|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "aom/aom_encoder.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/binary_codes_writer.h" | 
|  | #include "aom_dsp/bitwriter_buffer.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/bitops.h" | 
|  | #include "aom_ports/mem_ops.h" | 
|  | #include "aom_ports/system_state.h" | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/enums.h" | 
|  | #if CONFIG_BITSTREAM_DEBUG | 
|  | #include "aom_util/debug_util.h" | 
|  | #endif  // CONFIG_BITSTREAM_DEBUG | 
|  |  | 
|  | #include "common/md5_utils.h" | 
|  | #include "common/rawenc.h" | 
|  |  | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/cdef.h" | 
|  | #include "av1/common/ccso.h" | 
|  | #include "av1/common/cfl.h" | 
|  | #include "av1/common/entropy.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/entropymv.h" | 
|  | #include "av1/common/mvref_common.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/seg_common.h" | 
|  | #include "av1/common/tile_common.h" | 
|  |  | 
|  | #include "av1/encoder/bitstream.h" | 
|  | #include "av1/encoder/cost.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encodetxb.h" | 
|  | #include "av1/encoder/mcomp.h" | 
|  | #include "av1/encoder/palette.h" | 
|  | #include "av1/encoder/pickrst.h" | 
|  | #include "av1/encoder/segmentation.h" | 
|  | #include "av1/encoder/tokenize.h" | 
|  |  | 
|  | // Silence compiler warning for unused static functions | 
|  | static void image2yuvconfig_upshift(aom_image_t *hbd_img, | 
|  | const aom_image_t *img, | 
|  | YV12_BUFFER_CONFIG *yv12) AOM_UNUSED; | 
|  | #include "av1/av1_iface_common.h" | 
|  |  | 
|  | #define ENC_MISMATCH_DEBUG 0 | 
|  |  | 
|  | static INLINE void write_uniform(aom_writer *w, int n, int v) { | 
|  | const int l = get_unsigned_bits(n); | 
|  | const int m = (1 << l) - n; | 
|  | if (l == 0) return; | 
|  | if (v < m) { | 
|  | aom_write_literal(w, v, l - 1); | 
|  | } else { | 
|  | aom_write_literal(w, m + ((v - m) >> 1), l - 1); | 
|  | aom_write_literal(w, (v - m) & 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void loop_restoration_write_sb_coeffs( | 
|  | AV1_COMMON *cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui, | 
|  | aom_writer *const w, int plane, FRAME_COUNTS *counts); | 
|  |  | 
|  | #if CONFIG_COMBINE_PC_NS_WIENER | 
|  | static AOM_INLINE void write_wienerns_framefilters( | 
|  | AV1_COMMON *cm, MACROBLOCKD *xd, int plane, aom_writer *wb, | 
|  | int16_t *frame_filter_dictionary, int dict_stride); | 
|  | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
|  |  | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | static AOM_INLINE void write_intrabc_info( | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | int max_bvp_drl_bits, | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | const AV1_COMMON *const cm, | 
|  | #endif  // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, | 
|  | aom_writer *w); | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  |  | 
|  | #if !CONFIG_AIMC | 
|  | static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx, | 
|  | const MB_MODE_INFO *mi, | 
|  | const MB_MODE_INFO *neighbors0, | 
|  | const MB_MODE_INFO *neighbors1, | 
|  | PREDICTION_MODE mode, | 
|  | aom_writer *w) { | 
|  | assert(!is_intrabc_block(mi, SHARED_PART)); | 
|  | (void)mi; | 
|  | aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, neighbors0, neighbors1), | 
|  | INTRA_MODES); | 
|  | } | 
|  | #endif  // !CONFIG_AIMC | 
|  | static AOM_INLINE void write_inter_mode( | 
|  | aom_writer *w, PREDICTION_MODE mode, FRAME_CONTEXT *ec_ctx, | 
|  | const int16_t mode_ctx, const AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize | 
|  |  | 
|  | ) { | 
|  | #if CONFIG_OPTIMIZE_CTX_TIP_WARP | 
|  | if (is_tip_ref_frame(mbmi->ref_frame[0])) { | 
|  | const int tip_pred_index = | 
|  | tip_pred_mode_to_index[mode - SINGLE_INTER_MODE_START]; | 
|  | aom_write_symbol(w, tip_pred_index, ec_ctx->tip_pred_mode_cdf, | 
|  | TIP_PRED_MODES); | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_OPTIMIZE_CTX_TIP_WARP | 
|  |  | 
|  | if (is_warpmv_mode_allowed(cm, mbmi, bsize)) { | 
|  | const int16_t iswarpmvmode_ctx = inter_warpmv_mode_ctx(cm, xd, mbmi); | 
|  | aom_write_symbol(w, mode == WARPMV, | 
|  | ec_ctx->inter_warp_mode_cdf[iswarpmvmode_ctx], 2); | 
|  | if (mode == WARPMV) return; | 
|  | } else { | 
|  | assert(mode != WARPMV); | 
|  | } | 
|  |  | 
|  | const int16_t ismode_ctx = inter_single_mode_ctx(mode_ctx); | 
|  | aom_write_symbol(w, mode - SINGLE_INTER_MODE_START, | 
|  | ec_ctx->inter_single_mode_cdf[ismode_ctx], | 
|  | INTER_SINGLE_MODES); | 
|  | } | 
|  |  | 
|  | static void write_drl_idx(int max_drl_bits, const int16_t mode_ctx, | 
|  | FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, | 
|  | const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, | 
|  | aom_writer *w) { | 
|  | (void)mbmi_ext_frame; | 
|  | #if !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | assert(!mbmi->skip_mode); | 
|  | #endif  // !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | assert(IMPLIES(mbmi->mode == WARPMV, 0)); | 
|  | // Write the DRL index as a sequence of bits encoding a decision tree: | 
|  | // 0 -> 0   10 -> 1   110 -> 2    111 -> 3 | 
|  | // Also use the number of reference MVs for a frame type to reduce the | 
|  | // number of bits written if there are less than 4 valid DRL indices. | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | if (has_second_drl(mbmi)) { | 
|  | if (mbmi->mode == NEAR_NEWMV) | 
|  | max_drl_bits = AOMMIN(max_drl_bits, SEP_COMP_DRL_SIZE); | 
|  | else | 
|  | assert(mbmi->mode == NEAR_NEARMV); | 
|  | } | 
|  |  | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | if (!mbmi->skip_mode && mbmi->ref_frame[0] == mbmi->ref_frame[1] && | 
|  | has_second_drl(mbmi) && mbmi->mode == NEAR_NEARMV) | 
|  | assert(mbmi->ref_mv_idx[0] < mbmi->ref_mv_idx[1]); | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | if (mbmi->skip_mode) | 
|  | assert(mbmi->ref_mv_idx[0] < | 
|  | mbmi_ext_frame->skip_mvp_candidate_list.ref_mv_count); | 
|  | else | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | assert(mbmi->ref_mv_idx[0] < mbmi_ext_frame->ref_mv_count[0]); | 
|  | if (has_second_drl(mbmi)) | 
|  | assert(mbmi->ref_mv_idx[1] < mbmi_ext_frame->ref_mv_count[1]); | 
|  | assert(mbmi->ref_mv_idx[0] < max_drl_bits + 1); | 
|  | if (has_second_drl(mbmi)) assert(mbmi->ref_mv_idx[1] < max_drl_bits + 1); | 
|  | for (int ref = 0; ref < 1 + has_second_drl(mbmi); ref++) { | 
|  | for (int idx = 0; idx < max_drl_bits; ++idx) { | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | if (ref && !mbmi->skip_mode && mbmi->ref_frame[0] == mbmi->ref_frame[1] && | 
|  | mbmi->mode == NEAR_NEARMV && idx <= mbmi->ref_mv_idx[0]) | 
|  | continue; | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | aom_cdf_prob *drl_cdf = av1_get_drl_cdf(mbmi, ec_ctx, mode_ctx, idx); | 
|  | aom_write_symbol(w, mbmi->ref_mv_idx[ref] != idx, drl_cdf, 2); | 
|  | if (mbmi->ref_mv_idx[ref] == idx) break; | 
|  | } | 
|  | } | 
|  | #else | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | if (mbmi->skip_mode) | 
|  | assert(mbmi->ref_mv_idx < | 
|  | mbmi_ext_frame->skip_mvp_candidate_list.ref_mv_count); | 
|  | else | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | assert(mbmi->ref_mv_idx < mbmi_ext_frame->ref_mv_count); | 
|  | assert(mbmi->ref_mv_idx < max_drl_bits + 1); | 
|  | for (int idx = 0; idx < max_drl_bits; ++idx) { | 
|  | aom_cdf_prob *drl_cdf = av1_get_drl_cdf(mbmi, ec_ctx, mode_ctx, idx); | 
|  | aom_write_symbol(w, mbmi->ref_mv_idx != idx, drl_cdf, 2); | 
|  | if (mbmi->ref_mv_idx == idx) break; | 
|  | } | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | } | 
|  |  | 
|  | static void write_warp_ref_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, | 
|  | aom_writer *w) { | 
|  | assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates); | 
|  | assert(mbmi->max_num_warp_candidates <= MAX_WARP_REF_CANDIDATES); | 
|  |  | 
|  | if (mbmi->max_num_warp_candidates <= 1) { | 
|  | return; | 
|  | } | 
|  | int max_idx_bits = mbmi->max_num_warp_candidates - 1; | 
|  | for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) { | 
|  | aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(ec_ctx, bit_idx); | 
|  | aom_write_symbol(w, mbmi->warp_ref_idx != bit_idx, warp_ref_idx_cdf, 2); | 
|  |  | 
|  | if (mbmi->warp_ref_idx == bit_idx) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_warpmv_with_mvd_flag(FRAME_CONTEXT *ec_ctx, | 
|  | const MB_MODE_INFO *mbmi, | 
|  | aom_writer *w) { | 
|  | aom_write_symbol(w, mbmi->warpmv_with_mvd_flag, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | ec_ctx->warpmv_with_mvd_flag_cdf, | 
|  | #else | 
|  | ec_ctx | 
|  | ->warpmv_with_mvd_flag_cdf[mbmi->sb_type[PLANE_TYPE_Y]], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | 2); | 
|  | } | 
|  |  | 
|  | // Write scale mode flag for joint mvd coding mode | 
|  | static AOM_INLINE void write_jmvd_scale_mode(MACROBLOCKD *xd, aom_writer *w, | 
|  | const MB_MODE_INFO *const mbmi) { | 
|  | if (!is_joint_mvd_coding_mode(mbmi->mode)) return; | 
|  | const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode); | 
|  | aom_cdf_prob *jmvd_scale_mode_cdf = | 
|  | is_joint_amvd_mode ? xd->tile_ctx->jmvd_amvd_scale_mode_cdf | 
|  | : xd->tile_ctx->jmvd_scale_mode_cdf; | 
|  | const int jmvd_scale_cnt = is_joint_amvd_mode ? JOINT_AMVD_SCALE_FACTOR_CNT | 
|  | : JOINT_NEWMV_SCALE_FACTOR_CNT; | 
|  |  | 
|  | aom_write_symbol(w, mbmi->jmvd_scale_mode, jmvd_scale_mode_cdf, | 
|  | jmvd_scale_cnt); | 
|  | } | 
|  |  | 
|  | // Write the index for the weighting factor of compound weighted prediction | 
|  | static AOM_INLINE void write_cwp_idx(MACROBLOCKD *xd, aom_writer *w, | 
|  | const AV1_COMMON *const cm, | 
|  | const MB_MODE_INFO *const mbmi) { | 
|  | const int8_t final_idx = get_cwp_coding_idx(mbmi->cwp_idx, 1, cm, mbmi); | 
|  |  | 
|  | int bit_cnt = 0; | 
|  | const int ctx = 0; | 
|  | for (int idx = 0; idx < MAX_CWP_NUM - 1; ++idx) { | 
|  | aom_write_symbol(w, final_idx != idx, | 
|  | xd->tile_ctx->cwp_idx_cdf[ctx][bit_cnt], 2); | 
|  | if (final_idx == idx) break; | 
|  | ++bit_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, | 
|  | PREDICTION_MODE mode, | 
|  | const AV1_COMMON *cm, | 
|  | const MB_MODE_INFO *const mbmi, | 
|  | const int16_t mode_ctx) { | 
|  | assert(is_inter_compound_mode(mode)); | 
|  | int comp_mode_idx = opfl_get_comp_idx(mode); | 
|  | aom_write_symbol(w, comp_mode_idx, | 
|  | xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], | 
|  | INTER_COMPOUND_REF_TYPES); | 
|  | if (cm->features.opfl_refine_type == REFINE_SWITCHABLE && | 
|  | opfl_allowed_for_cur_refs(cm, | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | xd, | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | mbmi)) { | 
|  | const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW; | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | const int allow_translational = is_translational_refinement_allowed( | 
|  | cm, | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART], | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | comp_idx_to_opfl_mode[comp_mode_idx]); | 
|  | const int allow_affine = is_affine_refinement_allowed( | 
|  | cm, xd, comp_idx_to_opfl_mode[comp_mode_idx]); | 
|  | if (use_optical_flow) { | 
|  | assert(IMPLIES(allow_translational, | 
|  | mbmi->comp_refine_type > COMP_REFINE_NONE)); | 
|  | assert(IMPLIES(allow_affine, | 
|  | mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START)); | 
|  | } | 
|  | if (allow_affine || allow_translational) | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | aom_write_symbol(w, use_optical_flow, | 
|  | xd->tile_ctx->use_optflow_cdf[mode_ctx], 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | static void write_tx_partition(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, | 
|  | TX_SIZE max_tx_size, int blk_row, int blk_col, | 
|  | aom_writer *w) { | 
|  | int plane_type = (xd->tree_type == CHROMA_PART); | 
|  | const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0); | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[plane_type]; | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | #if CONFIG_IMPROVEIDTX | 
|  | const int is_fsc = (xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] && | 
|  | plane_type == PLANE_TYPE_Y); | 
|  | #endif  // CONFIG_IMPROVEIDTX | 
|  | const int txb_size_index = | 
|  | is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | if (is_inter || (!is_inter && block_signals_txsize(bsize))) { | 
|  | const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index]; | 
|  | #if !CONFIG_TX_PARTITION_CTX | 
|  | const int is_rect = is_rect_tx(max_tx_size); | 
|  | #endif  // !CONFIG_TX_PARTITION_CTX | 
|  | const int allow_horz = allow_tx_horz_split(max_tx_size); | 
|  | const int allow_vert = allow_tx_vert_split(max_tx_size); | 
|  | #if CONFIG_TX_PARTITION_CTX | 
|  | const int bsize_group = size_to_tx_part_group_lookup[bsize]; | 
|  | const int txsize_group = size_to_tx_type_group_lookup[bsize]; | 
|  | int do_partition = 0; | 
|  | if (allow_horz || allow_vert) { | 
|  | do_partition = (partition != TX_PARTITION_NONE); | 
|  | aom_cdf_prob *do_partition_cdf = | 
|  | #if CONFIG_IMPROVEIDTX | 
|  | ec_ctx->txfm_do_partition_cdf[is_fsc][is_inter][bsize_group]; | 
|  | #else | 
|  | ec_ctx->txfm_do_partition_cdf[is_inter][bsize_group]; | 
|  | #endif  // CONFIG_IMPROVEIDTX | 
|  | aom_write_symbol(w, do_partition, do_partition_cdf, 2); | 
|  | } | 
|  |  | 
|  | if (do_partition) { | 
|  | if (allow_horz && allow_vert) { | 
|  | assert(txsize_group > 0); | 
|  | aom_cdf_prob *partition_type_cdf = | 
|  | #if CONFIG_IMPROVEIDTX | 
|  | ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] | 
|  | [txsize_group - 1]; | 
|  | #else | 
|  | ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; | 
|  | #endif  // CONFIG_IMPROVEIDTX | 
|  | aom_write_symbol(w, partition - 1, partition_type_cdf, | 
|  | TX_PARTITION_TYPE_NUM); | 
|  | } else if (allow_horz || allow_vert) { | 
|  | int has_first_split = 0; | 
|  | if (partition == TX_PARTITION_VERT_M || | 
|  | partition == TX_PARTITION_HORZ_M) | 
|  | has_first_split = 1; | 
|  |  | 
|  | if (txsize_group) { | 
|  | aom_cdf_prob *partition_type_cdf = | 
|  | #if CONFIG_IMPROVEIDTX | 
|  | ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] | 
|  | [txsize_group - 1]; | 
|  | #else | 
|  | ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; | 
|  | #endif  // CONFIG_IMPROVEIDTX | 
|  | aom_write_symbol(w, has_first_split, partition_type_cdf, | 
|  | TX_PARTITION_TYPE_NUM); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  | if (allow_horz && allow_vert) { | 
|  | const int split4_ctx = | 
|  | is_inter ? txfm_partition_split4_inter_context( | 
|  | xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, bsize, max_tx_size) | 
|  | : get_tx_size_context(xd); | 
|  | aom_cdf_prob *split4_cdf = | 
|  | is_inter ? ec_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx] | 
|  | : ec_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx]; | 
|  | const TX_PARTITION_TYPE split4_partition = | 
|  | get_split4_partition(partition); | 
|  | aom_write_symbol(w, split4_partition, split4_cdf, 4); | 
|  | } else if (allow_horz || allow_vert) { | 
|  | const int has_first_split = partition != TX_PARTITION_NONE; | 
|  | aom_cdf_prob *split2_cdf = is_inter | 
|  | ? ec_ctx->inter_2way_txfm_partition_cdf | 
|  | : ec_ctx->intra_2way_txfm_partition_cdf; | 
|  | aom_write_symbol(w, has_first_split, split2_cdf, 2); | 
|  | } else { | 
|  | assert(!allow_horz && !allow_vert); | 
|  | assert(partition == PARTITION_NONE); | 
|  | } | 
|  | #endif  // CONFIG_TX_PARTITION_CTX | 
|  | } | 
|  | #if !CONFIG_TX_PARTITION_CTX | 
|  | if (is_inter) { | 
|  | const TX_SIZE tx_size = mbmi->inter_tx_size[txb_size_index]; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, | 
|  | max_tx_size); | 
|  | } | 
|  | #endif  // !CONFIG_TX_PARTITION_CTX | 
|  | } | 
|  | #else | 
|  | static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *mbmi, | 
|  | TX_SIZE tx_size, int depth, | 
|  | int blk_row, int blk_col, | 
|  | aom_writer *w) { | 
|  | FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; | 
|  | int plane_type = (xd->tree_type == CHROMA_PART); | 
|  | const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0); | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | if (depth == MAX_VARTX_DEPTH) { | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | return; | 
|  | } | 
|  | const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, | 
|  | mbmi->sb_type[plane_type], tx_size); | 
|  | const int txb_size_index = | 
|  | av1_get_txb_size_index(mbmi->sb_type[plane_type], blk_row, blk_col); | 
|  | const int write_txfm_partition = | 
|  | tx_size == mbmi->inter_tx_size[txb_size_index]; | 
|  | if (write_txfm_partition) { | 
|  | aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); | 
|  |  | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | // TODO(yuec): set correct txfm partition update for qttx | 
|  | } else { | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  |  | 
|  | aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); | 
|  |  | 
|  | if (sub_txs == TX_4X4) { | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, sub_txs, tx_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(bsw > 0 && bsh > 0); | 
|  | for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) | 
|  | for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
|  | int offsetr = blk_row + row; | 
|  | int offsetc = blk_col + col; | 
|  | write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd, | 
|  | aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | if (block_signals_txsize(bsize)) { | 
|  | const TX_SIZE tx_size = mbmi->tx_size; | 
|  | const int tx_size_ctx = get_tx_size_context(xd); | 
|  | const int depth = tx_size_to_depth(tx_size, bsize); | 
|  | const int max_depths = bsize_to_max_depth(bsize); | 
|  | const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); | 
|  |  | 
|  | assert(depth >= 0 && depth <= max_depths); | 
|  | assert(!is_inter_block(mbmi, xd->tree_type)); | 
|  | assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); | 
|  | aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], | 
|  | max_depths + 1); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  |  | 
|  | static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | int segment_id, const MB_MODE_INFO *mi, aom_writer *w) { | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { | 
|  | return 1; | 
|  | } else { | 
|  | const int skip_txfm = mi->skip_txfm[xd->tree_type == CHROMA_PART]; | 
|  | const int ctx = av1_get_skip_txfm_context(xd); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2); | 
|  | return skip_txfm; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | int segment_id, const MB_MODE_INFO *mi, | 
|  | aom_writer *w) { | 
|  | if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0; | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { | 
|  | return 0; | 
|  | } | 
|  | const int skip_mode = mi->skip_mode; | 
|  | if (!is_comp_ref_allowed(mi->sb_type[xd->tree_type == CHROMA_PART])) { | 
|  | assert(!skip_mode); | 
|  | return 0; | 
|  | } | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { | 
|  | // These features imply single-reference mode, while skip mode implies | 
|  | // compound reference. Hence, the two are mutually exclusive. | 
|  | // In other words, skip_mode is implicitly 0 here. | 
|  | assert(!skip_mode); | 
|  | return 0; | 
|  | } | 
|  | const int ctx = av1_get_skip_mode_context(xd); | 
|  | aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); | 
|  | return skip_mode; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_is_inter(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd, int segment_id, | 
|  | aom_writer *w, const int is_inter | 
|  | #if CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT | 
|  | , | 
|  | const int skip_txfm | 
|  | #endif  // CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT | 
|  | ) { | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { | 
|  | assert(is_inter); | 
|  | return; | 
|  | } | 
|  | const int ctx = av1_get_intra_inter_context(xd); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | #if CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT | 
|  | aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[skip_txfm][ctx], 2); | 
|  | #else | 
|  | aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); | 
|  | #endif  // CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT | 
|  | } | 
|  |  | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | static void write_wedge_mode(aom_writer *w, FRAME_CONTEXT *ec_ctx, | 
|  | const BLOCK_SIZE bsize, const int8_t wedge_index) { | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | (void)bsize; | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | const int wedge_angle = wedge_index_2_angle[wedge_index]; | 
|  | const int wedge_dist = wedge_index_2_dist[wedge_index]; | 
|  | const int wedge_angle_dir = (wedge_angle >= H_WEDGE_ANGLES); | 
|  | aom_write_symbol(w, wedge_angle_dir, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | ec_ctx->wedge_angle_dir_cdf, | 
|  | #else | 
|  | ec_ctx->wedge_angle_dir_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | 2); | 
|  |  | 
|  | if (wedge_angle_dir == 0) { | 
|  | aom_write_symbol(w, wedge_angle, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | ec_ctx->wedge_angle_0_cdf, | 
|  | #else | 
|  | ec_ctx->wedge_angle_0_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | H_WEDGE_ANGLES); | 
|  | } else { | 
|  | assert(wedge_angle >= H_WEDGE_ANGLES); | 
|  | aom_write_symbol(w, (wedge_angle - H_WEDGE_ANGLES), | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | ec_ctx->wedge_angle_1_cdf, | 
|  | #else | 
|  | ec_ctx->wedge_angle_1_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | H_WEDGE_ANGLES); | 
|  | } | 
|  |  | 
|  | if ((wedge_angle >= H_WEDGE_ANGLES) || | 
|  | (wedge_angle == WEDGE_90 || wedge_angle == WEDGE_180)) { | 
|  | assert(wedge_dist != 0); | 
|  | aom_write_symbol(w, wedge_dist - 1, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | ec_ctx->wedge_dist_cdf2, | 
|  | #else | 
|  | ec_ctx->wedge_dist_cdf2[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | NUM_WEDGE_DIST - 1); | 
|  | } else { | 
|  | aom_write_symbol(w, wedge_dist, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | ec_ctx->wedge_dist_cdf, | 
|  | #else | 
|  | ec_ctx->wedge_dist_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | NUM_WEDGE_DIST); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  |  | 
|  | static void write_warp_delta_param(const MACROBLOCKD *xd, int index, int value, | 
|  | aom_writer *w) { | 
|  | assert(2 <= index && index <= 5); | 
|  | int index_type = (index == 2 || index == 5) ? 0 : 1; | 
|  | int coded_value = (value / WARP_DELTA_STEP) + WARP_DELTA_CODED_MAX; | 
|  | assert(0 <= coded_value && coded_value < WARP_DELTA_NUM_SYMBOLS); | 
|  | // Check that the value will round-trip properly | 
|  | assert((coded_value - WARP_DELTA_CODED_MAX) * WARP_DELTA_STEP == value); | 
|  |  | 
|  | aom_write_symbol(w, coded_value, | 
|  | xd->tile_ctx->warp_delta_param_cdf[index_type], | 
|  | WARP_DELTA_NUM_SYMBOLS); | 
|  | } | 
|  |  | 
|  | static void write_warp_delta(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *mbmi, | 
|  | const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, | 
|  | aom_writer *w) { | 
|  | assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates); | 
|  | if (!allow_warp_parameter_signaling(cm, mbmi)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const WarpedMotionParams *params = &mbmi->wm_params[0]; | 
|  | WarpedMotionParams base_params; | 
|  | av1_get_warp_base_params(cm, mbmi, &base_params, NULL, | 
|  | mbmi_ext_frame->warp_param_stack); | 
|  |  | 
|  | // The RDO stage should not give us a model which is not warpable. | 
|  | // Such models can still be signalled, but are effectively useless | 
|  | // as we'll just fall back to translational motion | 
|  | assert(!params->invalid); | 
|  |  | 
|  | // TODO(rachelbarker): Allow signaling warp type? | 
|  | write_warp_delta_param(xd, 2, params->wmmat[2] - base_params.wmmat[2], w); | 
|  | write_warp_delta_param(xd, 3, params->wmmat[3] - base_params.wmmat[3], w); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_motion_mode( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, | 
|  | const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y]; | 
|  | const int allowed_motion_modes = | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | motion_mode_allowed(cm, xd, mbmi_ext_frame->ref_mv_stack[0], mbmi); | 
|  | #else | 
|  | motion_mode_allowed(cm, xd, mbmi_ext_frame->ref_mv_stack, mbmi); | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | assert((allowed_motion_modes & (1 << mbmi->motion_mode)) != 0); | 
|  | assert((cm->features.enabled_motion_modes & (1 << mbmi->motion_mode)) != 0); | 
|  |  | 
|  | MOTION_MODE motion_mode = mbmi->motion_mode; | 
|  |  | 
|  | // Note(rachelbarker): Both of the conditions in brackets here are used in | 
|  | // various places to mean "is this block interintra?". This assertion is a | 
|  | // quick check to ensure these conditions can't get out of sync. | 
|  | #if !CONFIG_INTERINTRA_IMPROVEMENT | 
|  | assert((mbmi->ref_frame[1] == INTRA_FRAME) == (motion_mode == INTERINTRA)); | 
|  | #endif  // !CONFIG_INTERINTRA_IMPROVEMENT | 
|  |  | 
|  | if (mbmi->mode == WARPMV) { | 
|  | assert(mbmi->motion_mode == WARP_DELTA || | 
|  | mbmi->motion_mode == WARPED_CAUSAL); | 
|  | // Signal if the motion mode is WARP_CAUSAL or WARP_DELTA | 
|  | if (allowed_motion_modes & (1 << WARPED_CAUSAL)) { | 
|  | aom_write_symbol(w, motion_mode == WARPED_CAUSAL, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | xd->tile_ctx->warped_causal_warpmv_cdf, | 
|  | #else | 
|  | xd->tile_ctx->warped_causal_warpmv_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | 2); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (allowed_motion_modes & (1 << INTERINTRA)) { | 
|  | const int bsize_group = size_group_lookup[bsize]; | 
|  | aom_write_symbol(w, motion_mode == INTERINTRA, | 
|  | xd->tile_ctx->interintra_cdf[bsize_group], 2); | 
|  | if (motion_mode == INTERINTRA) { | 
|  | aom_write_symbol(w, mbmi->interintra_mode, | 
|  | xd->tile_ctx->interintra_mode_cdf[bsize_group], | 
|  | INTERINTRA_MODES); | 
|  | if (av1_is_wedge_used(bsize)) { | 
|  | aom_write_symbol(w, mbmi->use_wedge_interintra, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | xd->tile_ctx->wedge_interintra_cdf, | 
|  | #else | 
|  | xd->tile_ctx->wedge_interintra_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | 2); | 
|  | if (mbmi->use_wedge_interintra) { | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | write_wedge_mode(w, xd->tile_ctx, bsize, | 
|  | mbmi->interintra_wedge_index); | 
|  | #else | 
|  | aom_write_symbol(w, mbmi->interintra_wedge_index, | 
|  | xd->tile_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (allowed_motion_modes & (1 << OBMC_CAUSAL)) { | 
|  | aom_write_symbol(w, motion_mode == OBMC_CAUSAL, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | xd->tile_ctx->obmc_cdf, | 
|  | #else | 
|  | xd->tile_ctx->obmc_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | 2); | 
|  |  | 
|  | if (motion_mode == OBMC_CAUSAL) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (allowed_motion_modes & (1 << WARP_EXTEND)) { | 
|  | #if CONFIG_OPTIMIZE_CTX_TIP_WARP | 
|  | const int ctx = av1_get_warp_extend_ctx(xd); | 
|  | aom_write_symbol(w, motion_mode == WARP_EXTEND, | 
|  | xd->tile_ctx->warp_extend_cdf[ctx], 2); | 
|  | #else | 
|  | const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi); | 
|  | const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi); | 
|  | aom_write_symbol(w, motion_mode == WARP_EXTEND, | 
|  | xd->tile_ctx->warp_extend_cdf[ctx1][ctx2], 2); | 
|  | #endif  // CONFIG_OPTIMIZE_CTX_TIP_WARP | 
|  | if (motion_mode == WARP_EXTEND) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (allowed_motion_modes & (1 << WARPED_CAUSAL)) { | 
|  | aom_write_symbol(w, motion_mode == WARPED_CAUSAL, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL | 
|  | xd->tile_ctx->warped_causal_cdf, | 
|  | #else | 
|  | xd->tile_ctx->warped_causal_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL | 
|  | 2); | 
|  |  | 
|  | if (motion_mode == WARPED_CAUSAL) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (allowed_motion_modes & (1 << WARP_DELTA)) { | 
|  | aom_write_symbol(w, motion_mode == WARP_DELTA, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | xd->tile_ctx->warp_delta_cdf, | 
|  | #else | 
|  | xd->tile_ctx->warp_delta_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd, | 
|  | int delta_qindex, aom_writer *w) { | 
|  | int sign = delta_qindex < 0; | 
|  | int abs = sign ? -delta_qindex : delta_qindex; | 
|  | int rem_bits, thr; | 
|  | int smallval = abs < DELTA_Q_SMALL ? 1 : 0; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, | 
|  | DELTA_Q_PROBS + 1); | 
|  |  | 
|  | if (!smallval) { | 
|  | rem_bits = get_msb(abs - 1); | 
|  | thr = (1 << rem_bits) + 1; | 
|  | aom_write_literal(w, rem_bits - 1, 3); | 
|  | aom_write_literal(w, abs - thr, rem_bits); | 
|  | } | 
|  | if (abs > 0) { | 
|  | aom_write_bit(w, sign); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd, int lf_id, | 
|  | int delta_lflevel, aom_writer *w) { | 
|  | int sign = delta_lflevel < 0; | 
|  | int abs = sign ? -delta_lflevel : delta_lflevel; | 
|  | int rem_bits, thr; | 
|  | int smallval = abs < DELTA_LF_SMALL ? 1 : 0; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | if (cm->delta_q_info.delta_lf_multi) { | 
|  | assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT | 
|  | : FRAME_LF_COUNT - 2)); | 
|  | aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), | 
|  | ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); | 
|  | } else { | 
|  | aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, | 
|  | DELTA_LF_PROBS + 1); | 
|  | } | 
|  |  | 
|  | if (!smallval) { | 
|  | rem_bits = get_msb(abs - 1); | 
|  | thr = (1 << rem_bits) + 1; | 
|  | aom_write_literal(w, rem_bits - 1, 3); | 
|  | aom_write_literal(w, abs - thr, rem_bits); | 
|  | } | 
|  | if (abs > 0) { | 
|  | aom_write_bit(w, sign); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_PALETTE_IMPROVEMENTS | 
|  | static AOM_INLINE void pack_map_tokens(const MACROBLOCKD *xd, aom_writer *w, | 
|  | const TokenExtra **tp, int n, int cols, | 
|  | int rows, int plane | 
|  | #if CONFIG_PALETTE_LINE_COPY | 
|  | , | 
|  | const bool direction_allowed | 
|  | #endif  // CONFIG_PALETTE_LINE_COPY | 
|  |  | 
|  | ) { | 
|  | const TokenExtra *p = *tp; | 
|  | #if CONFIG_PALETTE_LINE_COPY | 
|  | const int direction = (direction_allowed) ? p->direction : 0; | 
|  | if (direction_allowed) { | 
|  | aom_write_symbol(w, p->direction, xd->tile_ctx->palette_direction_cdf, 2); | 
|  | } | 
|  | #else | 
|  | const int direction = 0; | 
|  | #endif  // CONFIG_PALETTE_LINE_COPY | 
|  | const int ax1_limit = direction ? rows : cols; | 
|  | const int ax2_limit = direction ? cols : rows; | 
|  |  | 
|  | // for (int y = 0; y < rows; y++) { | 
|  | for (int ax2 = 0; ax2 < ax2_limit; ax2++) { | 
|  | assert(p->identity_row_ctx >= 0 && | 
|  | p->identity_row_ctx < PALETTE_ROW_FLAG_CONTEXTS); | 
|  | int identity_row_flag = p->identity_row_flag; | 
|  | const int ctx = p->identity_row_ctx; | 
|  | // Derive the cdf corresponding to identity_row using the context | 
|  | // (i.e.,identify_row_ctx) stored during the encoding. | 
|  | aom_cdf_prob *identity_row_cdf = | 
|  | plane ? xd->tile_ctx->identity_row_cdf_uv[ctx] | 
|  | : xd->tile_ctx->identity_row_cdf_y[ctx]; | 
|  |  | 
|  | #if CONFIG_PALETTE_LINE_COPY | 
|  | aom_write_symbol(w, identity_row_flag, identity_row_cdf, 3); | 
|  | #else | 
|  | aom_write_symbol(w, identity_row_flag, identity_row_cdf, 2); | 
|  | #endif  // CONFIG_PALETTE_LINE_COPY | 
|  | // for (int x = 0; x < cols; x++) { | 
|  | for (int ax1 = 0; ax1 < ax1_limit; ax1++) { | 
|  | // if (y == 0 && x == 0) { | 
|  | if (ax2 == 0 && ax1 == 0) { | 
|  | write_uniform(w, n, p->token); | 
|  | } else { | 
|  | #if CONFIG_PALETTE_LINE_COPY | 
|  | if (!(identity_row_flag == 2) && | 
|  | (!(identity_row_flag == 1) || ax1 == 0)) { | 
|  | #else | 
|  | if (!identity_row_flag || ax1 == 0) { | 
|  | #endif  // CONFIG_PALETTE_LINE_COPY | 
|  | assert(p->color_map_palette_size_idx >= 0 && | 
|  | p->color_map_ctx_idx >= 0); | 
|  | aom_cdf_prob *color_map_pb_cdf = | 
|  | plane ? xd->tile_ctx->palette_uv_color_index_cdf | 
|  | [p->color_map_palette_size_idx][p->color_map_ctx_idx] | 
|  | : xd->tile_ctx->palette_y_color_index_cdf | 
|  | [p->color_map_palette_size_idx][p->color_map_ctx_idx]; | 
|  | aom_write_symbol(w, p->token, color_map_pb_cdf, n); | 
