     pars->num_cr_points = 0; | 
 |   } else { | 
 |     pars->num_cb_points = aom_rb_read_literal(rb, 4);  // max 10 | 
 |     if (pars->num_cb_points > 10) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Number of points for film grain cb scaling function " | 
 |                          "exceeds the maximum value."); | 
 |     for (int i = 0; i < pars->num_cb_points; i++) { | 
 |       pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8); | 
 |       if (i && | 
 |           pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0]) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "First coordinate of the scaling function points " | 
 |                            "shall be increasing."); | 
 |       pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8); | 
 |     } | 
 |  | 
 |     pars->num_cr_points = aom_rb_read_literal(rb, 4);  // max 10 | 
 |     if (pars->num_cr_points > 10) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Number of points for film grain cr scaling function " | 
 |                          "exceeds the maximum value."); | 
 |     for (int i = 0; i < pars->num_cr_points; i++) { | 
 |       pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8); | 
 |       if (i && | 
 |           pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0]) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "First coordinate of the scaling function points " | 
 |                            "shall be increasing."); | 
 |       pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8); | 
 |     } | 
 |  | 
 |     if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && | 
 |         (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) || | 
 |          ((pars->num_cb_points != 0) && (pars->num_cr_points == 0)))) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "In YCbCr 4:2:0, film grain shall be applied " | 
 |                          "to both chroma components or neither."); | 
 |   } | 
 |  | 
 |   pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8;  // 8 + value | 
 |  | 
 |   // AR coefficients | 
 |   // Only sent if the corresponsing scaling function has | 
 |   // more than 0 points | 
 |  | 
 |   pars->ar_coeff_lag = aom_rb_read_literal(rb, 2); | 
 |  | 
 |   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); | 
 |   int num_pos_chroma = num_pos_luma; | 
 |   if (pars->num_y_points > 0) ++num_pos_chroma; | 
 |  | 
 |   if (pars->num_y_points) | 
 |     for (int i = 0; i < num_pos_luma; i++) | 
 |       pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128; | 
 |  | 
 |   if (pars->num_cb_points || pars->chroma_scaling_from_luma) | 
 |     for (int i = 0; i < num_pos_chroma; i++) | 
 |       pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128; | 
 |  | 
 |   if (pars->num_cr_points || pars->chroma_scaling_from_luma) | 
 |     for (int i = 0; i < num_pos_chroma; i++) | 
 |       pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128; | 
 |  | 
 |   pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6;  // 6 + value | 
 |  | 
 |   pars->grain_scale_shift = aom_rb_read_literal(rb, 2); | 
 |  | 
 |   if (pars->num_cb_points) { | 
 |     pars->cb_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cb_luma_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cb_offset = aom_rb_read_literal(rb, 9); | 
 |   } | 
 |  | 
 |   if (pars->num_cr_points) { | 
 |     pars->cr_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cr_luma_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cr_offset = aom_rb_read_literal(rb, 9); | 
 |   } | 
 |  | 
 |   pars->overlap_flag = aom_rb_read_bit(rb); | 
 |  | 
 |   pars->clip_to_restricted_range = aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | static AOM_INLINE void read_film_grain(AV1_COMMON *cm, | 
 |                                        struct aom_read_bit_buffer *rb) { | 
 |   if (cm->seq_params.film_grain_params_present && | 
 |       (cm->show_frame || cm->showable_frame)) { | 
 |     av1_read_film_grain_params(cm, rb); | 
 |   } else { | 
 |     memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); | 
 |   } | 
 |   cm->film_grain_params.bit_depth = cm->seq_params.bit_depth; | 
 |   memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params, | 
 |          sizeof(aom_film_grain_t)); | 
 | } | 
 |  | 
 | void av1_read_color_config(struct aom_read_bit_buffer *rb, | 
 |                            SequenceHeader *seq_params, | 
 |                            struct aom_internal_error_info *error_info) { | 
 |   read_bitdepth(rb, seq_params, error_info); | 
 |  | 
 |   // monochrome bit (not needed for PROFILE_1) | 
 |   const int is_monochrome = | 
 |       seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0; | 
 |   seq_params->monochrome = is_monochrome; | 
 |   int color_description_present_flag = aom_rb_read_bit(rb); | 
 |   if (color_description_present_flag) { | 
 |     seq_params->color_primaries = aom_rb_read_literal(rb, 8); | 
 |     seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8); | 
 |     seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8); | 
 |   } else { | 
 |     seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED; | 
 |     seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED; | 
 |     seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED; | 
 |   } | 
 |   if (is_monochrome) { | 
 |     // [16,235] (including xvycc) vs [0,255] range | 
 |     seq_params->color_range = aom_rb_read_bit(rb); | 
 |     seq_params->subsampling_y = seq_params->subsampling_x = 1; | 
 |     seq_params->chroma_sample_position = AOM_CSP_UNKNOWN; | 
 |     seq_params->separate_uv_delta_q = 0; | 
 |   } else { | 
 |     if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && | 
 |         seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && | 
 |         seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { | 
 |       seq_params->subsampling_y = seq_params->subsampling_x = 0; | 
 |       seq_params->color_range = 1;  // assume full color-range | 
 |       if (!(seq_params->profile == PROFILE_1 || | 
 |             (seq_params->profile == PROFILE_2 && | 
 |              seq_params->bit_depth == AOM_BITS_12))) { | 
 |         aom_internal_error( | 
 |             error_info, AOM_CODEC_UNSUP_BITSTREAM, | 
 |             "sRGB colorspace not compatible with specified profile"); | 
 |       } | 
 |     } else { | 
 |       // [16,235] (including xvycc) vs [0,255] range | 
 |       seq_params->color_range = aom_rb_read_bit(rb); | 
 |       if (seq_params->profile == PROFILE_0) { | 
 |         // 420 only | 
 |         seq_params->subsampling_x = seq_params->subsampling_y = 1; | 
 |       } else if (seq_params->profile == PROFILE_1) { | 
 |         // 444 only | 
 |         seq_params->subsampling_x = seq_params->subsampling_y = 0; | 
 |       } else { | 
 |         assert(seq_params->profile == PROFILE_2); | 
 |         if (seq_params->bit_depth == AOM_BITS_12) { | 
 |           seq_params->subsampling_x = aom_rb_read_bit(rb); | 
 |           if (seq_params->subsampling_x) | 
 |             seq_params->subsampling_y = aom_rb_read_bit(rb);  // 422 or 420 | 
 |           else | 
 |             seq_params->subsampling_y = 0;  // 444 | 
 |         } else { | 
 |           // 422 | 
 |           seq_params->subsampling_x = 1; | 
 |           seq_params->subsampling_y = 0; | 
 |         } | 
 |       } | 
 |       if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY && | 
 |           (seq_params->subsampling_x || seq_params->subsampling_y)) { | 
 |         aom_internal_error( | 
 |             error_info, AOM_CODEC_UNSUP_BITSTREAM, | 
 |             "Identity CICP Matrix incompatible with non 4:4:4 color sampling"); | 
 |       } | 
 |       if (seq_params->subsampling_x && seq_params->subsampling_y) { | 
 |         seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2); | 
 |       } | 
 |     } | 
 |     seq_params->separate_uv_delta_q = aom_rb_read_bit(rb); | 
 |   } | 
 |  | 
 |   seq_params->base_y_dc_delta_q = | 
 |       DELTA_DCQUANT_MIN + aom_rb_read_literal(rb, DELTA_DCQUANT_BITS); | 
 |   if (!is_monochrome) { | 
 |     seq_params->base_uv_dc_delta_q = | 
 |         DELTA_DCQUANT_MIN + aom_rb_read_literal(rb, DELTA_DCQUANT_BITS); | 
 |   } | 
 | } | 
 |  | 
 | void av1_read_timing_info_header(aom_timing_info_t *timing_info, | 
 |                                  struct aom_internal_error_info *error, | 
 |                                  struct aom_read_bit_buffer *rb) { | 
 |   timing_info->num_units_in_display_tick = | 
 |       aom_rb_read_unsigned_literal(rb, | 
 |                                    32);  // Number of units in a display tick | 
 |   timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32);  // Time scale | 
 |   if (timing_info->num_units_in_display_tick == 0 || | 
 |       timing_info->time_scale == 0) { | 
 |     aom_internal_error( | 
 |         error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |         "num_units_in_display_tick and time_scale must be greater than 0."); | 
 |   } | 
 |   timing_info->equal_picture_interval = | 
 |       aom_rb_read_bit(rb);  // Equal picture interval bit | 
 |   if (timing_info->equal_picture_interval) { | 
 |     const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb); | 
 |     if (num_ticks_per_picture_minus_1 == UINT32_MAX) { | 
 |       aom_internal_error( | 
 |           error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |           "num_ticks_per_picture_minus_1 cannot be (1 << 32) − 1."); | 
 |     } | 
 |     timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1; | 
 |   } | 
 | } | 
 |  | 
 | void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info, | 
 |                                  struct aom_read_bit_buffer *rb) { | 
 |   decoder_model_info->encoder_decoder_buffer_delay_length = | 
 |       aom_rb_read_literal(rb, 5) + 1; | 
 |   decoder_model_info->num_units_in_decoding_tick = | 
 |       aom_rb_read_unsigned_literal(rb, | 
 |                                    32);  // Number of units in a decoding tick | 
 |   decoder_model_info->buffer_removal_time_length = | 
 |       aom_rb_read_literal(rb, 5) + 1; | 
 |   decoder_model_info->frame_presentation_time_length = | 
 |       aom_rb_read_literal(rb, 5) + 1; | 
 | } | 
 |  | 
 | void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params, | 
 |                                  int buffer_delay_length, | 
 |                                  struct aom_read_bit_buffer *rb) { | 
 |   op_params->decoder_buffer_delay = | 
 |       aom_rb_read_unsigned_literal(rb, buffer_delay_length); | 
 |   op_params->encoder_buffer_delay = | 
 |       aom_rb_read_unsigned_literal(rb, buffer_delay_length); | 
 |   op_params->low_delay_mode_flag = aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | static AOM_INLINE void read_temporal_point_info( | 
 |     AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { | 
 |   cm->frame_presentation_time = aom_rb_read_unsigned_literal( | 
 |       rb, cm->seq_params.decoder_model_info.frame_presentation_time_length); | 
 | } | 
 |  | 
 | void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb, | 
 |                               SequenceHeader *seq_params) { | 
 |   const int num_bits_width = aom_rb_read_literal(rb, 4) + 1; | 
 |   const int num_bits_height = aom_rb_read_literal(rb, 4) + 1; | 
 |   const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1; | 
 |   const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1; | 
 |  | 
 |   seq_params->num_bits_width = num_bits_width; | 
 |   seq_params->num_bits_height = num_bits_height; | 
 |   seq_params->max_frame_width = max_frame_width; | 
 |   seq_params->max_frame_height = max_frame_height; | 
 |  | 
 |   if (seq_params->reduced_still_picture_hdr) { | 
 |     seq_params->frame_id_numbers_present_flag = 0; | 
 |   } else { | 
 |     seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb); | 
 |   } | 
 |   if (seq_params->frame_id_numbers_present_flag) { | 
 |     // We must always have delta_frame_id_length < frame_id_length, | 
 |     // in order for a frame to be referenced with a unique delta. | 
 |     // Avoid wasting bits by using a coding that enforces this restriction. | 
 |     seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2; | 
 |     seq_params->frame_id_length = | 
 |         aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1; | 
 |     if (seq_params->frame_id_length > 16) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Invalid frame_id_length"); | 
 |   } | 
 |  | 
 |   setup_seq_sb_size(seq_params, rb); | 
 |  | 
 |   seq_params->enable_filter_intra = aom_rb_read_bit(rb); | 
 |   seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb); | 
 |   if (seq_params->reduced_still_picture_hdr) { | 
 |     seq_params->seq_enabled_motion_modes = (1 << SIMPLE_TRANSLATION); | 
 |     seq_params->enable_masked_compound = 0; | 
 |     seq_params->order_hint_info.enable_order_hint = 0; | 
 |     seq_params->order_hint_info.enable_ref_frame_mvs = 0; | 
 |     seq_params->force_screen_content_tools = 2;  // SELECT_SCREEN_CONTENT_TOOLS | 
 |     seq_params->force_integer_mv = 2;            // SELECT_INTEGER_MV | 
 |     seq_params->order_hint_info.order_hint_bits_minus_1 = -1; | 
 |     seq_params->enable_opfl_refine = AOM_OPFL_REFINE_NONE; | 
 | #if CONFIG_AFFINE_REFINEMENT | 
 |     seq_params->enable_affine_refine = 0; | 
 | #endif  // CONFIG_AFFINE_REFINEMENT | 
 |   } else { | 
 |     int seq_enabled_motion_modes = (1 << SIMPLE_TRANSLATION); | 
 |     for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; | 
 |          motion_mode++) { | 
 |       int enabled = aom_rb_read_bit(rb); | 
 |       if (enabled) { | 
 |         seq_enabled_motion_modes |= (1 << motion_mode); | 
 |       } | 
 |     } | 
 |     seq_params->seq_enabled_motion_modes = seq_enabled_motion_modes; | 
 |     seq_params->enable_masked_compound = aom_rb_read_bit(rb); | 
 |     seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb); | 
 |     seq_params->order_hint_info.enable_ref_frame_mvs = | 
 |         seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; | 
 |  | 
 |     if (aom_rb_read_bit(rb)) { | 
 |       seq_params->force_screen_content_tools = | 
 |           2;  // SELECT_SCREEN_CONTENT_TOOLS | 
 |     } else { | 
 |       seq_params->force_screen_content_tools = aom_rb_read_bit(rb); | 
 |     } | 
 |  | 
 |     if (seq_params->force_screen_content_tools > 0) { | 
 |       if (aom_rb_read_bit(rb)) { | 
 |         seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV | 
 |       } else { | 
 |         seq_params->force_integer_mv = aom_rb_read_bit(rb); | 
 |       } | 
 |     } else { | 
 |       seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV | 
 |     } | 
 |     seq_params->order_hint_info.order_hint_bits_minus_1 = | 
 |         seq_params->order_hint_info.enable_order_hint | 
 |             ? aom_rb_read_literal(rb, 3) | 
 |             : -1; | 
 |   } | 
 |  | 
 |   seq_params->enable_superres = aom_rb_read_bit(rb); | 
 |   seq_params->enable_cdef = aom_rb_read_bit(rb); | 
 |   seq_params->enable_restoration = aom_rb_read_bit(rb); | 
 |   seq_params->lr_tools_disable_mask[0] = 0; | 
 |   seq_params->lr_tools_disable_mask[1] = 0; | 
 |   if (seq_params->enable_restoration) { | 
 |     for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { | 
 |       seq_params->lr_tools_disable_mask[0] |= (aom_rb_read_bit(rb) << i); | 
 |     } | 
 |     if (aom_rb_read_bit(rb)) { | 
 |       seq_params->lr_tools_disable_mask[1] = DEF_UV_LR_TOOLS_DISABLE_MASK; | 
 |       for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { | 
 |         if (DEF_UV_LR_TOOLS_DISABLE_MASK & (1 << i)) continue; | 
 |         seq_params->lr_tools_disable_mask[1] |= (aom_rb_read_bit(rb) << i); | 
 |       } | 
 |     } else { | 
 |       seq_params->lr_tools_disable_mask[1] = | 
 |           (seq_params->lr_tools_disable_mask[0] | DEF_UV_LR_TOOLS_DISABLE_MASK); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_read_sequence_header_beyond_av1(struct aom_read_bit_buffer *rb, | 
 |                                          SequenceHeader *seq_params) { | 
 |   // printf("print sps\n"); | 
 |   seq_params->enable_refmvbank = aom_rb_read_bit(rb); | 
 |   seq_params->explicit_ref_frame_map = aom_rb_read_bit(rb); | 
 |   // 0 : use show_existing_frame, 1: use implicit derivation | 
 |   seq_params->enable_frame_output_order = aom_rb_read_bit(rb); | 
 |   // A bit is sent here to indicate if the max number of references is 7. If | 
 |   // this bit is 0, then two more bits are sent to indicate the exact number | 
 |   // of references allowed (range: 3 to 6). | 
 |   if (aom_rb_read_bit(rb)) { | 
 |     seq_params->max_reference_frames = 3 + aom_rb_read_literal(rb, 2); | 
 |   } else { | 
 |     seq_params->max_reference_frames = 7; | 
 |   } | 
 | #if CONFIG_SAME_REF_COMPOUND | 
 |   seq_params->num_same_ref_compound = aom_rb_read_literal(rb, 2); | 
 | #endif  // CONFIG_SAME_REF_COMPOUND | 
 |   seq_params->enable_sdp = aom_rb_read_bit(rb); | 
 |   seq_params->enable_ist = aom_rb_read_bit(rb); | 
 |   seq_params->enable_inter_ist = aom_rb_read_bit(rb); | 
 | #if CONFIG_INTER_DDT | 
 |   seq_params->enable_inter_ddt = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_INTER_DDT | 
 |   seq_params->enable_cctx = seq_params->monochrome ? 0 : aom_rb_read_bit(rb); | 
 |   seq_params->enable_mrls = aom_rb_read_bit(rb); | 
 |   seq_params->enable_tip = aom_rb_read_literal(rb, 2); | 
 |   if (seq_params->enable_tip) { | 
 |     seq_params->enable_tip_hole_fill = aom_rb_read_bit(rb); | 
 |   } else { | 
 |     seq_params->enable_tip_hole_fill = 0; | 
 |   } | 
 | #if CONFIG_BAWP | 
 |   seq_params->enable_bawp = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_BAWP | 
 |   seq_params->enable_cwp = aom_rb_read_bit(rb); | 
 | #if CONFIG_D071_IMP_MSK_BLD | 
 |   seq_params->enable_imp_msk_bld = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_D071_IMP_MSK_BLD | 
 |   seq_params->enable_fsc = aom_rb_read_bit(rb); | 
 |   seq_params->enable_ccso = aom_rb_read_bit(rb); | 
 | #if CONFIG_LF_SUB_PU | 
 |   seq_params->enable_lf_sub_pu = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_LF_SUB_PU | 
 | #if CONFIG_TIP_IMPLICIT_QUANT | 
 |   if (seq_params->enable_tip == 1 && | 
 | #if CONFIG_LF_SUB_PU | 
 |       seq_params->enable_lf_sub_pu | 
 | #endif  // CONFIG_LF_SUB_PU | 
 |   ) { | 
 |     seq_params->enable_tip_explicit_qp = aom_rb_read_bit(rb); | 
 |   } else { | 
 |     seq_params->enable_tip_explicit_qp = 0; | 
 |   } | 
 | #endif  // CONFIG_TIP_IMPLICIT_QUANT | 
 |   seq_params->enable_orip = aom_rb_read_bit(rb); | 
 | #if CONFIG_IDIF | 
 |   seq_params->enable_idif = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_IDIF | 
 |   seq_params->enable_opfl_refine = seq_params->order_hint_info.enable_order_hint | 
 |                                        ? aom_rb_read_literal(rb, 2) | 
 |                                        : AOM_OPFL_REFINE_NONE; | 
 | #if CONFIG_AFFINE_REFINEMENT | 
 |   seq_params->enable_affine_refine = | 
 |       seq_params->enable_opfl_refine ? aom_rb_read_bit(rb) : 0; | 
 | #endif  // CONFIG_AFFINE_REFINEMENT | 
 |   seq_params->enable_ibp = aom_rb_read_bit(rb); | 
 |   seq_params->enable_adaptive_mvd = aom_rb_read_bit(rb); | 
 |  | 
 | #if CONFIG_REFINEMV | 
 |   seq_params->enable_refinemv = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_REFINEMV | 
 | #if CONFIG_DERIVED_MVD_SIGN | 
 |   seq_params->enable_mvd_sign_derive = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_DERIVED_MVD_SIGN | 
 |   seq_params->enable_flex_mvres = aom_rb_read_bit(rb); | 
 |   seq_params->enable_cfl_ds_filter = aom_rb_read_literal(rb, 2); | 
 |  | 
 |   seq_params->enable_parity_hiding = aom_rb_read_bit(rb); | 
 | #if CONFIG_EXT_RECUR_PARTITIONS | 
 |   seq_params->enable_ext_partitions = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |   if (seq_params->reduced_still_picture_hdr) { | 
 |     seq_params->enable_global_motion = 0; | 
 |   } else { | 
 |     seq_params->enable_global_motion = aom_rb_read_bit(rb); | 
 |   } | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 | #if CONFIG_REFRESH_FLAG | 
 |   seq_params->enable_short_refresh_frame_flags = aom_rb_read_bit(rb); | 
 | #endif  // CONFIG_REFRESH_FLAG | 
 | } | 
 |  | 
 | static int read_global_motion_params(WarpedMotionParams *params, | 
 |                                      const WarpedMotionParams *ref_params, | 
 |                                      struct aom_read_bit_buffer *rb, | 
 |                                      MvSubpelPrecision precision) { | 
 |   const int precision_loss = get_gm_precision_loss(precision); | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |   (void)precision_loss; | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |   TransformationType type = aom_rb_read_bit(rb); | 
 |   if (type != IDENTITY) { | 
 |     if (aom_rb_read_bit(rb)) { | 
 |       type = ROTZOOM; | 
 |     } else { | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |       type = AFFINE; | 
 | #else | 
 |       type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE; | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |     } | 
 |   } | 
 |  | 
 |   *params = default_warp_params; | 
 |   params->wmtype = type; | 
 |  | 
 |   if (type >= ROTZOOM) { | 
 |     params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - | 
 |                                (1 << GM_ALPHA_PREC_BITS)) * | 
 |                            GM_ALPHA_DECODE_FACTOR + | 
 |                        (1 << WARPEDMODEL_PREC_BITS); | 
 |     params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) * | 
 |                        GM_ALPHA_DECODE_FACTOR; | 
 |   } | 
 |  | 
 |   if (type >= AFFINE) { | 
 |     params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) * | 
 |                        GM_ALPHA_DECODE_FACTOR; | 
 |     params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - | 
 |                                (1 << GM_ALPHA_PREC_BITS)) * | 
 |                            GM_ALPHA_DECODE_FACTOR + | 
 |                        (1 << WARPEDMODEL_PREC_BITS); | 
 |   } else { | 
 |     params->wmmat[4] = -params->wmmat[3]; | 
 |     params->wmmat[5] = params->wmmat[2]; | 
 |   } | 
 |  | 
 |   if (type >= TRANSLATION) { | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |     const int trans_dec_factor = GM_TRANS_DECODE_FACTOR; | 
 |     const int trans_prec_diff = GM_TRANS_PREC_DIFF; | 
 |     const int trans_max = GM_TRANS_MAX; | 
 | #else | 
 |     const int trans_bits = (type == TRANSLATION) | 
 |                                ? GM_ABS_TRANS_ONLY_BITS - precision_loss | 
 |                                : GM_ABS_TRANS_BITS; | 
 |     const int trans_dec_factor = | 
 |         (type == TRANSLATION) | 
 |             ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << precision_loss) | 
 |             : GM_TRANS_DECODE_FACTOR; | 
 |     const int trans_prec_diff = (type == TRANSLATION) | 
 |                                     ? GM_TRANS_ONLY_PREC_DIFF + precision_loss | 
 |                                     : GM_TRANS_PREC_DIFF; | 
 |     const int trans_max = (1 << trans_bits); | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |  | 
 |     params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, trans_max + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[0] >> trans_prec_diff)) * | 
 |                        trans_dec_factor; | 
 |     params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, trans_max + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[1] >> trans_prec_diff)) * | 
 |                        trans_dec_factor; | 
 |   } | 
 |  | 
 |   if (params->wmtype <= AFFINE) { | 
 |     av1_reduce_warp_model(params); | 
 |     int good_shear_params = av1_get_shear_params(params); | 
 |     if (!good_shear_params) return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static AOM_INLINE void read_global_motion(AV1_COMMON *cm, | 
 |                                           struct aom_read_bit_buffer *rb) { | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   int num_total_refs = cm->ref_frames_info.num_total_refs; | 
 |   bool use_global_motion = false; | 
 |   if (seq_params->enable_global_motion) { | 
 |     use_global_motion = aom_rb_read_bit(rb); | 
 |   } | 
 |   if (!use_global_motion) { | 
 |     for (int frame = 0; frame < INTER_REFS_PER_FRAME; ++frame) { | 
 |       cm->global_motion[frame] = default_warp_params; | 
 |       cm->cur_frame->global_motion[frame] = default_warp_params; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   int our_ref = aom_rb_read_primitive_quniform(rb, num_total_refs + 1); | 
 |   if (our_ref == num_total_refs) { | 
 |     // Special case: Use IDENTITY model | 
 |     cm->base_global_motion_model = default_warp_params; | 
 |     cm->base_global_motion_distance = 1; | 
 |   } else { | 
 |     RefCntBuffer *buf = get_ref_frame_buf(cm, our_ref); | 
 |     assert(buf); | 
 |     int their_num_refs = buf->num_ref_frames; | 
 |     if (their_num_refs == 0) { | 
 |       // Special case: if an intra/key frame is used as a ref, use an | 
 |       // IDENTITY model | 
 |       cm->base_global_motion_model = default_warp_params; | 
 |       cm->base_global_motion_distance = 1; | 
 |     } else { | 
 |       int their_ref = aom_rb_read_primitive_quniform(rb, their_num_refs); | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |       const int our_ref_order_hint = buf->display_order_hint; | 
 |       const int their_ref_order_hint = buf->ref_display_order_hint[their_ref]; | 
 | #else | 
 |       const int our_ref_order_hint = buf->order_hint; | 
 |       const int their_ref_order_hint = buf->ref_order_hints[their_ref]; | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |       cm->base_global_motion_model = buf->global_motion[their_ref]; | 
 |       cm->base_global_motion_distance = | 
 |           get_relative_dist(&seq_params->order_hint_info, our_ref_order_hint, | 
 |                             their_ref_order_hint); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |  | 
 |   for (int frame = 0; frame < cm->ref_frames_info.num_total_refs; ++frame) { | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |     int temporal_distance; | 