|  | } | 
|  | } | 
|  | #if CONFIG_PALETTE_LINE_COPY | 
|  | p++; | 
|  | #else | 
|  | if (!identity_row_flag || ax1 == 0) p++; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | *tp = p; | 
|  | } | 
|  | #else | 
|  | static AOM_INLINE void pack_map_tokens(const MACROBLOCKD *xd, aom_writer *w, | 
|  | const TokenExtra **tp, int n, int num, | 
|  | int plane) { | 
|  | const TokenExtra *p = *tp; | 
|  | write_uniform(w, n, p->token);  // The first color index. | 
|  | ++p; | 
|  | --num; | 
|  | for (int i = 0; i < num; ++i) { | 
|  | assert(p->color_map_palette_size_idx >= 0 && p->color_map_ctx_idx >= 0); | 
|  | aom_cdf_prob *color_map_pb_cdf = | 
|  | plane ? xd->tile_ctx | 
|  | ->palette_uv_color_index_cdf[p->color_map_palette_size_idx] | 
|  | [p->color_map_ctx_idx] | 
|  | : xd->tile_ctx | 
|  | ->palette_y_color_index_cdf[p->color_map_palette_size_idx] | 
|  | [p->color_map_ctx_idx]; | 
|  | aom_write_symbol(w, p->token, color_map_pb_cdf, n); | 
|  | ++p; | 
|  | } | 
|  | *tp = p; | 
|  | } | 
|  | #endif  // CONFIG_PALETTE_IMPROVEMENTS | 
|  |  | 
|  | static AOM_INLINE void av1_write_coeffs_txb_facade( | 
|  | aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, MACROBLOCKD *xd, | 
|  | MB_MODE_INFO *mbmi, int plane, int block, int blk_row, int blk_col, | 
|  | TX_SIZE tx_size) { | 
|  | // code significance and TXB | 
|  | const int code_rest = | 
|  | av1_write_sig_txtype(cm, x, w, blk_row, blk_col, plane, block, tx_size); | 
|  | const TX_TYPE tx_type = | 
|  | av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size, | 
|  | cm->features.reduced_tx_set_used); | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | if (code_rest) { | 
|  | if ((mbmi->fsc_mode[xd->tree_type == CHROMA_PART] && | 
|  | get_primary_tx_type(tx_type) == IDTX && plane == PLANE_TYPE_Y) || | 
|  | use_inter_fsc(cm, plane, tx_type, is_inter)) { | 
|  | av1_write_coeffs_txb_skip(cm, x, w, blk_row, blk_col, plane, block, | 
|  | tx_size); | 
|  | } else { | 
|  | av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void pack_txb_tokens( | 
|  | aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp, | 
|  | const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, | 
|  | int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block, | 
|  | int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) { | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); | 
|  | const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); | 
|  | const TX_SIZE plane_tx_size = | 
|  | plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, | 
|  | pd->subsampling_y) | 
|  | : mbmi->inter_tx_size[index]; | 
|  | #else | 
|  | const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); | 
|  | const TX_SIZE plane_tx_size = | 
|  | plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, | 
|  | pd->subsampling_y) | 
|  | : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, | 
|  | blk_col)]; | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  | #else | 
|  | const TX_SIZE plane_tx_size = | 
|  | plane ? av1_get_max_uv_txsize(mbmi->sb_type[plane > 0], pd->subsampling_x, | 
|  | pd->subsampling_y) | 
|  | : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, | 
|  | blk_col)]; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | if (tx_size == plane_tx_size || plane) { | 
|  | av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, blk_row, | 
|  | blk_col, tx_size); | 
|  | #if CONFIG_RD_DEBUG | 
|  | TOKEN_STATS tmp_token_stats; | 
|  | init_token_stats(&tmp_token_stats); | 
|  | token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; | 
|  | token_stats->cost += tmp_token_stats.cost; | 
|  | #endif | 
|  | } else { | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | (void)tp; | 
|  | (void)tok_end; | 
|  | (void)token_stats; | 
|  | (void)bit_depth; | 
|  | TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; | 
|  | TXB_POS_INFO txb_pos; | 
|  | get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, &txb_pos, | 
|  | sub_txs); | 
|  | for (int txb_idx = 0; txb_idx < txb_pos.n_partitions; ++txb_idx) { | 
|  | const TX_SIZE sub_tx = sub_txs[txb_idx]; | 
|  | const int bsw = tx_size_wide_unit[sub_tx]; | 
|  | const int bsh = tx_size_high_unit[sub_tx]; | 
|  | const int sub_step = bsw * bsh; | 
|  | const int offsetr = blk_row + txb_pos.row_offset[txb_idx]; | 
|  | const int offsetc = blk_col + txb_pos.col_offset[txb_idx]; | 
|  | if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
|  | av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, offsetr, | 
|  | offsetc, sub_tx); | 
|  | #if CONFIG_RD_DEBUG | 
|  | TOKEN_STATS tmp_token_stats; | 
|  | init_token_stats(&tmp_token_stats); | 
|  | token_stats->txb_coeff_cost_map[offsetr][offsetc] = tmp_token_stats.cost; | 
|  | token_stats->cost += tmp_token_stats.cost; | 
|  | #endif | 
|  | block += sub_step; | 
|  | } | 
|  |  | 
|  | #else | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  | const int step = bsh * bsw; | 
|  |  | 
|  | assert(bsw > 0 && bsh > 0); | 
|  |  | 
|  | for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { | 
|  | for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { | 
|  | const int offsetr = blk_row + r; | 
|  | const int offsetc = blk_col + c; | 
|  | if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
|  | pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, | 
|  | bit_depth, block, offsetr, offsetc, sub_txs, | 
|  | token_stats); | 
|  | block += step; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void set_spatial_segment_id( | 
|  | const CommonModeInfoParams *const mi_params, uint8_t *segment_ids, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) { | 
|  | const int mi_offset = mi_row * mi_params->mi_cols + mi_col; | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw); | 
|  | const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh); | 
|  |  | 
|  | for (int y = 0; y < ymis; ++y) { | 
|  | for (int x = 0; x < xmis; ++x) { | 
|  | segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_neg_interleave(int x, int ref, int max) { | 
|  | assert(x < max); | 
|  | const int diff = x - ref; | 
|  | if (!ref) return x; | 
|  | if (ref >= (max - 1)) return -x + max - 1; | 
|  | if (2 * ref < max) { | 
|  | if (abs(diff) <= ref) { | 
|  | if (diff > 0) | 
|  | return (diff << 1) - 1; | 
|  | else | 
|  | return ((-diff) << 1); | 
|  | } | 
|  | return x; | 
|  | } else { | 
|  | if (abs(diff) < (max - ref)) { | 
|  | if (diff > 0) | 
|  | return (diff << 1) - 1; | 
|  | else | 
|  | return ((-diff) << 1); | 
|  | } | 
|  | return (max - x) - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_segment_id(AV1_COMP *cpi, | 
|  | const MB_MODE_INFO *const mbmi, | 
|  | aom_writer *w, | 
|  | const struct segmentation *seg, | 
|  | struct segmentation_probs *segp, | 
|  | int skip_txfm) { | 
|  | if (!seg->enabled || !seg->update_map) return; | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | int cdf_num; | 
|  | const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num); | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  |  | 
|  | if (skip_txfm) { | 
|  | // Still need to transmit tx size for intra blocks even if skip_txfm is | 
|  | // true. Changing segment_id may make the tx size become invalid, e.g | 
|  | // changing from lossless to lossy. | 
|  | assert(is_inter_block(mbmi, xd->tree_type) || | 
|  | !cpi->enc_seg.has_lossless_segment); | 
|  | set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, | 
|  | mi_col, pred); | 
|  | set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, | 
|  | mi_col, pred); | 
|  | /* mbmi is read only but we need to update segment_id */ | 
|  | ((MB_MODE_INFO *)mbmi)->segment_id = pred; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int coded_id = | 
|  | av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); | 
|  | aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; | 
|  | aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS); | 
|  | set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, | 
|  | mi_col, mbmi->segment_id); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_single_ref( | 
|  | const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info, | 
|  | aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | MV_REFERENCE_FRAME ref = mbmi->ref_frame[0]; | 
|  | const int n_refs = ref_frames_info->num_total_refs; | 
|  | assert(ref < n_refs); | 
|  | for (int i = 0; i < n_refs - 1; i++) { | 
|  | const int bit = ref == i; | 
|  | aom_write_symbol(w, bit, av1_get_pred_cdf_single_ref(xd, i, n_refs), 2); | 
|  | if (bit) return; | 
|  | } | 
|  | assert(ref == (n_refs - 1)); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_compound_ref( | 
|  | const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info, | 
|  | aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; | 
|  | MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; | 
|  | const int n_refs = ref_frames_info->num_total_refs; | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | int may_have_same_ref_comp = ref_frames_info->num_same_ref_compound > 0; | 
|  | if (ref_frames_info->num_same_ref_compound > 0) { | 
|  | assert(n_refs >= 1); | 
|  | assert(ref0 <= ref1); | 
|  | } else { | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | assert(n_refs >= 2); | 
|  | assert(ref0 < ref1); | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | } | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | int n_bits = 0; | 
|  |  | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | for (int i = 0; | 
|  | (i < n_refs + n_bits - 2 || may_have_same_ref_comp) && n_bits < 2; i++) { | 
|  | const int bit = | 
|  | ((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i)); | 
|  | #else | 
|  | for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) { | 
|  | const int bit = ref0 == i || ref1 == i; | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | // bit_type: -1 for ref0, 0 for opposite sided ref1, 1 for same sided ref1 | 
|  | const int bit_type = | 
|  | n_bits == 0 ? -1 | 
|  | : av1_get_compound_ref_bit_type(ref_frames_info, ref0, i); | 
|  | // Implicitly signal a 1 in either case: | 
|  | // 1) ref0 = RANKED_REF0_TO_PRUNE - 1 | 
|  | // 2) no reference is signaled yet, the next ref is not allowed for same | 
|  | //    ref compound, and there are only two references left (this case | 
|  | //    should only be met when same ref compound is on, where the | 
|  | //    following bit may be 0 or 1). | 
|  | int implicit_ref_bit = n_bits == 0 && i >= RANKED_REF0_TO_PRUNE - 1; | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | implicit_ref_bit |= n_bits == 0 && i >= n_refs - 2 && | 
|  | i + 1 >= ref_frames_info->num_same_ref_compound; | 
|  | assert(IMPLIES(n_bits == 0 && i >= n_refs - 2, | 
|  | i < ref_frames_info->num_same_ref_compound)); | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | if (!implicit_ref_bit) { | 
|  | aom_write_symbol( | 
|  | w, bit, | 
|  | av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs), 2); | 
|  | } | 
|  | n_bits += bit; | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | if (i < ref_frames_info->num_same_ref_compound && may_have_same_ref_comp) { | 
|  | may_have_same_ref_comp = | 
|  | !bit && i + 1 < ref_frames_info->num_same_ref_compound; | 
|  | i -= bit; | 
|  | } else { | 
|  | may_have_same_ref_comp = 0; | 
|  | } | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | } | 
|  | assert(IMPLIES(n_bits < 2, ref1 == n_refs - 1)); | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | if (ref_frames_info->num_same_ref_compound == 0) | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | assert(IMPLIES(n_bits < 1, ref0 == n_refs - 2)); | 
|  | } | 
|  |  | 
|  | // This function encodes the reference frame | 
|  | static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd, aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int is_compound = has_second_ref(mbmi); | 
|  | const int segment_id = mbmi->segment_id; | 
|  |  | 
|  | // If segment level coding of this signal is disabled... | 
|  | // or the segment allows multiple reference frame options | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || | 
|  | segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { | 
|  | assert(mbmi->ref_frame[0] == get_closest_pastcur_ref_index(cm)); | 
|  | assert(!is_compound); | 
|  | } else { | 
|  | // does the feature use compound prediction or not | 
|  | // (if not specified at the frame/segment level) | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { | 
|  | if (is_comp_ref_allowed(mbmi->sb_type[PLANE_TYPE_Y])) | 
|  | aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(cm, xd), 2); | 
|  | } else { | 
|  | assert((!is_compound) == | 
|  | (cm->current_frame.reference_mode == SINGLE_REFERENCE)); | 
|  | } | 
|  |  | 
|  | if (is_compound) { | 
|  | write_compound_ref(xd, &cm->ref_frames_info, w); | 
|  | } else { | 
|  | write_single_ref(xd, &cm->ref_frames_info, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_filter_intra_mode_info( | 
|  | const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, | 
|  | aom_writer *w) { | 
|  | if (av1_filter_intra_allowed(cm, mbmi | 
|  | #if CONFIG_LOSSLESS_DPCM | 
|  | , | 
|  | xd | 
|  | #endif | 
|  | ) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | xd->tile_ctx->filter_intra_cdfs, | 
|  | #else | 
|  | xd->tile_ctx | 
|  | ->filter_intra_cdfs[mbmi->sb_type[PLANE_TYPE_Y]], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | 2); | 
|  | if (mbmi->filter_intra_mode_info.use_filter_intra) { | 
|  | const FILTER_INTRA_MODE mode = | 
|  | mbmi->filter_intra_mode_info.filter_intra_mode; | 
|  | aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, | 
|  | FILTER_INTRA_MODES); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_AIMC | 
|  | static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta, | 
|  | aom_cdf_prob *cdf) { | 
|  | aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, | 
|  | 2 * MAX_ANGLE_DELTA + 1); | 
|  | } | 
|  | #endif  // !CONFIG_AIMC | 
|  |  | 
|  | static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm, | 
|  | const MACROBLOCKD *xd, | 
|  | aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | if (!av1_is_interp_needed(cm, xd)) { | 
|  | #if CONFIG_DEBUG | 
|  | // Sharp filter is always used whenever optical flow refinement is applied. | 
|  | int mb_interp_filter = (opfl_allowed_for_cur_block(cm, | 
|  |  | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | xd, | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | mbmi) | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | || mbmi->refinemv_flag | 
|  | #endif  // CONFIG_REFINEMV | 
|  | || is_tip_ref_frame(mbmi->ref_frame[0])) | 
|  | ? MULTITAP_SHARP | 
|  | : cm->features.interp_filter; | 
|  | assert(mbmi->interp_fltr == av1_unswitchable_filter(mb_interp_filter)); | 
|  | (void)mb_interp_filter; | 
|  | #endif  // CONFIG_DEBUG | 
|  | return; | 
|  | } | 
|  | if (cm->features.interp_filter == SWITCHABLE) { | 
|  | if (opfl_allowed_for_cur_block(cm, | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | xd, | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | mbmi) | 
|  | #if CONFIG_REFINEMV | 
|  | || mbmi->refinemv_flag | 
|  | #endif  // CONFIG_REFINEMV | 
|  | || is_tip_ref_frame(mbmi->ref_frame[0])) { | 
|  | assert(mbmi->interp_fltr == MULTITAP_SHARP); | 
|  | return; | 
|  | } | 
|  | const int ctx = av1_get_pred_context_switchable_interp(xd, 0); | 
|  | const InterpFilter filter = mbmi->interp_fltr; | 
|  | aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], | 
|  | SWITCHABLE_FILTERS); | 
|  | ++cm->cur_frame->interp_filter_selected[filter]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transmit color values with delta encoding. Write the first value as | 
|  | // literal, and the deltas between each value and the previous one. "min_val" is | 
|  | // the smallest possible value of the deltas. | 
|  | static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num, | 
|  | int bit_depth, int min_val, | 
|  | aom_writer *w) { | 
|  | if (num <= 0) return; | 
|  | assert(colors[0] < (1 << bit_depth)); | 
|  | aom_write_literal(w, colors[0], bit_depth); | 
|  | if (num == 1) return; | 
|  | int max_delta = 0; | 
|  | int deltas[PALETTE_MAX_SIZE]; | 
|  | memset(deltas, 0, sizeof(deltas)); | 
|  | for (int i = 1; i < num; ++i) { | 
|  | assert(colors[i] < (1 << bit_depth)); | 
|  | const int delta = colors[i] - colors[i - 1]; | 
|  | deltas[i - 1] = delta; | 
|  | assert(delta >= min_val); | 
|  | if (delta > max_delta) max_delta = delta; | 
|  | } | 
|  | const int min_bits = bit_depth - 3; | 
|  | int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); | 
|  | assert(bits <= bit_depth); | 
|  | int range = (1 << bit_depth) - colors[0] - min_val; | 
|  | aom_write_literal(w, bits - min_bits, 2); | 
|  | for (int i = 0; i < num - 1; ++i) { | 
|  | aom_write_literal(w, deltas[i] - min_val, bits); | 
|  | range -= deltas[i]; | 
|  | bits = AOMMIN(bits, av1_ceil_log2(range)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transmit luma palette color values. First signal if each color in the color | 
|  | // cache is used. Those colors that are not in the cache are transmitted with | 
|  | // delta encoding. | 
|  | static AOM_INLINE void write_palette_colors_y( | 
|  | const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, | 
|  | int bit_depth, aom_writer *w) { | 
|  | const int n = pmi->palette_size[0]; | 
|  | uint16_t color_cache[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_cache = av1_get_palette_cache(xd, 0, color_cache); | 
|  | int out_cache_colors[PALETTE_MAX_SIZE]; | 
|  | uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_out_cache = | 
|  | av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, | 
|  | cache_color_found, out_cache_colors); | 
|  | int n_in_cache = 0; | 
|  | for (int i = 0; i < n_cache && n_in_cache < n; ++i) { | 
|  | const int found = cache_color_found[i]; | 
|  | aom_write_bit(w, found); | 
|  | n_in_cache += found; | 
|  | } | 
|  | assert(n_in_cache + n_out_cache == n); | 
|  | delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); | 
|  | } | 
|  |  | 
|  | // Write chroma palette color values. U channel is handled similarly to the luma | 
|  | // channel. For v channel, either use delta encoding or transmit raw values | 
|  | // directly, whichever costs less. | 
|  | static AOM_INLINE void write_palette_colors_uv( | 
|  | const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, | 
|  | int bit_depth, aom_writer *w) { | 
|  | const int n = pmi->palette_size[1]; | 
|  | const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; | 
|  | const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; | 
|  | // U channel colors. | 
|  | uint16_t color_cache[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_cache = av1_get_palette_cache(xd, 1, color_cache); | 
|  | int out_cache_colors[PALETTE_MAX_SIZE]; | 
|  | uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_out_cache = av1_index_color_cache( | 
|  | color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); | 
|  | int n_in_cache = 0; | 
|  | for (int i = 0; i < n_cache && n_in_cache < n; ++i) { | 
|  | const int found = cache_color_found[i]; | 
|  | aom_write_bit(w, found); | 
|  | n_in_cache += found; | 
|  | } | 
|  | delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); | 
|  |  | 
|  | // V channel colors. Don't use color cache as the colors are not sorted. | 
|  | const int max_val = 1 << bit_depth; | 
|  | int zero_count = 0, min_bits_v = 0; | 
|  | int bits_v = | 
|  | av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); | 
|  | const int rate_using_delta = | 
|  | 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; | 
|  | const int rate_using_raw = bit_depth * n; | 
|  | if (rate_using_delta < rate_using_raw) {  // delta encoding | 
|  | assert(colors_v[0] < (1 << bit_depth)); | 
|  | aom_write_bit(w, 1); | 
|  | aom_write_literal(w, bits_v - min_bits_v, 2); | 
|  | aom_write_literal(w, colors_v[0], bit_depth); | 
|  | for (int i = 1; i < n; ++i) { | 
|  | assert(colors_v[i] < (1 << bit_depth)); | 
|  | if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit. | 
|  | aom_write_literal(w, 0, bits_v); | 
|  | continue; | 
|  | } | 
|  | const int delta = abs((int)colors_v[i] - colors_v[i - 1]); | 
|  | const int sign_bit = colors_v[i] < colors_v[i - 1]; | 
|  | if (delta <= max_val - delta) { | 
|  | aom_write_literal(w, delta, bits_v); | 
|  | aom_write_bit(w, sign_bit); | 
|  | } else { | 
|  | aom_write_literal(w, max_val - delta, bits_v); | 
|  | aom_write_bit(w, !sign_bit); | 
|  | } | 
|  | } | 
|  | } else {  // Transmit raw values. | 
|  | aom_write_bit(w, 0); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | assert(colors_v[i] < (1 << bit_depth)); | 
|  | aom_write_literal(w, colors_v[i], bit_depth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *const mbmi, | 
|  | aom_writer *w) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize)); | 
|  | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); | 
|  | if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) { | 
|  | const int n = pmi->palette_size[0]; | 
|  | const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); | 
|  | aom_write_symbol( | 
|  | w, n > 0, | 
|  | xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); | 
|  | if (n > 0) { | 
|  | aom_write_symbol(w, n - PALETTE_MIN_SIZE, | 
|  | xd->tile_ctx->palette_y_size_cdf[bsize_ctx], | 
|  | PALETTE_SIZES); | 
|  | write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | const int uv_dc_pred = num_planes > 1 && xd->tree_type != LUMA_PART && | 
|  | mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref; | 
|  | if (uv_dc_pred) { | 
|  | const int n = pmi->palette_size[1]; | 
|  | const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); | 
|  | aom_write_symbol(w, n > 0, | 
|  | xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); | 
|  | if (n > 0) { | 
|  | aom_write_symbol(w, n - PALETTE_MIN_SIZE, | 
|  | xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], | 
|  | PALETTE_SIZES); | 
|  | write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
|  | TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w, | 
|  | const int plane, const int eob, const int dc_skip) { | 
|  | if (plane != PLANE_TYPE_Y || dc_skip) return; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | PREDICTION_MODE intra_dir; | 
|  | if (mbmi->filter_intra_mode_info.use_filter_intra) | 
|  | intra_dir = | 
|  | fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; | 
|  | else | 
|  | intra_dir = get_intra_mode(mbmi, AOM_PLANE_Y); | 
|  | const FeatureFlags *const features = &cm->features; | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 && | 
|  | ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || | 
|  | (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && | 
|  | !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && | 
|  | !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | #if CONFIG_TX_TYPE_FLEX_IMPROVE | 
|  | const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; | 
|  | #endif  // CONFIG_TX_TYPE_FLEX_IMPROVE | 
|  | const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; | 
|  | const TxSetType tx_set_type = av1_get_ext_tx_set_type( | 
|  | tx_size, is_inter, features->reduced_tx_set_used); | 
|  | const int eset = | 
|  | get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used); | 
|  | // eset == 0 should correspond to a set with only DCT_DCT and there | 
|  | // is no need to send the tx_type | 
|  | assert(eset > 0); | 
|  | const int size_info = av1_size_class[tx_size]; | 
|  | if (!is_inter) { | 
|  | const int mode_info = av1_md_class[intra_dir]; | 
|  | (void)mode_info; | 
|  | assert(tx_set_type == EXT_NEW_TX_SET | 
|  | ? av1_mdtx_used_flag[av1_size_class[tx_size]][mode_info] | 
|  | [get_primary_tx_type(tx_type)] | 
|  | : av1_ext_tx_used[tx_set_type][get_primary_tx_type(tx_type)]); | 
|  | } | 
|  |  | 
|  | if (is_inter) { | 
|  | const int eob_tx_ctx = get_lp2tx_ctx(tx_size, get_txb_bwl(tx_size), eob); | 
|  | #if CONFIG_TX_TYPE_FLEX_IMPROVE | 
|  | if (tx_set_type != EXT_TX_SET_LONG_SIDE_64 && | 
|  | tx_set_type != EXT_TX_SET_LONG_SIDE_32) { | 
|  | aom_write_symbol( | 
|  | w, av1_ext_tx_ind[tx_set_type][get_primary_tx_type(tx_type)], | 
|  | ec_ctx->inter_ext_tx_cdf[eset][eob_tx_ctx][square_tx_size], | 
|  | av1_num_ext_tx_set[tx_set_type]); | 
|  | } else { | 
|  | bool is_long_side_dct = | 
|  | is_dct_type(tx_size, get_primary_tx_type(tx_type)); | 
|  | if (tx_size_sqr_up == TX_32X32) { | 
|  | aom_write_symbol(w, is_long_side_dct, ec_ctx->tx_ext_32_cdf[is_inter], | 
|  | 2); | 
|  | } | 
|  | int tx_type_idx = get_idx_from_txtype_for_large_txfm( | 
|  | tx_set_type, get_primary_tx_type(tx_type), | 
|  | is_long_side_dct);  // 0: DCT_DCT, 1: ADST, 2: FLIPADST, | 
|  | // 3: Identity | 
|  |  | 
|  | aom_write_symbol( | 
|  | w, tx_type_idx, | 
|  | ec_ctx->inter_ext_tx_short_side_cdf[eob_tx_ctx][square_tx_size], 4); | 
|  | } | 
|  | #else | 
|  | aom_write_symbol( | 
|  | w, av1_ext_tx_ind[tx_set_type][get_primary_tx_type(tx_type)], | 
|  | ec_ctx->inter_ext_tx_cdf[eset][eob_tx_ctx][square_tx_size], | 
|  | av1_num_ext_tx_set[tx_set_type]); | 
|  | #endif  // CONFIG_TX_TYPE_FLEX_IMPROVE | 
|  | } else { | 
|  | if (mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) { | 
|  | return; | 
|  | } | 
|  | #if CONFIG_TX_TYPE_FLEX_IMPROVE | 
|  | if (tx_set_type != EXT_TX_SET_LONG_SIDE_64 && | 
|  | tx_set_type != EXT_TX_SET_LONG_SIDE_32) { | 
|  | aom_write_symbol( | 
|  | w, | 
|  | av1_tx_type_to_idx(get_primary_tx_type(tx_type), tx_set_type, | 
|  | intra_dir, size_info), | 
|  | #if CONFIG_INTRA_TX_IST_PARSE | 
|  | ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] | 
|  | [square_tx_size], | 
|  | #else | 
|  | ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] | 
|  | [square_tx_size][intra_dir], | 
|  | #endif  // CONFIG_INTRA_TX_IST_PARSE | 
|  | features->reduced_tx_set_used | 
|  | ? av1_num_reduced_tx_set | 
|  | : av1_num_ext_tx_set_intra[tx_set_type]); | 
|  | } else { | 
|  | int is_long_side_dct = | 
|  | is_dct_type(tx_size, get_primary_tx_type(tx_type)); | 
|  | if (tx_size_sqr_up == TX_32X32) { | 
|  | aom_write_symbol(w, is_long_side_dct, ec_ctx->tx_ext_32_cdf[is_inter], | 
|  | 2); | 
|  | } | 
|  |  | 
|  | int tx_type_idx = get_idx_from_txtype_for_large_txfm( | 
|  | tx_set_type, get_primary_tx_type(tx_type), | 
|  | is_long_side_dct);  // 0: DCT_DCT, 1: ADST, 2: FLIPADST, | 
|  | // 3: Identity | 
|  | aom_write_symbol(w, tx_type_idx, | 
|  | ec_ctx->intra_ext_tx_short_side_cdf[square_tx_size], | 
|  | 4); | 
|  | } | 
|  | #else | 
|  | aom_write_symbol( | 
|  | w, | 
|  | av1_tx_type_to_idx(get_primary_tx_type(tx_type), tx_set_type, | 
|  | intra_dir, size_info), | 
|  | #if CONFIG_INTRA_TX_IST_PARSE | 
|  | ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] | 
|  | [square_tx_size], | 
|  | #else | 
|  | ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] | 
|  | [square_tx_size][intra_dir], | 
|  | #endif  // CONFIG_INTRA_TX_IST_PARSE | 
|  | features->reduced_tx_set_used | 
|  | ? av1_num_reduced_tx_set | 
|  | : av1_num_ext_tx_set_intra[tx_set_type]); | 
|  | #endif  // CONFIG_TX_TYPE_FLEX_IMPROVE | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_write_cctx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
|  | CctxType cctx_type, TX_SIZE tx_size, aom_writer *w) { | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | assert(xd->is_chroma_ref); | 
|  | if (((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || | 
|  | (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && | 
|  | !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && | 
|  | !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; | 
|  | int above_cctx, left_cctx; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | get_above_and_left_cctx_type(cm, xd, &above_cctx, &left_cctx); | 
|  | #else | 
|  | get_above_and_left_cctx_type(cm, xd, tx_size, &above_cctx, &left_cctx); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int cctx_ctx = get_cctx_context(xd, &above_cctx, &left_cctx); | 
|  | aom_write_symbol(w, cctx_type, | 
|  | ec_ctx->cctx_type_cdf[square_tx_size][cctx_ctx], | 
|  | CCTX_TYPES); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function writes a 'secondary tx set' onto the bitstream | 
|  | static void write_sec_tx_set(FRAME_CONTEXT *ec_ctx, aom_writer *w, | 
|  | MB_MODE_INFO *mbmi, TX_TYPE tx_type | 
|  | #if CONFIG_IST_INTER_MULTISET | 
|  | , | 
|  | int is_inter | 
|  | #endif | 
|  | ) { | 
|  | TX_TYPE stx_set_flag = get_secondary_tx_set(tx_type); | 
|  | assert(stx_set_flag <= IST_SET_SIZE - 1); | 
|  | #if CONFIG_IST_INTER_MULTISET | 
|  | if (is_inter) { | 
|  | assert(stx_set_flag < IST_DIR_SIZE); | 
|  | aom_write_symbol(w, stx_set_flag, ec_ctx->inter_stx_set_cdf, 2); | 
|  | } else { | 
|  | #endif | 
|  | #if !CONFIG_IST_REDUCE_METHOD1 | 
|  | if (get_primary_tx_type(tx_type) == ADST_ADST) stx_set_flag -= IST_DIR_SIZE; | 
|  | #endif | 
|  | assert(stx_set_flag < IST_DIR_SIZE); | 
|  | uint8_t intra_mode = get_intra_mode(mbmi, PLANE_TYPE_Y); | 
|  | #if CONFIG_INTRA_TX_IST_PARSE | 
|  | aom_write_symbol(w, most_probable_stx_mapping[intra_mode][stx_set_flag], | 
|  | ec_ctx->most_probable_stx_set_cdf, IST_DIR_SIZE); | 
|  | #else | 
|  | uint8_t stx_set_ctx = stx_transpose_mapping[intra_mode]; | 
|  | assert(stx_set_ctx < IST_DIR_SIZE); | 
|  | aom_write_symbol(w, stx_set_flag, ec_ctx->stx_set_cdf[stx_set_ctx], | 
|  | IST_DIR_SIZE); | 
|  | #endif  // CONFIG_INTRA_TX_IST_PARSE | 
|  | #if CONFIG_IST_INTER_MULTISET | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void av1_write_sec_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
|  | TX_TYPE tx_type, TX_SIZE tx_size, uint16_t eob, | 
|  | aom_writer *w) { | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const FeatureFlags *const features = &cm->features; | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 && | 
|  | ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || | 
|  | (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && | 
|  | !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && | 
|  | !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; | 
|  | const TX_TYPE stx_flag = get_secondary_tx_type(tx_type); | 
|  | assert(stx_flag <= STX_TYPES - 1); | 
|  | if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) { | 
|  | aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[is_inter][square_tx_size], | 
|  | STX_TYPES); | 
|  | #if CONFIG_IST_SET_FLAG | 
|  | #if CONFIG_IST_INTER_MULTISET | 
|  | if (stx_flag > 0) write_sec_tx_set(ec_ctx, w, mbmi, tx_type, is_inter); | 
|  | #else | 
|  | if (stx_flag > 0 && !is_inter) write_sec_tx_set(ec_ctx, w, mbmi, tx_type); | 
|  | #endif | 
|  | #endif  // CONFIG_IST_SET_FLAG | 
|  | } | 
|  | } else if (!xd->lossless[mbmi->segment_id]) { | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; | 
|  | TX_TYPE stx_flag = get_secondary_tx_type(tx_type); | 
|  | assert(stx_flag <= STX_TYPES - 1); | 
|  | if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) { | 
|  | aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[is_inter][square_tx_size], | 
|  | STX_TYPES); | 
|  | #if CONFIG_IST_SET_FLAG | 
|  | #if CONFIG_IST_INTER_MULTISET | 
|  | if (stx_flag > 0) write_sec_tx_set(ec_ctx, w, mbmi, tx_type, is_inter); | 
|  | #else | 
|  | if (stx_flag > 0 && !is_inter) write_sec_tx_set(ec_ctx, w, mbmi, tx_type); | 
|  | #endif | 
|  | #endif  // CONFIG_IST_SET_FLAG | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_AIMC | 
|  | static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx, | 
|  | BLOCK_SIZE bsize, | 
|  | PREDICTION_MODE mode, | 
|  | aom_writer *w) { | 
|  | aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], | 
|  | INTRA_MODES); | 
|  | } | 
|  | #endif  // !CONFIG_AIMC | 
|  | static AOM_INLINE void write_mrl_index(FRAME_CONTEXT *ec_ctx, | 
|  | #if CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | const MB_MODE_INFO *neighbor0, | 
|  | const MB_MODE_INFO *neighbor1, | 
|  | #endif  // CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | uint8_t mrl_index, aom_writer *w) { | 
|  | #if CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | int ctx = get_mrl_index_ctx(neighbor0, neighbor1); | 
|  | aom_cdf_prob *mrl_cdf = ec_ctx->mrl_index_cdf[ctx]; | 
|  | aom_write_symbol(w, mrl_index, mrl_cdf, MRL_LINE_NUMBER); | 
|  | #else | 
|  | aom_write_symbol(w, mrl_index, ec_ctx->mrl_index_cdf, MRL_LINE_NUMBER); | 
|  | #endif  // CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | } | 
|  |  | 
|  | #if CONFIG_LOSSLESS_DPCM | 
|  | static AOM_INLINE void write_dpcm_index(FRAME_CONTEXT *ec_ctx, | 
|  | uint8_t dpcm_mode, aom_writer *w) { | 
|  | aom_write_symbol(w, dpcm_mode, ec_ctx->dpcm_cdf, 2); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_dpcm_vert_horz_mode(FRAME_CONTEXT *ec_ctx, | 
|  | uint8_t dpcm_vert_horz_mode, | 
|  | aom_writer *w) { | 
|  | aom_write_symbol(w, dpcm_vert_horz_mode, ec_ctx->dpcm_vert_horz_cdf, 2); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_dpcm_uv_index(FRAME_CONTEXT *ec_ctx, | 
|  | uint8_t dpcm_uv_mode, | 
|  | aom_writer *w) { | 
|  | aom_write_symbol(w, dpcm_uv_mode, ec_ctx->dpcm_uv_cdf, 2); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_dpcm_uv_vert_horz_mode( | 
|  | FRAME_CONTEXT *ec_ctx, uint8_t dpcm_uv_vert_horz_mode, aom_writer *w) { | 
|  | aom_write_symbol(w, dpcm_uv_vert_horz_mode, ec_ctx->dpcm_uv_vert_horz_cdf, 2); | 
|  | } | 
|  | #endif  // CONFIG_LOSSLESS_DPCM | 
|  |  | 
|  | static AOM_INLINE void write_fsc_mode(uint8_t fsc_mode, aom_writer *w, | 
|  | aom_cdf_prob *fsc_cdf) { | 
|  | aom_write_symbol(w, fsc_mode, fsc_cdf, FSC_MODES); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_cfl_index(FRAME_CONTEXT *ec_ctx, uint8_t cfl_index, | 
|  | aom_writer *w) { | 
|  | #if CONFIG_ENABLE_MHCCP | 
|  | aom_write_symbol(w, cfl_index, ec_ctx->cfl_index_cdf, CFL_TYPE_COUNT - 1); | 
|  | #else | 
|  | aom_write_symbol(w, cfl_index, ec_ctx->cfl_index_cdf, CFL_TYPE_COUNT); | 
|  | #endif  // CONFIG_ENABLE_MHCCP | 
|  | } | 
|  |  | 
|  | #if CONFIG_ENABLE_MHCCP | 
|  | // write MHCCP filter direction | 
|  | static AOM_INLINE void write_mh_dir(aom_cdf_prob *mh_dir_cdf, uint8_t mh_dir, | 
|  | aom_writer *w) { | 
|  | aom_write_symbol(w, mh_dir, mh_dir_cdf, MHCCP_MODE_NUM); | 
|  | } | 
|  | #endif  // CONFIG_ENABLE_MHCCP | 
|  |  | 
|  | #if !CONFIG_AIMC | 
|  | static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, | 
|  | UV_PREDICTION_MODE uv_mode, | 
|  | PREDICTION_MODE y_mode, | 
|  | CFL_ALLOWED_TYPE cfl_allowed, | 
|  | aom_writer *w) { | 
|  | aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], | 
|  | UV_INTRA_MODES - !cfl_allowed); | 
|  | } | 
|  | #endif  // !CONFIG_AIMC | 
|  | static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, | 
|  | uint8_t idx, int8_t joint_sign, | 
|  | aom_writer *w) { | 
|  | aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); | 
|  | // Magnitudes are only signaled for nonzero codes. | 
|  | if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { | 
|  | aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; | 
|  | aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); | 
|  | } | 
|  | if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { | 
|  | aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; | 
|  | aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, | 
|  | aom_writer *w, int skip) { | 
|  | if (cm->features.coded_lossless || is_global_intrabc_allowed(cm)) return; | 
|  | #if CONFIG_FIX_CDEF_SYNTAX | 
|  | if (!cm->cdef_info.cdef_frame_enable) return; | 
|  | #endif  // CONFIG_FIX_CDEF_SYNTAX | 
|  | // At the start of a superblock, mark that we haven't yet written CDEF | 
|  | // strengths for any of the CDEF units contained in this superblock. | 
|  | const int sb_mask = (cm->mib_size - 1); | 
|  | const int mi_row_in_sb = (xd->mi_row & sb_mask); | 
|  | const int mi_col_in_sb = (xd->mi_col & sb_mask); | 
|  | if (mi_row_in_sb == 0 && mi_col_in_sb == 0) { | 
|  | av1_zero(xd->cdef_transmitted); | 
|  | } | 
|  |  | 
|  | // CDEF unit size is 64x64 irrespective of the superblock size. | 
|  | const int cdef_size = 1 << (6 - MI_SIZE_LOG2); | 
|  |  | 
|  | // Find index of this CDEF unit in this superblock. | 
|  | const int index = av1_get_cdef_transmitted_index(xd->mi_row, xd->mi_col); | 
|  |  | 
|  | // Write CDEF strength to the first non-skip coding block in this CDEF unit. | 
|  | if (!xd->cdef_transmitted[index] && !skip) { | 
|  | // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO | 
|  | // of the 1st block in this CDEF unit. | 
|  | const int first_block_mask = ~(cdef_size - 1); | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int grid_idx = | 
|  | get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask, | 
|  | xd->mi_col & first_block_mask); | 
|  | const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx]; | 
|  | aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits); | 
|  | xd->cdef_transmitted[index] = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_ccso(AV1_COMMON *cm, MACROBLOCKD *const xd, | 
|  | aom_writer *w) { | 
|  | if (cm->features.coded_lossless) return; | 
|  | if (is_global_intrabc_allowed(cm)) return; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | const int blk_size_y = | 
|  | (1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_y - MI_SIZE_LOG2)) - 1; | 
|  | const int blk_size_x = | 
|  | (1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_x - MI_SIZE_LOG2)) - 1; | 
|  | const MB_MODE_INFO *mbmi = | 
|  | mi_params->mi_grid_base[(mi_row & ~blk_size_y) * mi_params->mi_stride + | 
|  | (mi_col & ~blk_size_x)]; | 
|  |  | 
|  | if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && | 
|  | cm->ccso_info.ccso_enable[0]) { | 
|  | aom_write_symbol(w, mbmi->ccso_blk_y == 0 ? 0 : 1, | 
|  | xd->tile_ctx->ccso_cdf[0], 2); | 
|  | xd->ccso_blk_y = mbmi->ccso_blk_y; | 
|  | } | 
|  |  | 
|  | if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && | 
|  | cm->ccso_info.ccso_enable[1]) { | 
|  | aom_write_symbol(w, mbmi->ccso_blk_u == 0 ? 0 : 1, | 
|  | xd->tile_ctx->ccso_cdf[1], 2); | 
|  | xd->ccso_blk_u = mbmi->ccso_blk_u; | 
|  | } | 
|  |  | 
|  | if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && | 
|  | cm->ccso_info.ccso_enable[2]) { | 
|  | aom_write_symbol(w, mbmi->ccso_blk_v == 0 ? 0 : 1, | 
|  | xd->tile_ctx->ccso_cdf[2], 2); | 
|  | xd->ccso_blk_v = mbmi->ccso_blk_v; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_inter_segment_id( | 
|  | AV1_COMP *cpi, aom_writer *w, const struct segmentation *const seg, | 
|  | struct segmentation_probs *const segp, int skip, int preskip) { | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  |  | 
|  | if (seg->update_map) { | 
|  | if (preskip) { | 
|  | if (!seg->segid_preskip) return; | 
|  | } else { | 
|  | if (seg->segid_preskip) return; | 
|  | if (skip) { | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, 1); | 
|  | if (seg->temporal_update) mbmi->seg_id_predicted = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (seg->temporal_update) { | 
|  | const int pred_flag = mbmi->seg_id_predicted; | 
|  | aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); | 
|  | aom_write_symbol(w, pred_flag, pred_cdf, 2); | 
|  | if (!pred_flag) { | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, 0); | 
|  | } | 
|  | if (pred_flag) { | 
|  | set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, | 
|  | mbmi->sb_type[PLANE_TYPE_Y], mi_row, mi_col, | 
|  | mbmi->segment_id); | 
|  | } | 
|  | } else { | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If delta q is present, writes delta_q index. | 
|  | // Also writes delta_q loop filter levels, if present. | 
|  | static AOM_INLINE void write_delta_q_params(AV1_COMP *cpi, int skip, | 
|  | aom_writer *w) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  |  | 
|  | if (delta_q_info->delta_q_present_flag) { | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | const int super_block_upper_left = | 
|  | ((xd->mi_row & (cm->mib_size - 1)) == 0) && | 
|  | ((xd->mi_col & (cm->mib_size - 1)) == 0); | 
|  |  | 
|  | if ((bsize != cm->sb_size || skip == 0) && super_block_upper_left) { | 
|  | assert(mbmi->current_qindex > 0); | 
|  | const int reduced_delta_qindex = | 
|  | (mbmi->current_qindex - xd->current_base_qindex) / | 
|  | delta_q_info->delta_q_res; | 
|  | write_delta_qindex(xd, reduced_delta_qindex, w); | 
|  | xd->current_base_qindex = mbmi->current_qindex; | 
|  | if (delta_q_info->delta_lf_present_flag) { | 
|  | if (delta_q_info->delta_lf_multi) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | int reduced_delta_lflevel = | 
|  | (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / | 
|  | delta_q_info->delta_lf_res; | 
|  | write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); | 
|  | xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; | 
|  | } | 
|  | } else { | 
|  | int reduced_delta_lflevel = | 
|  | (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / | 
|  | delta_q_info->delta_lf_res; | 
|  | write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); | 
|  | xd->delta_lf_from_base = mbmi->delta_lf_from_base; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_AIMC | 
|  | // write mode set index and mode index in set for y component | 
|  | static AOM_INLINE void write_intra_luma_mode(MACROBLOCKD *const xd, | 
|  | aom_writer *w) { | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int mode_idx = mbmi->y_mode_idx; | 
|  | assert(mode_idx >= 0 && mode_idx < LUMA_MODE_COUNT); | 
|  | assert(mbmi->joint_y_mode_delta_angle >= 0 && | 
|  | mbmi->joint_y_mode_delta_angle < LUMA_MODE_COUNT); | 
|  | if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT) | 
|  | assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx); | 
|  | const int context = get_y_mode_idx_ctx(xd); | 
|  | int mode_set_index = mode_idx < FIRST_MODE_COUNT ? 0 : 1; | 
|  | mode_set_index += ((mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT); | 
|  | aom_write_symbol(w, mode_set_index, ec_ctx->y_mode_set_cdf, INTRA_MODE_SETS); | 
|  | if (mode_set_index == 0) { | 
|  | aom_write_symbol(w, mode_idx, ec_ctx->y_mode_idx_cdf_0[context], | 
|  | FIRST_MODE_COUNT); | 
|  | } else { | 
|  | aom_write_symbol( | 
|  | w, | 
|  | mode_idx - FIRST_MODE_COUNT - (mode_set_index - 1) * SECOND_MODE_COUNT, | 
|  | ec_ctx->y_mode_idx_cdf_1[context], SECOND_MODE_COUNT); | 
|  | } | 
|  | if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT) | 
|  | assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_intra_uv_mode(MACROBLOCKD *const xd, | 
|  | CFL_ALLOWED_TYPE cfl_allowed, | 
|  | aom_writer *w) { | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | if (cfl_allowed) { | 
|  | const int cfl_ctx = get_cfl_ctx(xd); | 
|  | aom_write_symbol(w, mbmi->uv_mode == UV_CFL_PRED, ec_ctx->cfl_cdf[cfl_ctx], | 
|  | 2); | 
|  | if (mbmi->uv_mode == UV_CFL_PRED) return; | 
|  | } | 
|  |  | 
|  | const int uv_mode_idx = mbmi->uv_mode_idx; | 
|  | assert(uv_mode_idx >= 0 && uv_mode_idx < UV_INTRA_MODES); | 
|  | const int context = av1_is_directional_mode(mbmi->mode) ? 1 : 0; | 
|  | aom_write_symbol(w, uv_mode_idx, ec_ctx->uv_mode_cdf[context], | 
|  | UV_INTRA_MODES - 1); | 
|  | } | 
|  | #endif  // CONFIG_AIMC | 
|  |  | 
|  | static AOM_INLINE void write_intra_prediction_modes(AV1_COMP *cpi, | 
|  | int is_keyframe, | 
|  | aom_writer *w) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const PREDICTION_MODE mode = mbmi->mode; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | #if !CONFIG_AIMC | 
|  | const int use_angle_delta = av1_use_angle_delta(bsize); | 
|  | #endif  // !CONFIG_AIMC | 
|  |  | 
|  | // Y mode. | 
|  | if (xd->tree_type != CHROMA_PART) { | 
|  | #if CONFIG_LOSSLESS_DPCM | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | write_dpcm_index(ec_ctx, mbmi->use_dpcm_y, w); | 
|  | } | 
|  | #endif  // CONFIG_LOSSLESS_DPCM | 
|  | #if CONFIG_AIMC | 
|  | #if CONFIG_LOSSLESS_DPCM | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | if (mbmi->use_dpcm_y == 0) { | 
|  | write_intra_luma_mode(xd, w); | 
|  | } else { | 
|  | write_dpcm_vert_horz_mode(ec_ctx, mbmi->dpcm_mode_y, w); | 
|  | } | 
|  | } else { | 
|  | write_intra_luma_mode(xd, w); | 
|  | } | 
|  | #else   // CONFIG_LOSSLESS_DPCM | 
|  | write_intra_luma_mode(xd, w); | 
|  | #endif  // CONFIG_LOSSLESS_DPCM | 
|  | if (allow_fsc_intra(cm, | 
|  | #if !CONFIG_LOSSLESS_DPCM | 
|  | xd, | 
|  | #endif  // CONFIG_LOSSLESS_DPCM | 
|  | bsize, mbmi) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, is_keyframe); | 
|  | write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf); | 
|  | } | 
|  | #else | 
|  | if (is_keyframe) { | 
|  | write_intra_y_mode_kf(ec_ctx, mbmi, xd->neighbors[0], xd->neighbors[1], | 
|  | mode, w); | 
|  | } else { | 
|  | write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w); | 
|  | } | 
|  |  | 
|  | if (allow_fsc_intra(cm, | 
|  | #if !CONFIG_LOSSLESS_DPCM | 
|  | xd, | 
|  | #endif  // CONFIG_LOSSLESS_DPCM | 
|  | bsize, mbmi) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, is_keyframe); | 
|  | write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf); | 
|  | } | 
|  | // Y angle delta. | 
|  | if (use_angle_delta && av1_is_directional_mode(mode)) { | 
|  | write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], | 
|  | ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mode - V_PRED]); | 
|  | } | 
|  | #endif  // CONFIG_AIMC | 
|  | // Encoding reference line index | 
|  | #if CONFIG_LOSSLESS_DPCM | 
|  | if (cm->seq_params.enable_mrls && av1_is_directional_mode(mode)) { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | if (mbmi->use_dpcm_y == 0) { | 
|  | write_mrl_index(ec_ctx, | 
|  | #if CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | xd->neighbors[0], xd->neighbors[1], | 
|  | #endif  // CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | mbmi->mrl_index, w); | 
|  | } | 
|  | } else { | 
|  | write_mrl_index(ec_ctx, | 
|  | #if CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | xd->neighbors[0], xd->neighbors[1], | 
|  | #endif  // CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | mbmi->mrl_index, w); | 
|  | } | 
|  | } | 
|  | #else  // CONFIG_LOSSLESS_DPCM | 
|  | if (cm->seq_params.enable_mrls && av1_is_directional_mode(mode)) { | 
|  | write_mrl_index(ec_ctx, | 
|  | #if CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | xd->neighbors[0], xd->neighbors[1], | 
|  | #endif  // CONFIG_IMPROVED_INTRA_DIR_PRED | 
|  | mbmi->mrl_index, w); | 
|  | } | 
|  | #endif  // CONFIG_LOSSLESS_DPCM | 
|  | } | 
|  |  | 
|  | // UV mode and UV angle delta. | 
|  | if (!cm->seq_params.monochrome && xd->is_chroma_ref && | 
|  | xd->tree_type != LUMA_PART) { | 
|  | const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; | 
|  | #if CONFIG_AIMC | 
|  | #if CONFIG_LOSSLESS_DPCM | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | write_dpcm_uv_index(ec_ctx, mbmi->use_dpcm_uv, w); | 
|  | if (mbmi->use_dpcm_uv == 0) { | 
|  | write_intra_uv_mode(xd, is_cfl_allowed(xd), w); | 
|  | } else { | 
|  | write_dpcm_uv_vert_horz_mode(ec_ctx, mbmi->dpcm_mode_uv, w); | 
|  | } | 
|  | } else { | 
|  | write_intra_uv_mode(xd, is_cfl_allowed(xd), w); | 
|  | } | 
|  | #else   // CONFIG_LOSSLESS_DPCM | 
|  | write_intra_uv_mode(xd, is_cfl_allowed(xd), w); | 
|  | #endif  // CONFIG_LOSSLESS_DPCM | 
|  | #else | 
|  | write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); | 
|  | if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { | 
|  | if (cm->seq_params.enable_sdp) { | 
|  | write_angle_delta( | 
|  | w, mbmi->angle_delta[PLANE_TYPE_UV], | 
|  | ec_ctx->angle_delta_cdf[PLANE_TYPE_UV][uv_mode - V_PRED]); | 
|  | } else { | 
|  | write_angle_delta( | 
|  | w, mbmi->angle_delta[PLANE_TYPE_UV], | 
|  | ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][uv_mode - V_PRED]); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_AIMC | 
|  | if (uv_mode == UV_CFL_PRED) { | 
|  | write_cfl_index(ec_ctx, mbmi->cfl_idx, w); | 
|  | #if CONFIG_ENABLE_MHCCP | 
|  | if (mbmi->cfl_idx == CFL_MULTI_PARAM_V) { | 
|  | const uint8_t mh_size_group = fsc_bsize_groups[bsize]; | 
|  | aom_cdf_prob *mh_dir_cdf = ec_ctx->filter_dir_cdf[mh_size_group]; | 
|  | write_mh_dir(mh_dir_cdf, mbmi->mh_dir, w); | 
|  | } | 
|  | #endif  // CONFIG_ENABLE_MHCCP | 
|  | if (mbmi->cfl_idx == 0) | 
|  | write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Palette. | 
|  | if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { | 
|  | write_palette_mode_info(cm, xd, mbmi, w); | 
|  | } | 
|  |  | 
|  | // Filter intra. | 
|  | write_filter_intra_mode_info(cm, xd, mbmi, w); | 
|  | } | 
|  |  | 
|  | static INLINE int16_t mode_context_analyzer( | 
|  | const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) { | 
|  | if (!is_inter_ref_frame(rf[1])) return mode_context; | 
|  |  | 
|  | #if CONFIG_C076_INTER_MOD_CTX | 
|  | return mode_context & NEWMV_CTX_MASK; | 
|  | #else | 
|  | const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK; | 
|  | const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
|  |  | 
|  | const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN( | 
|  | newmv_ctx, COMP_NEWMV_CTXS - 1)]; | 
|  | return comp_ctx; | 
|  | #endif  // CONFIG_C076_INTER_MOD_CTX | 
|  | } | 
|  |  | 
|  | static INLINE int_mv get_ref_mv_from_stack( | 
|  | int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx, | 
|  | const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | , | 
|  | const MB_MODE_INFO *mbmi | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | ) { | 
|  | const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | const CANDIDATE_MV *curr_ref_mv_stack = | 
|  | has_second_drl(mbmi) ? mbmi_ext_frame->ref_mv_stack[ref_idx] | 
|  | : mbmi_ext_frame->ref_mv_stack[0]; | 
|  | #else | 
|  | const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack; | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  |  | 
|  | if (is_inter_ref_frame(ref_frame[1])) { | 
|  | assert(ref_idx == 0 || ref_idx == 1); | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | return ref_idx && !has_second_drl(mbmi) | 
|  | ? curr_ref_mv_stack[ref_mv_idx].comp_mv | 
|  | #else | 
|  | return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | : curr_ref_mv_stack[ref_mv_idx].this_mv; | 
|  | } | 
|  |  | 
|  | assert(ref_idx == 0); | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | if (ref_mv_idx < mbmi_ext_frame->ref_mv_count[0]) { | 
|  | #else | 
|  | if (ref_mv_idx < mbmi_ext_frame->ref_mv_count) { | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | return curr_ref_mv_stack[ref_mv_idx].this_mv; | 
|  | } else if (is_tip_ref_frame(ref_frame_type)) { | 
|  | int_mv zero_mv; | 
|  | zero_mv.as_int = 0; | 
|  | return zero_mv; | 
|  | } else { | 
|  | return mbmi_ext_frame->global_mvs[ref_frame_type]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) { | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | const int ref_mv_idx = get_ref_mv_idx(mbmi, ref_idx); | 
|  | #else | 
|  | const int ref_mv_idx = mbmi->ref_mv_idx; | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | assert(IMPLIES(have_nearmv_newmv_in_inter_mode(mbmi->mode), | 
|  | has_second_ref(mbmi))); | 
|  | return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | x->mbmi_ext_frame, mbmi); | 
|  | #else | 
|  | x->mbmi_ext_frame); | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | } | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | // This function write the refinemv_flag ( if require) to the bitstream | 
|  | static void write_refinemv_flag(const AV1_COMMON *const cm, | 
|  | MACROBLOCKD *const xd, aom_writer *w, | 
|  | BLOCK_SIZE bsize) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | int signal_refinemv = switchable_refinemv_flag(cm, mbmi); | 
|  |  | 
|  | if (signal_refinemv) { | 
|  | const int refinemv_ctx = av1_get_refinemv_context(cm, xd, bsize); | 
|  | assert(mbmi->refinemv_flag < REFINEMV_NUM_MODES); | 
|  | aom_write_symbol(w, mbmi->refinemv_flag, | 
|  | xd->tile_ctx->refinemv_flag_cdf[refinemv_ctx], | 
|  | REFINEMV_NUM_MODES); | 
|  |  | 
|  | } else { | 
|  | assert(mbmi->refinemv_flag == get_default_refinemv_flag(cm, mbmi)); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | static void write_pb_mv_precision(const AV1_COMMON *const cm, | 
|  | MACROBLOCKD *const xd, aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | assert(mbmi->pb_mv_precision <= mbmi->max_mv_precision); | 
|  | assert(mbmi->max_mv_precision == xd->sbi->sb_mv_precision); | 
|  |  | 
|  | assert(av1_get_mbmi_max_mv_precision(cm, xd->sbi, mbmi) == | 
|  | mbmi->max_mv_precision); | 
|  |  | 
|  | #if !CONFIG_C071_SUBBLK_WARPMV | 
|  | assert(check_mv_precision(cm, mbmi)); | 
|  | #endif  // !CONFIG_C071_SUBBLK_WARPMV | 
|  |  | 
|  | const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd); | 
|  |  | 
|  | assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision); | 
|  | assert(mbmi->most_probable_pb_mv_precision == | 
|  | cm->features.most_probable_fr_mv_precision); | 
|  |  | 
|  | // One binary symbol is used to signal if the precision is same as the most | 
|  | // probable precision. | 
|  | // mpp_flag == 1 indicates that the precision is same as the most probable | 
|  | // precision in current implementaion, the most probable precision is same as | 
|  | // the maximum precision value of the block. | 
|  | const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd); | 
|  | const int mpp_flag = | 
|  | (mbmi->pb_mv_precision == mbmi->most_probable_pb_mv_precision); | 
|  | aom_write_symbol(w, mpp_flag, | 
|  | xd->tile_ctx->pb_mv_mpp_flag_cdf[mpp_flag_context], 2); | 
|  |  | 
|  | if (!mpp_flag) { | 
|  | const PRECISION_SET *precision_def = | 
|  | &av1_mv_precision_sets[mbmi->mb_precision_set]; | 
|  |  | 
|  | // instead of directly signaling the precision value, we signal index ( i.e. | 
|  | // down) of the precision | 
|  | int down = av1_get_pb_mv_precision_index(mbmi); | 
|  | int nsymbs = precision_def->num_precisions - 1; | 
|  | assert(down >= 0 && down <= nsymbs); | 
|  | aom_write_symbol( | 
|  | w, down, | 
|  | xd->tile_ctx->pb_mv_precision_cdf[down_ctx][mbmi->max_mv_precision - | 
|  | MV_PRECISION_HALF_PEL], | 
|  | nsymbs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, aom_writer *w) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | struct segmentation_probs *const segp = &ec_ctx->seg; | 
|  | #if CONFIG_COMPOUND_WARP_CAUSAL | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | #else | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | #endif  // CONFIG_COMPOUND_WARP_CAUSAL | 
|  | const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame; | 
|  | const PREDICTION_MODE mode = mbmi->mode; | 
|  | const int segment_id = mbmi->segment_id; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y]; | 
|  | const MvSubpelPrecision pb_mv_precision = mbmi->pb_mv_precision; | 
|  |  | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | const int is_intrabc = is_intrabc_block(mbmi, xd->tree_type); | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type) && !is_intrabc; | 
|  | #else | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  | const int is_compound = has_second_ref(mbmi); | 
|  | int ref; | 
|  |  | 
|  | write_inter_segment_id(cpi, w, seg, segp, 0, 1); | 
|  | write_skip_mode(cm, xd, segment_id, mbmi, w); | 
|  |  | 
|  | #if CONFIG_SKIP_TXFM_OPT | 
|  | if (!mbmi->skip_mode) { | 
|  | write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); | 
|  |  | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | if (!is_inter && | 
|  | av1_allow_intrabc(cm, xd | 
|  | #if CONFIG_ENABLE_IBC_NAT | 
|  | , | 
|  | bsize | 
|  | #endif  // CONFIG_ENABLE_IBC_NAT | 
|  | ) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); | 
|  | if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0); | 
|  | #if CONFIG_NEW_CONTEXT_MODELING | 
|  | const int intrabc_ctx = get_intrabc_ctx(xd); | 
|  | aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf[intrabc_ctx], 2); | 
|  | #else | 
|  | aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); | 
|  | #endif  // CONFIG_NEW_CONTEXT_MODELING | 
|  | } | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  | } | 
|  |  | 
|  | int skip = 0; | 
|  | if (is_inter | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | || (!is_inter && is_intrabc_block(mbmi, xd->tree_type)) | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  | ) { | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | skip = write_skip(cm, xd, segment_id, mbmi, w); | 
|  | #else | 
|  | assert(IMPLIES(mbmi->skip_mode, | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART])); | 
|  | skip = mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); | 
|  | #endif  // !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | } | 
|  | #else | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | const int skip = write_skip(cm, xd, segment_id, mbmi, w); | 
|  | #else | 
|  | assert( | 
|  | IMPLIES(mbmi->skip_mode, mbmi->skip_txfm[xd->tree_type == CHROMA_PART])); | 
|  | const int skip = | 
|  | mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); | 
|  | #endif  // !CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | #endif  // CONFIG_SKIP_TXFM_OPT | 
|  | write_inter_segment_id(cpi, w, seg, segp, skip, 0); | 
|  |  | 
|  | write_cdef(cm, xd, w, skip); | 
|  |  | 
|  | if (cm->seq_params.enable_ccso) write_ccso(cm, xd, w); | 
|  |  | 
|  | write_delta_q_params(cpi, skip, w); | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | assert(IMPLIES(mbmi->refinemv_flag, | 
|  | mbmi->skip_mode ? is_refinemv_allowed_skip_mode(cm, mbmi) | 
|  | : is_refinemv_allowed(cm, mbmi, bsize))); | 
|  | if (mbmi->refinemv_flag && switchable_refinemv_flag(cm, mbmi)) { | 
|  | assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); | 
|  | assert(mbmi->comp_group_idx == 0); | 
|  | #if CONFIG_BAWP_CHROMA | 
|  | assert(mbmi->bawp_flag[0] == 0); | 
|  | #else | 
|  | assert(mbmi->bawp_flag == 0); | 
|  | #endif  // CONFIG_BAWP_CHROMA | 
|  | } | 
|  | assert(IMPLIES(mbmi->refinemv_flag, mbmi->cwp_idx == CWP_EQUAL)); | 
|  | #endif  // CONFIG_REFINEMV | 
|  | // Just for debugging purpose | 
|  | if (mbmi->mode == WARPMV) { | 
|  | assert(mbmi->skip_mode == 0); | 
|  | assert(mbmi->motion_mode == WARP_DELTA || | 
|  | mbmi->motion_mode == WARPED_CAUSAL); | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | assert(get_ref_mv_idx(mbmi, 0) == 0); | 
|  | assert(get_ref_mv_idx(mbmi, 1) == 0); | 
|  | #else | 
|  | assert(mbmi->ref_mv_idx == 0); | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | assert(!is_tip_ref_frame(mbmi->ref_frame[0])); | 
|  | assert(is_inter); | 
|  | assert(!have_drl_index(mode)); | 
|  | assert(mbmi->pb_mv_precision == mbmi->max_mv_precision); | 
|  | #if CONFIG_BAWP | 
|  | #if CONFIG_BAWP_CHROMA | 
|  | assert(mbmi->bawp_flag[0] == 0); | 
|  | #else | 
|  | assert(mbmi->bawp_flag == 0); | 
|  | #endif  // CONFIG_BAWP_CHROMA | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if !CONFIG_SKIP_TXFM_OPT | 
|  | if (!mbmi->skip_mode) | 
|  | write_is_inter(cm, xd, mbmi->segment_id, w, is_inter | 
|  | #if CONFIG_CONTEXT_DERIVATION | 
|  | , | 
|  | skip | 
|  | #endif  // CONFIG_CONTEXT_DERIVATION | 
|  | ); | 
|  | #endif  // !CONFIG_SKIP_TXFM_OPT | 
|  |  | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | if (!is_inter && | 
|  | av1_allow_intrabc(cm, xd | 
|  | #if CONFIG_ENABLE_IBC_NAT | 
|  | , | 
|  | bsize | 
|  | #endif  // CONFIG_ENABLE_IBC_NAT | 
|  | ) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | write_intrabc_info( | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | cm->features.max_bvp_drl_bits, | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | cm, | 
|  | #endif  // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | xd, mbmi_ext_frame, w); | 
|  | if (is_intrabc_block(mbmi, xd->tree_type)) return; | 
|  | } | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  |  | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | if (mbmi->skip_mode) { | 
|  | av1_collect_neighbors_ref_counts(xd); | 
|  | write_drl_idx(cm->features.max_drl_bits, mbmi_ext_frame->mode_context, | 
|  | ec_ctx, mbmi, mbmi_ext_frame, w); | 
|  | return; | 
|  | } | 
|  | #else | 
|  | if (mbmi->skip_mode) return; | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | if (!is_inter) { | 
|  | write_intra_prediction_modes(cpi, 0, w); | 
|  | } else { | 
|  | int16_t mode_ctx; | 
|  |  | 
|  | av1_collect_neighbors_ref_counts(xd); | 
|  |  | 
|  | if (cm->features.tip_frame_mode && | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_tip_allowed_bsize(mbmi)) { | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | is_tip_allowed_bsize(bsize)) { | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int tip_ctx = get_tip_ctx(xd); | 
|  | aom_write_symbol(w, is_tip_ref_frame(mbmi->ref_frame[0]), | 
|  | ec_ctx->tip_cdf[tip_ctx], 2); | 
|  | } | 
|  |  | 
|  | if (!is_tip_ref_frame(mbmi->ref_frame[0])) write_ref_frames(cm, xd, w); | 
|  |  | 
|  | mode_ctx = | 
|  | mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame); | 
|  |  | 
|  | const int jmvd_base_ref_list = get_joint_mvd_base_ref_list(cm, mbmi); | 
|  |  | 
|  | // If segment skip is not enabled code the mode. | 
|  | if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { | 
|  | if (is_inter_compound_mode(mode)) | 
|  | write_inter_compound_mode(xd, w, mode, cm, mbmi, mode_ctx); | 
|  | else if (is_inter_singleref_mode(mode)) | 
|  | write_inter_mode(w, mode, ec_ctx, mode_ctx, cm, xd, mbmi, bsize); | 
|  |  | 
|  | #if CONFIG_BAWP | 
|  | #if CONFIG_BAWP_CHROMA | 
|  | if (cm->features.enable_bawp && | 
|  | av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) { | 
|  | #if CONFIG_EXPLICIT_BAWP | 
|  | aom_write_symbol(w, mbmi->bawp_flag[0] > 0, xd->tile_ctx->bawp_cdf[0], | 
|  | 2); | 
|  | if (mbmi->bawp_flag[0] > 0 && av1_allow_explicit_bawp(mbmi)) { | 
|  | const int ctx_index = | 
|  | (mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2); | 
|  | aom_write_symbol(w, mbmi->bawp_flag[0] > 1, | 
|  | xd->tile_ctx->explicit_bawp_cdf[ctx_index], 2); | 
|  | if (mbmi->bawp_flag[0] > 1) { | 
|  | aom_write_symbol(w, mbmi->bawp_flag[0] - 2, | 
|  | xd->tile_ctx->explicit_bawp_scale_cdf, | 
|  | EXPLICIT_BAWP_SCALE_CNT); | 
|  | } | 
|  | } | 
|  | #else | 
|  | aom_write_symbol(w, mbmi->bawp_flag[0] == 1, xd->tile_ctx->bawp_cdf[0], | 
|  | 2); | 
|  | #endif  // CONFIG_EXPLICIT_BAWP | 
|  | } | 
|  |  | 
|  | if (mbmi->bawp_flag[0]) { | 
|  | aom_write_symbol(w, mbmi->bawp_flag[1] == 1, xd->tile_ctx->bawp_cdf[1], | 
|  | 2); | 
|  | } | 
|  | #else | 
|  | if (cm->features.enable_bawp && | 
|  | av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) { | 
|  | #if CONFIG_EXPLICIT_BAWP | 
|  | aom_write_symbol(w, mbmi->bawp_flag > 0, xd->tile_ctx->bawp_cdf, 2); | 
|  | if (mbmi->bawp_flag > 0 && av1_allow_explicit_bawp(mbmi)) { | 
|  | const int ctx_index = | 
|  | (mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2); | 
|  | aom_write_symbol(w, mbmi->bawp_flag > 1, | 
|  | xd->tile_ctx->explicit_bawp_cdf[ctx_index], 2); | 
|  | if (mbmi->bawp_flag > 1) { | 
|  | aom_write_symbol(w, mbmi->bawp_flag - 2, | 
|  | xd->tile_ctx->explicit_bawp_scale_cdf, | 
|  | EXPLICIT_BAWP_SCALE_CNT); | 
|  | } | 
|  | } | 
|  | #else | 
|  | aom_write_symbol(w, mbmi->bawp_flag == 1, xd->tile_ctx->bawp_cdf, 2); | 
|  | #endif  // CONFIG_EXPLICIT_BAWP | 
|  | } | 
|  | #endif  // CONFIG_BAWP_CHROMA | 
|  | #endif  // CONFIG_BAWP | 
|  | #if CONFIG_COMPOUND_WARP_CAUSAL | 
|  | if (is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y], | 
|  | xd->mi_row, xd->mi_col) && | 
|  | !is_tip_ref_frame(mbmi->ref_frame[0]) && !mbmi->skip_mode && | 
|  | (!has_second_ref(mbmi) || is_compound_warp_causal_allowed( | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | xd, | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | mbmi))) { | 
|  | int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; | 
|  | mbmi->num_proj_ref[0] = mbmi->num_proj_ref[1] = 0; | 
|  | mbmi->num_proj_ref[0] = av1_findSamples(cm, xd, pts, pts_inref, 0); | 
|  | if (has_second_ref(mbmi)) | 
|  | mbmi->num_proj_ref[1] = av1_findSamples(cm, xd, pts, pts_inref, 1); | 
|  | } | 
|  | #endif | 
|  | write_motion_mode(cm, xd, mbmi, mbmi_ext_frame, w); | 
|  | int is_warpmv_warp_causal = | 
|  | ((mbmi->motion_mode == WARPED_CAUSAL) && mbmi->mode == WARPMV); | 
|  | if (mbmi->motion_mode == WARP_DELTA || is_warpmv_warp_causal) | 
|  | write_warp_ref_idx(xd->tile_ctx, mbmi, w); | 
|  |  | 
|  | if (allow_warpmv_with_mvd_coding(cm, mbmi)) { | 
|  | write_warpmv_with_mvd_flag(xd->tile_ctx, mbmi, w); | 
|  | } else { | 
|  | assert(mbmi->warpmv_with_mvd_flag == 0); | 
|  | } | 
|  |  | 
|  | write_jmvd_scale_mode(xd, w, mbmi); | 
|  | int max_drl_bits = cm->features.max_drl_bits; | 
|  | if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1); | 
|  |  | 
|  | if (have_drl_index(mode)) | 
|  | write_drl_idx(max_drl_bits, mbmi_ext_frame->mode_context, ec_ctx, mbmi, | 
|  | mbmi_ext_frame, w); | 
|  | else | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | { | 
|  | assert(get_ref_mv_idx(mbmi, 0) == 0); | 
|  | assert(get_ref_mv_idx(mbmi, 1) == 0); | 
|  | } | 
|  | #else | 
|  | assert(mbmi->ref_mv_idx == 0); | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | if (is_pb_mv_precision_active(cm, mbmi, bsize)) { | 
|  | write_pb_mv_precision(cm, xd, w); | 
|  | } | 
|  | } | 
|  | #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  | MV mv_diff[2] = { kZeroMv, kZeroMv }; | 
|  | const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi); | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | int num_signaled_mvd = 0; | 