 |     if (seq_params->order_hint_info.enable_order_hint) { | 
 |       const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, frame); | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |       const int ref_order_hint = ref_buf->display_order_hint; | 
 |       const int cur_order_hint = cm->cur_frame->display_order_hint; | 
 | #else | 
 |       const int ref_order_hint = ref_buf->order_hint; | 
 |       const int cur_order_hint = cm->cur_frame->order_hint; | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |       temporal_distance = get_relative_dist(&seq_params->order_hint_info, | 
 |                                             cur_order_hint, ref_order_hint); | 
 |     } else { | 
 |       temporal_distance = 1; | 
 |     } | 
 |  | 
 |     if (temporal_distance == 0) { | 
 |       // Don't code global motion for frames at the same temporal instant | 
 |       cm->global_motion[frame] = default_warp_params; | 
 |       continue; | 
 |     } | 
 |  | 
 |     WarpedMotionParams ref_params_; | 
 |     av1_scale_warp_model(&cm->base_global_motion_model, | 
 |                          cm->base_global_motion_distance, &ref_params_, | 
 |                          temporal_distance); | 
 |     WarpedMotionParams *ref_params = &ref_params_; | 
 | #else | 
 |     const WarpedMotionParams *ref_params = | 
 |         cm->prev_frame ? &cm->prev_frame->global_motion[frame] | 
 |                        : &default_warp_params; | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |     int good_params = | 
 |         read_global_motion_params(&cm->global_motion[frame], ref_params, rb, | 
 |                                   cm->features.fr_mv_precision); | 
 |     if (!good_params) { | 
 | #if WARPED_MOTION_DEBUG | 
 |       printf("Warning: unexpected global motion shear params from aomenc\n"); | 
 | #endif | 
 |       cm->global_motion[frame].invalid = 1; | 
 |     } | 
 |  | 
 |     // TODO(sarahparker, debargha): The logic in the commented out code below | 
 |     // does not work currently and causes mismatches when resize is on. Fix it | 
 |     // before turning the optimization back on. | 
 |     /* | 
 |     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame); | 
 |     if (cm->width == ref_buf->y_crop_width && | 
 |         cm->height == ref_buf->y_crop_height) { | 
 |       read_global_motion_params(&cm->global_motion[frame], | 
 |                                 &cm->prev_frame->global_motion[frame], rb, | 
 |                                 cm->features.allow_high_precision_mv); | 
 |     } else { | 
 |       cm->global_motion[frame] = default_warp_params; | 
 |     } | 
 |     */ | 
 |     /* | 
 |     printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", | 
 |            frame, cm->current_frame.frame_number, cm->show_frame, | 
 |            cm->global_motion[frame].wmmat[0], | 
 |            cm->global_motion[frame].wmmat[1], | 
 |            cm->global_motion[frame].wmmat[2], | 
 |            cm->global_motion[frame].wmmat[3]); | 
 |            */ | 
 |   } | 
 |   memcpy(cm->cur_frame->global_motion, cm->global_motion, | 
 |          INTER_REFS_PER_FRAME * sizeof(WarpedMotionParams)); | 
 | } | 
 |  | 
 | // Release the references to the frame buffers in cm->ref_frame_map and reset | 
 | // all elements of cm->ref_frame_map to NULL. | 
 | static AOM_INLINE void reset_ref_frame_map(AV1_COMMON *const cm) { | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |  | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     decrease_ref_count(cm->ref_frame_map[i], pool); | 
 |     cm->ref_frame_map[i] = NULL; | 
 |   } | 
 | } | 
 |  | 
 | // If the refresh_frame_flags bitmask is set, update reference frame id values | 
 | // and mark frames as valid for reference. | 
 | static AOM_INLINE void update_ref_frame_id(AV1Decoder *const pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   int refresh_frame_flags = cm->current_frame.refresh_frame_flags; | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     if ((refresh_frame_flags >> i) & 1) { | 
 |       cm->ref_frame_id[i] = cm->current_frame_id; | 
 |       pbi->valid_for_referencing[i] = 1; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static AOM_INLINE void show_existing_frame_reset(AV1Decoder *const pbi, | 
 |                                                  int existing_frame_idx) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   assert(cm->show_existing_frame); | 
 |  | 
 |   cm->current_frame.frame_type = KEY_FRAME; | 
 |   cm->current_frame.refresh_frame_flags = REFRESH_FRAME_ALL; | 
 |  | 
 |   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |     cm->remapped_ref_idx[i] = INVALID_IDX; | 
 |   } | 
 |  | 
 |   cm->cur_frame->display_order_hint = 0; | 
 |  | 
 |   if (pbi->need_resync) { | 
 |     reset_ref_frame_map(cm); | 
 |     pbi->need_resync = 0; | 
 |   } | 
 |  | 
 |   // Note that the displayed frame must be valid for referencing in order to | 
 |   // have been selected. | 
 |   cm->current_frame_id = cm->ref_frame_id[existing_frame_idx]; | 
 |   update_ref_frame_id(pbi); | 
 |  | 
 |   cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; | 
 | } | 
 |  | 
 | static INLINE void reset_frame_buffers(AV1_COMMON *cm) { | 
 |   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
 |   int i; | 
 |  | 
 |   lock_buffer_pool(cm->buffer_pool); | 
 | #if !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT | 
 |   reset_ref_frame_map(cm); | 
 | #endif  // !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT | 
 |   assert(cm->cur_frame->ref_count == 1); | 
 |   for (i = 0; i < FRAME_BUFFERS; ++i) { | 
 |     // Reset all unreferenced frame buffers. We can also reset cm->cur_frame | 
 |     // because we are the sole owner of cm->cur_frame. | 
 |     if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) { | 
 |       continue; | 
 |     } | 
 |     frame_bufs[i].order_hint = 0; | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |     frame_bufs[i].display_order_hint = 0; | 
 |     av1_zero(frame_bufs[i].ref_display_order_hint); | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |     av1_zero(frame_bufs[i].ref_order_hints); | 
 |   } | 
 |   av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers); | 
 |   unlock_buffer_pool(cm->buffer_pool); | 
 | } | 
 |  | 
 | static INLINE int get_disp_order_hint(AV1_COMMON *const cm) { | 
 |   CurrentFrame *const current_frame = &cm->current_frame; | 
 |   if (current_frame->frame_type == KEY_FRAME && cm->show_existing_frame) | 
 |     return 0; | 
 |  | 
 | #if CONFIG_DISPLAY_ORDER_HINT_FIX | 
 |   // For key frames, the implicit derivation of display_order_hit is not | 
 |   // applied. | 
 |   if (current_frame->frame_type == KEY_FRAME) return current_frame->order_hint; | 
 | #endif  // CONFIG_DISPLAY_ORDER_HINT_FIX | 
 |   // Derive the exact display order hint from the signaled order_hint. | 
 |   // This requires scaling up order_hints corresponding to frame | 
 |   // numbers that exceed the number of bits available to send the order_hints. | 
 |  | 
 |   // Find the reference frame with the largest order_hint | 
 |   int max_disp_order_hint = 0; | 
 |   for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { | 
 |     // Get reference frame buffer | 
 |     const RefCntBuffer *const buf = cm->ref_frame_map[map_idx]; | 
 |     if (buf == NULL) continue; | 
 |     if ((int)buf->display_order_hint > max_disp_order_hint) | 
 |       max_disp_order_hint = buf->display_order_hint; | 
 |   } | 
 |  | 
 |   // If the order_hint is above the threshold distance of 35 frames (largest | 
 |   // possible lag_in_frames) from the found reference frame, we assume it was | 
 |   // modified using: | 
 |   //     order_hint = display_order_hint % display_order_hint_factor | 
 |   // Here, the actual display_order_hint is recovered. | 
 |   int cur_disp_order_hint = current_frame->order_hint; | 
 |   while (abs(max_disp_order_hint - cur_disp_order_hint) > 35) { | 
 |     if (cur_disp_order_hint > max_disp_order_hint) return cur_disp_order_hint; | 
 |     int display_order_hint_factor = | 
 |         1 << (cm->seq_params.order_hint_info.order_hint_bits_minus_1 + 1); | 
 |     cur_disp_order_hint += display_order_hint_factor; | 
 |   } | 
 |   return cur_disp_order_hint; | 
 | } | 
 |  | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 | static INLINE int get_ref_frame_disp_order_hint(AV1_COMMON *const cm, | 
 |                                                 const RefCntBuffer *const buf) { | 
 |   // Find the reference frame with the largest order_hint | 
 |   int max_disp_order_hint = 0; | 
 |   for (int map_idx = 0; map_idx < INTER_REFS_PER_FRAME; map_idx++) { | 
 |     if ((int)buf->ref_display_order_hint[map_idx] > max_disp_order_hint) | 
 |       max_disp_order_hint = buf->ref_display_order_hint[map_idx]; | 
 |   } | 
 |  | 
 |   // If the order_hint is above the threshold distance of 35 frames (largest | 
 |   // possible lag_in_frames) from the found reference frame, we assume it was | 
 |   // modified using: | 
 |   //     order_hint = display_order_hint % display_order_hint_factor | 
 |   // Here, the actual display_order_hint is recovered. | 
 |   const int display_order_hint_factor = | 
 |       1 << (cm->seq_params.order_hint_info.order_hint_bits_minus_1 + 1); | 
 |   int disp_order_hint = buf->order_hint; | 
 |   while (abs(max_disp_order_hint - disp_order_hint) > 35) { | 
 |     if (disp_order_hint > max_disp_order_hint) return disp_order_hint; | 
 |  | 
 |     disp_order_hint += display_order_hint_factor; | 
 |   } | 
 |   return disp_order_hint; | 
 | } | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |  | 
 | // On success, returns 0. On failure, calls aom_internal_error and does not | 
 | // return. | 
 | static int read_uncompressed_header(AV1Decoder *pbi, | 
 |                                     struct aom_read_bit_buffer *rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   CurrentFrame *const current_frame = &cm->current_frame; | 
 |   FeatureFlags *const features = &cm->features; | 
 |   MACROBLOCKD *const xd = &pbi->dcb.xd; | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |   RefCntBuffer *const frame_bufs = pool->frame_bufs; | 
 |   aom_s_frame_info *sframe_info = &pbi->sframe_info; | 
 |   sframe_info->is_s_frame = 0; | 
 |   sframe_info->is_s_frame_at_altref = 0; | 
 |  | 
 |   if (!pbi->sequence_header_ready) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "No sequence header"); | 
 |   } | 
 |  | 
 |   if (seq_params->reduced_still_picture_hdr) { | 
 |     cm->show_existing_frame = 0; | 
 |     cm->show_frame = 1; | 
 |     current_frame->frame_type = KEY_FRAME; | 
 |     if (pbi->sequence_header_changed) { | 
 |       // This is the start of a new coded video sequence. | 
 |       pbi->sequence_header_changed = 0; | 
 |       pbi->decoding_first_frame = 1; | 
 |       reset_frame_buffers(cm); | 
 |     } | 
 |     features->error_resilient_mode = 1; | 
 |   } else { | 
 |     cm->show_existing_frame = aom_rb_read_bit(rb); | 
 |     pbi->reset_decoder_state = 0; | 
 |  | 
 |     if (cm->show_existing_frame) { | 
 |       if (pbi->sequence_header_changed) { | 
 |         aom_internal_error( | 
 |             &cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |             "New sequence header starts with a show_existing_frame."); | 
 |       } | 
 |       // Show an existing frame directly. | 
 |       const int existing_frame_idx = aom_rb_read_literal(rb, 3); | 
 |       RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx]; | 
 |       if (frame_to_show == NULL) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "Buffer does not contain a decoded frame"); | 
 |       } | 
 |       if (seq_params->decoder_model_info_present_flag && | 
 |           seq_params->timing_info.equal_picture_interval == 0) { | 
 |         read_temporal_point_info(cm, rb); | 
 |       } | 
 |       if (seq_params->frame_id_numbers_present_flag) { | 
 |         int frame_id_length = seq_params->frame_id_length; | 
 |         int display_frame_id = aom_rb_read_literal(rb, frame_id_length); | 
 |         /* Compare display_frame_id with ref_frame_id and check valid for | 
 |          * referencing */ | 
 |         if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || | 
 |             pbi->valid_for_referencing[existing_frame_idx] == 0) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Reference buffer frame ID mismatch"); | 
 |       } | 
 |       lock_buffer_pool(pool); | 
 |       assert(frame_to_show->ref_count > 0); | 
 |       // cm->cur_frame should be the buffer referenced by the return value | 
 |       // of the get_free_fb() call in assign_cur_frame_new_fb() (called by | 
 |       // av1_receive_compressed_data()), so the ref_count should be 1. | 
 |       assert(cm->cur_frame->ref_count == 1); | 
 |       // assign_frame_buffer_p() decrements ref_count directly rather than | 
 |       // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has | 
 |       // already been allocated, it will not be released by | 
 |       // assign_frame_buffer_p()! | 
 |       assert(!cm->cur_frame->raw_frame_buffer.data); | 