|  | int start_signaled_mvd_idx = 0; | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  |  | 
|  | if (mbmi->mode == WARPMV && mbmi->warpmv_with_mvd_flag) { | 
|  | nmv_context *nmvc = &ec_ctx->nmvc; | 
|  | WarpedMotionParams ref_warp_model = | 
|  | x->mbmi_ext_frame->warp_param_stack[mbmi->warp_ref_idx].wm_params; | 
|  | int_mv ref_mv = | 
|  | get_mv_from_wrl(xd, &ref_warp_model, mbmi->pb_mv_precision, bsize, | 
|  | xd->mi_col, xd->mi_row); | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | num_signaled_mvd = 1; | 
|  | start_signaled_mvd_idx = 0; | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  | get_mvd_from_ref_mv(mbmi->mv[0].as_mv, ref_mv.as_mv, is_adaptive_mvd, | 
|  | pb_mv_precision, &mv_diff[0]); | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  | #if CONFIG_VQ_MVD_CODING | 
|  | av1_encode_mv(cpi, mbmi->mv[0].as_mv, w, nmvc, mv_diff[0], | 
|  | pb_mv_precision, is_adaptive_mvd); | 
|  | #else | 
|  | av1_encode_mv(cpi, w, mbmi->mv[0].as_mv, | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | mv_diff[0], | 
|  | #else | 
|  | ref_mv.as_mv, | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | nmvc, pb_mv_precision); | 
|  | #endif  // CONFIG_VQ_MVD_CODING | 
|  |  | 
|  | } else { | 
|  | if (have_newmv_in_each_reference(mode)) { | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | num_signaled_mvd = 1 + is_compound; | 
|  | start_signaled_mvd_idx = 0; | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  |  | 
|  | for (ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | nmv_context *nmvc = &ec_ctx->nmvc; | 
|  | int_mv ref_mv = get_ref_mv(x, ref); | 
|  | #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  | get_mvd_from_ref_mv(mbmi->mv[ref].as_mv, ref_mv.as_mv, | 
|  | is_adaptive_mvd, pb_mv_precision, &mv_diff[ref]); | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  | #if CONFIG_VQ_MVD_CODING | 
|  | av1_encode_mv(cpi, mbmi->mv[ref].as_mv, w, nmvc, mv_diff[ref], | 
|  | pb_mv_precision, is_adaptive_mvd); | 
|  | #else | 
|  | av1_encode_mv(cpi, w, mbmi->mv[ref].as_mv, | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | mv_diff[ref], | 
|  | #else | 
|  | ref_mv.as_mv, | 
|  | #endif | 
|  | nmvc, pb_mv_precision); | 
|  | #endif  // CONFIG_VQ_MVD_CODING | 
|  | } | 
|  | } else if (mode == NEAR_NEWMV || mode == NEAR_NEWMV_OPTFLOW || | 
|  | (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 1)) { | 
|  | nmv_context *nmvc = &ec_ctx->nmvc; | 
|  | int_mv ref_mv = get_ref_mv(x, 1); | 
|  |  | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | num_signaled_mvd = 1; | 
|  | start_signaled_mvd_idx = 1; | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | #if CONFIG_VQ_MVD_CODING || CONFIG_DERIVED_MVD_SIGN | 
|  | get_mvd_from_ref_mv(mbmi->mv[1].as_mv, ref_mv.as_mv, is_adaptive_mvd, | 
|  | pb_mv_precision, &mv_diff[1]); | 
|  | #endif  // CONFIG_VQ_MVD_CODING || CONFIG_DERIVED_MVD_SIGN | 
|  |  | 
|  | #if CONFIG_VQ_MVD_CODING | 
|  | av1_encode_mv(cpi, mbmi->mv[1].as_mv, w, nmvc, mv_diff[1], | 
|  | pb_mv_precision, is_adaptive_mvd); | 
|  | #else | 
|  | av1_encode_mv(cpi, w, mbmi->mv[1].as_mv, | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | mv_diff[1], | 
|  | #else | 
|  | ref_mv.as_mv, | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | nmvc, pb_mv_precision); | 
|  | #endif  // CONFIG_VQ_MVD_CODING | 
|  |  | 
|  | } else if (mode == NEW_NEARMV || mode == NEW_NEARMV_OPTFLOW || | 
|  | (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 0)) { | 
|  | nmv_context *nmvc = &ec_ctx->nmvc; | 
|  | int_mv ref_mv = get_ref_mv(x, 0); | 
|  | #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | num_signaled_mvd = 1; | 
|  | start_signaled_mvd_idx = 0; | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | get_mvd_from_ref_mv(mbmi->mv[0].as_mv, ref_mv.as_mv, is_adaptive_mvd, | 
|  | pb_mv_precision, &mv_diff[0]); | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING | 
|  | #if CONFIG_VQ_MVD_CODING | 
|  | av1_encode_mv(cpi, mbmi->mv[0].as_mv, w, nmvc, mv_diff[0], | 
|  | pb_mv_precision, is_adaptive_mvd); | 
|  | #else | 
|  | av1_encode_mv(cpi, w, mbmi->mv[0].as_mv, | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | mv_diff[0], | 
|  | #else | 
|  | ref_mv.as_mv, | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | nmvc, pb_mv_precision); | 
|  | #endif  // CONFIG_VQ_MVD_CODING | 
|  | } | 
|  | } | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | // Code sign in the second pass | 
|  | if (num_signaled_mvd > 0) { | 
|  | int last_ref = -1; | 
|  | int last_comp = -1; | 
|  | uint16_t sum_mvd = 0; | 
|  | int precision_shift = MV_PRECISION_ONE_EIGHTH_PEL - pb_mv_precision; | 
|  | int th_for_num_nonzero = get_derive_sign_nzero_th(mbmi); | 
|  | uint8_t num_nonzero_mvd_comp = 0; | 
|  | uint8_t enable_sign_derive = 0; | 
|  | if (is_mvd_sign_derive_allowed(cm, xd, mbmi)) { | 
|  | for (ref = start_signaled_mvd_idx; | 
|  | ref < start_signaled_mvd_idx + num_signaled_mvd; ++ref) { | 
|  | assert(ref == 0 || ref == 1); | 
|  | for (int comp = 0; comp < 2; comp++) { | 
|  | int this_mvd_comp = comp == 0 ? mv_diff[ref].row : mv_diff[ref].col; | 
|  | if (this_mvd_comp) { | 
|  | last_ref = ref; | 
|  | last_comp = comp; | 
|  | sum_mvd = sum_mvd + (abs(this_mvd_comp) >> precision_shift); | 
|  | num_nonzero_mvd_comp++; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (num_nonzero_mvd_comp >= th_for_num_nonzero) enable_sign_derive = 1; | 
|  | } | 
|  |  | 
|  | for (ref = start_signaled_mvd_idx; | 
|  | ref < start_signaled_mvd_idx + num_signaled_mvd; ++ref) { | 
|  | assert(ref == 0 || ref == 1); | 
|  | for (int comp = 0; comp < 2; comp++) { | 
|  | int this_mvd_comp = comp == 0 ? mv_diff[ref].row : mv_diff[ref].col; | 
|  | if (enable_sign_derive && (ref == last_ref && comp == last_comp)) { | 
|  | assert((this_mvd_comp < 0) == (sum_mvd & 0x1)); | 
|  | continue; | 
|  | } | 
|  | if (this_mvd_comp) { | 
|  | const int sign = this_mvd_comp < 0; | 
|  | aom_write_symbol(w, sign, ec_ctx->nmvc.comps[comp].sign_cdf, 2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  |  | 
|  | if (mbmi->motion_mode == WARP_DELTA) { | 
|  | write_warp_delta(cm, xd, mbmi, mbmi_ext_frame, w); | 
|  | } | 
|  | #if CONFIG_REFINEMV | 
|  | if (!mbmi->skip_mode) { | 
|  | write_refinemv_flag(cm, xd, w, bsize); | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | // First write idx to indicate current compound inter prediction mode | 
|  | // group Group A (0): dist_wtd_comp, compound_average Group B (1): | 
|  | // interintra, compound_diffwtd, wedge | 
|  |  | 
|  | if (has_second_ref(mbmi) && mbmi->mode < NEAR_NEARMV_OPTFLOW | 
|  | #if CONFIG_REFINEMV | 
|  | && (!mbmi->refinemv_flag || !switchable_refinemv_flag(cm, mbmi)) | 
|  | #endif  // CONFIG_REFINEMV | 
|  | && !is_joint_amvd_coding_mode(mbmi->mode)) { | 
|  |  | 
|  | const int masked_compound_used = is_any_masked_compound_used(bsize) && | 
|  | cm->seq_params.enable_masked_compound; | 
|  |  | 
|  | if (masked_compound_used) { | 
|  | const int ctx_comp_group_idx = get_comp_group_idx_context(cm, xd); | 
|  | aom_write_symbol(w, mbmi->comp_group_idx, | 
|  | ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); | 
|  | } else { | 
|  | assert(mbmi->comp_group_idx == 0); | 
|  | } | 
|  |  | 
|  | if (mbmi->comp_group_idx == 0) { | 
|  | assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); | 
|  | } else { | 
|  | #if CONFIG_COMPOUND_WARP_CAUSAL | 
|  | assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE && | 
|  | is_inter_compound_mode(mbmi->mode) && | 
|  | (mbmi->motion_mode == SIMPLE_TRANSLATION || | 
|  | is_compound_warp_causal_allowed( | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | xd, | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | mbmi))); | 
|  | #else | 
|  | assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE && | 
|  | is_inter_compound_mode(mbmi->mode) && | 
|  | mbmi->motion_mode == SIMPLE_TRANSLATION); | 
|  | #endif  // CONFIG_COMPOUND_WARP_CAUSAL | 
|  | assert(masked_compound_used); | 
|  | // compound_diffwtd, wedge | 
|  | assert(mbmi->interinter_comp.type == COMPOUND_WEDGE || | 
|  | mbmi->interinter_comp.type == COMPOUND_DIFFWTD); | 
|  |  | 
|  | if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { | 
|  | aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE, | 
|  | #if CONFIG_D149_CTX_MODELING_OPT | 
|  | ec_ctx->compound_type_cdf, | 
|  | #else | 
|  | ec_ctx->compound_type_cdf[bsize], | 
|  | #endif  // CONFIG_D149_CTX_MODELING_OPT | 
|  | MASKED_COMPOUND_TYPES); | 
|  | } | 
|  |  | 
|  | if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { | 
|  | assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | write_wedge_mode(w, ec_ctx, bsize, mbmi->interinter_comp.wedge_index); | 
|  | #else | 
|  | aom_write_symbol(w, mbmi->interinter_comp.wedge_index, | 
|  | ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  | aom_write_bit(w, mbmi->interinter_comp.wedge_sign); | 
|  | } else { | 
|  | assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); | 
|  | aom_write_literal(w, mbmi->interinter_comp.mask_type, | 
|  | MAX_DIFFWTD_MASK_BITS); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (cm->features.enable_cwp && is_cwp_allowed(mbmi) && !mbmi->skip_mode) | 
|  | write_cwp_idx(xd, w, cm, mbmi); | 
|  | write_mb_interp_filter(cm, xd, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT | 
|  | static void write_intrabc_drl_idx(int max_ref_bv_num, FRAME_CONTEXT *ec_ctx, | 
|  | const MB_MODE_INFO *mbmi, | 
|  | const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, | 
|  | aom_writer *w) { | 
|  | assert(!mbmi->skip_mode); | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | assert(mbmi->intrabc_drl_idx < mbmi_ext_frame->ref_mv_count[0]); | 
|  | #else | 
|  | assert(mbmi->intrabc_drl_idx < mbmi_ext_frame->ref_mv_count); | 
|  | #endif | 
|  | assert(mbmi->intrabc_drl_idx < max_ref_bv_num); | 
|  | (void)mbmi_ext_frame; | 
|  |  | 
|  | int bit_cnt = 0; | 
|  | for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) { | 
|  | aom_write_symbol(w, mbmi->intrabc_drl_idx != idx, | 
|  | ec_ctx->intrabc_drl_idx_cdf[bit_cnt], 2); | 
|  | if (mbmi->intrabc_drl_idx == idx) break; | 
|  | ++bit_cnt; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
|  |  | 
|  | static AOM_INLINE void write_intrabc_info( | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | int max_bvp_drl_bits, | 
|  | #endif  //  CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | const AV1_COMMON *const cm, | 
|  | #endif  // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, | 
|  | aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); | 
|  | if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | #if !CONFIG_SKIP_TXFM_OPT | 
|  | #if CONFIG_NEW_CONTEXT_MODELING | 
|  | const int intrabc_ctx = get_intrabc_ctx(xd); | 
|  | aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf[intrabc_ctx], 2); | 
|  | #else | 
|  | aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); | 
|  | #endif  // CONFIG_NEW_CONTEXT_MODELING | 
|  | #endif  // !CONFIG_SKIP_TXFM_OPT | 
|  |  | 
|  | if (use_intrabc) { | 
|  | assert(mbmi->mode == DC_PRED); | 
|  | assert(mbmi->motion_mode == SIMPLE_TRANSLATION); | 
|  |  | 
|  | assert(mbmi->pb_mv_precision == MV_PRECISION_ONE_PEL); | 
|  |  | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0][0].this_mv; | 
|  | #else | 
|  | int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv; | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT | 
|  | aom_write_symbol(w, mbmi->intrabc_mode, ec_ctx->intrabc_mode_cdf, 2); | 
|  | write_intrabc_drl_idx( | 
|  | #if CONFIG_IBC_MAX_DRL | 
|  | max_bvp_drl_bits + 1, | 
|  | #else | 
|  | MAX_REF_BV_STACK_SIZE, | 
|  | #endif  // CONFIG_IBC_MAX_DRL | 
|  | ec_ctx, mbmi, mbmi_ext_frame, w); | 
|  |  | 
|  | if (!mbmi->intrabc_mode) | 
|  | av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); | 
|  |  | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | if (!mbmi->intrabc_mode) { | 
|  | const MV diff = { mbmi->mv[0].as_mv.row - dv_ref.as_mv.row, | 
|  | mbmi->mv[0].as_mv.col - dv_ref.as_mv.col }; | 
|  | if (diff.row) { | 
|  | aom_write_symbol(w, diff.row < 0, ec_ctx->ndvc.comps[0].sign_cdf, 2); | 
|  | } | 
|  | if (diff.col) { | 
|  | aom_write_symbol(w, diff.col < 0, ec_ctx->ndvc.comps[1].sign_cdf, 2); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | #else | 
|  | av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | const MV diff = { mbmi->mv[0].as_mv.row - dv_ref.as_mv.row, | 
|  | mbmi->mv[0].as_mv.col - dv_ref.as_mv.col }; | 
|  | if (diff.row) { | 
|  | aom_write_symbol(w, diff.row < 0, ec_ctx->ndvc.comps[0].sign_cdf, 2); | 
|  | } | 
|  | if (diff.col) { | 
|  | aom_write_symbol(w, diff.col < 0, ec_ctx->ndvc.comps[1].sign_cdf, 2); | 
|  | } | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
|  |  | 
|  | #if CONFIG_MORPH_PRED | 
|  | #if CONFIG_IMPROVED_MORPH_PRED | 
|  | if (av1_allow_intrabc_morph_pred(cm)) { | 
|  | #endif  // CONFIG_IMPROVED_MORPH_PRED | 
|  | const int morph_pred_ctx = get_morph_pred_ctx(xd); | 
|  | aom_write_symbol(w, mbmi->morph_pred, | 
|  | ec_ctx->morph_pred_cdf[morph_pred_ctx], 2); | 
|  | #if CONFIG_IMPROVED_MORPH_PRED | 
|  | } else { | 
|  | assert(mbmi->morph_pred == 0); | 
|  | } | 
|  | #endif  // CONFIG_IMPROVED_MORPH_PRED | 
|  | #endif  // CONFIG_MORPH_PRED | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_mb_modes_kf( | 
|  | AV1_COMP *cpi, MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | struct segmentation_probs *const segp = &ec_ctx->seg; | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  |  | 
|  | if (seg->segid_preskip && seg->update_map | 
|  | #if CONFIG_EXTENDED_SDP | 
|  | && !(!frame_is_intra_only(cm) && xd->tree_type == CHROMA_PART) | 
|  | #endif  // CONFIG_EXTENDED_SDP | 
|  | ) | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, 0); | 
|  |  | 
|  | #if CONFIG_SKIP_TXFM_OPT | 
|  | if (av1_allow_intrabc(cm, xd | 
|  | #if CONFIG_ENABLE_IBC_NAT | 
|  | , | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART] | 
|  | #endif  // CONFIG_ENABLE_IBC_NAT | 
|  | ) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); | 
|  | if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0); | 
|  | #if CONFIG_NEW_CONTEXT_MODELING | 
|  | const int intrabc_ctx = get_intrabc_ctx(xd); | 
|  | aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf[intrabc_ctx], 2); | 
|  | #else | 
|  | aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); | 
|  | #endif  // CONFIG_NEW_CONTEXT_MODELING | 
|  | } | 
|  |  | 
|  | int skip = 0; | 
|  | if (is_intrabc_block(mbmi, xd->tree_type)) { | 
|  | skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); | 
|  | } | 
|  | #else | 
|  | const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); | 
|  | #endif  // CONFIG_SKIP_TXFM_OPT | 
|  | if (!seg->segid_preskip && seg->update_map | 
|  | #if CONFIG_EXTENDED_SDP | 
|  | && !(!frame_is_intra_only(cm) && xd->tree_type == CHROMA_PART) | 
|  | #endif  // CONFIG_EXTENDED_SDP | 
|  | ) | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, skip); | 
|  |  | 
|  | if (xd->tree_type != CHROMA_PART) write_cdef(cm, xd, w, skip); | 
|  |  | 
|  | if (cm->seq_params.enable_ccso && xd->tree_type != CHROMA_PART) | 
|  | write_ccso(cm, xd, w); | 
|  |  | 
|  | write_delta_q_params(cpi, skip, w); | 
|  | if (av1_allow_intrabc(cm, xd | 
|  | #if CONFIG_ENABLE_IBC_NAT | 
|  | , | 
|  | mbmi->sb_type[xd->tree_type == CHROMA_PART] | 
|  | #endif  // CONFIG_ENABLE_IBC_NAT | 
|  | ) && | 
|  | xd->tree_type != CHROMA_PART) { | 
|  | write_intrabc_info( | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | cm->features.max_bvp_drl_bits, | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | cm, | 
|  | #endif  // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED | 
|  | xd, mbmi_ext_frame, w); | 
|  | if (is_intrabc_block(mbmi, xd->tree_type)) return; | 
|  | } | 
|  |  | 
|  | write_intra_prediction_modes(cpi, 1, w); | 
|  | } | 
|  |  | 
|  | #if CONFIG_RD_DEBUG | 
|  | static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) { | 
|  | printf("\nmi->mi_row == %d\n", mi->mi_row); | 
|  | printf("&& mi->mi_col == %d\n", mi->mi_col); | 
|  | printf("&& mi->sb_type[0] == %d\n", mi->sb_type[0]); | 
|  | printf("&& mi->sb_type[1] == %d\n", mi->sb_type[1]); | 
|  | printf("&& mi->tx_size == %d\n", mi->tx_size); | 
|  | printf("&& mi->mode == %d\n", mi->mode); | 
|  | } | 
|  |  | 
|  | static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, | 
|  | int plane) { | 
|  | if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { | 
|  | int r, c; | 
|  | printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", | 
|  | plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); | 
|  | printf("rd txb_coeff_cost_map\n"); | 
|  | for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { | 
|  | for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { | 
|  | printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  |  | 
|  | printf("pack txb_coeff_cost_map\n"); | 
|  | for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { | 
|  | for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { | 
|  | printf("%d ", token_stats->txb_coeff_cost_map[r][c]); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if ENC_MISMATCH_DEBUG | 
|  | static AOM_INLINE void enc_dump_logs( | 
|  | const AV1_COMMON *const cm, | 
|  | const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) { | 
|  | const MB_MODE_INFO *const mbmi = *( | 
|  | cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col)); | 
|  | const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = | 
|  | mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col, | 
|  | cm->mi_params.mi_alloc_bsize, | 
|  | mbmi_ext_info->stride); | 
|  | if (is_inter_block(mbmi, SHARED_PART)) { | 
|  | #define FRAME_TO_CHECK 11 | 
|  | if (cm->current_frame.frame_number == FRAME_TO_CHECK && | 
|  | cm->show_frame == 1) { | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type; | 
|  |  | 
|  | int_mv mv[2] = { 0 }; | 
|  | const int is_comp_ref = has_second_ref(mbmi); | 
|  |  | 
|  | for (int ref = 0; ref < 1 + is_comp_ref; ++ref) | 
|  | mv[ref].as_mv = mbmi->mv[ref].as_mv; | 
|  |  | 
|  | if (!is_comp_ref) { | 
|  | mv[1].as_int = 0; | 
|  | } | 
|  |  | 
|  | const int16_t mode_ctx = | 
|  | is_comp_ref ? 0 | 
|  | : mode_context_analyzer(mbmi_ext_frame->mode_context, | 
|  | mbmi->ref_frame); | 
|  |  | 
|  | const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; | 
|  | int16_t zeromv_ctx = -1; | 
|  | int16_t refmv_ctx = -1; | 
|  |  | 
|  | if (mbmi->mode != NEWMV) { | 
|  | zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; | 
|  | if (mbmi->mode != GLOBALMV) | 
|  | refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
|  | } | 
|  |  | 
|  | printf( | 
|  | "=== ENCODER ===: " | 
|  | "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " | 
|  | "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " | 
|  | "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " | 
|  | "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", | 
|  | cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode, | 
|  | mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, | 
|  | mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], | 
|  | mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, | 
|  | zeromv_ctx, refmv_ctx, mbmi->tx_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // ENC_MISMATCH_DEBUG | 
|  |  | 
|  | static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, aom_writer *w) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | MB_MODE_INFO *m = xd->mi[0]; | 
|  |  | 
|  | if (frame_is_intra_only(cm) | 
|  | #if CONFIG_EXTENDED_SDP | 
|  | || m->region_type == INTRA_REGION | 
|  | #endif  // CONFIG_EXTENDED_SDP | 
|  | ) { | 
|  | write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext_frame, w); | 
|  | } else { | 
|  | // has_subpel_mv_component needs the ref frame buffers set up to look | 
|  | // up if they are scaled. has_subpel_mv_component is in turn needed by | 
|  | // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. | 
|  | set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]); | 
|  |  | 
|  | #if ENC_MISMATCH_DEBUG | 
|  | enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col); | 
|  | #endif  // ENC_MISMATCH_DEBUG | 
|  |  | 
|  | pack_inter_mode_mvs(cpi, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_inter_txb_coeff( | 
|  | AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi, | 
|  | aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end, | 
|  | TOKEN_STATS *token_stats, const int row, const int col, int *block, | 
|  | const int plane) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const int ss_x = pd->subsampling_x; | 
|  | const int ss_y = pd->subsampling_y; | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(plane_bsize == | 
|  | get_plane_block_size(mbmi->sb_type[PLANE_TYPE_Y], ss_x, ss_y)); | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(plane_bsize < BLOCK_SIZES_ALL); | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); | 
|  | const int step = | 
|  | tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; | 
|  | const int bkw = tx_size_wide_unit[max_tx_size]; | 
|  | const int bkh = tx_size_high_unit[max_tx_size]; | 
|  | const BLOCK_SIZE max_unit_bsize = | 
|  | get_plane_block_size(BLOCK_64X64, ss_x, ss_y); | 
|  | const int num_4x4_w = mi_size_wide[plane_bsize]; | 
|  | const int num_4x4_h = mi_size_high[plane_bsize]; | 
|  | const int mu_blocks_wide = mi_size_wide[max_unit_bsize]; | 
|  | const int mu_blocks_high = mi_size_high[max_unit_bsize]; | 
|  | const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h); | 
|  | const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w); | 
|  |  | 
|  | for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) { | 
|  | for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) { | 
|  | if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { | 
|  | pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, AOM_PLANE_U, | 
|  | plane_bsize, cm->seq_params.bit_depth, | 
|  | block[AOM_PLANE_U], blk_row, blk_col, max_tx_size, | 
|  | token_stats); | 
|  | block[AOM_PLANE_U] += step; | 
|  | } | 
|  | pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, | 
|  | cm->seq_params.bit_depth, block[plane], blk_row, blk_col, | 
|  | max_tx_size, token_stats); | 
|  | block[plane] += step; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, aom_writer *w, | 
|  | const TokenExtra **tok, | 
|  | const TokenExtra *const tok_end) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const BLOCK_SIZE bsize = get_bsize_base(xd, mbmi, AOM_PLANE_Y); | 
|  | #else | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]); | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  |  | 
|  | if (!is_inter) { | 
|  | av1_write_intra_coeffs_mb(cm, x, w, bsize); | 
|  | } else { | 
|  | int block[MAX_MB_PLANE] = { 0 }; | 
|  | assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, | 
|  | xd->plane[0].subsampling_y)); | 
|  | const int num_4x4_w = mi_size_wide[bsize]; | 
|  | const int num_4x4_h = mi_size_high[bsize]; | 
|  | TOKEN_STATS token_stats; | 
|  | init_token_stats(&token_stats); | 
|  |  | 
|  | const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; | 
|  | assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64, | 
|  | xd->plane[0].subsampling_x, | 
|  | xd->plane[0].subsampling_y)); | 
|  | int mu_blocks_wide = mi_size_wide[max_unit_bsize]; | 
|  | int mu_blocks_high = mi_size_high[max_unit_bsize]; | 
|  | mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); | 
|  | mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); | 
|  |  | 
|  | for (int row = 0; row < num_4x4_h; row += mu_blocks_high) { | 
|  | for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) { | 
|  | const int plane_start = get_partition_plane_start(xd->tree_type); | 
|  | const int plane_end = | 
|  | get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); | 
|  | for (int plane = plane_start; plane < plane_end; ++plane) { | 
|  | if (plane && !xd->is_chroma_ref) break; | 
|  | if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue; | 
|  | write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row, | 
|  | col, block, plane); | 
|  | } | 
|  | } | 
|  | } | 
|  | #if CONFIG_RD_DEBUG | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | if (mbmi->sb_type[xd->tree_type == CHROMA_PART] >= BLOCK_8X8 && | 
|  | rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { | 
|  | dump_mode_info(mbmi); | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_RD_DEBUG | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, | 
|  | aom_writer *w, const TokenExtra **tok, | 
|  | const TokenExtra *const tok_end, | 
|  | int mi_row, int mi_col) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | MACROBLOCKD *xd = &cpi->td.mb.e_mbd; | 
|  | const int grid_idx = mi_row * mi_params->mi_stride + mi_col; | 
|  | xd->mi = mi_params->mi_grid_base + grid_idx; | 
|  | cpi->td.mb.mbmi_ext_frame = | 
|  | cpi->mbmi_ext_info.frame_base + | 
|  | get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize, | 
|  | cpi->mbmi_ext_info.stride); | 
|  | xd->tx_type_map = mi_params->tx_type_map + grid_idx; | 
|  | xd->tx_type_map_stride = mi_params->mi_stride; | 
|  | xd->cctx_type_map = mi_params->cctx_type_map + grid_idx; | 
|  | xd->cctx_type_map_stride = mi_params->mi_stride; | 
|  |  | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | assert(IMPLIES(xd->tree_type == SHARED_PART && av1_num_planes(cm) > 1, | 
|  | mbmi->sb_type[PLANE_TYPE_Y] == mbmi->sb_type[PLANE_TYPE_UV])); | 
|  | assert(bsize <= cm->sb_size || | 
|  | (bsize > BLOCK_LARGEST && bsize < BLOCK_SIZES_ALL)); | 
|  |  | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, | 
|  | mi_params->mi_cols, &mbmi->chroma_ref_info); | 
|  |  | 
|  | // For skip blocks, reset the corresponding area in cctx_type_map to | 
|  | // CCTX_NONE, which will be used as contexts for later blocks. No need to use | 
|  | // av1_get_adjusted_tx_size because uv_txsize is intended to cover the entire | 
|  | // prediction block area | 
|  | if (is_cctx_enabled(cm, xd) && | 
|  | mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && | 
|  | xd->tree_type != LUMA_PART && xd->is_chroma_ref) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; | 
|  | const BLOCK_SIZE uv_bsize = get_mb_plane_block_size( | 
|  | xd, mbmi, AOM_PLANE_U, pd->subsampling_x, pd->subsampling_y); | 
|  | const TX_SIZE uv_txsize = max_txsize_rect_lookup[uv_bsize]; | 
|  | int row_offset, col_offset; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | get_chroma_mi_offsets(xd, &row_offset, &col_offset); | 
|  | #else | 
|  | get_chroma_mi_offsets(xd, uv_txsize, &row_offset, &col_offset); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | update_cctx_array(xd, 0, 0, row_offset, col_offset, uv_txsize, CCTX_NONE); | 
|  | } | 
|  |  | 
|  | #if !CONFIG_TX_PARTITION_CTX | 
|  | xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | #endif  // !CONFIG_TX_PARTITION_CTX | 
|  |  | 
|  | write_mbmi_b(cpi, w); | 
|  |  | 
|  | const int plane_start = get_partition_plane_start(xd->tree_type); | 
|  | const int plane_end = | 
|  | get_partition_plane_end(xd->tree_type, AOMMIN(2, av1_num_planes(cm))); | 
|  | for (int plane = plane_start; plane < plane_end; ++plane) { | 
|  | const uint8_t palette_size_plane = | 
|  | mbmi->palette_mode_info.palette_size[plane]; | 
|  | assert(!mbmi->skip_mode || !palette_size_plane); | 
|  | if (palette_size_plane > 0) { | 
|  | assert(mbmi->use_intrabc[plane] == 0); | 
|  | assert(av1_allow_palette(cm->features.allow_screen_content_tools, | 
|  | mbmi->sb_type[plane])); | 
|  | assert(!plane || xd->is_chroma_ref); | 
|  | int rows, cols; | 
|  | av1_get_block_dimensions(mbmi->sb_type[plane], plane, xd, NULL, NULL, | 
|  | &rows, &cols); | 
|  | assert(*tok < tok_end); | 
|  | #if CONFIG_PALETTE_IMPROVEMENTS | 
|  | #if CONFIG_PALETTE_LINE_COPY | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0)); | 
|  | assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0)); | 
|  | const int block_height = block_size_high[bsize]; | 
|  | const int block_width = block_size_wide[bsize]; | 
|  | const int plane_block_width = block_width >> pd->subsampling_x; | 
|  | const int plane_block_height = block_height >> pd->subsampling_y; | 
|  | const bool direction_allowed = | 
|  | plane_block_width < 64 && plane_block_height < 64; | 
|  | #endif  // CONFIG_PALETTE_LINE_COPY | 
|  | pack_map_tokens(xd, w, tok, palette_size_plane, cols, rows, plane | 
|  | #if CONFIG_PALETTE_LINE_COPY | 
|  | , | 
|  | direction_allowed | 
|  | #endif  // CONFIG_PALETTE_LINE_COPY | 
|  | ); | 
|  | #else | 
|  | pack_map_tokens(xd, w, tok, palette_size_plane, rows * cols, plane); | 
|  | #endif  // CONFIG_PALETTE_IMPROVEMENTS | 
|  | } | 
|  | } | 
|  |  | 
|  | const int is_inter_tx = is_inter_block(mbmi, xd->tree_type); | 
|  | const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART]; | 
|  | const int segment_id = mbmi->segment_id; | 
|  | if (xd->tree_type != CHROMA_PART) { | 
|  | if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && | 
|  | !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) { | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); | 
|  | if (is_inter_tx) {  // This implies skip flag is 0. | 
|  | const int txbh = tx_size_high_unit[max_tx_size]; | 
|  | const int txbw = tx_size_wide_unit[max_tx_size]; | 
|  | const int width = mi_size_wide[bsize]; | 
|  | const int height = mi_size_high[bsize]; | 
|  | for (int idy = 0; idy < height; idy += txbh) { | 
|  | for (int idx = 0; idx < width; idx += txbw) { | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | write_tx_partition(xd, mbmi, max_tx_size, idy, idx, w); | 
|  | #else | 
|  | write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  | } | 
|  | } | 
|  | } else { | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | write_tx_partition(xd, mbmi, max_tx_size, 0, 0, w); | 
|  | #else | 
|  | write_selected_tx_size(xd, w); | 
|  | #endif | 
|  | #if !CONFIG_TX_PARTITION_CTX | 
|  | set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd); | 
|  | #endif  // !CONFIG_TX_PARTITION_CTX | 
|  | } | 
|  | } | 
|  | #if !CONFIG_TX_PARTITION_CTX | 
|  | else { | 
|  | set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, | 
|  | skip_txfm && is_inter_tx, xd); | 
|  | } | 
|  | #endif  // !CONFIG_TX_PARTITION_CTX | 
|  | } | 
|  |  | 
|  | if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) { | 
|  | write_tokens_b(cpi, w, tok, tok_end); | 
|  | } else if (!is_global_intrabc_allowed(cm) && !cm->features.coded_lossless) { | 
|  | // Assert only when LR is enabled. | 
|  | assert(1 == av1_get_txk_skip(cm, xd->mi_row, xd->mi_col, 0, 0, 0)); | 
|  | } | 
|  |  | 
|  | av1_mark_block_as_coded(xd, bsize, cm->sb_size); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_partition(const AV1_COMMON *const cm, | 
|  | const MACROBLOCKD *const xd, int mi_row, | 
|  | int mi_col, PARTITION_TYPE p, | 
|  | BLOCK_SIZE bsize, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const PARTITION_TREE *ptree, | 
|  | const PARTITION_TREE *ptree_luma, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | aom_writer *w) { | 
|  | const int plane = xd->tree_type == CHROMA_PART; | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (!is_partition_point(bsize)) return; | 
|  | if (bsize == BLOCK_8X8 && plane > 0) return; | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int ssx = cm->seq_params.subsampling_x; | 
|  | const int ssy = cm->seq_params.subsampling_y; | 
|  | const PARTITION_TYPE derived_partition = | 
|  | av1_get_normative_forced_partition_type( | 
|  | &cm->mi_params, xd->tree_type, ssx, ssy, mi_row, mi_col, bsize, | 
|  | ptree_luma, &ptree->chroma_ref_info); | 
|  | if (derived_partition != PARTITION_INVALID) { | 
|  | assert(p == derived_partition); | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_PARTITION_CONTEXT_REDUCE | 
|  | const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize, 1); | 
|  | const int rect_type_ctx = | 
|  | partition_plane_context(xd, mi_row, mi_col, bsize, 0); | 
|  | #else | 
|  | const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); | 
|  | const int rect_type_ctx = ctx; | 
|  | #endif | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const bool do_split = p != PARTITION_NONE; | 
|  | aom_write_symbol(w, do_split, ec_ctx->do_split_cdf[plane][ctx], 2); | 
|  | if (!do_split) { | 
|  | return; | 
|  | } | 
|  | const bool do_square_split = p == PARTITION_SPLIT; | 
|  | if (is_square_split_eligible(bsize, cm->sb_size)) { | 
|  | const int square_split_ctx = | 
|  | square_split_context(xd, mi_row, mi_col, bsize); | 
|  | aom_write_symbol(w, do_square_split, | 
|  | ec_ctx->do_square_split_cdf[plane][square_split_ctx], 2); | 
|  | } | 
|  | if (do_square_split) { | 
|  | assert(p == PARTITION_SPLIT); | 
|  | return; | 
|  | } | 
|  | RECT_PART_TYPE rect_type = get_rect_part_type(p); | 