 |  | 
 |       FrameHash raw_frame_hash = cm->cur_frame->raw_frame_hash; | 
 |       FrameHash grain_frame_hash = cm->cur_frame->grain_frame_hash; | 
 |  | 
 |       assign_frame_buffer_p(&cm->cur_frame, frame_to_show); | 
 |       pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME; | 
 |  | 
 |       // Combine any Decoded Frame Header metadata that was parsed before | 
 |       // the referenced frame with any parsed before this | 
 |       // show_existing_frame header, e.g. raw frame hash values before the | 
 |       // referenced coded frame and post film grain hash values before this | 
 |       // header. | 
 |       if (raw_frame_hash.is_present) | 
 |         cm->cur_frame->raw_frame_hash = raw_frame_hash; | 
 |       if (grain_frame_hash.is_present) | 
 |         cm->cur_frame->grain_frame_hash = grain_frame_hash; | 
 |       unlock_buffer_pool(pool); | 
 |  | 
 |       cm->lf.filter_level[0] = 0; | 
 |       cm->lf.filter_level[1] = 0; | 
 |       cm->show_frame = 1; | 
 | #if !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT | 
 |       // Section 6.8.2: It is a requirement of bitstream conformance that when | 
 |       // show_existing_frame is used to show a previous frame, that the value | 
 |       // of showable_frame for the previous frame was equal to 1. | 
 |       if (!frame_to_show->showable_frame) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "Buffer does not contain a showable frame"); | 
 |       } | 
 | #endif  // !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT | 
 |       // Section 6.8.2: It is a requirement of bitstream conformance that when | 
 |       // show_existing_frame is used to show a previous frame with | 
 |       // RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the | 
 |       // frame is output via the show_existing_frame mechanism at most once. | 
 |       if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0; | 
 |  | 
 |       cm->film_grain_params = frame_to_show->film_grain_params; | 
 |  | 
 |       if (pbi->reset_decoder_state) { | 
 |         show_existing_frame_reset(pbi, existing_frame_idx); | 
 |       } else { | 
 |         current_frame->refresh_frame_flags = 0; | 
 |       } | 
 |  | 
 |       return 0; | 
 |     } | 
 |  | 
 |     current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2); | 
 |     if (pbi->sequence_header_changed) { | 
 |       if (current_frame->frame_type == KEY_FRAME) { | 
 |         // This is the start of a new coded video sequence. | 
 |         pbi->sequence_header_changed = 0; | 
 |         pbi->decoding_first_frame = 1; | 
 |         reset_frame_buffers(cm); | 
 |       } else { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Sequence header has changed without a keyframe."); | 
 |       } | 
 |     } | 
 |  | 
 |     cm->show_frame = aom_rb_read_bit(rb); | 
 |     if (cm->show_frame == 0) pbi->is_arf_frame_present = 1; | 
 |     if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME) | 
 |       pbi->is_fwd_kf_present = 1; | 
 |     if (cm->current_frame.frame_type == S_FRAME) { | 
 |       sframe_info->is_s_frame = 1; | 
 |       sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1; | 
 |     } | 
 |     if (seq_params->still_picture && | 
 |         (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Still pictures must be coded as shown keyframes"); | 
 |     } | 
 |     cm->showable_frame = current_frame->frame_type != KEY_FRAME; | 
 |     if (cm->show_frame) { | 
 |       if (seq_params->decoder_model_info_present_flag && | 
 |           seq_params->timing_info.equal_picture_interval == 0) | 
 |         read_temporal_point_info(cm, rb); | 
 |     } else { | 
 |       // See if this frame can be used as show_existing_frame in future | 
 |       cm->showable_frame = aom_rb_read_bit(rb); | 
 |     } | 
 |     cm->cur_frame->showable_frame = cm->showable_frame; | 
 | #if CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT | 
 |     cm->cur_frame->frame_output_done = 0; | 
 | #endif  // CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT | 
 |     features->error_resilient_mode = | 
 |         frame_is_sframe(cm) || | 
 |                 (current_frame->frame_type == KEY_FRAME && cm->show_frame) | 
 |             ? 1 | 
 |             : aom_rb_read_bit(rb); | 
 |   } | 
 |  | 
 |   av1_set_frame_sb_size(cm, cm->seq_params.sb_size); | 
 |  | 
 |   if (current_frame->frame_type == KEY_FRAME && cm->show_frame) { | 
 |     /* All frames need to be marked as not valid for referencing */ | 
 |     for (int i = 0; i < REF_FRAMES; i++) { | 
 |       pbi->valid_for_referencing[i] = 0; | 
 |     } | 
 |   } | 
 |   features->disable_cdf_update = aom_rb_read_bit(rb); | 
 |  | 
 |   if (seq_params->force_screen_content_tools == 2) { | 
 |     features->allow_screen_content_tools = aom_rb_read_bit(rb); | 
 |   } else { | 
 |     features->allow_screen_content_tools = | 
 |         seq_params->force_screen_content_tools; | 
 |   } | 
 |  | 
 |   if (features->allow_screen_content_tools) { | 
 |     if (seq_params->force_integer_mv == 2) { | 
 |       features->cur_frame_force_integer_mv = aom_rb_read_bit(rb); | 
 |     } else { | 
 |       features->cur_frame_force_integer_mv = seq_params->force_integer_mv; | 
 |     } | 
 |   } else { | 
 |     features->cur_frame_force_integer_mv = 0; | 
 |   } | 
 |  | 
 |   int frame_size_override_flag = 0; | 
 |   features->allow_intrabc = 0; | 
 | #if CONFIG_IBC_SR_EXT | 
 |   features->allow_global_intrabc = 0; | 
 |   features->allow_local_intrabc = 0; | 
 | #endif  // CONFIG_IBC_SR_EXT | 
 |   features->primary_ref_frame = PRIMARY_REF_NONE; | 
 |  | 
 | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
 |   int signal_primary_ref_frame = -1; | 
 |   features->derived_primary_ref_frame = PRIMARY_REF_NONE; | 
 | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
 |  | 
 |   if (!seq_params->reduced_still_picture_hdr) { | 
 |     if (seq_params->frame_id_numbers_present_flag) { | 
 |       int frame_id_length = seq_params->frame_id_length; | 
 |       int diff_len = seq_params->delta_frame_id_length; | 
 |       int prev_frame_id = 0; | 
 |       int have_prev_frame_id = | 
 |           !pbi->decoding_first_frame && | 
 |           !(current_frame->frame_type == KEY_FRAME && cm->show_frame); | 
 |       if (have_prev_frame_id) { | 
 |         prev_frame_id = cm->current_frame_id; | 
 |       } | 
 |       cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); | 
 |  | 
 |       if (have_prev_frame_id) { | 
 |         int diff_frame_id; | 
 |         if (cm->current_frame_id > prev_frame_id) { | 
 |           diff_frame_id = cm->current_frame_id - prev_frame_id; | 
 |         } else { | 
 |           diff_frame_id = | 
 |               (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; | 
 |         } | 
 |         /* Check current_frame_id for conformance */ | 
 |         if (prev_frame_id == cm->current_frame_id || | 
 |             diff_frame_id >= (1 << (frame_id_length - 1))) { | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Invalid value of current_frame_id"); | 
 |         } | 
 |       } | 
 |       /* Check if some frames need to be marked as not valid for referencing */ | 
 |       for (int i = 0; i < REF_FRAMES; i++) { | 
 |         if (cm->current_frame_id - (1 << diff_len) > 0) { | 
 |           if (cm->ref_frame_id[i] > cm->current_frame_id || | 
 |               cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) | 
 |             pbi->valid_for_referencing[i] = 0; | 
 |         } else { | 
 |           if (cm->ref_frame_id[i] > cm->current_frame_id && | 
 |               cm->ref_frame_id[i] < (1 << frame_id_length) + | 
 |                                         cm->current_frame_id - (1 << diff_len)) | 
 |             pbi->valid_for_referencing[i] = 0; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb); | 
 |  | 
 |     current_frame->order_hint = aom_rb_read_literal( | 
 |         rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); | 
 |  | 
 |     current_frame->display_order_hint = get_disp_order_hint(cm); | 
 |     current_frame->frame_number = current_frame->order_hint; | 
 |  | 
 |     if (!features->error_resilient_mode && !frame_is_intra_only(cm)) { | 
 | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
 |       signal_primary_ref_frame = aom_rb_read_literal(rb, 1); | 
 |       if (signal_primary_ref_frame) | 
 |         features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); | 
 | #else | 
 |       features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); | 
 | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
 |     } | 
 |   } | 
 |  | 
 |   if (seq_params->decoder_model_info_present_flag) { | 
 |     cm->buffer_removal_time_present = aom_rb_read_bit(rb); | 
 |     if (cm->buffer_removal_time_present) { | 
 |       for (int op_num = 0; | 
 |            op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { | 
 |         if (seq_params->op_params[op_num].decoder_model_param_present_flag) { | 
 |           if ((((seq_params->operating_point_idc[op_num] >> | 
 |                  cm->temporal_layer_id) & | 
 |                 0x1) && | 
 |                ((seq_params->operating_point_idc[op_num] >> | 
 |                  (cm->spatial_layer_id + 8)) & | 
 |                 0x1)) || | 
 |               seq_params->operating_point_idc[op_num] == 0) { | 
 |             cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal( | 
 |                 rb, seq_params->decoder_model_info.buffer_removal_time_length); | 
 |           } else { | 
 |             cm->buffer_removal_times[op_num] = 0; | 
 |           } | 
 |         } else { | 
 |           cm->buffer_removal_times[op_num] = 0; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | #if CONFIG_REFRESH_FLAG | 
 |   const int short_refresh_frame_flags = | 
 |       cm->seq_params.enable_short_refresh_frame_flags && | 
 |       !cm->features.error_resilient_mode; | 
 |   const int refresh_frame_flags_bits = | 
 |       short_refresh_frame_flags ? 3 : REF_FRAMES; | 
 | #endif  // CONFIG_REFRESH_FLAG | 
 |   if (current_frame->frame_type == KEY_FRAME) { | 
 |     if (!cm->show_frame) {  // unshown keyframe (forward keyframe) | 
 | #if CONFIG_REFRESH_FLAG | 
 |       if (short_refresh_frame_flags) { | 
 |         const int refresh_idx = | 
 |             aom_rb_read_literal(rb, refresh_frame_flags_bits); | 
 |         if (refresh_idx == 0) { | 
 |           const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1); | 
 |           current_frame->refresh_frame_flags = has_refresh_frame_flags ? 1 : 0; | 
 |         } else { | 
 |           current_frame->refresh_frame_flags = 1 << refresh_idx; | 
 |         } | 
 |       } else { | 
 |         current_frame->refresh_frame_flags = | 
 |             aom_rb_read_literal(rb, refresh_frame_flags_bits); | 
 |       } | 
 | #else | 
 |       current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); | 
 | #endif        // CONFIG_REFRESH_FLAG | 
 |     } else {  // shown keyframe | 
 |       current_frame->refresh_frame_flags = REFRESH_FRAME_ALL; | 
 |     } | 
 |  | 
 |     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |       cm->remapped_ref_idx[i] = INVALID_IDX; | 
 |     } | 
 |     if (pbi->need_resync) { | 
 |       reset_ref_frame_map(cm); | 
 |       pbi->need_resync = 0; | 
 |     } | 
 |   } else { | 
 |     if (current_frame->frame_type == INTRA_ONLY_FRAME) { | 
 | #if CONFIG_REFRESH_FLAG | 
 |       if (short_refresh_frame_flags) { | 
 |         const int refresh_idx = | 
 |             aom_rb_read_literal(rb, refresh_frame_flags_bits); | 
 |         if (refresh_idx == 0) { | 
 |           const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1); | 
 |           current_frame->refresh_frame_flags = has_refresh_frame_flags ? 1 : 0; | 
 |         } else { | 
 |           current_frame->refresh_frame_flags = 1 << refresh_idx; | 
 |         } | 
 |       } else { | 
 |         current_frame->refresh_frame_flags = | 
 |             aom_rb_read_literal(rb, refresh_frame_flags_bits); | 
 |       } | 
 | #else | 
 |       current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); | 
 | #endif  // CONFIG_REFRESH_FLAG | 
 |       if (current_frame->refresh_frame_flags == REFRESH_FRAME_ALL) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "Intra only frames cannot have refresh flags 0xFF"); | 
 |       } | 
 |       if (pbi->need_resync) { | 
 |         reset_ref_frame_map(cm); | 
 |         pbi->need_resync = 0; | 
 |       } | 
 |     } else if (pbi->need_resync != 1) { /* Skip if need resync */ | 
 | #if CONFIG_REFRESH_FLAG | 
 |       if (frame_is_sframe(cm)) { | 
 |         current_frame->refresh_frame_flags = REFRESH_FRAME_ALL; | 
 |       } else { | 
 |         if (short_refresh_frame_flags) { | 
 |           const int refresh_idx = | 
 |               aom_rb_read_literal(rb, refresh_frame_flags_bits); | 
 |           if (refresh_idx == 0) { | 
 |             const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1); | 
 |             current_frame->refresh_frame_flags = | 
 |                 has_refresh_frame_flags ? 1 : 0; | 