|  | if (rect_type_implied_by_bsize(bsize, xd->tree_type) == RECT_INVALID) { | 
|  | aom_write_symbol(w, rect_type, ec_ctx->rect_type_cdf[plane][rect_type_ctx], | 
|  | NUM_RECT_PARTS); | 
|  | } | 
|  | const bool ext_partition_allowed = | 
|  | cm->seq_params.enable_ext_partitions && | 
|  | is_ext_partition_allowed(bsize, rect_type, xd->tree_type); | 
|  | if (ext_partition_allowed) { | 
|  | const bool do_ext_partition = (p >= PARTITION_HORZ_3); | 
|  | aom_write_symbol(w, do_ext_partition, | 
|  | ec_ctx->do_ext_partition_cdf[plane][rect_type][ctx], 2); | 
|  | if (do_ext_partition) { | 
|  | const bool uneven_4way_partition_allowed = | 
|  | is_uneven_4way_partition_allowed(bsize, rect_type, xd->tree_type); | 
|  | if (uneven_4way_partition_allowed) { | 
|  | const bool do_uneven_4way_partition = (p >= PARTITION_HORZ_4A); | 
|  | aom_write_symbol( | 
|  | w, do_uneven_4way_partition, | 
|  | ec_ctx->do_uneven_4way_partition_cdf[plane][rect_type][ctx], 2); | 
|  | if (do_uneven_4way_partition) { | 
|  | const UNEVEN_4WAY_PART_TYPE uneven_4way_type = | 
|  | (p == PARTITION_HORZ_4A || p == PARTITION_VERT_4A) ? UNEVEN_4A | 
|  | : UNEVEN_4B; | 
|  | aom_write_symbol( | 
|  | w, uneven_4way_type, | 
|  | ec_ctx->uneven_4way_partition_type_cdf[plane][rect_type][ctx], | 
|  | NUM_UNEVEN_4WAY_PARTS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int hbs_w = mi_size_wide[bsize] / 2; | 
|  | const int hbs_h = mi_size_high[bsize] / 2; | 
|  | const int has_rows = (mi_row + hbs_h) < cm->mi_params.mi_rows; | 
|  | const int has_cols = (mi_col + hbs_w) < cm->mi_params.mi_cols; | 
|  | if (!has_rows && !has_cols) { | 
|  | assert(p == PARTITION_SPLIT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int parent_block_width = block_size_wide[bsize]; | 
|  | if (xd->tree_type == CHROMA_PART && parent_block_width >= SHARED_PART_SIZE) { | 
|  | int luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); | 
|  | // if luma blocks uses smaller blocks, then chroma will also split | 
|  | if (luma_split_flag > 3) { | 
|  | assert(p == PARTITION_SPLIT); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_rows && has_cols) { | 
|  | aom_write_symbol(w, p, ec_ctx->partition_cdf[plane][ctx], | 
|  | partition_cdf_length(bsize)); | 
|  | } else if (!has_rows && has_cols) { | 
|  | assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); | 
|  | assert(bsize > BLOCK_8X8); | 
|  | aom_cdf_prob cdf[2]; | 
|  | partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize); | 
|  | aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); | 
|  | } else { | 
|  | assert(has_rows && !has_cols); | 
|  | assert(p == PARTITION_SPLIT || p == PARTITION_VERT); | 
|  | assert(bsize > BLOCK_8X8); | 
|  | aom_cdf_prob cdf[2]; | 
|  | partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize); | 
|  | aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_modes_sb( | 
|  | AV1_COMP *const cpi, const TileInfo *const tile, aom_writer *const w, | 
|  | const TokenExtra **tok, const TokenExtra *const tok_end, | 
|  | PARTITION_TREE *ptree, | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const PARTITION_TREE *ptree_luma, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int hbs_w = mi_size_wide[bsize] / 2; | 
|  | const int hbs_h = mi_size_high[bsize] / 2; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | const int ebs_w = mi_size_wide[bsize] / 8; | 
|  | const int ebs_h = mi_size_high[bsize] / 8; | 
|  | #else | 
|  | const int qbs_w = mi_size_wide[bsize] / 4; | 
|  | const int qbs_h = mi_size_high[bsize] / 4; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(ptree); | 
|  | const PARTITION_TYPE partition = ptree->partition; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | if (subsize == BLOCK_INVALID) return; | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | const int plane_start = get_partition_plane_start(xd->tree_type); | 
|  | const int plane_end = | 
|  | get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); | 
|  | for (int plane = plane_start; plane < plane_end; ++plane) { | 
|  | int rcol0, rcol1, rrow0, rrow1; | 
|  | if (cm->rst_info[plane].frame_restoration_type != RESTORE_NONE && | 
|  | av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, | 
|  | &rcol0, &rcol1, &rrow0, &rrow1)) { | 
|  | #if CONFIG_COMBINE_PC_NS_WIENER | 
|  | int16_t *frame_filter_dictionary = NULL; | 
|  | int dict_stride = 0; | 
|  | if (plane == AOM_PLANE_Y && | 
|  | to_readwrite_framefilters(&cm->rst_info[plane], mi_row, mi_col)) { | 
|  | frame_filter_dictionary = cm->frame_filter_dictionary; | 
|  | dict_stride = cm->frame_filter_dictionary_stride; | 
|  | assert(frame_filter_dictionary != NULL); | 
|  | assert(dict_stride > 0); | 
|  | write_wienerns_framefilters(cm, xd, plane, w, frame_filter_dictionary, | 
|  | dict_stride); | 
|  | } | 
|  | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
|  | const int rstride = cm->rst_info[plane].horz_units_per_tile; | 
|  | for (int rrow = rrow0; rrow < rrow1; ++rrow) { | 
|  | for (int rcol = rcol0; rcol < rcol1; ++rcol) { | 
|  | const int runit_idx = rcol + rrow * rstride; | 
|  | const RestorationUnitInfo *rui = | 
|  | &cm->rst_info[plane].unit_info[runit_idx]; | 
|  | loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, | 
|  | cpi->td.counts); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | write_partition(cm, xd, mi_row, mi_col, partition, bsize, ptree, ptree_luma, | 
|  | w); | 
|  | const int track_ptree_luma = | 
|  | is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize); | 
|  | if (!track_ptree_luma) { | 
|  | ptree_luma = NULL; | 
|  | } | 
|  | assert(IMPLIES(track_ptree_luma, ptree_luma)); | 
|  | #else | 
|  | write_partition(cm, xd, mi_row, mi_col, partition, bsize, w); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_EXTENDED_SDP | 
|  | const int is_sb_root = bsize == cm->sb_size; | 
|  | PARTITION_TREE *parent = ptree->parent; | 
|  | if (!is_sb_root && !frame_is_intra_only(cm) && parent && partition && | 
|  | parent->region_type != INTRA_REGION && cm->seq_params.enable_sdp && | 
|  | ptree->extended_sdp_allowed_flag && | 
|  | is_extended_sdp_allowed(parent->bsize, parent->partition) && | 
|  | is_bsize_allowed_for_extended_sdp(bsize, ptree->partition)) { | 
|  | const int ctx = get_intra_region_context(bsize); | 
|  | assert(xd->tree_type != CHROMA_PART); | 
|  | aom_write_symbol(w, ptree->region_type, xd->tile_ctx->region_type_cdf[ctx], | 
|  | REGION_TYPES); | 
|  | if (ptree->region_type == INTRA_REGION) { | 
|  | xd->tree_type = LUMA_PART; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXTENDED_SDP | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], | 
|  | get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, | 
|  | subsize); | 
|  | if (mi_row + hbs_h < mi_params->mi_rows) { | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], | 
|  | get_partition_subtree_const(ptree_luma, 1), | 
|  | mi_row + hbs_h, mi_col, subsize); | 
|  | } | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | if (mi_row + hbs_h < mi_params->mi_rows) | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], | 
|  | get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, | 
|  | subsize); | 
|  | if (mi_col + hbs_w < mi_params->mi_cols) { | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], | 
|  | get_partition_subtree_const(ptree_luma, 1), mi_row, | 
|  | mi_col + hbs_w, subsize); | 
|  | } | 
|  | #else  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | if (mi_col + hbs_w < mi_params->mi_cols) | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); | 
|  | #endif | 
|  | break; | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | case PARTITION_HORZ_4A: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; | 
|  | assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], | 
|  | get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, | 
|  | subsize); | 
|  | if (mi_row + ebs_h >= mi_params->mi_rows) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], | 
|  | get_partition_subtree_const(ptree_luma, 1), mi_row + ebs_h, | 
|  | mi_col, bsize_med); | 
|  | if (mi_row + 3 * ebs_h >= mi_params->mi_rows) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], | 
|  | get_partition_subtree_const(ptree_luma, 2), | 
|  | mi_row + 3 * ebs_h, mi_col, bsize_big); | 
|  | if (mi_row + 7 * ebs_h >= mi_params->mi_rows) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], | 
|  | get_partition_subtree_const(ptree_luma, 3), | 
|  | mi_row + 7 * ebs_h, mi_col, subsize); | 
|  | break; | 
|  | } | 
|  | case PARTITION_HORZ_4B: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; | 
|  | assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], | 
|  | get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, | 
|  | subsize); | 
|  | if (mi_row + ebs_h >= mi_params->mi_rows) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], | 
|  | get_partition_subtree_const(ptree_luma, 1), mi_row + ebs_h, | 
|  | mi_col, bsize_big); | 
|  | if (mi_row + 5 * ebs_h >= mi_params->mi_rows) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], | 
|  | get_partition_subtree_const(ptree_luma, 2), | 
|  | mi_row + 5 * ebs_h, mi_col, bsize_med); | 
|  | if (mi_row + 7 * ebs_h >= mi_params->mi_rows) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], | 
|  | get_partition_subtree_const(ptree_luma, 3), | 
|  | mi_row + 7 * ebs_h, mi_col, subsize); | 
|  | break; | 
|  | } | 
|  | case PARTITION_VERT_4A: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; | 
|  | assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], | 
|  | get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, | 
|  | subsize); | 
|  | if (mi_col + ebs_w >= mi_params->mi_cols) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], | 
|  | get_partition_subtree_const(ptree_luma, 1), mi_row, | 
|  | mi_col + ebs_w, bsize_med); | 
|  | if (mi_col + 3 * ebs_w >= mi_params->mi_cols) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], | 
|  | get_partition_subtree_const(ptree_luma, 2), mi_row, | 
|  | mi_col + 3 * ebs_w, bsize_big); | 
|  | if (mi_col + 7 * ebs_w >= mi_params->mi_cols) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], | 
|  | get_partition_subtree_const(ptree_luma, 3), mi_row, | 
|  | mi_col + 7 * ebs_w, subsize); | 
|  | break; | 
|  | } | 
|  | case PARTITION_VERT_4B: { | 
|  | const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; | 
|  | assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], | 
|  | get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, | 
|  | subsize); | 
|  | if (mi_col + ebs_w >= mi_params->mi_cols) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], | 
|  | get_partition_subtree_const(ptree_luma, 1), mi_row, | 
|  | mi_col + ebs_w, bsize_big); | 
|  | if (mi_col + 5 * ebs_w >= mi_params->mi_cols) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], | 
|  | get_partition_subtree_const(ptree_luma, 2), mi_row, | 
|  | mi_col + 5 * ebs_w, bsize_med); | 
|  | if (mi_col + 7 * ebs_w >= mi_params->mi_cols) break; | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], | 
|  | get_partition_subtree_const(ptree_luma, 3), mi_row, | 
|  | mi_col + 7 * ebs_w, subsize); | 
|  | break; | 
|  | } | 
|  | case PARTITION_HORZ_3: | 
|  | case PARTITION_VERT_3: | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | BLOCK_SIZE this_bsize = get_h_partition_subsize(bsize, i, partition); | 
|  | const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition); | 
|  | const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition); | 
|  |  | 
|  | assert(this_bsize != BLOCK_INVALID); | 
|  | assert(offset_r >= 0 && offset_c >= 0); | 
|  |  | 
|  | const int this_mi_row = mi_row + offset_r; | 
|  | const int this_mi_col = mi_col + offset_c; | 
|  | if (partition == PARTITION_HORZ_3) { | 
|  | if (this_mi_row >= cm->mi_params.mi_rows) break; | 
|  | } else { | 
|  | if (this_mi_col >= cm->mi_params.mi_cols) break; | 
|  | } | 
|  |  | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[i], | 
|  | get_partition_subtree_const(ptree_luma, i), this_mi_row, | 
|  | this_mi_col, this_bsize); | 
|  | } | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], | 
|  | get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, | 
|  | subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], | 
|  | get_partition_subtree_const(ptree_luma, 1), mi_row, | 
|  | mi_col + hbs_w, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], | 
|  | get_partition_subtree_const(ptree_luma, 2), mi_row + hbs_h, | 
|  | mi_col, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], | 
|  | get_partition_subtree_const(ptree_luma, 3), mi_row + hbs_h, | 
|  | mi_col + hbs_w, subsize); | 
|  | break; | 
|  | #else   // CONFIG_EXT_RECUR_PARTITIONS | 
|  | case PARTITION_SPLIT: | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], mi_row, | 
|  | mi_col, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], mi_row, | 
|  | mi_col + hbs_w, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], | 
|  | mi_row + hbs_h, mi_col, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], | 
|  | mi_row + hbs_h, mi_col + hbs_w, subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_A: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col + hbs_w); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col + hbs_w); | 
|  | break; | 
|  | case PARTITION_HORZ_4: | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | int this_mi_row = mi_row + i * qbs_h; | 
|  | if (i > 0 && this_mi_row >= mi_params->mi_rows) break; | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_4: | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | int this_mi_col = mi_col + i * qbs_w; | 
|  | if (i > 0 && this_mi_col >= mi_params->mi_cols) break; | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); | 
|  | } | 
|  | break; | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | default: assert(0); break; | 
|  | } | 
|  | #if CONFIG_EXTENDED_SDP | 
|  | if (!is_sb_root && !frame_is_intra_only(cm) && !cm->seq_params.monochrome && | 
|  | parent && partition && parent->region_type != INTRA_REGION && | 
|  | ptree->region_type == INTRA_REGION) { | 
|  | // run chroma part in luma region | 
|  | xd->tree_type = CHROMA_PART; | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | // reset back to shared part | 
|  | xd->tree_type = SHARED_PART; | 
|  | } | 
|  | #endif  // CONFIG_EXTENDED_SDP | 
|  |  | 
|  | // update partition context | 
|  | update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_modes(AV1_COMP *const cpi, | 
|  | const TileInfo *const tile, | 
|  | aom_writer *const w, int tile_row, | 
|  | int tile_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | const int mi_row_start = tile->mi_row_start; | 
|  | const int mi_row_end = tile->mi_row_end; | 
|  | const int mi_col_start = tile->mi_col_start; | 
|  | const int mi_col_end = tile->mi_col_end; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row); | 
|  | av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd); | 
|  |  | 
|  | if (cpi->common.delta_q_info.delta_q_present_flag) { | 
|  | xd->current_base_qindex = cpi->common.quant_params.base_qindex; | 
|  | if (cpi->common.delta_q_info.delta_lf_present_flag) { | 
|  | av1_reset_loop_filter_delta(xd, num_planes); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int mi_row = mi_row_start; mi_row < mi_row_end; mi_row += cm->mib_size) { | 
|  | const int sb_row_in_tile = | 
|  | (mi_row - tile->mi_row_start) >> cm->mib_size_log2; | 
|  | const TokenExtra *tok = | 
|  | cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].start; | 
|  | const TokenExtra *tok_end = | 
|  | tok + cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].count; | 
|  |  | 
|  | av1_zero_left_context(xd); | 
|  |  | 
|  | for (int mi_col = mi_col_start; mi_col < mi_col_end; | 
|  | mi_col += cm->mib_size) { | 
|  | av1_reset_is_mi_coded_map(xd, cm->mib_size); | 
|  | xd->sbi = av1_get_sb_info(cm, mi_row, mi_col); | 
|  | cpi->td.mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); | 
|  | const int total_loop_num = | 
|  | (frame_is_intra_only(cm) && !cm->seq_params.monochrome && | 
|  | cm->seq_params.enable_sdp) | 
|  | ? 2 | 
|  | : 1; | 
|  | xd->tree_type = (total_loop_num == 1 ? SHARED_PART : LUMA_PART); | 
|  | write_modes_sb(cpi, tile, w, &tok, tok_end, | 
|  | xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | NULL, | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | mi_row, mi_col, cm->sb_size); | 
|  | if (total_loop_num == 2) { | 
|  | xd->tree_type = CHROMA_PART; | 
|  | write_modes_sb(cpi, tile, w, &tok, tok_end, | 
|  | xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | xd->sbi->ptree_root[0], | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | mi_row, mi_col, cm->sb_size); | 
|  | xd->tree_type = SHARED_PART; | 
|  | } | 
|  | } | 
|  | assert(tok == tok_end); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Same function as write_uniform but writing to uncompresses header wb | 
|  | static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, | 
|  | int v) { | 
|  | const int l = get_unsigned_bits(n); | 
|  | const int m = (1 << l) - n; | 
|  | if (l == 0) return; | 
|  | if (v < m) { | 
|  | aom_wb_write_literal(wb, v, l - 1); | 
|  | } else { | 
|  | aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); | 
|  | aom_wb_write_literal(wb, (v - m) & 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Converts frame restoration type to a coded index depending on lr tools | 
|  | // that are enabled for the frame for a given plane. | 
|  | static int frame_restoration_type_to_index( | 
|  | const AV1_COMMON *const cm, int plane, | 
|  | RestorationType frame_restoration_type) { | 
|  | int ndx = 0; | 
|  | for (RestorationType r = RESTORE_NONE; r < frame_restoration_type; ++r) { | 
|  | if (((cm->features.lr_tools_disable_mask[plane] >> r) & 1) == 0) ndx++; | 
|  | } | 
|  | return ndx; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void encode_restoration_mode( | 
|  | AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { | 
|  | assert(!cm->features.all_lossless); | 
|  | if (!cm->seq_params.enable_restoration) return; | 
|  | if (is_global_intrabc_allowed(cm)) return; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int luma_none = 1, chroma_none = 1; | 
|  | for (int p = 0; p < num_planes; ++p) { | 
|  | RestorationInfo *rsi = &cm->rst_info[p]; | 
|  | #if CONFIG_COMBINE_PC_NS_WIENER | 
|  | cm->cur_frame->rst_info[p].frame_filters_on = 0; | 
|  | rsi->frame_filters_initialized = 0; | 
|  | #if CONFIG_TEMP_LR | 
|  | assert(IMPLIES(!rsi->frame_filters_on, !rsi->temporal_pred_flag)); | 
|  | #endif  // CONFIG_TEMP_LR | 
|  | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
|  | if (rsi->frame_restoration_type != RESTORE_NONE) { | 
|  | luma_none &= p > 0; | 
|  | chroma_none &= p == 0; | 
|  | } | 
|  | assert(IMPLIES(cm->features.lr_tools_count[p] < 2, | 
|  | rsi->frame_restoration_type != RESTORE_SWITCHABLE)); | 
|  | const int ndx = | 
|  | frame_restoration_type_to_index(cm, p, rsi->frame_restoration_type); | 
|  | wb_write_uniform(wb, cm->features.lr_frame_tools_count[p], ndx); | 
|  | uint8_t plane_lr_tools_disable_mask = cm->features.lr_tools_disable_mask[p]; | 
|  | uint8_t sw_lr_tools_disable_mask = rsi->sw_lr_tools_disable_mask; | 
|  | if (rsi->frame_restoration_type == RESTORE_SWITCHABLE && | 
|  | cm->features.lr_tools_count[p] > 2) { | 
|  | if ((sw_lr_tools_disable_mask | plane_lr_tools_disable_mask) == | 
|  | plane_lr_tools_disable_mask) { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | int tools_count = cm->features.lr_tools_count[p]; | 
|  | for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { | 
|  | if (!(plane_lr_tools_disable_mask & (1 << i))) { | 
|  | const int disable_tool = (sw_lr_tools_disable_mask >> i) & 1; | 
|  | aom_wb_write_bit(wb, disable_tool); | 
|  | plane_lr_tools_disable_mask |= | 
|  | (sw_lr_tools_disable_mask & (1 << i)); | 
|  | tools_count -= disable_tool; | 
|  | // if tools_count becomes 2 break from the loop since we | 
|  | // do not allow any other tool to be disabled. | 
|  | if (tools_count == 2) break; | 
|  | } | 
|  | } | 
|  | av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features); | 
|  | } | 
|  | } | 
|  |  | 
|  | const int is_wiener_nonsep_possible = | 
|  | rsi->frame_restoration_type == RESTORE_WIENER_NONSEP || | 
|  | rsi->frame_restoration_type == RESTORE_SWITCHABLE; | 
|  | if (is_wiener_nonsep_possible) { | 
|  | #if CONFIG_COMBINE_PC_NS_WIENER | 
|  | rsi->frame_filters_initialized = 0; | 
|  | if (p == AOM_PLANE_Y) { | 
|  | int write_num_classes = 1; | 
|  | write_num_classes = | 
|  | write_num_classes && NUM_WIENERNS_CLASS_INIT_LUMA > 1; | 
|  | if (write_num_classes) { | 
|  | aom_wb_write_literal(wb, rsi->frame_filters_on, 1); | 
|  | // printf("Frame %d: frame_filters_on %d temporal_pred_flag %d\n", | 
|  | //        cm->current_frame.order_hint, rsi->frame_filters_on, | 
|  | //        rsi->temporal_pred_flag); | 
|  | #if CONFIG_TEMP_LR | 
|  | if (rsi->frame_filters_on) { | 
|  | const int num_ref_frames = | 
|  | (frame_is_intra_only(cm) || cm->features.error_resilient_mode) | 
|  | ? 0 | 
|  | : cm->ref_frames_info.num_total_refs; | 
|  | if (num_ref_frames > 0) | 
|  | aom_wb_write_bit(wb, rsi->temporal_pred_flag); | 
|  | if (rsi->temporal_pred_flag && num_ref_frames > 1) | 
|  | aom_wb_write_literal( | 
|  | wb, rsi->rst_ref_pic_idx, | 
|  | av1_ceil_log2(num_ref_frames));  // write_lr_reference_idx | 
|  | } | 
|  | if (!rsi->temporal_pred_flag) { | 
|  | #endif  // CONFIG_TEMP_LR | 
|  | if (rsi->frame_filters_on) | 
|  | aom_wb_write_literal( | 
|  | wb, encode_num_filter_classes(rsi->num_filter_classes), | 
|  | NUM_FILTER_CLASSES_BITS); | 
|  | #if CONFIG_TEMP_LR | 
|  | } | 
|  | if (rsi->frame_filters_on) | 
|  | av1_copy_rst_frame_filters(&cm->cur_frame->rst_info[p], rsi); | 
|  | if (rsi->temporal_pred_flag) { | 
|  | rsi->frame_filters_initialized = 1; | 
|  | assert(get_ref_frame_buf(cm, rsi->rst_ref_pic_idx) | 
|  | ->rst_info[p] | 
|  | .frame_filters_on); | 
|  | } | 
|  | #endif  // CONFIG_TEMP_LR | 
|  | if (cm->frame_filter_dictionary == NULL) { | 
|  | allocate_frame_filter_dictionary(cm); | 
|  | translate_pcwiener_filters_to_wienerns(cm); | 
|  | } | 
|  | if (rsi->frame_filters_on) { | 
|  | set_frame_filter_dictionary(cm, rsi->num_filter_classes, | 
|  | cm->frame_filter_dictionary, | 
|  | cm->frame_filter_dictionary_stride); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | assert(rsi->frame_filters_on == 0); | 
|  | assert(rsi->num_filter_classes == NUM_WIENERNS_CLASS_INIT_CHROMA); | 
|  | } | 
|  | #else | 
|  | assert(rsi->num_filter_classes == (p == AOM_PLANE_Y | 
|  | ? NUM_WIENERNS_CLASS_INIT_LUMA | 
|  | : NUM_WIENERNS_CLASS_INIT_CHROMA)); | 
|  | assert(rsi->frame_filters_on == 0); | 
|  | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
|  | } else { | 
|  | #if CONFIG_COMBINE_PC_NS_WIENER && CONFIG_TEMP_LR | 
|  | rsi->temporal_pred_flag = 0; | 
|  | #endif  // CONFIG_COMBINE_PC_NS_WIENER && CONFIG_TEMP_LR | 
|  | } | 
|  | } | 
|  | int size = cm->rst_info[0].max_restoration_unit_size; | 
|  | if (!luma_none) { | 
|  | aom_wb_write_bit(wb, cm->rst_info[0].restoration_unit_size == size >> 1); | 
|  | if (cm->rst_info[0].restoration_unit_size != size >> 1) | 
|  | aom_wb_write_bit(wb, cm->rst_info[0].restoration_unit_size == size); | 
|  | } | 
|  | if (!chroma_none) { | 
|  | size = cm->rst_info[1].max_restoration_unit_size; | 
|  | aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size == size >> 1); | 
|  | if (cm->rst_info[1].restoration_unit_size != size >> 1) | 
|  | aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size == size); | 
|  | assert(cm->rst_info[2].restoration_unit_size == | 
|  | cm->rst_info[1].restoration_unit_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_wiener_filter(MACROBLOCKD *xd, int wiener_win, | 
|  | const WienerInfo *wiener_info, | 
|  | WienerInfoBank *bank, | 
|  | aom_writer *wb) { | 
|  | const int equal_ref = check_wiener_bank_eq(bank, wiener_info); | 
|  | const int exact_match = (equal_ref >= 0); | 
|  | aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); | 
|  | const int ref = wiener_info->bank_ref; | 
|  | assert(IMPLIES(exact_match, ref == equal_ref)); | 
|  | assert(ref < AOMMAX(1, bank->bank_size)); | 
|  | int match = 0; | 
|  | for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) { | 
|  | match = (k == ref); | 
|  | aom_write_literal(wb, match, 1); | 
|  | if (match) break; | 
|  | } | 
|  | assert(IMPLIES(!match, ref == AOMMAX(0, bank->bank_size - 1))); | 
|  | if (exact_match) { | 
|  | if (bank->bank_size == 0) av1_add_to_wiener_bank(bank, wiener_info); | 
|  | return; | 
|  | } | 
|  | const WienerInfo *ref_wiener_info = av1_ref_from_wiener_bank(bank, ref); | 
|  | if (wiener_win == WIENER_WIN) | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
|  | WIENER_FILT_TAP0_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, | 
|  | wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); | 
|  | else | 
|  | assert(wiener_info->vfilter[0] == 0 && | 
|  | wiener_info->vfilter[WIENER_WIN - 1] == 0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
|  | WIENER_FILT_TAP1_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, | 
|  | wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
|  | WIENER_FILT_TAP2_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, | 
|  | wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); | 
|  | if (wiener_win == WIENER_WIN) | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
|  | WIENER_FILT_TAP0_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, | 
|  | wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); | 
|  | else | 
|  | assert(wiener_info->hfilter[0] == 0 && | 
|  | wiener_info->hfilter[WIENER_WIN - 1] == 0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
|  | WIENER_FILT_TAP1_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, | 
|  | wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
|  | WIENER_FILT_TAP2_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, | 
|  | wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); | 
|  | av1_add_to_wiener_bank(bank, wiener_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_sgrproj_filter(MACROBLOCKD *xd, | 
|  | const SgrprojInfo *sgrproj_info, | 
|  | SgrprojInfoBank *bank, | 
|  | aom_writer *wb) { | 
|  | const int equal_ref = check_sgrproj_bank_eq(bank, sgrproj_info); | 
|  | const int exact_match = (equal_ref >= 0); | 
|  | aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); | 
|  | const int ref = sgrproj_info->bank_ref; | 
|  | assert(IMPLIES(exact_match, ref == equal_ref)); | 
|  | assert(ref < AOMMAX(1, bank->bank_size)); | 
|  | int match = 0; | 
|  | for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) { | 
|  | match = (k == ref); | 
|  | aom_write_literal(wb, match, 1); | 
|  | if (match) break; | 
|  | } | 
|  | assert(IMPLIES(!match, ref == AOMMAX(0, bank->bank_size - 1))); | 
|  | if (exact_match) { | 
|  | if (bank->bank_size == 0) av1_add_to_sgrproj_bank(bank, sgrproj_info); | 
|  | return; | 
|  | } | 
|  | const SgrprojInfo *ref_sgrproj_info = av1_ref_from_sgrproj_bank(bank, ref); | 
|  |  | 
|  | aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); | 
|  | const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; | 
|  |  | 
|  | if (params->r[0] == 0) { | 
|  | assert(sgrproj_info->xqd[0] == 0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, | 
|  | sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); | 
|  | } else if (params->r[1] == 0) { | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, | 
|  | sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); | 
|  | } else { | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, | 
|  | sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, | 
|  | sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); | 
|  | } | 
|  | av1_add_to_sgrproj_bank(bank, sgrproj_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int check_and_write_merge_info( | 
|  | const WienerNonsepInfo *wienerns_info, const WienerNonsepInfoBank *bank, | 
|  | const WienernsFilterParameters *nsfilter_params, int wiener_class_id, | 
|  | int *ref_for_class, MACROBLOCKD *xd, aom_writer *wb) { | 
|  | const int is_equal = | 
|  | check_wienerns_bank_eq(bank, wienerns_info, nsfilter_params->ncoeffs, | 
|  | wiener_class_id, ref_for_class); | 
|  | const int exact_match = (is_equal >= 0); | 
|  | aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); | 
|  |  | 
|  | if (!exact_match) { | 
|  | ref_for_class[wiener_class_id] = | 
|  | wienerns_info->bank_ref_for_class[wiener_class_id]; | 
|  | } | 
|  | const int ref = ref_for_class[wiener_class_id]; | 
|  |  | 
|  | assert(ref < AOMMAX(1, bank->bank_size_for_class[wiener_class_id])); | 
|  | int match = 0; | 
|  | for (int k = 0; k < bank->bank_size_for_class[wiener_class_id] - 1; ++k) { | 
|  | match = (k == ref); | 
|  | aom_write_literal(wb, match, 1); | 
|  | if (match) break; | 
|  | } | 
|  | assert(IMPLIES( | 
|  | !match, | 
|  | ref == AOMMAX(0, bank->bank_size_for_class[wiener_class_id] - 1))); | 
|  | return exact_match; | 
|  | } | 
|  |  | 
|  | static int check_and_write_exact_match( | 
|  | const WienerNonsepInfo *wienerns_info, | 
|  | const WienerNonsepInfo *ref_wienerns_info, | 
|  | const WienernsFilterParameters *nsfilter_params, int wiener_class_id, | 
|  | MACROBLOCKD *xd, aom_writer *wb) { | 
|  | const int exact_match = | 
|  | check_wienerns_eq(wienerns_info, ref_wienerns_info, | 
|  | nsfilter_params->ncoeffs, wiener_class_id); | 
|  | aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); | 
|  | return exact_match; | 
|  | } | 
|  |  | 
|  | #if CONFIG_COMBINE_PC_NS_WIENER | 
|  | static inline void write_match_indices(const WienerNonsepInfo *wienerns_info, | 
|  | aom_writer *wb) { | 
|  | int total_bits = 0; | 
|  | for (int c_id = 0; c_id < wienerns_info->num_classes; ++c_id) { | 
|  | int num_bits = 0; | 
|  | int encoded_match = | 
|  | encode_first_match(wienerns_info->match_indices[c_id], &num_bits, | 
|  | wienerns_info->num_classes); | 
|  | aom_write_literal(wb, encoded_match, num_bits); | 
|  | total_bits += num_bits; | 
|  | } | 
|  | int count_bits = count_match_indices_bits(wienerns_info->num_classes); | 
|  | (void)count_bits; | 
|  | (void)total_bits; | 
|  | assert(total_bits == count_bits); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_wienerns_framefilters( | 
|  | AV1_COMMON *cm, MACROBLOCKD *xd, int plane, aom_writer *wb, | 
|  | int16_t *frame_filter_dictionary, int dict_stride) { | 
|  | const int base_qindex = cm->quant_params.base_qindex; | 
|  | RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | const int is_uv = plane > 0; | 
|  | const int num_classes = rsi->num_filter_classes; | 
|  | assert(rsi->frame_filters_on && !rsi->frame_filters_initialized); | 
|  | assert(!is_uv); | 
|  | const WienernsFilterParameters *nsfilter_params = | 
|  | get_wienerns_parameters(base_qindex, plane != AOM_PLANE_Y); | 
|  | int skip_filter_write_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | #if CONFIG_TEMP_LR | 
|  | assert(!rsi->temporal_pred_flag); | 
|  | #endif  // CONFIG_TEMP_LR | 
|  | write_match_indices(&rsi->frame_filters, wb); | 
|  | WienerNonsepInfoBank bank = { 0 }; | 
|  | // needed to handle asserts in copy_nsfilter_taps_for_class | 
|  | bank.filter[0].num_classes = num_classes; | 
|  |  | 
|  | fill_first_slot_of_bank_with_filter_match( | 
|  | &bank, &rsi->frame_filters, rsi->frame_filters.match_indices, base_qindex, | 
|  | ALL_WIENERNS_CLASSES, frame_filter_dictionary, dict_stride); | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | skip_filter_write_for_class[c_id] = check_and_write_exact_match( | 
|  | &rsi->frame_filters, av1_constref_from_wienerns_bank(&bank, 0, c_id), | 
|  | nsfilter_params, c_id, xd, wb); | 
|  | } | 
|  | assert(num_classes <= WIENERNS_MAX_CLASSES); | 
|  | const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; | 
|  |  | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | if (skip_filter_write_for_class[c_id]) continue; | 
|  | const WienerNonsepInfo *ref_wienerns_info = | 
|  | av1_constref_from_wienerns_bank(&bank, 0, c_id); | 
|  | const int16_t *wienerns_info_nsfilter = | 
|  | const_nsfilter_taps(&rsi->frame_filters, c_id); | 
|  | const int16_t *ref_wienerns_info_nsfilter = | 
|  | const_nsfilter_taps(ref_wienerns_info, c_id); | 
|  |  | 
|  | const int beg_feat = 0; | 
|  | int end_feat = nsfilter_params->ncoeffs; | 
|  | if (end_feat > 6) { | 
|  | // Decide whether to signal a short (0) or long (1) filter | 
|  | int filter_length_bit = 0; | 
|  | for (int i = 6; i < end_feat; i++) { | 
|  | if (wienerns_info_nsfilter[i] != 0) { | 
|  | filter_length_bit = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | aom_write_symbol(wb, filter_length_bit, | 
|  | xd->tile_ctx->wienerns_length_cdf[is_uv], 2); | 