 |           } else { | 
 |             current_frame->refresh_frame_flags = 1 << refresh_idx; | 
 |           } | 
 |         } else { | 
 |           current_frame->refresh_frame_flags = | 
 |               aom_rb_read_literal(rb, refresh_frame_flags_bits); | 
 |         } | 
 |       } | 
 | #else | 
 |       current_frame->refresh_frame_flags = | 
 |           frame_is_sframe(cm) ? REFRESH_FRAME_ALL | 
 |                               : aom_rb_read_literal(rb, REF_FRAMES); | 
 | #endif  // CONFIG_REFRESH_FLAG | 
 |     } | 
 |   } | 
 |  | 
 |   if (!frame_is_intra_only(cm) || | 
 |       current_frame->refresh_frame_flags != REFRESH_FRAME_ALL) { | 
 |     // Read all ref frame order hints if error_resilient_mode == 1 | 
 |     if (features->error_resilient_mode && | 
 |         seq_params->order_hint_info.enable_order_hint) { | 
 |       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { | 
 |         // Read order hint from bit stream | 
 |         unsigned int order_hint = aom_rb_read_literal( | 
 |             rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); | 
 |         // Get buffer | 
 |         RefCntBuffer *buf = cm->ref_frame_map[ref_idx]; | 
 |         if (buf == NULL || order_hint != buf->order_hint) { | 
 |           if (buf != NULL) { | 
 |             lock_buffer_pool(pool); | 
 |             decrease_ref_count(buf, pool); | 
 |             unlock_buffer_pool(pool); | 
 |             cm->ref_frame_map[ref_idx] = NULL; | 
 |           } | 
 |           // If no corresponding buffer exists, allocate a new buffer with all | 
 |           // pixels set to neutral grey. | 
 |           int buf_idx = get_free_fb(cm); | 
 |           if (buf_idx == INVALID_IDX) { | 
 |             aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                                "Unable to find free frame buffer"); | 
 |           } | 
 |           buf = &frame_bufs[buf_idx]; | 
 |           lock_buffer_pool(pool); | 
 |           if (aom_realloc_frame_buffer( | 
 |                   &buf->buf, seq_params->max_frame_width, | 
 |                   seq_params->max_frame_height, seq_params->subsampling_x, | 
 |                   seq_params->subsampling_y, AOM_BORDER_IN_PIXELS, | 
 |                   features->byte_alignment, &buf->raw_frame_buffer, | 
 |                   pool->get_fb_cb, pool->cb_priv, false)) { | 
 |             decrease_ref_count(buf, pool); | 
 |             unlock_buffer_pool(pool); | 
 |             aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                                "Failed to allocate frame buffer"); | 
 |           } | 
 |           unlock_buffer_pool(pool); | 
 |           // According to the specification, valid bitstreams are required to | 
 |           // never use missing reference frames so the filling process for | 
 |           // missing frames is not normatively defined and RefValid for missing | 
 |           // frames is set to 0. | 
 |  | 
 |           // To make libaom more robust when the bitstream has been corrupted | 
 |           // by the loss of some frames of data, this code adds a neutral grey | 
 |           // buffer in place of missing frames, i.e. | 
 |           // | 
 |           set_planes_to_neutral_grey(seq_params, &buf->buf, 0); | 
 |           // | 
 |           // and allows the frames to be used for referencing, i.e. | 
 |           // | 
 |           pbi->valid_for_referencing[ref_idx] = 1; | 
 |           // | 
 |           // Please note such behavior is not normative and other decoders may | 
 |           // use a different approach. | 
 |           cm->ref_frame_map[ref_idx] = buf; | 
 |           buf->order_hint = order_hint; | 
 |           // TODO(kslu) This is a workaround for error resilient mode. Make | 
 |           // it more consistent with get_disp_order_hint(). | 
 | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |           buf->display_order_hint = get_ref_frame_disp_order_hint(cm, buf); | 
 | #else | 
 |           buf->display_order_hint = order_hint; | 
 | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
 |         } | 
 |       } | 
 |     } | 
 |     if (features->error_resilient_mode) { | 
 |       // Read all ref frame base_qindex | 
 |       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { | 
 |         RefCntBuffer *buf = cm->ref_frame_map[ref_idx]; | 
 |         buf->base_qindex = aom_rb_read_literal( | 
 |             rb, cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT | 
 |                                                        : QINDEX_BITS); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_LF_SUB_PU | 
 |   features->allow_lf_sub_pu = 0; | 
 | #endif  // CONFIG_LF_SUB_PU | 
 |   if (current_frame->frame_type == KEY_FRAME) { | 
 |     cm->current_frame.pyramid_level = 1; | 
 |     features->tip_frame_mode = TIP_FRAME_DISABLED; | 
 |     setup_frame_size(cm, frame_size_override_flag, rb); | 
 |  | 
 |     if ( | 
 | #if !CONFIG_ENABLE_IBC_NAT | 
 |         features->allow_screen_content_tools && | 
 | #endif  //! CONFIG_ENABLE_IBC_NAT | 
 |         !av1_superres_scaled(cm)) | 
 |       features->allow_intrabc = aom_rb_read_bit(rb); | 
 | #if CONFIG_IBC_SR_EXT | 
 |     if (features->allow_intrabc) { | 
 |       features->allow_global_intrabc = aom_rb_read_bit(rb); | 
 |       features->allow_local_intrabc = | 
 |           features->allow_global_intrabc ? aom_rb_read_bit(rb) : 1; | 
 | #if CONFIG_IBC_BV_IMPROVEMENT | 
 | #if CONFIG_IBC_MAX_DRL | 
 |       features->max_bvp_drl_bits = | 
 |           aom_rb_read_primitive_quniform( | 
 |               rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) + | 
 |           MIN_MAX_IBC_DRL_BITS; | 
 | #else | 
 |       features->max_drl_bits = | 
 |           aom_rb_read_primitive_quniform( | 
 |               rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) + | 
 |           MIN_MAX_DRL_BITS; | 
 | #endif  // CONFIG_IBC_MAX_DRL | 
 | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
 |     } | 
 | #endif  // CONFIG_IBC_SR_EXT | 
 |  | 
 |     features->allow_ref_frame_mvs = 0; | 
 |     cm->prev_frame = NULL; | 
 |  | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |     cm->cur_frame->num_ref_frames = 0; | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |   } else { | 
 |     features->allow_ref_frame_mvs = 0; | 
 |     features->tip_frame_mode = TIP_FRAME_DISABLED; | 
 |     if (current_frame->frame_type == INTRA_ONLY_FRAME) { | 
 |       cm->cur_frame->film_grain_params_present = | 
 |           seq_params->film_grain_params_present; | 
 |       setup_frame_size(cm, frame_size_override_flag, rb); | 
 |       if ( | 
 | #if !CONFIG_ENABLE_IBC_NAT | 
 |           features->allow_screen_content_tools && | 
 | #endif  //! CONFIG_ENABLE_IBC_NAT | 
 |           !av1_superres_scaled(cm)) | 
 |         features->allow_intrabc = aom_rb_read_bit(rb); | 
 | #if CONFIG_IBC_SR_EXT | 
 |       if (features->allow_intrabc) { | 
 |         features->allow_global_intrabc = aom_rb_read_bit(rb); | 
 |         features->allow_local_intrabc = | 
 |             features->allow_global_intrabc ? aom_rb_read_bit(rb) : 1; | 
 | #if CONFIG_IBC_BV_IMPROVEMENT | 
 | #if CONFIG_IBC_MAX_DRL | 
 |         features->max_bvp_drl_bits = | 
 |             aom_rb_read_primitive_quniform( | 
 |                 rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) + | 
 |             MIN_MAX_IBC_DRL_BITS; | 
 | #else | 
 |         features->max_drl_bits = | 
 |             aom_rb_read_primitive_quniform( | 
 |                 rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) + | 
 |             MIN_MAX_DRL_BITS; | 
 | #endif  // CONFIG_IBC_MAX_DRL | 
 | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
 |       } | 
 | #endif  // CONFIG_IBC_SR_EXT | 
 |  | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |       cm->cur_frame->num_ref_frames = 0; | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |  | 
 |     } else if (pbi->need_resync != 1) { /* Skip if need resync */ | 
 |       // Implicitly derive the reference mapping | 
 | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
 |       init_ref_map_pair(cm, cm->ref_frame_map_pairs, | 
 |                         current_frame->frame_type == KEY_FRAME); | 
 |       int n_ranked = av1_get_ref_frames(cm, current_frame->display_order_hint, | 
 |                                         cm->ref_frame_map_pairs); | 
 | #else | 
 |       RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]; | 
 |       init_ref_map_pair(cm, ref_frame_map_pairs, | 
 |                         current_frame->frame_type == KEY_FRAME); | 
 |       int n_ranked = av1_get_ref_frames(cm, current_frame->display_order_hint, | 
 |                                         ref_frame_map_pairs); | 
 | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
 |  | 
 |       // Reference rankings have been implicitly derived in av1_get_ref_frames. | 
 |       // However, reference indices can be overwritten if they have been | 
 |       // signaled, which happens in error resilient mode or when order hint | 
 |       // is unavailable. | 
 |       const int explicit_ref_frame_map = | 
 |           cm->features.error_resilient_mode || frame_is_sframe(cm) || | 
 |           seq_params->explicit_ref_frame_map || | 
 |           !seq_params->order_hint_info.enable_order_hint; | 
 |       if (explicit_ref_frame_map) { | 
 |         cm->ref_frames_info.num_total_refs = | 
 |             aom_rb_read_literal(rb, REF_FRAMES_LOG2); | 
 |         // Check whether num_total_refs read is valid and not greater than | 
 |         // n_ranked (using a reference frame more than once is not allowed). | 
 |         if (cm->ref_frames_info.num_total_refs <= 0 || | 
 |             (seq_params->order_hint_info.enable_order_hint && | 
 |              cm->ref_frames_info.num_total_refs > n_ranked) || | 
 |             cm->ref_frames_info.num_total_refs > | 
 |                 seq_params->max_reference_frames) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
 |                              "Invalid num_total_refs"); | 
 |       } | 
 |  | 
 | #if CONFIG_SAME_REF_COMPOUND | 
 |       cm->ref_frames_info.num_same_ref_compound = | 
 |           AOMMIN(cm->seq_params.num_same_ref_compound, | 
 |                  cm->ref_frames_info.num_total_refs); | 
 | #endif  // CONFIG_SAME_REF_COMPOUND | 
 |  | 
 |       if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs && | 
 |           features->primary_ref_frame != PRIMARY_REF_NONE) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
 |                            "Invalid primary_ref_frame"); | 
 |       } | 
 |       for (int i = 0; i < cm->ref_frames_info.num_total_refs; ++i) { | 
 |         int ref = 0; | 
 |         if (!explicit_ref_frame_map) { | 
 |           ref = cm->remapped_ref_idx[i]; | 
 |           if (cm->ref_frame_map[ref] == NULL) | 
 |             aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                                "Inter frame requests nonexistent reference"); | 
 |         } else { | 
 |           ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); | 
 |  | 
 |           // Most of the time, streams start with a keyframe. In that case, | 
 |           // ref_frame_map will have been filled in at that point and will not | 
 |           // contain any NULLs. However, streams are explicitly allowed to start | 
 |           // with an intra-only frame, so long as they don't then signal a | 
 |           // reference to a slot that hasn't been set yet. That's what we are | 
 |           // checking here. | 
 |           if (cm->ref_frame_map[ref] == NULL) | 
 |             aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                                "Inter frame requests nonexistent reference"); | 
 |           cm->remapped_ref_idx[i] = ref; | 
 |         } | 
 |         // Check valid for referencing | 
 |         if (pbi->valid_for_referencing[ref] == 0) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Reference frame not valid for referencing"); | 
 |  | 
 |         if (seq_params->frame_id_numbers_present_flag) { | 
 |           int frame_id_length = seq_params->frame_id_length; | 
 |           int diff_len = seq_params->delta_frame_id_length; | 
 |           int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len); | 
 |           int ref_frame_id = | 
 |               ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) + | 
 |                 (1 << frame_id_length)) % | 
 |                (1 << frame_id_length)); | 
 |           // Compare values derived from delta_frame_id_minus_1 and | 
 |           // refresh_frame_flags. | 
 |           if (ref_frame_id != cm->ref_frame_id[ref]) | 
 |             aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                                "Reference buffer frame ID mismatch"); | 
 |         } | 
 |       } | 
 |       // With explicit_ref_frame_map, cm->remapped_ref_idx has been | 
 |       // overwritten. The reference lists also needs to be reset. | 
 |       if (explicit_ref_frame_map) { | 
 |         RefScoreData scores[REF_FRAMES]; | 
 |         for (int i = 0; i < REF_FRAMES; i++) scores[i].score = INT_MAX; | 
 |         for (int i = 0; i < cm->ref_frames_info.num_total_refs; i++) { | 
 |           scores[i].score = i; | 
 |           int ref = cm->remapped_ref_idx[i]; | 
 |           scores[i].distance = | 
 |               seq_params->order_hint_info.enable_order_hint | 
 |                   ? ((int)current_frame->display_order_hint - | 
 | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
 |                      (int)cm->ref_frame_map_pairs[ref].disp_order) | 
 | #else | 
 |                      (int)ref_frame_map_pairs[ref].disp_order) | 
 | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
 |                   : 1; | 
 |           cm->ref_frames_info.ref_frame_distance[i] = scores[i].distance; | 
 |         } | 
 |         av1_get_past_future_cur_ref_lists(cm, scores); | 
 |       } | 
 | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
 |       cm->cur_frame->num_ref_frames = cm->ref_frames_info.num_total_refs; | 
 | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
 |  | 
 |       if (!features->error_resilient_mode && frame_size_override_flag) { | 
 |         setup_frame_size_with_refs(cm, rb); | 
 |       } else { | 
 |         setup_frame_size(cm, frame_size_override_flag, rb); | 
 |       } | 
 |  | 
 |       if (frame_might_allow_ref_frame_mvs(cm)) | 
 |         features->allow_ref_frame_mvs = aom_rb_read_bit(rb); | 
 |       else | 
 |         features->allow_ref_frame_mvs = 0; | 
 |  | 
 | #if CONFIG_LF_SUB_PU | 
 |       if (cm->seq_params.enable_lf_sub_pu) { | 
 |         features->allow_lf_sub_pu = aom_rb_read_bit(rb); | 
 |       } | 
 | #endif  // CONFIG_LF_SUB_PU | 
 |  | 
 | #if CONFIG_TIP_DIRECT_FRAME_MV | 
 |       cm->tip_global_motion.as_int = 0; | 
 |       cm->tip_interp_filter = MULTITAP_SHARP; | 
 | #endif  // CONFIG_TIP_DIRECT_FRAME_MV | 
 |       if (cm->seq_params.enable_tip) { | 
 |         features->tip_frame_mode = aom_rb_read_literal(rb, 2); | 
 | #if CONFIG_OPTFLOW_ON_TIP | 
 |         features->use_optflow_tip = 1; | 
 | #endif  // CONFIG_OPTFLOW_ON_TIP | 
 |         if (features->tip_frame_mode >= TIP_FRAME_MODES) { | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Invalid TIP mode."); | 
 |         } | 
 |         if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT && | 
 |             av1_superres_scaled(cm)) { | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Invalid TIP Direct mode with superres."); | 
 |         } | 
 |  | 
 |         if (features->tip_frame_mode && cm->seq_params.enable_tip_hole_fill) { | 
 |           features->allow_tip_hole_fill = aom_rb_read_bit(rb); | 
 |         } else { | 
 |           features->allow_tip_hole_fill = false; | 
 |         } | 
 | #if CONFIG_LF_SUB_PU | 
 |         if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT && | 
 |             cm->seq_params.enable_lf_sub_pu && features->allow_lf_sub_pu) { | 
 |           cm->lf.tip_filter_level = aom_rb_read_bit(rb); | 
 |           if (cm->lf.tip_filter_level) { | 
 |             cm->lf.tip_delta_idx = aom_rb_read_literal(rb, 2); | 
 |             const int tip_delta_idx_to_delta[4] = { -10, 0, 6, 12 }; | 
 |             cm->lf.tip_delta = tip_delta_idx_to_delta[cm->lf.tip_delta_idx]; | 
 |           } | 
 |         } | 
 | #endif  // CONFIG_LF_SUB_PU | 
 | #if CONFIG_TIP_DIRECT_FRAME_MV | 
 |         if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
 |           int all_zero = aom_rb_read_bit(rb); | 
 |           if (!all_zero) { | 
 |             cm->tip_global_motion.as_mv.row = aom_rb_read_literal(rb, 4); | 
 |             cm->tip_global_motion.as_mv.col = aom_rb_read_literal(rb, 4); | 
 |             if (cm->tip_global_motion.as_mv.row != 0) { | 
 |               int sign = aom_rb_read_bit(rb); | 
 |               if (sign) cm->tip_global_motion.as_mv.row *= -1; | 
 |             } | 
 |             if (cm->tip_global_motion.as_mv.col != 0) { | 
 |               int sign = aom_rb_read_bit(rb); | 
 |               if (sign) cm->tip_global_motion.as_mv.col *= -1; | 
 |             } | 
 |           } | 
 |           cm->tip_interp_filter = | 
 |               aom_rb_read_bit(rb) ? MULTITAP_SHARP : EIGHTTAP_REGULAR; | 
 | #endif  // CONFIG_TIP_DIRECT_FRAME_MV | 
 |         } | 
 |       } else { | 
 |         features->tip_frame_mode = TIP_FRAME_DISABLED; | 
 |       } | 
 |  | 
 |       if (features->tip_frame_mode != TIP_FRAME_AS_OUTPUT) { | 
 | #if CONFIG_IBC_SR_EXT | 
 |         if ( | 
 | #if !CONFIG_ENABLE_IBC_NAT | 
 |             features->allow_screen_content_tools && | 
 | #endif  //! CONFIG_ENABLE_IBC_NAT | 
 |             !av1_superres_scaled(cm)) { | 
 |           features->allow_intrabc = aom_rb_read_bit(rb); | 
 |           features->allow_global_intrabc = 0; | 
 |           features->allow_local_intrabc = features->allow_intrabc; | 
 |         } | 
 | #endif  // CONFIG_IBC_SR_EXT | 
 |  | 
 |         features->max_drl_bits = | 
 |             aom_rb_read_primitive_quniform( | 
 |                 rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) + | 
 |             MIN_MAX_DRL_BITS; | 
 | #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
 |         if (features->allow_intrabc) { | 
 |           features->max_bvp_drl_bits = | 
 |               aom_rb_read_primitive_quniform( | 
 |                   rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) + | 
 |               MIN_MAX_IBC_DRL_BITS; | 
 |         } | 
 | #endif  // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
 |  | 
 |         if (features->cur_frame_force_integer_mv) { | 
 |           features->fr_mv_precision = MV_PRECISION_ONE_PEL; | 
 |         } else { | 
 |           features->fr_mv_precision = aom_rb_read_bit(rb) | 
 |                                           ? MV_PRECISION_ONE_EIGHTH_PEL | 
 |                                           : MV_PRECISION_QTR_PEL; | 
 |           features->most_probable_fr_mv_precision = features->fr_mv_precision; | 
 |         } | 
 |         if (features->fr_mv_precision == MV_PRECISION_ONE_PEL) { | 
 |           features->use_pb_mv_precision = 0; | 
 |         } else { | 
 |           features->use_pb_mv_precision = cm->seq_params.enable_flex_mvres; | 
 |         } | 
 |  | 
 |         features->interp_filter = read_frame_interp_filter(rb); | 
 |         int seq_enabled_motion_modes = cm->seq_params.seq_enabled_motion_modes; | 
 |         int frame_enabled_motion_modes = (1 << SIMPLE_TRANSLATION); | 
 |         for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; | 
 |              motion_mode++) { | 
 |           if (seq_enabled_motion_modes & (1 << motion_mode)) { | 
 |             int enabled = aom_rb_read_bit(rb); | 
 |             if (enabled) { | 
 |               frame_enabled_motion_modes |= (1 << motion_mode); | 
 |             } | 
 |           } | 
 |         } | 
 |         features->enabled_motion_modes = frame_enabled_motion_modes; | 
 |         if (cm->seq_params.enable_opfl_refine == AOM_OPFL_REFINE_AUTO) { | 
 |           features->opfl_refine_type = aom_rb_read_literal(rb, 2); | 
 |           if (features->opfl_refine_type == AOM_OPFL_REFINE_AUTO) | 
 |             aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                                "Invalid frame level optical flow refine type"); | 
 |         } else { | 
 |           features->opfl_refine_type = cm->seq_params.enable_opfl_refine; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 | #if !CONFIG_PRIMARY_REF_FRAME_OPT | 
 |     cm->prev_frame = get_primary_ref_frame_buf(cm); | 
 |     if (features->primary_ref_frame != PRIMARY_REF_NONE && | 
 |         get_primary_ref_frame_buf(cm) == NULL) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Reference frame containing this frame's initial " | 
 |                          "frame context is unavailable."); | 
 |     } | 
 | #endif  // !CONFIG_PRIMARY_REF_FRAME_OPT | 
 |  | 
 |     if (!(current_frame->frame_type == INTRA_ONLY_FRAME) && | 
 |         pbi->need_resync != 1) { | 
 |       for (int i = 0; i < cm->ref_frames_info.num_total_refs; ++i) { | 
 |         const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); | 
 |         if (!ref_buf) continue; | 
 |         struct scale_factors *const ref_scale_factors = | 
 |             get_ref_scale_factors(cm, i); | 
 |         av1_setup_scale_factors_for_frame( | 
 |             ref_scale_factors, ref_buf->buf.y_crop_width, | 
 |             ref_buf->buf.y_crop_height, cm->width, cm->height); | 
 |         if ((!av1_is_valid_scale(ref_scale_factors))) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                              "Reference frame has invalid dimensions"); | 
 |       } | 
 |  | 
 |       if (cm->seq_params.enable_tip) { | 
 |         const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, TIP_FRAME); | 
 |         if (ref_buf) { | 
 |           struct scale_factors *const ref_scale_factors = | 
 |               get_ref_scale_factors(cm, TIP_FRAME); | 
 |           av1_setup_scale_factors_for_frame( | 
 |               ref_scale_factors, ref_buf->buf.y_crop_width, | 
 |               ref_buf->buf.y_crop_height, cm->width, cm->height); | 
 |           if ((!av1_is_valid_scale(ref_scale_factors))) | 
 |             aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                                "Reference frame has invalid dimensions"); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   av1_setup_frame_buf_refs(cm); | 
 |  | 
 |   av1_setup_frame_sign_bias(cm); | 
 |  | 
 |   cm->cur_frame->frame_type = current_frame->frame_type; | 
 |  | 
 |   update_ref_frame_id(pbi); | 
 |  | 
 |   cm->cur_frame->buf.bit_depth = seq_params->bit_depth; | 
 |   cm->cur_frame->buf.color_primaries = seq_params->color_primaries; | 
 |   cm->cur_frame->buf.transfer_characteristics = | 
 |       seq_params->transfer_characteristics; | 
 |   cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; | 
 |   cm->cur_frame->buf.monochrome = seq_params->monochrome; | 
 |   cm->cur_frame->buf.chroma_sample_position = | 
 |       seq_params->chroma_sample_position; | 
 |   cm->cur_frame->buf.color_range = seq_params->color_range; | 
 |   cm->cur_frame->buf.render_width = cm->render_width; | 
 |   cm->cur_frame->buf.render_height = cm->render_height; | 
 |  | 
 | #if CONFIG_TIP_DIRECT_FRAME_MV | 
 |   YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tmp_tip_frame->buf; | 
 | #else | 
 | YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tip_frame->buf; | 
 | #endif  // CONFIG_TIP_DIRECT_FRAME_MV | 
 |   tip_frame_buf->bit_depth = seq_params->bit_depth; | 
 |   tip_frame_buf->color_primaries = seq_params->color_primaries; | 
 |   tip_frame_buf->transfer_characteristics = | 
 |       seq_params->transfer_characteristics; | 
 |   tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients; | 
 |   tip_frame_buf->monochrome = seq_params->monochrome; | 
 |   tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position; | 
 |   tip_frame_buf->color_range = seq_params->color_range; | 
 |   tip_frame_buf->render_width = cm->render_width; | 
 |   tip_frame_buf->render_height = cm->render_height; | 
 |  | 
 |   if (pbi->need_resync) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Keyframe / intra-only frame required to reset decoder" | 
 |                        " state"); | 
 |   } | 
 |  | 
 |   if (is_global_intrabc_allowed(cm) || | 
 |       features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
 |     // Set parameters corresponding to no filtering. | 
 |     struct loopfilter *lf = &cm->lf; | 
 |     lf->filter_level[0] = 0; | 
 |     lf->filter_level[1] = 0; | 
 | #if CONFIG_FIX_CDEF_SYNTAX | 
 |     cm->cdef_info.cdef_frame_enable = 0; | 
 | #else | 
 |   cm->cdef_info.cdef_bits = 0; | 
 |   cm->cdef_info.cdef_strengths[0] = 0; | 
 |   cm->cdef_info.nb_cdef_strengths = 1; | 
 |   cm->cdef_info.cdef_uv_strengths[0] = 0; | 
 | #endif  // CONFIG_FIX_CDEF_SYNTAX | 
 |     cm->rst_info[0].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[1].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[2].frame_restoration_type = RESTORE_NONE; | 
 |   } | 
 |  | 
 |   if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
 | #if CONFIG_TIP_IMPLICIT_QUANT | 
 |     if (cm->seq_params.enable_tip_explicit_qp) { | 
 |       cm->quant_params.base_qindex = aom_rb_read_literal( | 
 |           rb, cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT | 
 |                                                      : QINDEX_BITS); | 
 |       if (av1_num_planes(cm) > 1) { | 
 |         int diff_uv_delta = 0; | 
 |         if (cm->seq_params.separate_uv_delta_q) { | 
 |           diff_uv_delta = aom_rb_read_bit(rb); | 
 |         } | 
 |         cm->quant_params.u_ac_delta_q = read_delta_q(rb); | 
 |         if (diff_uv_delta) { | 
 |           cm->quant_params.v_ac_delta_q = read_delta_q(rb); | 
 |         } else { | 
 |           cm->quant_params.v_ac_delta_q = cm->quant_params.u_ac_delta_q; | 
 |         } | 
 |       } else { | 
 |         cm->quant_params.v_ac_delta_q = cm->quant_params.u_ac_delta_q = 0; | 
 |       } | 
 |       cm->cur_frame->base_qindex = cm->quant_params.base_qindex; | 