|  | end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6; | 
|  | } | 
|  | assert((end_feat & 1) == 0); | 
|  |  | 
|  | int uv_sym = 0; | 
|  | if (is_uv && end_feat > 6) { | 
|  | uv_sym = 1; | 
|  | for (int i = 6; i < end_feat; i += 2) { | 
|  | if (wienerns_info_nsfilter[i + 1] != wienerns_info_nsfilter[i]) | 
|  | uv_sym = 0; | 
|  | } | 
|  | aom_write_symbol(wb, uv_sym, xd->tile_ctx->wienerns_uv_sym_cdf, 2); | 
|  | } | 
|  |  | 
|  | for (int i = beg_feat; i < end_feat; ++i) { | 
|  | aom_write_4part_wref( | 
|  | wb, | 
|  | ref_wienerns_info_nsfilter[i] - | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
|  | wienerns_info_nsfilter[i] - | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
|  | xd->tile_ctx->wienerns_4part_cdf[wienerns_coeffs[i - beg_feat] | 
|  | [WIENERNS_PAR_ID]], | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]); | 
|  | if (uv_sym && i >= 6) { | 
|  | // Don't code symmetrical taps | 
|  | assert(wienerns_info_nsfilter[i + 1] == wienerns_info_nsfilter[i]); | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | rsi->frame_filters_initialized = 1; | 
|  | #if CONFIG_TEMP_LR | 
|  | av1_copy_rst_frame_filters(&cm->cur_frame->rst_info[plane], rsi); | 
|  | #endif  // CONFIG_TEMP_LR | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
|  |  | 
|  | static AOM_INLINE void write_wienerns_filter( | 
|  | MACROBLOCKD *xd, int plane, const RestorationInfo *rsi, | 
|  | const WienerNonsepInfo *wienerns_info, WienerNonsepInfoBank *bank, | 
|  | aom_writer *wb) { | 
|  | const int is_uv = plane > 0; | 
|  | const WienernsFilterParameters *nsfilter_params = | 
|  | get_wienerns_parameters(xd->current_base_qindex, plane != AOM_PLANE_Y); | 
|  | int skip_filter_write_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | #if CONFIG_COMBINE_PC_NS_WIENER | 
|  | if (rsi->frame_filters_on) return; | 
|  | #endif  // CONFIG_COMBINE_PC_NS_WIENER | 
|  |  | 
|  | for (int c_id = 0; c_id < wienerns_info->num_classes; ++c_id) { | 
|  | skip_filter_write_for_class[c_id] = check_and_write_merge_info( | 
|  | wienerns_info, bank, nsfilter_params, c_id, ref_for_class, xd, wb); | 
|  | } | 
|  | const int num_classes = wienerns_info->num_classes; | 
|  | assert(num_classes <= WIENERNS_MAX_CLASSES); | 
|  | const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; | 
|  |  | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | if (skip_filter_write_for_class[c_id]) continue; | 
|  | const int ref = ref_for_class[c_id]; | 
|  | const WienerNonsepInfo *ref_wienerns_info = | 
|  | av1_constref_from_wienerns_bank(bank, ref, c_id); | 
|  | const int16_t *wienerns_info_nsfilter = | 
|  | const_nsfilter_taps(wienerns_info, c_id); | 
|  | const int16_t *ref_wienerns_info_nsfilter = | 
|  | const_nsfilter_taps(ref_wienerns_info, c_id); | 
|  |  | 
|  | const int beg_feat = 0; | 
|  | int end_feat = nsfilter_params->ncoeffs; | 
|  | if (end_feat > 6) { | 
|  | // Decide whether to signal a short (0) or long (1) filter | 
|  | int filter_length_bit = 0; | 
|  | for (int i = 6; i < end_feat; i++) { | 
|  | if (wienerns_info_nsfilter[i] != 0) { | 
|  | filter_length_bit = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | aom_write_symbol(wb, filter_length_bit, | 
|  | xd->tile_ctx->wienerns_length_cdf[is_uv], 2); | 
|  | end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6; | 
|  | } | 
|  | assert((end_feat & 1) == 0); | 
|  |  | 
|  | int uv_sym = 0; | 
|  | if (is_uv && end_feat > 6) { | 
|  | uv_sym = 1; | 
|  | for (int i = 6; i < end_feat; i += 2) { | 
|  | if (wienerns_info_nsfilter[i + 1] != wienerns_info_nsfilter[i]) | 
|  | uv_sym = 0; | 
|  | } | 
|  | aom_write_symbol(wb, uv_sym, xd->tile_ctx->wienerns_uv_sym_cdf, 2); | 
|  | } | 
|  |  | 
|  | for (int i = beg_feat; i < end_feat; ++i) { | 
|  | aom_write_4part_wref( | 
|  | wb, | 
|  | ref_wienerns_info_nsfilter[i] - | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
|  | wienerns_info_nsfilter[i] - | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
|  | xd->tile_ctx->wienerns_4part_cdf[wienerns_coeffs[i - beg_feat] | 
|  | [WIENERNS_PAR_ID]], | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]); | 
|  | if (uv_sym && i >= 6) { | 
|  | // Don't code symmetrical taps | 
|  | assert(wienerns_info_nsfilter[i + 1] == wienerns_info_nsfilter[i]); | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  | av1_add_to_wienerns_bank(bank, wienerns_info, c_id); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void loop_restoration_write_sb_coeffs( | 
|  | AV1_COMMON *cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui, | 
|  | aom_writer *const w, int plane, FRAME_COUNTS *counts) { | 
|  | RestorationInfo *rsi = cm->rst_info + plane; | 
|  | RestorationType frame_rtype = rsi->frame_restoration_type; | 
|  | assert(frame_rtype != RESTORE_NONE); | 
|  |  | 
|  | (void)counts; | 
|  | assert(!cm->features.all_lossless); | 
|  |  | 
|  | const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; | 
|  |  | 
|  | RestorationType unit_rtype = rui->restoration_type; | 
|  | assert(((cm->features.lr_tools_disable_mask[plane] >> rui->restoration_type) & | 
|  | 1) == 0); | 
|  | if (frame_rtype == RESTORE_SWITCHABLE) { | 
|  | int found = 0; | 
|  | for (int re = 0; re <= cm->features.lr_last_switchable_ndx[plane]; re++) { | 
|  | if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue; | 
|  | found = (re == (int)unit_rtype); | 
|  | aom_write_symbol(w, found, | 
|  | xd->tile_ctx->switchable_flex_restore_cdf[re][plane], 2); | 
|  | if (found) break; | 
|  | } | 
|  | assert(IMPLIES( | 
|  | !found, | 
|  | (int)unit_rtype == cm->features.lr_last_switchable_ndx_0_type[plane])); | 
|  | switch (unit_rtype) { | 
|  | case RESTORE_WIENER: | 
|  | write_wiener_filter(xd, wiener_win, &rui->wiener_info, | 
|  | &xd->wiener_info[plane], w); | 
|  | break; | 
|  | case RESTORE_SGRPROJ: | 
|  | write_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], | 
|  | w); | 
|  | break; | 
|  | case RESTORE_WIENER_NONSEP: | 
|  | write_wienerns_filter(xd, plane, rsi, &rui->wienerns_info, | 
|  | &xd->wienerns_info[plane], w); | 
|  | break; | 
|  | case RESTORE_PC_WIENER: | 
|  | // No side-information for now. | 
|  | break; | 
|  | default: assert(unit_rtype == RESTORE_NONE); break; | 
|  | } | 
|  | } else if (frame_rtype == RESTORE_WIENER) { | 
|  | aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
|  | xd->tile_ctx->wiener_restore_cdf, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->wiener_restore[unit_rtype != RESTORE_NONE]; | 
|  | #endif | 
|  | if (unit_rtype != RESTORE_NONE) { | 
|  | write_wiener_filter(xd, wiener_win, &rui->wiener_info, | 
|  | &xd->wiener_info[plane], w); | 
|  | } | 
|  | } else if (frame_rtype == RESTORE_SGRPROJ) { | 
|  | aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
|  | xd->tile_ctx->sgrproj_restore_cdf, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE]; | 
|  | #endif | 
|  | if (unit_rtype != RESTORE_NONE) { | 
|  | write_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], w); | 
|  | } | 
|  | } else if (frame_rtype == RESTORE_WIENER_NONSEP) { | 
|  | aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
|  | xd->tile_ctx->wienerns_restore_cdf, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->wienerns_restore[unit_rtype != RESTORE_NONE]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (unit_rtype != RESTORE_NONE) { | 
|  | write_wienerns_filter(xd, plane, rsi, &rui->wienerns_info, | 
|  | &xd->wienerns_info[plane], w); | 
|  | } | 
|  | } else if (frame_rtype == RESTORE_PC_WIENER) { | 
|  | aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
|  | xd->tile_ctx->pc_wiener_restore_cdf, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->pc_wiener_restore[unit_rtype != RESTORE_NONE]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (unit_rtype != RESTORE_NONE) { | 
|  | // No side-information for now. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | assert(!cm->features.coded_lossless); | 
|  | if (is_global_intrabc_allowed(cm)) return; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | struct loopfilter *lf = &cm->lf; | 
|  |  | 
|  | // Encode the loop filter level and type | 
|  | aom_wb_write_bit(wb, lf->filter_level[0]); | 
|  | #if DF_DUAL | 
|  | aom_wb_write_bit(wb, lf->filter_level[1]); | 
|  | #endif | 
|  | if (num_planes > 1) { | 
|  | if (lf->filter_level[0] || lf->filter_level[1]) { | 
|  | aom_wb_write_bit(wb, lf->filter_level_u); | 
|  | aom_wb_write_bit(wb, lf->filter_level_v); | 
|  | } | 
|  | } | 
|  | #if DF_DUAL | 
|  | if (lf->filter_level[0]) { | 
|  | int luma_delta_q_flag = lf->delta_q_luma[0] != 0; | 
|  |  | 
|  | aom_wb_write_bit(wb, luma_delta_q_flag); | 
|  | if (luma_delta_q_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_q_luma[0] + DF_PAR_OFFSET, | 
|  | DF_PAR_BITS); | 
|  | } | 
|  | #if DF_TWO_PARAM | 
|  | int luma_delta_side_flag = lf->delta_side_luma[0] != 0; | 
|  | aom_wb_write_bit(wb, luma_delta_side_flag); | 
|  | if (luma_delta_side_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_side_luma[0] + DF_PAR_OFFSET, | 
|  | DF_PAR_BITS); | 
|  | } | 
|  | #else | 
|  | assert(lf->delta_q_luma[0] == lf->delta_side_luma[0]); | 
|  | #endif  // DF_TWO_PARAM | 
|  | } | 
|  |  | 
|  | if (lf->filter_level[1]) { | 
|  | int luma_delta_q_flag = lf->delta_q_luma[1] != lf->delta_q_luma[0]; | 
|  |  | 
|  | aom_wb_write_bit(wb, luma_delta_q_flag); | 
|  | if (luma_delta_q_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_q_luma[1] + DF_PAR_OFFSET, | 
|  | DF_PAR_BITS); | 
|  | } | 
|  | #if DF_TWO_PARAM | 
|  | int luma_delta_side_flag = lf->delta_side_luma[1] != lf->delta_side_luma[0]; | 
|  | aom_wb_write_bit(wb, luma_delta_side_flag); | 
|  | if (luma_delta_side_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_side_luma[1] + DF_PAR_OFFSET, | 
|  | DF_PAR_BITS); | 
|  | } | 
|  | #else | 
|  | assert(lf->delta_q_luma[1] == lf->delta_side_luma[1]); | 
|  | #endif  // DF_TWO_PARAM | 
|  | } | 
|  | #else | 
|  | if (lf->filter_level[0] || lf->filter_level[1]) { | 
|  | int luma_delta_q_flag = lf->delta_q_luma != 0; | 
|  |  | 
|  | aom_wb_write_bit(wb, luma_delta_q_flag); | 
|  | if (luma_delta_q_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_q_luma + DF_PAR_OFFSET, DF_PAR_BITS); | 
|  | } | 
|  | #if DF_TWO_PARAM | 
|  | int luma_delta_side_flag = lf->delta_side_luma != 0; | 
|  | aom_wb_write_bit(wb, luma_delta_side_flag); | 
|  | if (luma_delta_side_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_side_luma + DF_PAR_OFFSET, | 
|  | DF_PAR_BITS); | 
|  | } | 
|  | #else | 
|  | assert(lf->delta_q_luma == lf->delta_side_luma); | 
|  | #endif  // DF_TWO_PARAM | 
|  | } | 
|  | #endif  // DF_DUAL | 
|  | if (lf->filter_level_u) { | 
|  | int u_delta_q_flag = lf->delta_q_u != 0; | 
|  |  | 
|  | aom_wb_write_bit(wb, u_delta_q_flag); | 
|  | if (u_delta_q_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_q_u + DF_PAR_OFFSET, DF_PAR_BITS); | 
|  | } | 
|  | #if DF_TWO_PARAM | 
|  | int u_delta_side_flag = lf->delta_side_u != 0; | 
|  | aom_wb_write_bit(wb, u_delta_side_flag); | 
|  | if (u_delta_side_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_side_u + DF_PAR_OFFSET, DF_PAR_BITS); | 
|  | } | 
|  | #else | 
|  | assert(lf->delta_q_u == lf->delta_side_u); | 
|  | #endif  // DF_TWO_PARAM | 
|  | } | 
|  |  | 
|  | if (lf->filter_level_v) { | 
|  | int v_delta_q_flag = lf->delta_q_v != 0; | 
|  |  | 
|  | aom_wb_write_bit(wb, v_delta_q_flag); | 
|  | if (v_delta_q_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_q_v + DF_PAR_OFFSET, DF_PAR_BITS); | 
|  | } | 
|  | #if DF_TWO_PARAM | 
|  | int v_delta_side_flag = lf->delta_side_v != 0; | 
|  | aom_wb_write_bit(wb, v_delta_side_flag); | 
|  | if (v_delta_side_flag) { | 
|  | aom_wb_write_literal(wb, lf->delta_side_v + DF_PAR_OFFSET, DF_PAR_BITS); | 
|  | } | 
|  | #else | 
|  | assert(lf->delta_q_v == lf->delta_side_v); | 
|  | #endif  // DF_TWO_PARAM | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void encode_cdef(const AV1_COMMON *cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | assert(!cm->features.coded_lossless); | 
|  | if (!cm->seq_params.enable_cdef) return; | 
|  | if (is_global_intrabc_allowed(cm)) return; | 
|  | #if CONFIG_FIX_CDEF_SYNTAX | 
|  | aom_wb_write_bit(wb, cm->cdef_info.cdef_frame_enable); | 
|  | if (!cm->cdef_info.cdef_frame_enable) return; | 
|  | #endif  // CONFIG_FIX_CDEF_SYNTAX | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int i; | 
|  | aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2); | 
|  | aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2); | 
|  | for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) { | 
|  | aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i], | 
|  | CDEF_STRENGTH_BITS); | 
|  | if (num_planes > 1) | 
|  | aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i], | 
|  | CDEF_STRENGTH_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // write CCSO offset idx using truncated unary coding | 
|  | static AOM_INLINE void write_ccso_offset_idx(struct aom_write_bit_buffer *wb, | 
|  | int offset_idx) { | 
|  | for (int idx = 0; idx < 7; ++idx) { | 
|  | aom_wb_write_bit(wb, offset_idx != idx); | 
|  | if (offset_idx == idx) break; | 
|  | } | 
|  | } | 
|  | static AOM_INLINE void encode_ccso(const AV1_COMMON *cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | if (is_global_intrabc_allowed(cm)) return; | 
|  | const int ccso_offset[8] = { 0, 1, -1, 3, -3, 7, -7, -10 }; | 
|  | #if CONFIG_D143_CCSO_FM_FLAG | 
|  | aom_wb_write_literal(wb, cm->ccso_info.ccso_frame_flag, 1); | 
|  | if (cm->ccso_info.ccso_frame_flag) { | 
|  | #endif  // CONFIG_D143_CCSO_FM_FLAG | 
|  | for (int plane = 0; plane < av1_num_planes(cm); plane++) { | 
|  | aom_wb_write_literal(wb, cm->ccso_info.ccso_enable[plane], 1); | 
|  | if (cm->ccso_info.ccso_enable[plane]) { | 
|  | aom_wb_write_literal(wb, cm->ccso_info.ccso_bo_only[plane], 1); | 
|  | #if !CONFIG_CCSO_SIGFIX | 
|  | aom_wb_write_literal(wb, cm->ccso_info.quant_idx[plane], 2); | 
|  | aom_wb_write_literal(wb, cm->ccso_info.ext_filter_support[plane], 3); | 
|  | #endif  // !CONFIG_CCSO_SIGFIX | 
|  | if (cm->ccso_info.ccso_bo_only[plane]) { | 
|  | aom_wb_write_literal(wb, cm->ccso_info.max_band_log2[plane], 3); | 
|  | } else { | 
|  | #if CONFIG_CCSO_SIGFIX | 
|  | aom_wb_write_literal(wb, cm->ccso_info.quant_idx[plane], 2); | 
|  | aom_wb_write_literal(wb, cm->ccso_info.ext_filter_support[plane], 3); | 
|  | aom_wb_write_bit(wb, cm->ccso_info.edge_clf[plane]); | 
|  | #endif  // CONFIG_CCSO_SIGFIX | 
|  | aom_wb_write_literal(wb, cm->ccso_info.max_band_log2[plane], 2); | 
|  | } | 
|  | const int max_band = 1 << cm->ccso_info.max_band_log2[plane]; | 
|  | const int edge_clf = cm->ccso_info.edge_clf[plane]; | 
|  | #if !CONFIG_CCSO_SIGFIX | 
|  | aom_wb_write_bit(wb, edge_clf); | 
|  | #endif  // !CONFIG_CCSO_SIGFIX | 
|  | const int max_edge_interval = edge_clf_to_edge_interval[edge_clf]; | 
|  | const int num_edge_offset_intervals = | 
|  | cm->ccso_info.ccso_bo_only[plane] ? 1 : max_edge_interval; | 
|  | for (int d0 = 0; d0 < num_edge_offset_intervals; d0++) { | 
|  | for (int d1 = 0; d1 < num_edge_offset_intervals; d1++) { | 
|  | for (int band_num = 0; band_num < max_band; band_num++) { | 
|  | const int lut_idx_ext = (band_num << 4) + (d0 << 2) + d1; | 
|  | for (int offset_idx = 0; offset_idx < 8; offset_idx++) { | 
|  | if (cm->ccso_info.filter_offset[plane][lut_idx_ext] == | 
|  | ccso_offset[offset_idx]) { | 
|  | write_ccso_offset_idx(wb, offset_idx); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #if CONFIG_D143_CCSO_FM_FLAG | 
|  | } | 
|  | #endif  // CONFIG_D143_CCSO_FM_FLAG | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb, | 
|  | int delta_q) { | 
|  | if (delta_q != 0) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | aom_wb_write_inv_signed_literal(wb, delta_q, 6); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void encode_quantization( | 
|  | const CommonQuantParams *const quant_params, int num_planes, | 
|  | aom_bit_depth_t bit_depth, bool separate_uv_delta_q, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_literal( | 
|  | wb, quant_params->base_qindex, | 
|  | bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS); | 
|  |  | 
|  | write_delta_q(wb, quant_params->y_dc_delta_q); | 
|  | if (num_planes > 1) { | 
|  | int diff_uv_delta = | 
|  | (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) || | 
|  | (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q); | 
|  | if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); | 
|  | write_delta_q(wb, quant_params->u_dc_delta_q); | 
|  | write_delta_q(wb, quant_params->u_ac_delta_q); | 
|  | if (diff_uv_delta) { | 
|  | write_delta_q(wb, quant_params->v_dc_delta_q); | 
|  | write_delta_q(wb, quant_params->v_ac_delta_q); | 
|  | } | 
|  | } | 
|  | aom_wb_write_bit(wb, quant_params->using_qmatrix); | 
|  | if (quant_params->using_qmatrix) { | 
|  | aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS); | 
|  | aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS); | 
|  | if (!separate_uv_delta_q) | 
|  | assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v); | 
|  | else | 
|  | aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | int i, j; | 
|  | struct segmentation *seg = &cm->seg; | 
|  |  | 
|  | aom_wb_write_bit(wb, seg->enabled); | 
|  | if (!seg->enabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Write update flags | 
|  | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
|  | if (cm->features.derived_primary_ref_frame == PRIMARY_REF_NONE) { | 
|  | #else | 
|  | if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { | 
|  | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
|  | assert(seg->update_map == 1); | 
|  | seg->temporal_update = 0; | 
|  | assert(seg->update_data == 1); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, seg->update_map); | 
|  | if (seg->update_map) { | 
|  | // Select the coding strategy (temporal or spatial) | 
|  | av1_choose_segmap_coding_method(cm, xd); | 
|  | aom_wb_write_bit(wb, seg->temporal_update); | 
|  | } | 
|  | aom_wb_write_bit(wb, seg->update_data); | 
|  | } | 
|  |  | 
|  | // Segmentation data | 
|  | if (seg->update_data) { | 
|  | for (i = 0; i < MAX_SEGMENTS; i++) { | 
|  | for (j = 0; j < SEG_LVL_MAX; j++) { | 
|  | const int active = segfeature_active(seg, i, j); | 
|  | aom_wb_write_bit(wb, active); | 
|  | if (active) { | 
|  | const int data_max = av1_seg_feature_data_max(j); | 
|  | const int data_min = -data_max; | 
|  | const int ubits = get_unsigned_bits(data_max); | 
|  | const int data = clamp(get_segdata(seg, i, j), data_min, data_max); | 
|  |  | 
|  | if (av1_is_segfeature_signed(j)) { | 
|  | aom_wb_write_inv_signed_literal(wb, data, ubits); | 
|  | } else { | 
|  | aom_wb_write_literal(wb, data, ubits); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_frame_interp_filter( | 
|  | InterpFilter filter, struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_bit(wb, filter == SWITCHABLE); | 
|  | if (filter != SWITCHABLE) | 
|  | aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_tile_info_max_tile( | 
|  | const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { | 
|  | int width_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->mib_size_log2); | 
|  | int height_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->mib_size_log2); | 
|  | int width_sb = width_mi >> cm->mib_size_log2; | 
|  | int height_sb = height_mi >> cm->mib_size_log2; | 
|  | int size_sb, i; | 
|  | const CommonTileParams *const tiles = &cm->tiles; | 
|  |  | 
|  | aom_wb_write_bit(wb, tiles->uniform_spacing); | 
|  |  | 
|  | if (tiles->uniform_spacing) { | 
|  | int ones = tiles->log2_cols - tiles->min_log2_cols; | 
|  | while (ones--) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } | 
|  | if (tiles->log2_cols < tiles->max_log2_cols) { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | } | 
|  |  | 
|  | // rows | 
|  | ones = tiles->log2_rows - tiles->min_log2_rows; | 
|  | while (ones--) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } | 
|  | if (tiles->log2_rows < tiles->max_log2_rows) { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | } | 
|  | } else { | 
|  | // Explicit tiles with configurable tile widths and heights | 
|  | // columns | 
|  | for (i = 0; i < tiles->cols; i++) { | 
|  | size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i]; | 
|  | wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1); | 
|  | width_sb -= size_sb; | 
|  | } | 
|  | assert(width_sb == 0); | 
|  |  | 
|  | // rows | 
|  | for (i = 0; i < tiles->rows; i++) { | 
|  | size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i]; | 
|  | wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb), | 
|  | size_sb - 1); | 
|  | height_sb -= size_sb; | 
|  | } | 
|  | assert(height_sb == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *saved_wb, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | write_tile_info_max_tile(cm, wb); | 
|  |  | 
|  | *saved_wb = *wb; | 
|  | if (cm->tiles.rows * cm->tiles.cols > 1) { | 
|  | // tile id used for cdf update | 
|  | aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows); | 
|  | // Number of bytes in tile size - 1 | 
|  | aom_wb_write_literal(wb, 3, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_ext_tile_info( | 
|  | const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | // This information is stored as a separate byte. | 
|  | int mod = wb->bit_offset % CHAR_BIT; | 
|  | if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod); | 
|  | assert(aom_wb_is_byte_aligned(wb)); | 
|  |  | 
|  | *saved_wb = *wb; | 
|  | if (cm->tiles.rows * cm->tiles.cols > 1) { | 
|  | // Note that the last item in the uncompressed header is the data | 
|  | // describing tile configuration. | 
|  | // Number of bytes in tile column size - 1 | 
|  | aom_wb_write_literal(wb, 0, 2); | 
|  | // Number of bytes in tile size - 1 | 
|  | aom_wb_write_literal(wb, 0, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stores the location and size of a tile's data in the bitstream.  Used for | 
|  | // later identifying identical tiles | 
|  | typedef struct TileBufferEnc { | 
|  | uint8_t *data; | 
|  | size_t size; | 
|  | } TileBufferEnc; | 
|  |  | 
|  | static INLINE int find_identical_tile( | 
|  | const int tile_row, const int tile_col, | 
|  | TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) { | 
|  | const MV32 candidate_offset[1] = { { 1, 0 } }; | 
|  | const uint8_t *const cur_tile_data = | 
|  | tile_buffers[tile_row][tile_col].data + 4; | 
|  | const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | if (tile_row == 0) return 0; | 
|  |  | 
|  | // (TODO: yunqingwang) For now, only above tile is checked and used. | 
|  | // More candidates such as left tile can be added later. | 
|  | for (i = 0; i < 1; i++) { | 
|  | int row_offset = candidate_offset[0].row; | 
|  | int col_offset = candidate_offset[0].col; | 
|  | int row = tile_row - row_offset; | 
|  | int col = tile_col - col_offset; | 
|  | const uint8_t *tile_data; | 
|  | TileBufferEnc *candidate; | 
|  |  | 
|  | if (row < 0 || col < 0) continue; | 
|  |  | 
|  | const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data); | 
|  |  | 
|  | // Read out tile-copy-mode bit: | 
|  | if ((tile_hdr >> 31) == 1) { | 
|  | // The candidate is a copy tile itself: the offset is stored in bits | 
|  | // 30 through 24 inclusive. | 
|  | row_offset += (tile_hdr >> 24) & 0x7f; | 
|  | row = tile_row - row_offset; | 
|  | } | 
|  |  | 
|  | candidate = &tile_buffers[row][col]; | 
|  |  | 
|  | if (row_offset >= 128 || candidate->size != cur_tile_size) continue; | 
|  |  | 
|  | tile_data = candidate->data + 4; | 
|  |  | 
|  | if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; | 
|  |  | 
|  | // Identical tile found | 
|  | assert(row_offset > 0); | 
|  | return row_offset; | 
|  | } | 
|  |  | 
|  | // No identical tile found | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_render_size(const AV1_COMMON *cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | const int scaling_active = av1_resize_scaled(cm); | 
|  | aom_wb_write_bit(wb, scaling_active); | 
|  | if (scaling_active) { | 
|  | aom_wb_write_literal(wb, cm->render_width - 1, 16); | 
|  | aom_wb_write_literal(wb, cm->render_height - 1, 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | if (!seq_params->enable_superres) { | 
|  | assert(cm->superres_scale_denominator == SCALE_NUMERATOR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // First bit is whether to to scale or not | 
|  | if (cm->superres_scale_denominator == SCALE_NUMERATOR) { | 
|  | aom_wb_write_bit(wb, 0);  // no scaling | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 1);  // scaling, write scale factor | 
|  | assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); | 
|  | assert(cm->superres_scale_denominator < | 
|  | SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); | 
|  | aom_wb_write_literal( | 
|  | wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, | 
|  | SUPERRES_SCALE_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_frame_size(const AV1_COMMON *cm, | 
|  | int frame_size_override, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | const int coded_width = cm->superres_upscaled_width - 1; | 
|  | const int coded_height = cm->superres_upscaled_height - 1; | 
|  |  | 
|  | if (frame_size_override) { | 
|  | const SequenceHeader *seq_params = &cm->seq_params; | 
|  | int num_bits_width = seq_params->num_bits_width; | 
|  | int num_bits_height = seq_params->num_bits_height; | 
|  | aom_wb_write_literal(wb, coded_width, num_bits_width); | 
|  | aom_wb_write_literal(wb, coded_height, num_bits_height); | 
|  | } | 
|  |  | 
|  | write_superres_scale(cm, wb); | 
|  | write_render_size(cm, wb); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_frame_size_with_refs( | 
|  | const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { | 
|  | int found = 0; | 
|  |  | 
|  | MV_REFERENCE_FRAME ref_frame; | 
|  | for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ++ref_frame) { | 
|  | const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame); | 
|  |  | 
|  | if (cfg != NULL) { | 
|  | found = cm->superres_upscaled_width == cfg->y_crop_width && | 
|  | cm->superres_upscaled_height == cfg->y_crop_height; | 
|  | found &= cm->render_width == cfg->render_width && | 
|  | cm->render_height == cfg->render_height; | 
|  | } | 
|  | aom_wb_write_bit(wb, found); | 
|  | if (found) { | 
|  | write_superres_scale(cm, wb); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | int frame_size_override = 1;  // Always equal to 1 in this function | 
|  | write_frame_size(cm, frame_size_override, wb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | assert(profile >= PROFILE_0 && profile < MAX_PROFILES); | 
|  | aom_wb_write_literal(wb, profile, PROFILE_BITS); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | // Profile 0/1: [0] for 8 bit, [1]  10-bit | 
|  | // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit | 
|  | aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1); | 
|  | if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) { | 
|  | aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_color_config( | 
|  | const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { | 
|  | write_bitdepth(seq_params, wb); | 
|  | const int is_monochrome = seq_params->monochrome; | 
|  | // monochrome bit | 
|  | if (seq_params->profile != PROFILE_1) | 
|  | aom_wb_write_bit(wb, is_monochrome); | 
|  | else | 
|  | assert(!is_monochrome); | 
|  | if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED && | 
|  | seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && | 
|  | seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { | 
|  | aom_wb_write_bit(wb, 0);  // No color description present | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 1);  // Color description present | 
|  | aom_wb_write_literal(wb, seq_params->color_primaries, 8); | 
|  | aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8); | 
|  | aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8); | 
|  | } | 
|  | if (is_monochrome) { | 
|  | // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] | 
|  | aom_wb_write_bit(wb, seq_params->color_range); | 
|  | } else { | 
|  | if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && | 
|  | seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && | 
|  | seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { | 
|  | assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); | 
|  | assert(seq_params->profile == PROFILE_1 || | 
|  | (seq_params->profile == PROFILE_2 && | 
|  | seq_params->bit_depth == AOM_BITS_12)); | 
|  | } else { | 
|  | // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] | 
|  | aom_wb_write_bit(wb, seq_params->color_range); | 
|  | if (seq_params->profile == PROFILE_0) { | 
|  | // 420 only | 
|  | assert(seq_params->subsampling_x == 1 && | 
|  | seq_params->subsampling_y == 1); | 
|  | } else if (seq_params->profile == PROFILE_1) { | 
|  | // 444 only | 
|  | assert(seq_params->subsampling_x == 0 && | 
|  | seq_params->subsampling_y == 0); | 
|  | } else if (seq_params->profile == PROFILE_2) { | 
|  | if (seq_params->bit_depth == AOM_BITS_12) { | 
|  | // 420, 444 or 422 | 
|  | aom_wb_write_bit(wb, seq_params->subsampling_x); | 
|  | if (seq_params->subsampling_x == 0) { | 
|  | assert(seq_params->subsampling_y == 0 && | 
|  | "4:4:0 subsampling not allowed in AV1"); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, seq_params->subsampling_y); | 
|  | } | 
|  | } else { | 
|  | // 422 only | 
|  | assert(seq_params->subsampling_x == 1 && | 
|  | seq_params->subsampling_y == 0); | 
|  | } | 
|  | } | 
|  | if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { | 
|  | assert(seq_params->subsampling_x == 0 && | 
|  | seq_params->subsampling_y == 0); | 
|  | } | 
|  | if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) { | 
|  | aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2); | 
|  | } | 
|  | } | 
|  | aom_wb_write_bit(wb, seq_params->separate_uv_delta_q); | 
|  | } | 
|  |  | 
|  | assert(seq_params->base_y_dc_delta_q <= DELTA_DCQUANT_MAX); | 
|  | aom_wb_write_unsigned_literal( | 
|  | wb, seq_params->base_y_dc_delta_q - DELTA_DCQUANT_MIN, | 
|  | DELTA_DCQUANT_BITS); | 
|  | if (!is_monochrome) { | 
|  | assert(seq_params->base_uv_dc_delta_q >= DELTA_DCQUANT_MIN); | 
|  | aom_wb_write_unsigned_literal( | 
|  | wb, seq_params->base_uv_dc_delta_q - DELTA_DCQUANT_MIN, | 
|  | DELTA_DCQUANT_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_timing_info_header( | 
|  | const aom_timing_info_t *const timing_info, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32); | 
|  | aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32); | 
|  | aom_wb_write_bit(wb, timing_info->equal_picture_interval); | 
|  | if (timing_info->equal_picture_interval) { | 
|  | aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_decoder_model_info( | 
|  | const aom_dec_model_info_t *const decoder_model_info, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_literal( | 
|  | wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5); | 
|  | aom_wb_write_unsigned_literal( | 
|  | wb, decoder_model_info->num_units_in_decoding_tick, 32); | 
|  | aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1, | 
|  | 5); | 
|  | aom_wb_write_literal( | 
|  | wb, decoder_model_info->frame_presentation_time_length - 1, 5); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_dec_model_op_parameters( | 
|  | const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay, | 
|  | buffer_delay_length); | 
|  | aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay, | 
|  | buffer_delay_length); | 
|  | aom_wb_write_bit(wb, op_params->low_delay_mode_flag); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_unsigned_literal( | 
|  | wb, cm->frame_presentation_time, | 
|  | cm->seq_params.decoder_model_info.frame_presentation_time_length); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_film_grain_params( | 
|  | const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params; | 
|  |  | 
|  | aom_wb_write_bit(wb, pars->apply_grain); | 
|  | if (!pars->apply_grain) return; | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->random_seed, 16); | 
|  |  | 
|  | if (cm->current_frame.frame_type == INTER_FRAME) | 
|  | aom_wb_write_bit(wb, pars->update_parameters); | 
|  |  | 
|  | if (!pars->update_parameters) { | 
|  | int ref_frame, ref_idx; | 
|  | for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ref_frame++) { | 
|  | ref_idx = get_ref_frame_map_idx(cm, ref_frame); | 
|  | assert(ref_idx != INVALID_IDX); | 
|  | const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx]; | 
|  | if (buf->film_grain_params_present && | 
|  | av1_check_grain_params_equiv(pars, &buf->film_grain_params)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(ref_frame < REF_FRAMES); | 