 |       cm->cur_frame->u_ac_delta_q = cm->quant_params.u_ac_delta_q; | 
 |       cm->cur_frame->v_ac_delta_q = cm->quant_params.v_ac_delta_q; | 
 |     } | 
 | #else | 
 |   cm->quant_params.base_qindex = aom_rb_read_literal( | 
 |       rb, | 
 |       cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS); | 
 |   cm->cur_frame->base_qindex = cm->quant_params.base_qindex; | 
 | #endif  // CONFIG_TIP_IMPLICIT_QUANT | 
 |     features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; | 
 | #if !CONFIG_TIP_DIRECT_MODE_SIGNALING | 
 |     read_tile_info(pbi, rb); | 
 | #endif  // !CONFIG_TIP_DIRECT_MODE_SIGNALING | 
 |     cm->cur_frame->film_grain_params_present = | 
 |         seq_params->film_grain_params_present; | 
 |     read_film_grain(cm, rb); | 
 |     av1_setup_past_independence(cm); | 
 |     if (!cm->tiles.large_scale) { | 
 |       cm->cur_frame->frame_context = *cm->fc; | 
 |     } | 
 |     // TIP frame will be output for displaying | 
 |     // No futher processing needed | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) && | 
 |                               !(features->disable_cdf_update); | 
 |   if (might_bwd_adapt) { | 
 |     features->refresh_frame_context = aom_rb_read_bit(rb) | 
 |                                           ? REFRESH_FRAME_CONTEXT_DISABLED | 
 |                                           : REFRESH_FRAME_CONTEXT_BACKWARD; | 
 |   } else { | 
 |     features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; | 
 |   } | 
 |  | 
 |   read_tile_info(pbi, rb); | 
 |   if (!av1_is_min_tile_width_satisfied(cm)) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Minimum tile width requirement not satisfied"); | 
 |   } | 
 |  | 
 |   CommonQuantParams *const quant_params = &cm->quant_params; | 
 |   setup_quantization(quant_params, av1_num_planes(cm), cm->seq_params.bit_depth, | 
 |                      cm->seq_params.separate_uv_delta_q, rb); | 
 |   cm->cur_frame->base_qindex = quant_params->base_qindex; | 
 | #if CONFIG_TIP_IMPLICIT_QUANT | 
 |   cm->cur_frame->u_ac_delta_q = quant_params->u_ac_delta_q; | 
 |   cm->cur_frame->v_ac_delta_q = quant_params->v_ac_delta_q; | 
 | #endif  // CONFIG_TIP_IMPLICIT_QUANT | 
 |   xd->bd = (int)seq_params->bit_depth; | 
 |  | 
 | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
 |   if (!seq_params->reduced_still_picture_hdr) { | 
 |     features->derived_primary_ref_frame = choose_primary_ref_frame(cm); | 
 |  | 
 |     if (!signal_primary_ref_frame) | 
 |       features->primary_ref_frame = features->derived_primary_ref_frame; | 
 |   } | 
 |  | 
 |   // For primary_ref_frame and derived_primary_ref_frame, if one of them is | 
 |   // PRIMARY_REF_NONE, the other one is also PRIMARY_REF_NONE. | 
 |   if (features->derived_primary_ref_frame == PRIMARY_REF_NONE || | 
 |       features->primary_ref_frame == PRIMARY_REF_NONE) { | 
 |     features->primary_ref_frame = PRIMARY_REF_NONE; | 
 |     features->derived_primary_ref_frame = PRIMARY_REF_NONE; | 
 |   } | 
 |   assert(IMPLIES(features->derived_primary_ref_frame == PRIMARY_REF_NONE, | 
 |                  features->primary_ref_frame == PRIMARY_REF_NONE)); | 
 |   assert(IMPLIES(features->primary_ref_frame == PRIMARY_REF_NONE, | 
 |                  features->derived_primary_ref_frame == PRIMARY_REF_NONE)); | 
 |  | 
 |   if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs && | 
 |       features->primary_ref_frame != PRIMARY_REF_NONE) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
 |                        "Invalid primary_ref_frame"); | 
 |   } | 
 |  | 
 |   if (current_frame->frame_type != KEY_FRAME) { | 
 |     cm->prev_frame = | 
 |         get_primary_ref_frame_buf(cm, features->derived_primary_ref_frame); | 
 |     if (features->derived_primary_ref_frame != PRIMARY_REF_NONE && | 
 |         get_primary_ref_frame_buf(cm, features->derived_primary_ref_frame) == | 
 |             NULL) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Reference frame containing this frame's initial " | 
 |                          "frame context is unavailable."); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
 |  | 
 |   CommonContexts *const above_contexts = &cm->above_contexts; | 
 |   if (above_contexts->num_planes < av1_num_planes(cm) || | 
 |       above_contexts->num_mi_cols < cm->mi_params.mi_cols || | 
 |       above_contexts->num_tile_rows < cm->tiles.rows) { | 
 |     av1_free_above_context_buffers(above_contexts); | 
 |     if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows, | 
 |                                         cm->mi_params.mi_cols, | 
 |                                         av1_num_planes(cm))) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                          "Failed to allocate context buffers"); | 
 |     } | 
 |   } | 
 |  | 
 |   if (features->primary_ref_frame == PRIMARY_REF_NONE) { | 
 |     av1_setup_past_independence(cm); | 
 |   } | 
 |  | 
 |   setup_segmentation(cm, rb); | 
 |  | 
 |   cm->delta_q_info.delta_q_res = 1; | 
 |   cm->delta_q_info.delta_lf_res = 1; | 
 |   cm->delta_q_info.delta_lf_present_flag = 0; | 
 |   cm->delta_q_info.delta_lf_multi = 0; | 
 |   cm->delta_q_info.delta_q_present_flag = | 
 |       quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0; | 
 |   if (cm->delta_q_info.delta_q_present_flag) { | 
 |     xd->current_base_qindex = quant_params->base_qindex; | 
 |     cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2); | 
 |     if (!is_global_intrabc_allowed(cm)) | 
 |       cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb); | 
 |     if (cm->delta_q_info.delta_lf_present_flag) { | 
 |       cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2); | 
 |       cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb); | 
 |       av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); | 
 |     } | 
 |   } | 
 |  | 
 |   xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv; | 
 |  | 
 |   for (int i = 0; i < MAX_SEGMENTS; ++i) { | 
 |     const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex, | 
 |                                       cm->seq_params.bit_depth); | 
 |     xd->lossless[i] = | 
 |         qindex == 0 && | 
 |         (quant_params->y_dc_delta_q + cm->seq_params.base_y_dc_delta_q <= 0) && | 
 |         (quant_params->u_dc_delta_q + cm->seq_params.base_uv_dc_delta_q <= 0) && | 
 |         quant_params->u_ac_delta_q <= 0 && | 
 |         (quant_params->v_dc_delta_q + cm->seq_params.base_uv_dc_delta_q <= 0) && | 
 |         quant_params->v_ac_delta_q <= 0; | 
 |     xd->qindex[i] = qindex; | 
 |   } | 
 |   features->coded_lossless = is_coded_lossless(cm, xd); | 
 |   features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); | 
 |   setup_segmentation_dequant(cm, xd); | 
 |   if (features->coded_lossless) { | 
 |     cm->lf.filter_level[0] = 0; | 
 |     cm->lf.filter_level[1] = 0; | 
 |   } | 
 |   if (features->coded_lossless || !seq_params->enable_cdef) { | 
 | #if CONFIG_FIX_CDEF_SYNTAX | 
 |     cm->cdef_info.cdef_frame_enable = 0; | 
 | #else | 
 |   cm->cdef_info.cdef_bits = 0; | 
 |   cm->cdef_info.cdef_strengths[0] = 0; | 
 |   cm->cdef_info.cdef_uv_strengths[0] = 0; | 
 | #endif  // CONFIG_FIX_CDEF_SYNTAX | 
 |   } | 
 |   if (features->all_lossless || !seq_params->enable_restoration) { | 
 |     cm->rst_info[0].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[1].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[2].frame_restoration_type = RESTORE_NONE; | 
 |   } | 
 |   setup_loopfilter(cm, rb); | 
 |  | 
 |   if (!features->coded_lossless && seq_params->enable_cdef) { | 
 |     setup_cdef(cm, rb); | 
 |   } | 
 |   if (!features->all_lossless && seq_params->enable_restoration) { | 
 |     decode_restoration_mode(cm, rb); | 
 |   } | 
 |   if (!features->coded_lossless && seq_params->enable_ccso) { | 
 |     setup_ccso(cm, rb); | 
 |   } | 
 |  | 
 |   if (features->coded_lossless || !cm->seq_params.enable_parity_hiding) | 
 |     features->allow_parity_hiding = false; | 
 |   else | 
 |     features->allow_parity_hiding = aom_rb_read_bit(rb); | 
 |  | 
 |   features->tx_mode = read_tx_mode(rb, features->coded_lossless); | 
 |   current_frame->reference_mode = read_frame_reference_mode(cm, rb); | 
 |  | 
 |   av1_setup_skip_mode_allowed(cm); | 
 |   current_frame->skip_mode_info.skip_mode_flag = | 
 |       current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0; | 
 |  | 
 | #if CONFIG_BAWP | 
 |   if (!frame_is_intra_only(cm) && seq_params->enable_bawp) | 
 |     features->enable_bawp = aom_rb_read_bit(rb); | 
 |   else | 
 |     features->enable_bawp = 0; | 
 | #endif  // CONFIG_BAWP | 
 |  | 
 |   features->enable_cwp = seq_params->enable_cwp; | 
 |   features->allow_warpmv_mode = 0; | 
 |   if (!frame_is_intra_only(cm) && | 
 |       (features->enabled_motion_modes & (1 << WARP_DELTA)) != 0) { | 
 |     features->allow_warpmv_mode = aom_rb_read_bit(rb); | 
 |   } | 
 |  | 
 | #if CONFIG_D071_IMP_MSK_BLD | 
 |   features->enable_imp_msk_bld = seq_params->enable_imp_msk_bld; | 
 | #endif  // CONFIG_D071_IMP_MSK_BLD | 
 |  | 
 |   features->reduced_tx_set_used = aom_rb_read_bit(rb); | 
 |  | 
 |   if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Frame wrongly requests reference frame MVs"); | 
 |   } | 
 |  | 
 |   if (features->tip_frame_mode && !cm->seq_params.enable_tip) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Frame wrongly requests TIP mode"); | 
 |   } | 
 |  | 
 |   if (!frame_is_intra_only(cm)) read_global_motion(cm, rb); | 
 |  | 
 |   cm->cur_frame->film_grain_params_present = | 
 |       seq_params->film_grain_params_present; | 
 |   read_film_grain(cm, rb); | 
 |  | 
 | #if EXT_TILE_DEBUG | 
 |   if (pbi->ext_tile_debug && cm->tiles.large_scale) { | 
 |     read_ext_tile_info(pbi, rb); | 
 |     av1_set_single_tile_decoding_mode(cm); | 
 |   } | 
 | #endif  // EXT_TILE_DEBUG | 
 |   return 0; | 
 | } | 
 |  | 
 | struct aom_read_bit_buffer *av1_init_read_bit_buffer( | 
 |     AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, | 
 |     const uint8_t *data_end) { | 
 |   rb->bit_offset = 0; | 
 |   rb->error_handler = error_handler; | 
 |   rb->error_handler_data = &pbi->common; | 
 |   rb->bit_buffer = data; | 
 |   rb->bit_buffer_end = data_end; | 
 |   return rb; | 
 | } | 
 |  | 
 | void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width, | 
 |                          int num_bits_height, int *width, int *height) { | 
 |   *width = aom_rb_read_literal(rb, num_bits_width) + 1; | 
 |   *height = aom_rb_read_literal(rb, num_bits_height) + 1; | 
 | } | 
 |  | 
 | BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { | 
 |   int profile = aom_rb_read_literal(rb, PROFILE_BITS); | 
 |   return (BITSTREAM_PROFILE)profile; | 
 | } | 
 |  | 
 | static AOM_INLINE void superres_post_decode(AV1Decoder *pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |  | 
 |   if (!av1_superres_scaled(cm)) return; | 
 |   assert(!cm->features.all_lossless); | 
 |  | 
 |   av1_superres_upscale(cm, pool, false); | 
 | } | 
 |  | 
 | static AOM_INLINE void process_tip_mode(AV1Decoder *pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCKD *const xd = &pbi->dcb.xd; | 
 |  | 
 |   if (cm->features.allow_ref_frame_mvs && cm->has_bwd_ref) { | 
 |     if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
 |       av1_dec_setup_tip_frame(cm, xd, pbi->td.mc_buf, pbi->td.tmp_conv_dst); | 
 | #if !CONFIG_TIP_DIRECT_FRAME_MV && CONFIG_LF_SUB_PU | 
 |       if (cm->seq_params.enable_lf_sub_pu && cm->features.allow_lf_sub_pu) { | 
 |         init_tip_lf_parameter(cm, 0, num_planes); | 
 |         loop_filter_tip_frame(cm, 0, num_planes); | 
 |       } | 
 | #endif  // !CONFIG_TIP_DIRECT_FRAME_MV && CONFIG_LF_SUB_PU | 
 |     } else if (cm->features.tip_frame_mode == TIP_FRAME_AS_REF) { | 
 |       av1_setup_tip_motion_field(cm, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
 |     av1_copy_tip_frame_tmvp_mvs(cm); | 
 |     aom_yv12_copy_frame(&cm->tip_ref.tip_frame->buf, &cm->cur_frame->buf, | 
 |                         num_planes); | 
 |     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |       cm->global_motion[i] = default_warp_params; | 
 |       cm->cur_frame->global_motion[i] = default_warp_params; | 
 |     } | 
 |     av1_setup_past_independence(cm); | 
 |     if (!cm->tiles.large_scale) { | 
 |       cm->cur_frame->frame_context = *cm->fc; | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_TMVP_MEM_OPT | 
 |   if (cm->features.allow_ref_frame_mvs && | 
 |       cm->features.tip_frame_mode == TIP_FRAME_DISABLED) { | 
 |     // TPL mvs at non-sampled locations will be filled after it is hole-filled | 
 |     // and smoothed. | 
 |     av1_fill_tpl_mvs_sample_gap(cm); | 
 |   } | 
 | #endif  // CONFIG_TMVP_MEM_OPT | 
 | } | 
 |  | 
 | uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi, | 
 |                                             struct aom_read_bit_buffer *rb, | 
 |                                             const uint8_t *data, | 
 |                                             const uint8_t **p_data_end, | 
 |                                             int trailing_bits_present) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCKD *const xd = &pbi->dcb.xd; | 
 |  | 
 | #if CONFIG_MISMATCH_DEBUG | 
 |   mismatch_move_frame_idx_r(1); | 
 | #endif  // CONFIG_MISMATCH_DEBUG | 
 |  | 
 |   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |     cm->global_motion[i] = default_warp_params; | 
 |     cm->cur_frame->global_motion[i] = default_warp_params; | 
 |   } | 
 | #if CONFIG_TEMP_LR | 
 |   cm->cur_frame->rst_info[AOM_PLANE_Y].frame_filters_on = 0; | 
 | #endif  // CONFIG_TEMP_LR | 
 |   xd->global_motion = cm->global_motion; | 
 |  | 
 |   read_uncompressed_header(pbi, rb); | 
 |  | 
 | #if CONFIG_BITSTREAM_DEBUG | 
 |   aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 + | 
 |                                      cm->show_frame); | 
 | #endif | 
 |  | 
 |   if (trailing_bits_present) av1_check_trailing_bits(pbi, rb); | 
 |  | 
 |   if (!cm->tiles.single_tile_decoding && | 
 |       (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) { | 
 |     pbi->dec_tile_row = -1; | 
 |     pbi->dec_tile_col = -1; | 
 |   } | 
 |  | 
 |   const uint32_t uncomp_hdr_size = | 
 |       (uint32_t)aom_rb_bytes_read(rb);  // Size of the uncompressed header | 
 |   YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf; | 
 |   xd->cur_buf = new_fb; | 
 |   if (av1_allow_intrabc(cm, xd | 
 | #if CONFIG_ENABLE_IBC_NAT | 
 |                         , | 
 |                         BLOCK_4X4 | 
 | #endif  // CONFIG_ENABLE_IBC_NAT | 
 |                         ) && | 
 |       xd->tree_type != CHROMA_PART) { | 
 |     av1_setup_scale_factors_for_frame( | 
 |         &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height, | 
 |         xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height); | 
 |   } | 
 |  | 
 |   if (cm->show_existing_frame) { | 
 |     // showing a frame directly | 
 |     *p_data_end = data + uncomp_hdr_size; | 
 |     if (pbi->reset_decoder_state) { | 
 |       // Use the default frame context values. | 
 |       *cm->fc = *cm->default_frame_context; | 
 |       if (!cm->fc->initialized) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Uninitialized entropy context."); | 
 |     } | 
 |     return uncomp_hdr_size; | 
 |   } | 
 |  | 
 |   cm->mi_params.setup_mi(&cm->mi_params); | 
 |  | 
 |   if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm); | 
 | #if CONFIG_MVP_IMPROVEMENT | 
 |   else | 
 |     av1_setup_ref_frame_sides(cm); | 
 | #endif  // CONFIG_MVP_IMPROVEMENT | 
 |  | 
 |   process_tip_mode(pbi); | 
 |   if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
 |     *p_data_end = data + uncomp_hdr_size; | 
 |     return uncomp_hdr_size; | 
 |   } | 
 |  | 
 |   av1_setup_block_planes(xd, cm->seq_params.subsampling_x, | 
 |                          cm->seq_params.subsampling_y, num_planes); | 
 |   if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { | 
 |     // use the default frame context values | 
 |     *cm->fc = *cm->default_frame_context; | 
 |   } else { | 
 | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
 |     *cm->fc = get_primary_ref_frame_buf(cm, cm->features.primary_ref_frame) | 
 |                   ->frame_context; | 
 | #else | 
 |     *cm->fc = get_primary_ref_frame_buf(cm)->frame_context; | 
 | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
 |   } | 
 |   if (!cm->fc->initialized) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Uninitialized entropy context."); | 
 |  | 
 |   pbi->dcb.corrupted = 0; | 
 |   return uncomp_hdr_size; | 
 | } | 
 |  | 
 | // Once-per-frame initialization | 
 | static AOM_INLINE void setup_frame_info(AV1Decoder *pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || | 
 |       cm->rst_info[1].frame_restoration_type != RESTORE_NONE || | 
 |       cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { | 
 |     av1_alloc_restoration_buffers(cm); | 
 |   } | 
 |   const int buf_size = MC_TEMP_BUF_PELS << 1; | 
 |   if (pbi->td.mc_buf_size != buf_size) { | 
 |     av1_free_mc_tmp_buf(&pbi->td); | 
 |     av1_free_opfl_tmp_bufs(&pbi->td); | 
 |  | 
 |     allocate_mc_tmp_buf(cm, &pbi->td, buf_size); | 
 |     allocate_opfl_tmp_bufs(cm, &pbi->td); | 
 |   } | 
 | } | 
 |  | 
 | void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data, | 
 |                                     const uint8_t *data_end, | 
 |                                     const uint8_t **p_data_end, int start_tile, | 
 |                                     int end_tile, int initialize_flag) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   CommonTileParams *const tiles = &cm->tiles; | 
 |   MACROBLOCKD *const xd = &pbi->dcb.xd; | 
 |   const int tile_count_tg = end_tile - start_tile + 1; | 
 |  | 
 |   if (initialize_flag) setup_frame_info(pbi); | 
 |   const int num_planes = av1_num_planes(cm); | 
 | #if CONFIG_LPF_MASK | 
 |   av1_loop_filter_frame_init(cm, 0, num_planes); | 
 | #endif | 
 | #if CONFIG_INSPECTION | 
 |   aom_realloc_frame_buffer( | 
 |       &cm->predicted_pixels, cm->width, cm->height, | 
 |       cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, | 
 |       AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment, NULL, NULL, NULL, | 
 |       false); | 
 |   aom_realloc_frame_buffer( | 
 |       &cm->prefiltered_pixels, cm->width, cm->height, | 
 |       cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, | 
 |       AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment, NULL, NULL, NULL, | 
 |       false); | 
 | #endif  // CONFIG_INSPECTION | 
 |   if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) && | 
 |       pbi->row_mt) | 
 |     *p_data_end = | 
 |         decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile); | 
 |   else if (pbi->max_threads > 1 && tile_count_tg > 1 && | 
 |            !(tiles->large_scale && !pbi->ext_tile_debug)) | 
 |     *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile); | 
 |   else | 
 |     *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile); | 
 |  | 
 |   // If the bit stream is monochrome, set the U and V buffers to a constant. | 
 |   if (num_planes < 3) { | 
 |     set_planes_to_neutral_grey(&cm->seq_params, xd->cur_buf, 1); | 
 |   } | 
 |  | 
 | #if CONFIG_INSPECTION | 
 |   memcpy(cm->prefiltered_pixels.buffer_alloc, cm->cur_frame->buf.buffer_alloc, | 
 |          cm->prefiltered_pixels.frame_size); | 
 | #endif  // CONFIG_INSPECTION | 
 |  | 
 |   if (end_tile != tiles->rows * tiles->cols - 1) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!is_global_intrabc_allowed(cm) && !tiles->single_tile_decoding) { | 
 |     if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) { | 
 |       if (pbi->num_workers > 1 | 
 | #if CONFIG_LF_SUB_PU | 
 |           && !cm->features.allow_lf_sub_pu | 
 | #endif  // CONFIG_LF_SUB_PU | 
 |       ) { | 
 |         av1_loop_filter_frame_mt( | 
 |             &cm->cur_frame->buf, cm, &pbi->dcb.xd, 0, num_planes, 0, | 
 | #if CONFIG_LPF_MASK | 
 |             1, | 
 | #endif | 
 |             pbi->tile_workers, pbi->num_workers, &pbi->lf_row_sync); | 
 |       } else { | 
 |         av1_loop_filter_frame(&cm->cur_frame->buf, cm, &pbi->dcb.xd, | 
 | #if CONFIG_LPF_MASK | 
 |                               1, | 
 | #endif | 
 |                               0, num_planes, 0); | 
 |       } | 
 |     } | 
 |  | 
 |     const int use_ccso = | 
 |         !pbi->skip_loop_filter && !cm->features.coded_lossless && | 
 |         (cm->ccso_info.ccso_enable[0] || cm->ccso_info.ccso_enable[1] || | 
 |          cm->ccso_info.ccso_enable[2]); | 
 |     uint16_t *ext_rec_y; | 
 |     if (use_ccso) { | 
 |       av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, 0, 0, 0, num_planes, | 
 |                            NULL); | 
 |       const int ccso_stride_ext = | 
 |           xd->plane[0].dst.width + (CCSO_PADDING_SIZE << 1); | 
 |       ext_rec_y = | 
 |           aom_malloc(sizeof(*ext_rec_y) * | 
 |                      (xd->plane[0].dst.height + (CCSO_PADDING_SIZE << 1)) * | 
 |                      (xd->plane[0].dst.width + (CCSO_PADDING_SIZE << 1))); | 
 |       for (int pli = 0; pli < 1; pli++) { | 
 |         int pic_height = xd->plane[pli].dst.height; | 
 |         int pic_width = xd->plane[pli].dst.width; | 
 |         const int dst_stride = xd->plane[pli].dst.stride; | 
 |         ext_rec_y += CCSO_PADDING_SIZE * ccso_stride_ext + CCSO_PADDING_SIZE; | 
 |         for (int r = 0; r < pic_height; ++r) { | 
 |           for (int c = 0; c < pic_width; ++c) { | 
 |             ext_rec_y[c] = xd->plane[pli].dst.buf[c]; | 
 |           } | 
 |           ext_rec_y += ccso_stride_ext; | 
 |           xd->plane[0].dst.buf += dst_stride; | 
 |         } | 
 |         ext_rec_y -= CCSO_PADDING_SIZE * ccso_stride_ext + CCSO_PADDING_SIZE; | 
 |         ext_rec_y -= pic_height * ccso_stride_ext; | 
 |         xd->plane[0].dst.buf -= pic_height * ccso_stride_ext; | 
 |       } | 
 |       extend_ccso_border(ext_rec_y, CCSO_PADDING_SIZE, xd); | 
 |     } | 
 |  | 
 |     const int do_loop_restoration = | 
 |         cm->rst_info[0].frame_restoration_type != RESTORE_NONE || | 
 |         cm->rst_info[1].frame_restoration_type != RESTORE_NONE || | 
 |         cm->rst_info[2].frame_restoration_type != RESTORE_NONE; | 
 |     const int do_cdef = !pbi->skip_loop_filter && | 
 |                         !cm->features.coded_lossless && | 
 | #if CONFIG_FIX_CDEF_SYNTAX | 
 |                         cm->cdef_info.cdef_frame_enable; | 
 | #else | 
 |                         (cm->cdef_info.cdef_bits || | 
 |                          cm->cdef_info.cdef_strengths[0] || | 
 |                          cm->cdef_info.cdef_uv_strengths[0]); | 
 | #endif  // CONFIG_FIX_CDEF_SYNTAX | 
 |     const int do_superres = av1_superres_scaled(cm); | 
 |  | 
 |     const int optimized_loop_restoration = | 
 |         !use_ccso && !do_cdef && !do_superres; | 
 |  | 
 |     if (!optimized_loop_restoration) { | 
 |       if (do_loop_restoration) | 
 |         av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, | 
 |                                                  cm, 0); | 
 |  | 
 |       if (do_cdef) { | 
 |         av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd); | 
 |       } | 
 |  | 
 |       if (use_ccso) { | 
 |         ccso_frame(&cm->cur_frame->buf, cm, xd, ext_rec_y); | 
 |         aom_free(ext_rec_y); | 
 |       } | 
 |  | 
 |       superres_post_decode(pbi); | 
 |  | 
 |       if (do_loop_restoration) { | 
 |         av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, | 
 |                                                  cm, 1); | 
 |         // HERE | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 |         copy_frame_filters_to_runits_if_needed(cm); | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |         if (pbi->num_workers > 1) { | 
 |           av1_loop_restoration_filter_frame_mt( | 
 |               (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, | 
 |               pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, | 
 |               &pbi->lr_ctxt); | 
 |         } else { | 
 |           av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, | 
 |                                             cm, optimized_loop_restoration, | 
 |                                             &pbi->lr_ctxt); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       // In no cdef and no superres case. Provide an optimized version of | 
 |       // loop_restoration_filter. | 
 |       if (do_loop_restoration) { | 
 |         // HERE | 
 | #if CONFIG_COMBINE_PC_NS_WIENER | 
 |         copy_frame_filters_to_runits_if_needed(cm); | 
 | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
 |         if (pbi->num_workers > 1) { | 
 |           av1_loop_restoration_filter_frame_mt( | 
 |               (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, | 
 |               pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, | 
 |               &pbi->lr_ctxt); | 
 |         } else { | 
 |           av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, | 
 |                                             cm, optimized_loop_restoration, | 
 |                                             &pbi->lr_ctxt); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | #if CONFIG_LPF_MASK | 
 |   av1_zero_array(cm->lf.lfm, cm->lf.lfm_num); | 
 | #endif | 
 |  | 
 |   if (!pbi->dcb.corrupted) { | 
 |     if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { | 
 |       assert(pbi->context_update_tile_id < pbi->allocated_tiles); | 
 |       *cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx; | 
 |       av1_reset_cdf_symbol_counters(cm->fc); | 
 |     } | 
 |   } else { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Decode failed. Frame data is corrupted."); | 
 |   } | 
 |  | 
 | #if CONFIG_INSPECTION | 
 |   if (pbi->inspect_cb != NULL) { | 
 |     (*pbi->inspect_cb)(pbi, pbi->inspect_ctx); | 
 |   } | 
 | #endif  // CONFIG_INSPECTION | 
 |  | 
 |   // Non frame parallel update frame context here. | 
 |   if (!tiles->large_scale) { | 
 |     cm->cur_frame->frame_context = *cm->fc; | 
 |   } | 
 | } |