|  | aom_wb_write_literal(wb, ref_idx, 3); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Scaling functions parameters | 
|  | aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14 | 
|  | for (int i = 0; i < pars->num_y_points; i++) { | 
|  | aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); | 
|  | aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); | 
|  | } | 
|  |  | 
|  | if (!cm->seq_params.monochrome) { | 
|  | aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); | 
|  | } else { | 
|  | assert(!pars->chroma_scaling_from_luma); | 
|  | } | 
|  |  | 
|  | if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma || | 
|  | ((cm->seq_params.subsampling_x == 1) && | 
|  | (cm->seq_params.subsampling_y == 1) && (pars->num_y_points == 0))) { | 
|  | assert(pars->num_cb_points == 0 && pars->num_cr_points == 0); | 
|  | } else { | 
|  | aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10 | 
|  | for (int i = 0; i < pars->num_cb_points; i++) { | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); | 
|  | } | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10 | 
|  | for (int i = 0; i < pars->num_cr_points; i++) { | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value | 
|  |  | 
|  | // AR coefficients | 
|  | // Only sent if the corresponsing scaling function has | 
|  | // more than 0 points | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); | 
|  |  | 
|  | int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); | 
|  | int num_pos_chroma = num_pos_luma; | 
|  | if (pars->num_y_points > 0) ++num_pos_chroma; | 
|  |  | 
|  | if (pars->num_y_points) | 
|  | for (int i = 0; i < num_pos_luma; i++) | 
|  | aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); | 
|  |  | 
|  | if (pars->num_cb_points || pars->chroma_scaling_from_luma) | 
|  | for (int i = 0; i < num_pos_chroma; i++) | 
|  | aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); | 
|  |  | 
|  | if (pars->num_cr_points || pars->chroma_scaling_from_luma) | 
|  | for (int i = 0; i < num_pos_chroma; i++) | 
|  | aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->grain_scale_shift, 2); | 
|  |  | 
|  | if (pars->num_cb_points) { | 
|  | aom_wb_write_literal(wb, pars->cb_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cb_luma_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cb_offset, 9); | 
|  | } | 
|  |  | 
|  | if (pars->num_cr_points) { | 
|  | aom_wb_write_literal(wb, pars->cr_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cr_luma_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cr_offset, 9); | 
|  | } | 
|  |  | 
|  | aom_wb_write_bit(wb, pars->overlap_flag); | 
|  |  | 
|  | aom_wb_write_bit(wb, pars->clip_to_restricted_range); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | (void)seq_params; | 
|  | (void)wb; | 
|  | assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); | 
|  | assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | assert(seq_params->sb_size == BLOCK_256X256 || | 
|  | seq_params->sb_size == BLOCK_128X128 || | 
|  | seq_params->sb_size == BLOCK_64X64); | 
|  | const bool is_256 = seq_params->sb_size == BLOCK_256X256; | 
|  | aom_wb_write_bit(wb, is_256); | 
|  | if (is_256) { | 
|  | return; | 
|  | } | 
|  | #else | 
|  | assert(seq_params->sb_size == BLOCK_128X128 || | 
|  | seq_params->sb_size == BLOCK_64X64); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_sequence_header( | 
|  | const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4); | 
|  | aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4); | 
|  | aom_wb_write_literal(wb, seq_params->max_frame_width - 1, | 
|  | seq_params->num_bits_width); | 
|  | aom_wb_write_literal(wb, seq_params->max_frame_height - 1, | 
|  | seq_params->num_bits_height); | 
|  |  | 
|  | if (!seq_params->reduced_still_picture_hdr) { | 
|  | aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); | 
|  | if (seq_params->frame_id_numbers_present_flag) { | 
|  | // We must always have delta_frame_id_length < frame_id_length, | 
|  | // in order for a frame to be referenced with a unique delta. | 
|  | // Avoid wasting bits by using a coding that enforces this restriction. | 
|  | aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); | 
|  | aom_wb_write_literal( | 
|  | wb, | 
|  | seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, | 
|  | 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | write_sb_size(seq_params, wb); | 
|  | aom_wb_write_bit(wb, seq_params->enable_filter_intra); | 
|  | aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter); | 
|  | if (!seq_params->reduced_still_picture_hdr) { | 
|  | // Encode allowed motion modes | 
|  | // Skip SIMPLE_TRANSLATION, as that is always enabled | 
|  | int seq_enabled_motion_modes = seq_params->seq_enabled_motion_modes; | 
|  | assert((seq_enabled_motion_modes & (1 << SIMPLE_TRANSLATION)) != 0); | 
|  | for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; | 
|  | motion_mode++) { | 
|  | int enabled = | 
|  | (seq_enabled_motion_modes & (1 << motion_mode)) != 0 ? 1 : 0; | 
|  | aom_wb_write_bit(wb, enabled); | 
|  | } | 
|  | aom_wb_write_bit(wb, seq_params->enable_masked_compound); | 
|  | aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint); | 
|  |  | 
|  | if (seq_params->order_hint_info.enable_order_hint) { | 
|  | aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs); | 
|  | } | 
|  | if (seq_params->force_screen_content_tools == 2) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | aom_wb_write_bit(wb, seq_params->force_screen_content_tools); | 
|  | } | 
|  | if (seq_params->force_screen_content_tools > 0) { | 
|  | if (seq_params->force_integer_mv == 2) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | aom_wb_write_bit(wb, seq_params->force_integer_mv); | 
|  | } | 
|  | } else { | 
|  | assert(seq_params->force_integer_mv == 2); | 
|  | } | 
|  | if (seq_params->order_hint_info.enable_order_hint) | 
|  | aom_wb_write_literal( | 
|  | wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3); | 
|  | } | 
|  |  | 
|  | aom_wb_write_bit(wb, seq_params->enable_superres); | 
|  | aom_wb_write_bit(wb, seq_params->enable_cdef); | 
|  | aom_wb_write_bit(wb, seq_params->enable_restoration); | 
|  | if (seq_params->enable_restoration) { | 
|  | for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { | 
|  | aom_wb_write_bit(wb, (seq_params->lr_tools_disable_mask[0] >> i) & 1); | 
|  | } | 
|  | const int uv_neq_y = | 
|  | (seq_params->lr_tools_disable_mask[1] != | 
|  | (seq_params->lr_tools_disable_mask[0] | DEF_UV_LR_TOOLS_DISABLE_MASK)); | 
|  | aom_wb_write_bit(wb, uv_neq_y); | 
|  | if (uv_neq_y) { | 
|  | for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { | 
|  | if (DEF_UV_LR_TOOLS_DISABLE_MASK & (1 << i)) continue; | 
|  | aom_wb_write_bit(wb, (seq_params->lr_tools_disable_mask[1] >> i) & 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_sequence_header_beyond_av1( | 
|  | const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_bit(wb, seq_params->enable_refmvbank); | 
|  | aom_wb_write_bit(wb, seq_params->explicit_ref_frame_map); | 
|  | // 0 : show_existing_frame, 1: implicit derviation | 
|  | aom_wb_write_bit(wb, seq_params->enable_frame_output_order); | 
|  | // A bit is sent here to indicate if the max number of references is 7. If | 
|  | // this bit is 0, then two more bits are sent to indicate the exact number | 
|  | // of references allowed (range: 3 to 6). | 
|  | aom_wb_write_bit(wb, seq_params->max_reference_frames < 7); | 
|  | if (seq_params->max_reference_frames < 7) | 
|  | aom_wb_write_literal(wb, seq_params->max_reference_frames - 3, 2); | 
|  | #if CONFIG_SAME_REF_COMPOUND | 
|  | aom_wb_write_literal(wb, seq_params->num_same_ref_compound, 2); | 
|  | #endif  // CONFIG_SAME_REF_COMPOUND | 
|  | aom_wb_write_bit(wb, seq_params->enable_sdp); | 
|  | aom_wb_write_bit(wb, seq_params->enable_ist); | 
|  | aom_wb_write_bit(wb, seq_params->enable_inter_ist); | 
|  | #if CONFIG_INTER_DDT | 
|  | aom_wb_write_bit(wb, seq_params->enable_inter_ddt); | 
|  | #endif  // CONFIG_INTER_DDT | 
|  | if (!seq_params->monochrome) aom_wb_write_bit(wb, seq_params->enable_cctx); | 
|  | aom_wb_write_bit(wb, seq_params->enable_mrls); | 
|  | aom_wb_write_literal(wb, seq_params->enable_tip, 2); | 
|  | if (seq_params->enable_tip) { | 
|  | aom_wb_write_bit(wb, seq_params->enable_tip_hole_fill); | 
|  | } | 
|  | #if CONFIG_BAWP | 
|  | aom_wb_write_bit(wb, seq_params->enable_bawp); | 
|  | #endif  // CONFIG_BAWP | 
|  | aom_wb_write_bit(wb, seq_params->enable_cwp); | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | aom_wb_write_bit(wb, seq_params->enable_imp_msk_bld); | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | aom_wb_write_bit(wb, seq_params->enable_fsc); | 
|  | aom_wb_write_bit(wb, seq_params->enable_ccso); | 
|  | #if CONFIG_LF_SUB_PU | 
|  | aom_wb_write_bit(wb, seq_params->enable_lf_sub_pu); | 
|  | #endif  // CONFIG_LF_SUB_PU | 
|  | #if CONFIG_TIP_IMPLICIT_QUANT | 
|  | if (seq_params->enable_tip == 1 && | 
|  | #if CONFIG_LF_SUB_PU | 
|  | seq_params->enable_lf_sub_pu | 
|  | #endif  // CONFIG_LF_SUB_PU | 
|  | ) { | 
|  | aom_wb_write_bit(wb, seq_params->enable_tip_explicit_qp); | 
|  | } | 
|  | #endif  // CONFIG_TIP_IMPLICIT_QUANT | 
|  | aom_wb_write_bit(wb, seq_params->enable_orip); | 
|  | #if CONFIG_IDIF | 
|  | aom_wb_write_bit(wb, seq_params->enable_idif); | 
|  | #endif  // CONFIG_IDIF | 
|  | if (seq_params->order_hint_info.enable_order_hint) { | 
|  | aom_wb_write_literal(wb, seq_params->enable_opfl_refine, 2); | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | if (seq_params->enable_opfl_refine) | 
|  | aom_wb_write_bit(wb, seq_params->enable_affine_refine); | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | } | 
|  | aom_wb_write_bit(wb, seq_params->enable_ibp); | 
|  | aom_wb_write_bit(wb, seq_params->enable_adaptive_mvd); | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | aom_wb_write_bit(wb, seq_params->enable_refinemv); | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | #if CONFIG_DERIVED_MVD_SIGN | 
|  | aom_wb_write_bit(wb, seq_params->enable_mvd_sign_derive); | 
|  | #endif  // CONFIG_DERIVED_MVD_SIGN | 
|  |  | 
|  | aom_wb_write_bit(wb, seq_params->enable_flex_mvres); | 
|  |  | 
|  | aom_wb_write_literal(wb, seq_params->enable_cfl_ds_filter, 2); | 
|  |  | 
|  | aom_wb_write_bit(wb, seq_params->enable_parity_hiding); | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | aom_wb_write_bit(wb, seq_params->enable_ext_partitions); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | if (seq_params->reduced_still_picture_hdr) { | 
|  | assert(seq_params->enable_global_motion == 0); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, seq_params->enable_global_motion); | 
|  | } | 
|  | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | #if CONFIG_REFRESH_FLAG | 
|  | aom_wb_write_bit(wb, seq_params->enable_short_refresh_frame_flags); | 
|  | #endif  // CONFIG_REFRESH_FLAG | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_global_motion_params( | 
|  | const WarpedMotionParams *params, const WarpedMotionParams *ref_params, | 
|  | struct aom_write_bit_buffer *wb, MvSubpelPrecision precision) { | 
|  | const int precision_loss = get_gm_precision_loss(precision); | 
|  | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | (void)precision_loss; | 
|  | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
|  |  | 
|  | const TransformationType type = params->wmtype; | 
|  |  | 
|  | aom_wb_write_bit(wb, type != IDENTITY); | 
|  | if (type != IDENTITY) { | 
|  | aom_wb_write_bit(wb, type == ROTZOOM); | 
|  | if (type != ROTZOOM) { | 
|  | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | assert(type == AFFINE); | 
|  | #else | 
|  | aom_wb_write_bit(wb, type == TRANSLATION); | 
|  | #endif  // !CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | } | 
|  | } | 
|  |  | 
|  | if (type >= ROTZOOM) { | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - | 
|  | (1 << GM_ALPHA_PREC_BITS), | 
|  | (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), | 
|  | (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); | 
|  | } | 
|  |  | 
|  | if (type >= AFFINE) { | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), | 
|  | (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - | 
|  | (1 << GM_ALPHA_PREC_BITS), | 
|  | (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); | 
|  | } | 
|  |  | 
|  | if (type >= TRANSLATION) { | 
|  | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | const int trans_prec_diff = GM_TRANS_PREC_DIFF; | 
|  | const int trans_max = GM_TRANS_MAX; | 
|  | #else | 
|  | const int trans_bits = (type == TRANSLATION) | 
|  | ? GM_ABS_TRANS_ONLY_BITS - precision_loss | 
|  | : GM_ABS_TRANS_BITS; | 
|  | const int trans_prec_diff = (type == TRANSLATION) | 
|  | ? GM_TRANS_ONLY_PREC_DIFF + precision_loss | 
|  | : GM_TRANS_PREC_DIFF; | 
|  | const int trans_max = (1 << trans_bits); | 
|  | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
|  |  | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, trans_max + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[0] >> trans_prec_diff), | 
|  | (params->wmmat[0] >> trans_prec_diff)); | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, trans_max + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[1] >> trans_prec_diff), | 
|  | (params->wmmat[1] >> trans_prec_diff)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_global_motion(AV1_COMP *cpi, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | int num_total_refs = cm->ref_frames_info.num_total_refs; | 
|  | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | assert(cm->cur_frame->num_ref_frames == num_total_refs); | 
|  | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | int frame; | 
|  |  | 
|  | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | if (!seq_params->enable_global_motion) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool use_global_motion = false; | 
|  | for (frame = 0; frame < num_total_refs; ++frame) { | 
|  | if (cm->global_motion[frame].wmtype != IDENTITY) { | 
|  | use_global_motion = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_wb_write_bit(wb, use_global_motion); | 
|  | if (!use_global_motion) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int our_ref = cpi->gm_info.base_model_our_ref; | 
|  | int their_ref = cpi->gm_info.base_model_their_ref; | 
|  | aom_wb_write_primitive_quniform(wb, num_total_refs + 1, our_ref); | 
|  | if (our_ref >= num_total_refs) { | 
|  | // Special case: Use IDENTITY model | 
|  | // Nothing more to code | 
|  | assert(their_ref == -1); | 
|  | } else { | 
|  | RefCntBuffer *buf = get_ref_frame_buf(cm, our_ref); | 
|  | assert(buf); | 
|  | int their_num_refs = buf->num_ref_frames; | 
|  | if (their_num_refs == 0) { | 
|  | // Special case: if an intra/key frame is used as a ref, use an | 
|  | // IDENTITY model | 
|  | // Nothing more to code | 
|  | assert(their_ref == -1); | 
|  | } else { | 
|  | aom_wb_write_primitive_quniform(wb, their_num_refs, their_ref); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
|  |  | 
|  | for (frame = 0; frame < num_total_refs; ++frame) { | 
|  | #if CONFIG_IMPROVED_GLOBAL_MOTION | 
|  | int temporal_distance; | 
|  | if (seq_params->order_hint_info.enable_order_hint) { | 
|  | const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, frame); | 
|  | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | const int ref_order_hint = ref_buf->display_order_hint; | 
|  | const int cur_order_hint = cm->cur_frame->display_order_hint; | 
|  | #else | 
|  | const int ref_order_hint = ref_buf->order_hint; | 
|  | const int cur_order_hint = cm->cur_frame->order_hint; | 
|  | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | temporal_distance = get_relative_dist(&seq_params->order_hint_info, | 
|  | cur_order_hint, ref_order_hint); | 
|  | } else { | 
|  | temporal_distance = 1; | 
|  | } | 
|  |  | 
|  | if (temporal_distance == 0) { | 
|  | // Don't code global motion for frames at the same temporal instant | 
|  | assert(cm->global_motion[frame].wmtype == IDENTITY); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | WarpedMotionParams ref_params_; | 
|  | av1_scale_warp_model(&cm->base_global_motion_model, | 
|  | cm->base_global_motion_distance, &ref_params_, | 
|  | temporal_distance); | 
|  | WarpedMotionParams *ref_params = &ref_params_; | 
|  | #else | 
|  | const WarpedMotionParams *ref_params = | 
|  | cm->prev_frame ? &cm->prev_frame->global_motion[frame] | 
|  | : &default_warp_params; | 
|  | #endif  // CONFIG_IMPROVED_GLOBAL_MOTION | 
|  |  | 
|  | write_global_motion_params(&cm->global_motion[frame], ref_params, wb, | 
|  | cm->features.fr_mv_precision); | 
|  | // TODO(sarahparker, debargha): The logic in the commented out code below | 
|  | // does not work currently and causes mismatches when resize is on. | 
|  | // Fix it before turning the optimization back on. | 
|  | /* | 
|  | YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame); | 
|  | if (cpi->source->y_crop_width == ref_buf->y_crop_width && | 
|  | cpi->source->y_crop_height == ref_buf->y_crop_height) { | 
|  | write_global_motion_params(&cm->global_motion[frame], | 
|  | &cm->prev_frame->global_motion[frame], wb, | 
|  | cm->features.allow_high_precision_mv); | 
|  | } else { | 
|  | assert(cm->global_motion[frame].wmtype == IDENTITY && | 
|  | "Invalid warp type for frames of different resolutions"); | 
|  | } | 
|  | */ | 
|  | /* | 
|  | printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", | 
|  | cm->current_frame.frame_number, cm->show_frame, frame, | 
|  | cm->global_motion[frame].wmmat[0], | 
|  | cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], | 
|  | cm->global_motion[frame].wmmat[3]); | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | // New function based on HLS R18 | 
|  | static AOM_INLINE void write_uncompressed_header_obu( | 
|  | AV1_COMP *cpi, struct aom_write_bit_buffer *saved_wb, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | const CommonQuantParams *quant_params = &cm->quant_params; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | CurrentFrame *const current_frame = &cm->current_frame; | 
|  | FeatureFlags *const features = &cm->features; | 
|  |  | 
|  | if (seq_params->still_picture) { | 
|  | assert(cm->show_existing_frame == 0); | 
|  | assert(cm->show_frame == 1); | 
|  | assert(current_frame->frame_type == KEY_FRAME); | 
|  | } | 
|  | if (!seq_params->reduced_still_picture_hdr) { | 
|  | if (encode_show_existing_frame(cm)) { | 
|  | aom_wb_write_bit(wb, 1);  // show_existing_frame | 
|  | aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); | 
|  |  | 
|  | if (seq_params->decoder_model_info_present_flag && | 
|  | seq_params->timing_info.equal_picture_interval == 0) { | 
|  | write_tu_pts_info(cm, wb); | 
|  | } | 
|  | if (seq_params->frame_id_numbers_present_flag) { | 
|  | int frame_id_len = seq_params->frame_id_length; | 
|  | int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; | 
|  | aom_wb_write_literal(wb, display_frame_id, frame_id_len); | 
|  | } | 
|  | return; | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0);  // show_existing_frame | 
|  | } | 
|  |  | 
|  | aom_wb_write_literal(wb, current_frame->frame_type, 2); | 
|  |  | 
|  | aom_wb_write_bit(wb, cm->show_frame); | 
|  | if (cm->show_frame) { | 
|  | if (seq_params->decoder_model_info_present_flag && | 
|  | seq_params->timing_info.equal_picture_interval == 0) | 
|  | write_tu_pts_info(cm, wb); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, cm->showable_frame); | 
|  | } | 
|  | if (frame_is_sframe(cm)) { | 
|  | assert(features->error_resilient_mode); | 
|  | } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) { | 
|  | aom_wb_write_bit(wb, features->error_resilient_mode); | 
|  | } | 
|  | } | 
|  | aom_wb_write_bit(wb, features->disable_cdf_update); | 
|  |  | 
|  | if (seq_params->force_screen_content_tools == 2) { | 
|  | aom_wb_write_bit(wb, features->allow_screen_content_tools); | 
|  | } else { | 
|  | assert(features->allow_screen_content_tools == | 
|  | seq_params->force_screen_content_tools); | 
|  | } | 
|  |  | 
|  | if (features->allow_screen_content_tools) { | 
|  | if (seq_params->force_integer_mv == 2) { | 
|  | aom_wb_write_bit(wb, features->cur_frame_force_integer_mv); | 
|  | } else { | 
|  | assert(features->cur_frame_force_integer_mv == | 
|  | seq_params->force_integer_mv); | 
|  | } | 
|  | } else { | 
|  | assert(features->cur_frame_force_integer_mv == 0); | 
|  | } | 
|  |  | 
|  | int frame_size_override_flag = 0; | 
|  |  | 
|  | if (seq_params->reduced_still_picture_hdr) { | 
|  | assert(cm->superres_upscaled_width == seq_params->max_frame_width && | 
|  | cm->superres_upscaled_height == seq_params->max_frame_height); | 
|  | } else { | 
|  | if (seq_params->frame_id_numbers_present_flag) { | 
|  | int frame_id_len = seq_params->frame_id_length; | 
|  | aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); | 
|  | } | 
|  |  | 
|  | if (cm->superres_upscaled_width > seq_params->max_frame_width || | 
|  | cm->superres_upscaled_height > seq_params->max_frame_height) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Frame dimensions are larger than the maximum values"); | 
|  | } | 
|  |  | 
|  | frame_size_override_flag = | 
|  | frame_is_sframe(cm) | 
|  | ? 1 | 
|  | : (cm->superres_upscaled_width != seq_params->max_frame_width || | 
|  | cm->superres_upscaled_height != seq_params->max_frame_height); | 
|  | if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag); | 
|  |  | 
|  | if (seq_params->order_hint_info.enable_order_hint) | 
|  | aom_wb_write_literal( | 
|  | wb, current_frame->order_hint, | 
|  | seq_params->order_hint_info.order_hint_bits_minus_1 + 1); | 
|  |  | 
|  | if (!features->error_resilient_mode && !frame_is_intra_only(cm)) { | 
|  | #if CONFIG_PRIMARY_REF_FRAME_OPT | 
|  | aom_wb_write_literal(wb, cpi->signal_primary_ref_frame, 1); | 
|  | if (cpi->signal_primary_ref_frame) | 
|  | aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS); | 
|  | #else | 
|  | aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS); | 
|  | #endif  // CONFIG_PRIMARY_REF_FRAME_OPT | 
|  | if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs && | 
|  | features->primary_ref_frame != PRIMARY_REF_NONE) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
|  | "Invalid primary_ref_frame"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (seq_params->decoder_model_info_present_flag) { | 
|  | aom_wb_write_bit(wb, cm->buffer_removal_time_present); | 
|  | if (cm->buffer_removal_time_present) { | 
|  | for (int op_num = 0; | 
|  | op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { | 
|  | if (seq_params->op_params[op_num].decoder_model_param_present_flag) { | 
|  | if (((seq_params->operating_point_idc[op_num] >> | 
|  | cm->temporal_layer_id) & | 
|  | 0x1 && | 
|  | (seq_params->operating_point_idc[op_num] >> | 
|  | (cm->spatial_layer_id + 8)) & | 
|  | 0x1) || | 
|  | seq_params->operating_point_idc[op_num] == 0) { | 
|  | aom_wb_write_unsigned_literal( | 
|  | wb, cm->buffer_removal_times[op_num], | 
|  | seq_params->decoder_model_info.buffer_removal_time_length); | 
|  | cm->buffer_removal_times[op_num]++; | 
|  | if (cm->buffer_removal_times[op_num] == 0) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "buffer_removal_time overflowed"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shown keyframes and switch-frames automatically refreshes all reference | 
|  | // frames.  For all other frame types, we need to write refresh_frame_flags. | 
|  | if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) || | 
|  | current_frame->frame_type == INTER_FRAME || | 
|  | current_frame->frame_type == INTRA_ONLY_FRAME) { | 
|  | #if CONFIG_REFRESH_FLAG | 
|  | if (cm->seq_params.enable_short_refresh_frame_flags && | 
|  | !cm->features.error_resilient_mode) { | 
|  | const bool has_refresh_frame_flags = | 
|  | current_frame->refresh_frame_flags != 0; | 
|  | if (has_refresh_frame_flags) { | 
|  | int refresh_idx = 0; | 
|  | for (int i = 0; i < REF_FRAMES; ++i) { | 
|  | if ((current_frame->refresh_frame_flags >> i) & 1) { | 
|  | refresh_idx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | aom_wb_write_literal(wb, refresh_idx, 3); | 
|  | if (refresh_idx == 0) { | 
|  | aom_wb_write_literal(wb, 1, 1); | 
|  | } | 
|  | } else { | 
|  | aom_wb_write_literal(wb, 0, 3); | 
|  | aom_wb_write_literal(wb, 0, 1); | 
|  | } | 
|  | } else { | 
|  | aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES); | 
|  | } | 
|  | #else | 
|  | aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES); | 
|  | #endif  // CONFIG_REFRESH_FLAG | 
|  | } | 
|  |  | 
|  | if (!frame_is_intra_only(cm) || | 
|  | current_frame->refresh_frame_flags != REFRESH_FRAME_ALL) { | 
|  | // Write all ref frame order hints if error_resilient_mode == 1 | 
|  | if (features->error_resilient_mode && | 
|  | seq_params->order_hint_info.enable_order_hint) { | 
|  | for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { | 
|  | aom_wb_write_literal( | 
|  | wb, cm->ref_frame_map[ref_idx]->order_hint, | 
|  | seq_params->order_hint_info.order_hint_bits_minus_1 + 1); | 
|  | } | 
|  | } | 
|  | // Write all ref frame base_qindex if error_resilient_mode == 1. This is | 
|  | // required by reference mapping. | 
|  | if (features->error_resilient_mode) { | 
|  | for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { | 
|  | aom_wb_write_literal(wb, cm->ref_frame_map[ref_idx]->base_qindex, | 
|  | cm->seq_params.bit_depth == AOM_BITS_8 | 
|  | ? QINDEX_BITS_UNEXT | 
|  | : QINDEX_BITS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (current_frame->frame_type == KEY_FRAME) { | 
|  | write_frame_size(cm, frame_size_override_flag, wb); | 
|  | assert(!av1_superres_scaled(cm) || !features->allow_intrabc); | 
|  | if ( | 
|  | #if !CONFIG_ENABLE_IBC_NAT | 
|  | features->allow_screen_content_tools && | 
|  | #endif  //! CONFIG_ENABLE_IBC_NAT | 
|  | !av1_superres_scaled(cm)) | 
|  | aom_wb_write_bit(wb, features->allow_intrabc); | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | if (features->allow_intrabc) { | 
|  | aom_wb_write_bit(wb, features->allow_global_intrabc); | 
|  | if (features->allow_global_intrabc) { | 
|  | aom_wb_write_bit(wb, features->allow_local_intrabc); | 
|  | } | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT | 
|  | #if CONFIG_IBC_MAX_DRL | 
|  | assert(features->max_bvp_drl_bits >= MIN_MAX_IBC_DRL_BITS && | 
|  | features->max_bvp_drl_bits <= MAX_MAX_IBC_DRL_BITS); | 
|  | aom_wb_write_primitive_quniform( | 
|  | wb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1, | 
|  | features->max_bvp_drl_bits - MIN_MAX_IBC_DRL_BITS); | 
|  | #else | 
|  | aom_wb_write_primitive_quniform( | 
|  | wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1, | 
|  | features->max_drl_bits - MIN_MAX_DRL_BITS); | 
|  | #endif  // CONFIG_IBC_MAX_DRL | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
|  | } | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  | } else { | 
|  | if (current_frame->frame_type == INTRA_ONLY_FRAME) { | 
|  | write_frame_size(cm, frame_size_override_flag, wb); | 
|  | assert(!av1_superres_scaled(cm) || !features->allow_intrabc); | 
|  | if ( | 
|  | #if !CONFIG_ENABLE_IBC_NAT | 
|  | features->allow_screen_content_tools && | 
|  | #endif  //! CONFIG_ENABLE_IBC_NAT | 
|  | !av1_superres_scaled(cm)) | 
|  | aom_wb_write_bit(wb, features->allow_intrabc); | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | if (features->allow_intrabc) { | 
|  | aom_wb_write_bit(wb, features->allow_global_intrabc); | 
|  | if (features->allow_global_intrabc) { | 
|  | aom_wb_write_bit(wb, features->allow_local_intrabc); | 
|  | } | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT | 
|  | #if CONFIG_IBC_MAX_DRL | 
|  | assert(features->max_bvp_drl_bits >= MIN_MAX_IBC_DRL_BITS && | 
|  | features->max_bvp_drl_bits <= MAX_MAX_IBC_DRL_BITS); | 
|  | aom_wb_write_primitive_quniform( | 
|  | wb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1, | 
|  | features->max_bvp_drl_bits - MIN_MAX_IBC_DRL_BITS); | 
|  | #else | 
|  | aom_wb_write_primitive_quniform( | 
|  | wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1, | 
|  | features->max_drl_bits - MIN_MAX_DRL_BITS); | 
|  | #endif  // CONFIG_IBC_MAX_DRL | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT | 
|  | } | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  | } else if (current_frame->frame_type == INTER_FRAME || | 
|  | frame_is_sframe(cm)) { | 
|  | MV_REFERENCE_FRAME ref_frame; | 
|  |  | 
|  | // NOTE: Error resilient mode turns off frame_refs_short_signaling | 
|  | //       automatically. | 
|  | #define FRAME_REFS_SHORT_SIGNALING 0 | 
|  | #if FRAME_REFS_SHORT_SIGNALING | 
|  | current_frame->frame_refs_short_signaling = | 
|  | seq_params->order_hint_info.enable_order_hint; | 
|  | #endif  // FRAME_REFS_SHORT_SIGNALING | 
|  |  | 
|  | // By default, no need to signal ref mapping indices in NRS because | 
|  | // decoder can derive them unless order_hint is not available. Explicit | 
|  | // signaling happens only when enabled by the command line flag or in | 
|  | // error resilient mode | 
|  | const int explicit_ref_frame_map = | 
|  | cm->features.error_resilient_mode || frame_is_sframe(cm) || | 
|  | seq_params->explicit_ref_frame_map || | 
|  | !seq_params->order_hint_info.enable_order_hint; | 
|  | if (explicit_ref_frame_map) { | 
|  | if (cm->ref_frames_info.num_total_refs <= 0 || | 
|  | cm->ref_frames_info.num_total_refs > | 
|  | seq_params->max_reference_frames) | 
|  | aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Invalid num_total_refs"); | 
|  | aom_wb_write_literal(wb, cm->ref_frames_info.num_total_refs, | 
|  | REF_FRAMES_LOG2); | 
|  | } | 
|  | for (ref_frame = 0; ref_frame < cm->ref_frames_info.num_total_refs; | 
|  | ++ref_frame) { | 
|  | assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX); | 
|  | if (explicit_ref_frame_map) | 
|  | aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame), | 
|  | REF_FRAMES_LOG2); | 
|  | if (seq_params->frame_id_numbers_present_flag) { | 
|  | int i = get_ref_frame_map_idx(cm, ref_frame); | 
|  | int frame_id_len = seq_params->frame_id_length; | 
|  | int diff_len = seq_params->delta_frame_id_length; | 
|  | int delta_frame_id_minus_1 = | 
|  | ((cm->current_frame_id - cm->ref_frame_id[i] + | 
|  | (1 << frame_id_len)) % | 
|  | (1 << frame_id_len)) - | 
|  | 1; | 
|  | if (delta_frame_id_minus_1 < 0 || | 
|  | delta_frame_id_minus_1 >= (1 << diff_len)) { | 
|  | aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Invalid delta_frame_id_minus_1"); | 
|  | } | 
|  | aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!features->error_resilient_mode && frame_size_override_flag) { | 
|  | write_frame_size_with_refs(cm, wb); | 
|  | } else { | 
|  | write_frame_size(cm, frame_size_override_flag, wb); | 
|  | } | 
|  |  | 
|  | if (frame_might_allow_ref_frame_mvs(cm)) { | 
|  | aom_wb_write_bit(wb, features->allow_ref_frame_mvs); | 
|  | } else { | 
|  | assert(features->allow_ref_frame_mvs == 0); | 
|  | } | 
|  | #if CONFIG_LF_SUB_PU | 
|  | if (cm->seq_params.enable_lf_sub_pu) { | 
|  | aom_wb_write_bit(wb, features->allow_lf_sub_pu); | 
|  | } | 
|  | #endif  // CONFIG_LF_SUB_PU | 
|  | if (cm->seq_params.enable_tip) { | 
|  | assert(IMPLIES(av1_superres_scaled(cm), | 
|  | features->tip_frame_mode != TIP_FRAME_AS_OUTPUT)); | 
|  | aom_wb_write_literal(wb, features->tip_frame_mode, 2); | 
|  | if (features->tip_frame_mode && cm->seq_params.enable_tip_hole_fill) { | 
|  | aom_wb_write_bit(wb, features->allow_tip_hole_fill); | 
|  | } | 
|  | #if CONFIG_LF_SUB_PU | 
|  | if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT && | 
|  | cm->seq_params.enable_lf_sub_pu && features->allow_lf_sub_pu) { | 
|  | aom_wb_write_bit(wb, cm->lf.tip_filter_level); | 
|  | if (cm->lf.tip_filter_level) | 
|  | aom_wb_write_literal(wb, cm->lf.tip_delta_idx, 2); | 
|  | } | 
|  | #endif  // CONFIG_LF_SUB_PU | 
|  |  | 
|  | #if CONFIG_TIP_DIRECT_FRAME_MV | 
|  | if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
|  | aom_wb_write_bit(wb, cm->tip_global_motion.as_int == 0); | 
|  | if (cm->tip_global_motion.as_int != 0) { | 
|  | aom_wb_write_literal(wb, abs(cm->tip_global_motion.as_mv.row), 4); | 
|  | aom_wb_write_literal(wb, abs(cm->tip_global_motion.as_mv.col), 4); | 
|  | if (cm->tip_global_motion.as_mv.row != 0) | 
|  | aom_wb_write_bit(wb, cm->tip_global_motion.as_mv.row < 0); | 
|  | if (cm->tip_global_motion.as_mv.col != 0) | 
|  | aom_wb_write_bit(wb, cm->tip_global_motion.as_mv.col < 0); | 
|  | } | 
|  | aom_wb_write_bit(wb, cm->tip_interp_filter == MULTITAP_SHARP); | 
|  | } | 
|  | #endif  // CONFIG_TIP_DIRECT_FRAME_MV | 
|  | } | 
|  |  | 
|  | if (!cm->seq_params.enable_tip || | 
|  | features->tip_frame_mode != TIP_FRAME_AS_OUTPUT) { | 
|  | #if CONFIG_IBC_SR_EXT | 
|  | if ( | 
|  | #if !CONFIG_ENABLE_IBC_NAT | 
|  | features->allow_screen_content_tools && | 
|  | #endif  //! CONFIG_ENABLE_IBC_NAT | 
|  | !av1_superres_scaled(cm)) | 
|  | aom_wb_write_bit(wb, features->allow_intrabc); | 
|  | #endif  // CONFIG_IBC_SR_EXT | 
|  |  | 
|  | aom_wb_write_primitive_quniform( | 
|  | wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1, | 
|  | features->max_drl_bits - MIN_MAX_DRL_BITS); | 
|  | #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | if (features->allow_intrabc) { | 
|  | assert(features->max_bvp_drl_bits >= MIN_MAX_IBC_DRL_BITS && | 
|  | features->max_bvp_drl_bits <= MAX_MAX_IBC_DRL_BITS); | 
|  | aom_wb_write_primitive_quniform( | 
|  | wb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1, | 
|  | features->max_bvp_drl_bits - MIN_MAX_IBC_DRL_BITS); | 
|  | } | 
|  | #endif  // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL | 
|  | if (!features->cur_frame_force_integer_mv) { | 
|  | aom_wb_write_bit(wb, | 
|  | features->fr_mv_precision > MV_PRECISION_QTR_PEL); | 
|  | assert(features->fr_mv_precision == | 
|  | features->most_probable_fr_mv_precision); | 
|  | } | 
|  | #if CONFIG_DEBUG | 
|  | else { | 
|  | assert(features->fr_mv_precision == MV_PRECISION_ONE_PEL); | 
|  | } | 
|  | assert(IMPLIES(features->cur_frame_force_integer_mv, | 
|  | features->fr_mv_precision == MV_PRECISION_ONE_PEL)); | 
|  | #endif | 
|  |  | 
|  | write_frame_interp_filter(features->interp_filter, wb); | 
|  | int seq_enabled_motion_modes = seq_params->seq_enabled_motion_modes; | 
|  | int frame_enabled_motion_modes = features->enabled_motion_modes; | 
|  | assert((frame_enabled_motion_modes & (1 << SIMPLE_TRANSLATION)) != 0); | 
|  | for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; | 
|  | motion_mode++) { | 
|  | if (seq_enabled_motion_modes & (1 << motion_mode)) { | 
|  | int enabled = | 
|  | (frame_enabled_motion_modes & (1 << motion_mode)) != 0 ? 1 : 0; | 
|  | aom_wb_write_bit(wb, enabled); | 
|  | } else { | 
|  | assert((frame_enabled_motion_modes & (1 << motion_mode)) == 0); | 
|  | } | 
|  | } | 
|  | if (cm->seq_params.enable_opfl_refine == AOM_OPFL_REFINE_AUTO) { | 
|  | aom_wb_write_literal(wb, features->opfl_refine_type, 2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { | 
|  | #if CONFIG_TIP_IMPLICIT_QUANT | 
|  | if (cm->seq_params.enable_tip_explicit_qp) { | 
|  | aom_wb_write_literal(wb, quant_params->base_qindex, | 
|  | cm->seq_params.bit_depth == AOM_BITS_8 | 
|  | ? QINDEX_BITS_UNEXT | 
|  | : QINDEX_BITS); | 
|  | if (av1_num_planes(cm) > 1) { | 
|  | const int diff_uv_delta = | 
|  | (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q); | 
|  | if (cm->seq_params.separate_uv_delta_q) { | 
|  | aom_wb_write_bit(wb, diff_uv_delta); | 
|  | } | 
|  | write_delta_q(wb, quant_params->u_ac_delta_q); | 
|  | if (diff_uv_delta) { | 
|  | write_delta_q(wb, quant_params->v_ac_delta_q); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | aom_wb_write_literal(wb, quant_params->base_qindex, | 
|  | cm->seq_params.bit_depth == AOM_BITS_8 | 
|  | ? QINDEX_BITS_UNEXT | 
|  | : QINDEX_BITS); | 
|  | #endif  // CONFIG_TIP_IMPLICIT_QUANT | 
|  | #if !CONFIG_TIP_DIRECT_MODE_SIGNALING | 
|  | write_tile_info(cm, saved_wb, wb); | 
|  | #endif  // !CONFIG_TIP_DIRECT_MODE_SIGNALING | 
|  | if (seq_params->film_grain_params_present && | 
|  | (cm->show_frame || cm->showable_frame)) | 
|  | write_film_grain_params(cpi, wb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) && | 
|  | !(features->disable_cdf_update); | 
|  | if (cm->tiles.large_scale) | 
|  | assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); | 
|  |  | 
|  | if (might_bwd_adapt) { | 
|  | aom_wb_write_bit( | 
|  | wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); | 
|  | } | 
|  |  | 
|  | write_tile_info(cm, saved_wb, wb); | 
|  | encode_quantization(quant_params, av1_num_planes(cm), | 
|  | cm->seq_params.bit_depth, | 
|  | cm->seq_params.separate_uv_delta_q, wb); | 
|  | encode_segmentation(cm, xd, wb); | 
|  |  | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0); | 
|  | if (quant_params->base_qindex > 0) { | 
|  | aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag); | 
|  | if (delta_q_info->delta_q_present_flag) { | 
|  | aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2); | 
|  | xd->current_base_qindex = quant_params->base_qindex; | 
|  | if (is_global_intrabc_allowed(cm)) | 
|  | assert(delta_q_info->delta_lf_present_flag == 0); | 
|  | else | 
|  | aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag); | 
|  | if (delta_q_info->delta_lf_present_flag) { | 
|  | aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2); | 
|  | aom_wb_write_bit(wb, delta_q_info->delta_lf_multi); | 
|  | av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features->all_lossless) { | 
|  | assert(!av1_superres_scaled(cm)); | 
|  | } else { | 
|  | if (!features->coded_lossless) { | 
|  | encode_loopfilter(cm, wb); | 
|  | encode_cdef(cm, wb); | 
|  | } | 
|  | encode_restoration_mode(cm, wb); | 
|  | if (!features->coded_lossless && cm->seq_params.enable_ccso) { | 
|  | encode_ccso(cm, wb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features->coded_lossless || !cm->seq_params.enable_parity_hiding) { | 
|  | assert(features->allow_parity_hiding == false); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, features->allow_parity_hiding); | 
|  | } | 
|  |  | 
|  | // Write TX mode | 
|  | if (features->coded_lossless) | 
|  | assert(features->tx_mode == ONLY_4X4); | 
|  | else | 
|  | aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT); | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) { | 
|  | const int use_hybrid_pred = | 
|  | current_frame->reference_mode == REFERENCE_MODE_SELECT; | 
|  |  | 
|  | aom_wb_write_bit(wb, use_hybrid_pred); | 
|  | } | 
|  |  | 
|  | if (current_frame->skip_mode_info.skip_mode_allowed) | 
|  | aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag); | 
|  |  | 
|  | #if CONFIG_BAWP | 
|  | if (!frame_is_intra_only(cm) && seq_params->enable_bawp) | 
|  | aom_wb_write_bit(wb, features->enable_bawp); | 
|  | #endif  // CONFIG_BAWP | 
|  |  | 
|  | if (!frame_is_intra_only(cm) && | 
|  | (features->enabled_motion_modes & (1 << WARP_DELTA)) != 0) { | 
|  | aom_wb_write_bit(wb, features->allow_warpmv_mode); | 
|  | } else { | 
|  | assert(IMPLIES(!frame_is_intra_only(cm), !features->allow_warpmv_mode)); | 
|  | } | 
|  |  | 
|  | aom_wb_write_bit(wb, features->reduced_tx_set_used); | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); | 
|  |  | 
|  | if (seq_params->film_grain_params_present && | 
|  | (cm->show_frame || cm->showable_frame)) | 
|  | write_film_grain_params(cpi, wb); | 
|  |  | 
|  | if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb); | 
|  | } | 
|  |  | 
|  | static int choose_size_bytes(uint32_t size, int spare_msbs) { | 
|  | // Choose the number of bytes required to represent size, without | 
|  | // using the 'spare_msbs' number of most significant bits. | 
|  |  | 
|  | // Make sure we will fit in 4 bytes to start with.. | 
|  | if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; | 
|  |  | 
|  | // Normalise to 32 bits | 
|  | size <<= spare_msbs; | 
|  |  | 
|  | if (size >> 24 != 0) | 
|  | return 4; | 
|  | else if (size >> 16 != 0) | 
|  | return 3; | 
|  | else if (size >> 8 != 0) | 
|  | return 2; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz, | 
|  | const int val) { | 
|  | switch (sz) { | 
|  | case 1: dst[0] = (uint8_t)(val & 0xff); break; | 
|  | case 2: mem_put_le16(dst, val); break; | 
|  | case 3: mem_put_le24(dst, val); break; | 
|  | case 4: mem_put_le32(dst, val); break; | 
|  | default: assert(0 && "Invalid size"); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst, | 
|  | const uint32_t data_size, const uint32_t max_tile_size, | 
|  | const uint32_t max_tile_col_size, | 
|  | int *const tile_size_bytes, | 
|  | int *const tile_col_size_bytes) { | 
|  | // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) | 
|  | int tsb; | 
|  | int tcsb; | 
|  |  | 
|  | if (tiles->large_scale) { | 
|  | // The top bit in the tile size field indicates tile copy mode, so we | 
|  | // have 1 less bit to code the tile size | 
|  | tsb = choose_size_bytes(max_tile_size, 1); | 
|  | tcsb = choose_size_bytes(max_tile_col_size, 0); | 
|  | } else { | 
|  | tsb = choose_size_bytes(max_tile_size, 0); | 
|  | tcsb = 4;  // This is ignored | 
|  | (void)max_tile_col_size; | 
|  | } | 
|  |  | 
|  | assert(tsb > 0); | 
|  | assert(tcsb > 0); | 
|  |  | 
|  | *tile_size_bytes = tsb; | 
|  | *tile_col_size_bytes = tcsb; | 
|  | if (tsb == 4 && tcsb == 4) return data_size; | 
|  |  | 
|  | uint32_t wpos = 0; | 
|  | uint32_t rpos = 0; | 
|  |  | 
|  | if (tiles->large_scale) { | 
|  | int tile_row; | 
|  | int tile_col; | 
|  |  | 
|  | for (tile_col = 0; tile_col < tiles->cols; tile_col++) { | 
|  | // All but the last column has a column header | 
|  | if (tile_col < tiles->cols - 1) { | 
|  | uint32_t tile_col_size = mem_get_le32(dst + rpos); | 
|  | rpos += 4; | 
|  |  | 
|  | // Adjust the tile column size by the number of bytes removed | 
|  | // from the tile size fields. | 
|  | tile_col_size -= (4 - tsb) * tiles->rows; | 
|  |  | 
|  | mem_put_varsize(dst + wpos, tcsb, tile_col_size); | 
|  | wpos += tcsb; | 
|  | } | 
|  |  | 
|  | for (tile_row = 0; tile_row < tiles->rows; tile_row++) { | 
|  | // All, including the last row has a header | 
|  | uint32_t tile_header = mem_get_le32(dst + rpos); | 
|  | rpos += 4; | 
|  |  | 
|  | // If this is a copy tile, we need to shift the MSB to the | 
|  | // top bit of the new width, and there is no data to copy. | 
|  | if (tile_header >> 31 != 0) { | 
|  | if (tsb < 4) tile_header >>= 32 - 8 * tsb; | 
|  | mem_put_varsize(dst + wpos, tsb, tile_header); | 
|  | wpos += tsb; | 
|  | } else { | 
|  | mem_put_varsize(dst + wpos, tsb, tile_header); | 
|  | wpos += tsb; | 
|  |  | 
|  | tile_header += AV1_MIN_TILE_SIZE_BYTES; | 
|  | memmove(dst + wpos, dst + rpos, tile_header); | 
|  | rpos += tile_header; | 
|  | wpos += tile_header; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(rpos > wpos); | 
|  | assert(rpos == data_size); | 
|  |  | 
|  | return wpos; | 
|  | } | 
|  | const int n_tiles = tiles->cols * tiles->rows; | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < n_tiles; n++) { | 
|  | int tile_size; | 
|  |  | 
|  | if (n == n_tiles - 1) { | 
|  | tile_size = data_size - rpos; | 
|  | } else { | 
|  | tile_size = mem_get_le32(dst + rpos); | 
|  | rpos += 4; | 
|  | mem_put_varsize(dst + wpos, tsb, tile_size); | 
|  | tile_size += AV1_MIN_TILE_SIZE_BYTES; | 
|  | wpos += tsb; | 
|  | } | 
|  |  | 
|  | memmove(dst + wpos, dst + rpos, tile_size); | 
|  |  | 
|  | rpos += tile_size; | 
|  | wpos += tile_size; | 
|  | } | 
|  |  | 
|  | assert(rpos > wpos); | 
|  | assert(rpos == data_size); | 
|  |  | 
|  | return wpos; | 
|  | } | 
|  |  | 
|  | uint32_t av1_write_obu_header(AV1LevelParams *const level_params, | 
|  | OBU_TYPE obu_type, int obu_extension, | 
|  | uint8_t *const dst) { | 
|  | if (level_params->keep_level_stats && | 
|  | (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER)) | 
|  | ++level_params->frame_header_count; | 
|  |  | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | uint32_t size = 0; | 
|  |  | 
|  | aom_wb_write_literal(&wb, 0, 1);  // forbidden bit. | 
|  | aom_wb_write_literal(&wb, (int)obu_type, 4); | 
|  | aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); | 
|  | aom_wb_write_literal(&wb, 1, 1);  // obu_has_payload_length_field | 
|  | aom_wb_write_literal(&wb, 0, 1);  // reserved | 
|  |  | 
|  | if (obu_extension) { | 
|  | aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); | 
|  | } | 
|  |  | 
|  | size = aom_wb_bytes_written(&wb); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size, | 
|  | uint8_t *dest) { | 
|  | const size_t offset = obu_header_size; | 
|  | size_t coded_obu_size = 0; | 
|  | const uint32_t obu_size = (uint32_t)obu_payload_size; | 
|  | assert(obu_size == obu_payload_size); | 
|  |  | 
|  | if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset, | 
|  | &coded_obu_size) != 0) { | 
|  | return AOM_CODEC_ERROR; | 
|  | } | 
|  |  | 
|  | return AOM_CODEC_OK; | 
|  | } | 
|  |  | 
|  | static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size, | 
|  | uint8_t *data) { | 
|  | const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size); | 
|  | const size_t move_dst_offset = length_field_size + obu_header_size; | 
|  | const size_t move_src_offset = obu_header_size; | 
|  | const size_t move_size = obu_payload_size; | 
|  | memmove(data + move_dst_offset, data + move_src_offset, move_size); | 
|  | return length_field_size; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) { | 
|  | if (aom_wb_is_byte_aligned(wb)) { | 
|  | aom_wb_write_literal(wb, 0x80, 8); | 
|  | } else { | 
|  | // assumes that the other bits are already 0s | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | assert(is_valid_seq_level_idx(seq_level_idx)); | 
|  | aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS); | 
|  | } | 
|  |  | 
|  | uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params, | 
|  | uint8_t *const dst) { | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | uint32_t size = 0; | 
|  |  | 
|  | write_profile(seq_params->profile, &wb); | 
|  |  | 
|  | // Still picture or not | 
|  | aom_wb_write_bit(&wb, seq_params->still_picture); | 
|  | assert(IMPLIES(!seq_params->still_picture, | 
|  | !seq_params->reduced_still_picture_hdr)); | 
|  | // whether to use reduced still picture header | 
|  | aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr); | 
|  |  | 
|  | if (seq_params->reduced_still_picture_hdr) { | 
|  | assert(seq_params->timing_info_present == 0); | 
|  | assert(seq_params->decoder_model_info_present_flag == 0); | 
|  | assert(seq_params->display_model_info_present_flag == 0); | 
|  | write_bitstream_level(seq_params->seq_level_idx[0], &wb); | 
|  | } else { | 
|  | aom_wb_write_bit( | 
|  | &wb, seq_params->timing_info_present);  // timing info present flag | 
|  |  | 
|  | if (seq_params->timing_info_present) { | 
|  | // timing_info | 
|  | write_timing_info_header(&seq_params->timing_info, &wb); | 
|  | aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag); | 
|  | if (seq_params->decoder_model_info_present_flag) { | 
|  | write_decoder_model_info(&seq_params->decoder_model_info, &wb); | 
|  | } | 
|  | } | 
|  | aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag); | 
|  | aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1, | 
|  | OP_POINTS_CNT_MINUS_1_BITS); | 
|  | int i; | 
|  | for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { | 
|  | aom_wb_write_literal(&wb, seq_params->operating_point_idc[i], | 
|  | OP_POINTS_IDC_BITS); | 
|  | write_bitstream_level(seq_params->seq_level_idx[i], &wb); | 
|  | if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0) | 
|  | aom_wb_write_bit(&wb, seq_params->tier[i]); | 
|  | if (seq_params->decoder_model_info_present_flag) { | 
|  | aom_wb_write_bit( | 
|  | &wb, seq_params->op_params[i].decoder_model_param_present_flag); | 
|  | if (seq_params->op_params[i].decoder_model_param_present_flag) { | 
|  | write_dec_model_op_parameters( | 
|  | &seq_params->op_params[i], | 
|  | seq_params->decoder_model_info | 
|  | .encoder_decoder_buffer_delay_length, | 
|  | &wb); | 
|  | } | 
|  | } | 
|  | if (seq_params->display_model_info_present_flag) { | 
|  | aom_wb_write_bit( | 
|  | &wb, seq_params->op_params[i].display_model_param_present_flag); | 
|  | if (seq_params->op_params[i].display_model_param_present_flag) { | 
|  | assert(seq_params->op_params[i].initial_display_delay <= 10); | 
|  | aom_wb_write_literal( | 
|  | &wb, seq_params->op_params[i].initial_display_delay - 1, 4); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | write_sequence_header(seq_params, &wb); | 
|  |  | 
|  | write_color_config(seq_params, &wb); | 
|  |  | 
|  | aom_wb_write_bit(&wb, seq_params->film_grain_params_present); | 
|  |  | 
|  | // Sequence header for coding tools beyond AV1 | 
|  | write_sequence_header_beyond_av1(seq_params, &wb); | 
|  |  | 
|  | add_trailing_bits(&wb); | 
|  |  | 
|  | size = aom_wb_bytes_written(&wb); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static uint32_t write_frame_header_obu(AV1_COMP *cpi, | 
|  | struct aom_write_bit_buffer *saved_wb, | 
|  | uint8_t *const dst, | 
|  | int append_trailing_bits) { | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | write_uncompressed_header_obu(cpi, saved_wb, &wb); | 
|  | if (append_trailing_bits) add_trailing_bits(&wb); | 
|  | return aom_wb_bytes_written(&wb); | 
|  | } | 
|  |  | 
|  | static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile, | 
|  | int end_tile, int tiles_log2, | 
|  | int tile_start_and_end_present_flag) { | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | uint32_t size = 0; | 
|  |  | 
|  | if (!tiles_log2) return size; | 
|  |  | 
|  | aom_wb_write_bit(&wb, tile_start_and_end_present_flag); | 
|  |  | 
|  | if (tile_start_and_end_present_flag) { | 
|  | aom_wb_write_literal(&wb, start_tile, tiles_log2); | 
|  | aom_wb_write_literal(&wb, end_tile, tiles_log2); | 
|  | } | 
|  |  | 
|  | size = aom_wb_bytes_written(&wb); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | uint8_t *frame_header; | 
|  | size_t obu_header_byte_offset; | 
|  | size_t total_length; | 
|  | } FrameHeaderInfo; | 
|  |  | 
|  | extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size, | 
|  | const char *filename); | 
|  |  | 
|  | static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, | 
|  | struct aom_write_bit_buffer *saved_wb, | 
|  | uint8_t obu_extension_header, | 
|  | const FrameHeaderInfo *fh_info, | 
|  | int *const largest_tile_id) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonTileParams *const tiles = &cm->tiles; | 
|  | AV1LevelParams *const level_params = &cpi->level_params; | 
|  | aom_writer mode_bc; | 
|  | int tile_row, tile_col; | 
|  | // Store the location and size of each tile's data in the bitstream: | 
|  | TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS]; | 
|  | uint32_t total_size = 0; | 
|  | const int tile_cols = tiles->cols; | 
|  | const int tile_rows = tiles->rows; | 
|  | unsigned int tile_size = 0; | 
|  | unsigned int max_tile_size = 0; | 
|  | unsigned int max_tile_col_size = 0; | 
|  | const int n_log2_tiles = tiles->log2_rows + tiles->log2_cols; | 
|  | // Fixed size tile groups for the moment | 
|  | const int num_tg_hdrs = cpi->num_tg; | 
|  | const int tg_size = | 
|  | (tiles->large_scale) | 
|  | ? 1 | 
|  | : (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; | 
|  | int tile_count = 0; | 
|  | int curr_tg_data_size = 0; | 
|  | uint8_t *data = dst; | 
|  | int new_tg = 1; | 
|  | const int have_tiles = tile_cols * tile_rows > 1; | 
|  | int first_tg = 1; | 
|  |  | 
|  | *largest_tile_id = 0; | 
|  |  | 
|  | if (tiles->large_scale) { | 
|  | // For large_scale_tile case, we always have only one tile group, so it can | 
|  | // be written as an OBU_FRAME. | 
|  | const OBU_TYPE obu_type = OBU_FRAME; | 
|  | const uint32_t tg_hdr_size = | 
|  | av1_write_obu_header(level_params, obu_type, 0, data); | 
|  | data += tg_hdr_size; | 
|  |  | 
|  | const uint32_t frame_header_size = | 
|  | write_frame_header_obu(cpi, saved_wb, data, 0); | 
|  | data += frame_header_size; | 
|  | total_size += frame_header_size; | 
|  |  | 
|  | // (yunqing) This test ensures the correctness of large scale tile coding. | 
|  | if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) { | 
|  | char fn[20] = "./fh"; | 
|  | fn[4] = cm->current_frame.frame_number / 100 + '0'; | 
|  | fn[5] = (cm->current_frame.frame_number % 100) / 10 + '0'; | 
|  | fn[6] = (cm->current_frame.frame_number % 10) + '0'; | 
|  | fn[7] = '\0'; | 
|  | av1_print_uncompressed_frame_header(data - frame_header_size, | 
|  | frame_header_size, fn); | 
|  | } | 
|  |  | 
|  | int tile_size_bytes = 0; | 
|  | int tile_col_size_bytes = 0; | 
|  |  | 
|  | for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | TileInfo tile_info; | 
|  | const int is_last_col = (tile_col == tile_cols - 1); | 
|  | const uint32_t col_offset = total_size; | 
|  |  | 
|  | av1_tile_set_col(&tile_info, cm, tile_col); | 
|  |  | 
|  | // The last column does not have a column header | 
|  | if (!is_last_col) total_size += 4; | 
|  |  | 
|  | for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
|  | const int data_offset = have_tiles ? 4 : 0; | 
|  | const int tile_idx = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
|  | av1_tile_set_row(&tile_info, cm, tile_row); | 
|  |  | 
|  | buf->data = dst + total_size + tg_hdr_size; | 
|  |  | 
|  | // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, | 
|  | // even for the last one, unless no tiling is used at all. | 
|  | total_size += data_offset; | 
|  | cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
|  | mode_bc.allow_update_cdf = !tiles->large_scale; | 
|  | mode_bc.allow_update_cdf = | 
|  | mode_bc.allow_update_cdf && !cm->features.disable_cdf_update; | 
|  | aom_start_encode(&mode_bc, buf->data + data_offset); | 
|  | write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); | 
|  | aom_stop_encode(&mode_bc); | 
|  | tile_size = mode_bc.pos; | 
|  | buf->size = tile_size; | 
|  |  | 
|  | // Record the maximum tile size we see, so we can compact headers later. | 
|  | if (tile_size > max_tile_size) { | 
|  | max_tile_size = tile_size; | 
|  | *largest_tile_id = tile_cols * tile_row + tile_col; | 
|  | } | 
|  |  | 
|  | if (have_tiles) { | 
|  | // tile header: size of this tile, or copy offset | 
|  | uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES; | 
|  | const int tile_copy_mode = | 
|  | ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) | 
|  | ? 1 | 
|  | : 0; | 
|  |  | 
|  | // If tile_copy_mode = 1, check if this tile is a copy tile. | 
|  | // Very low chances to have copy tiles on the key frames, so don't | 
|  | // search on key frames to reduce unnecessary search. | 
|  | if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) { | 
|  | const int identical_tile_offset = | 
|  | find_identical_tile(tile_row, tile_col, tile_buffers); | 
|  |  | 
|  | // Indicate a copy-tile by setting the most significant bit. | 
|  | // The row-offset to copy from is stored in the highest byte. | 
|  | // remux_tiles will move these around later | 
|  | if (identical_tile_offset > 0) { | 
|  | tile_size = 0; | 
|  | tile_header = identical_tile_offset | 0x80; | 
|  | tile_header <<= 24; | 
|  | } | 
|  | } | 
|  |  | 
|  | mem_put_le32(buf->data, tile_header); | 
|  | } | 
|  |  | 
|  | total_size += tile_size; | 
|  | } | 
|  |  | 
|  | if (!is_last_col) { | 
|  | uint32_t col_size = total_size - col_offset - 4; | 
|  | mem_put_le32(dst + col_offset + tg_hdr_size, col_size); | 
|  |  | 
|  | // Record the maximum tile column size we see. | 
|  | max_tile_col_size = AOMMAX(max_tile_col_size, col_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (have_tiles) { | 
|  | total_size = remux_tiles(tiles, data, total_size - frame_header_size, | 
|  | max_tile_size, max_tile_col_size, | 
|  | &tile_size_bytes, &tile_col_size_bytes); | 
|  | total_size += frame_header_size; | 
|  | } | 
|  |  | 
|  | // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write | 
|  | // current tile group size before tile data(include tile column header). | 
|  | // Tile group size doesn't include the bytes storing tg size. | 
|  | total_size += tg_hdr_size; | 
|  | const uint32_t obu_payload_size = total_size - tg_hdr_size; | 
|  | const size_t length_field_size = | 
|  | obu_memmove(tg_hdr_size, obu_payload_size, dst); | 
|  | if (av1_write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) != | 
|  | AOM_CODEC_OK) { | 
|  | assert(0); | 
|  | } | 
|  | total_size += (uint32_t)length_field_size; | 
|  | saved_wb->bit_buffer += length_field_size; | 
|  |  | 
|  | // Now fill in the gaps in the uncompressed header. | 
|  | if (have_tiles) { | 
|  | assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); | 
|  | aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2); | 
|  |  | 
|  | assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); | 
|  | aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); | 
|  | } | 
|  | return total_size; | 
|  | } | 
|  |  | 
|  | uint32_t obu_header_size = 0; | 
|  | uint8_t *tile_data_start = dst + total_size; | 
|  | for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | TileInfo tile_info; | 
|  | av1_tile_set_row(&tile_info, cm, tile_row); | 
|  |  | 
|  | for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | const int tile_idx = tile_row * tile_cols + tile_col; | 
|  | TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
|  | TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
|  | int is_last_tile_in_tg = 0; | 
|  |  | 
|  | if (new_tg) { | 
|  | data = dst + total_size; | 
|  |  | 
|  | // A new tile group begins at this tile.  Write the obu header and | 
|  | // tile group header | 
|  | const OBU_TYPE obu_type = | 
|  | (num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP; | 
|  | curr_tg_data_size = av1_write_obu_header(level_params, obu_type, | 
|  | obu_extension_header, data); | 
|  | obu_header_size = curr_tg_data_size; | 
|  |  | 
|  | if (num_tg_hdrs == 1) { | 
|  | curr_tg_data_size += write_frame_header_obu( | 
|  | cpi, saved_wb, data + curr_tg_data_size, 0); | 
|  | } | 
|  | curr_tg_data_size += write_tile_group_header( | 
|  | data + curr_tg_data_size, tile_idx, | 
|  | AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1), | 
|  | n_log2_tiles, cpi->num_tg > 1); | 
|  | total_size += curr_tg_data_size; | 
|  | tile_data_start += curr_tg_data_size; | 
|  | new_tg = 0; | 
|  | tile_count = 0; | 
|  | } | 
|  | tile_count++; | 
|  | av1_tile_set_col(&tile_info, cm, tile_col); | 
|  |  | 
|  | if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) { | 
|  | is_last_tile_in_tg = 1; | 
|  | new_tg = 1; | 
|  | } else { | 
|  | is_last_tile_in_tg = 0; | 
|  | } | 
|  |  | 
|  | buf->data = dst + total_size; | 
|  |  | 
|  | // The last tile of the tile group does not have a header. | 
|  | if (!is_last_tile_in_tg) total_size += 4; | 
|  |  | 
|  | cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
|  | mode_bc.allow_update_cdf = 1; | 
|  | mode_bc.allow_update_cdf = | 
|  | mode_bc.allow_update_cdf && !cm->features.disable_cdf_update; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int num_filter_classes[MAX_MB_PLANE]; | 
|  | for (int p = 0; p < num_planes; ++p) | 
|  | num_filter_classes[p] = cm->rst_info[p].num_filter_classes; | 
|  | av1_reset_loop_restoration(&cpi->td.mb.e_mbd, 0, num_planes, | 
|  | num_filter_classes); | 
|  |  | 
|  | aom_start_encode(&mode_bc, dst + total_size); | 
|  | write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); | 
|  | aom_stop_encode(&mode_bc); | 
|  | tile_size = mode_bc.pos; | 
|  | assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES); | 
|  |  | 
|  | curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4)); | 
|  | buf->size = tile_size; | 
|  | if (tile_size > max_tile_size) { | 
|  | *largest_tile_id = tile_cols * tile_row + tile_col; | 
|  | max_tile_size = tile_size; | 
|  | } | 
|  |  | 
|  | if (!is_last_tile_in_tg) { | 
|  | // size of this tile | 
|  | mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES); | 
|  | } else { | 
|  | // write current tile group size | 
|  | const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size; | 
|  | const size_t length_field_size = | 
|  | obu_memmove(obu_header_size, obu_payload_size, data); | 
|  | if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != | 
|  | AOM_CODEC_OK) { | 
|  | assert(0); | 
|  | } | 
|  | curr_tg_data_size += (int)length_field_size; | 
|  | total_size += (uint32_t)length_field_size; | 
|  | tile_data_start += length_field_size; | 
|  | if (num_tg_hdrs == 1) { | 
|  | // if this tg is combined with the frame header then update saved | 
|  | // frame header base offset accroding to length field size | 
|  | saved_wb->bit_buffer += length_field_size; | 
|  | } | 
|  |  | 
|  | if (!first_tg && cm->features.error_resilient_mode) { | 
|  | // Make room for a duplicate Frame Header OBU. | 
|  | memmove(data + fh_info->total_length, data, curr_tg_data_size); | 
|  |  | 
|  | // Insert a copy of the Frame Header OBU. | 
|  | memcpy(data, fh_info->frame_header, fh_info->total_length); | 
|  |  | 
|  | // Force context update tile to be the first tile in error | 
|  | // resiliant mode as the duplicate frame headers will have | 
|  | // context_update_tile_id set to 0 | 
|  | *largest_tile_id = 0; | 
|  |  | 
|  | // Rewrite the OBU header to change the OBU type to Redundant Frame | 
|  | // Header. | 
|  | av1_write_obu_header(level_params, OBU_REDUNDANT_FRAME_HEADER, | 
|  | obu_extension_header, | 
|  | &data[fh_info->obu_header_byte_offset]); | 
|  |  | 
|  | data += fh_info->total_length; | 
|  |  | 
|  | curr_tg_data_size += (int)(fh_info->total_length); | 
|  | total_size += (uint32_t)(fh_info->total_length); | 
|  | } | 
|  | first_tg = 0; | 
|  | } | 
|  |  | 
|  | total_size += tile_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (have_tiles) { | 
|  | // Fill in context_update_tile_id indicating the tile to use for the | 
|  | // cdf update. The encoder currently sets it to the largest tile | 
|  | // (but is up to the encoder) | 
|  | aom_wb_overwrite_literal(saved_wb, *largest_tile_id, | 
|  | tiles->log2_cols + tiles->log2_rows); | 
|  | // If more than one tile group. tile_size_bytes takes the default value 4 | 
|  | // and does not need to be set. For a single tile group it is set in the | 
|  | // section below. | 
|  | if (num_tg_hdrs == 1) { | 
|  | int tile_size_bytes = 4, unused; | 
|  | const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst); | 
|  | const uint32_t tile_data_size = total_size - tile_data_offset; | 
|  |  | 
|  | total_size = | 
|  | remux_tiles(tiles, tile_data_start, tile_data_size, max_tile_size, | 
|  | max_tile_col_size, &tile_size_bytes, &unused); | 
|  | total_size += tile_data_offset; | 
|  | assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); | 
|  |  | 
|  | aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); | 
|  |  | 
|  | // Update the OBU length if remux_tiles() reduced the size. | 
|  | uint64_t payload_size; | 
|  | size_t length_field_size; | 
|  | int res = | 
|  | aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size, | 
|  | &payload_size, &length_field_size); | 
|  | assert(res == 0); | 
|  | (void)res; | 
|  |  | 
|  | const uint64_t new_payload_size = | 
|  | total_size - obu_header_size - length_field_size; | 
|  | if (new_payload_size != payload_size) { | 
|  | size_t new_length_field_size; | 
|  | res = aom_uleb_encode(new_payload_size, length_field_size, | 
|  | dst + obu_header_size, &new_length_field_size); | 
|  | assert(res == 0); | 
|  | if (new_length_field_size < length_field_size) { | 
|  | const size_t src_offset = obu_header_size + length_field_size; | 
|  | const size_t dst_offset = obu_header_size + new_length_field_size; | 
|  | memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size); | 
|  | total_size -= (int)(length_field_size - new_length_field_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return total_size; | 
|  | } | 
|  |  | 
|  | static size_t av1_write_metadata_obu(const aom_metadata_t *metadata, | 
|  | uint8_t *const dst) { | 
|  | size_t coded_metadata_size = 0; | 
|  | const uint64_t metadata_type = (uint64_t)metadata->type; | 
|  | if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst, | 
|  | &coded_metadata_size) != 0) { | 
|  | return 0; | 
|  | } | 
|  | memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz); | 
|  | // Add trailing bits. | 
|  | dst[coded_metadata_size + metadata->sz] = 0x80; | 
|  | return (uint32_t)(coded_metadata_size + metadata->sz + 1); | 
|  | } | 
|  |  | 
|  | static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) { | 
|  | if (!cpi->source) return 0; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | aom_metadata_array_t *arr = cpi->source->metadata; | 
|  | if (!arr) return 0; | 
|  | size_t obu_header_size = 0; | 
|  | size_t obu_payload_size = 0; | 
|  | size_t total_bytes_written = 0; | 
|  | size_t length_field_size = 0; | 
|  | for (size_t i = 0; i < arr->sz; i++) { | 
|  | aom_metadata_t *current_metadata = arr->metadata_array[i]; | 
|  | if (current_metadata && current_metadata->payload) { | 
|  | if ((cm->current_frame.frame_type == KEY_FRAME && | 
|  | current_metadata->insert_flag == AOM_MIF_KEY_FRAME) || | 
|  | (cm->current_frame.frame_type != KEY_FRAME && | 
|  | current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) || | 
|  | current_metadata->insert_flag == AOM_MIF_ANY_FRAME) { | 
|  | obu_header_size = | 
|  | av1_write_obu_header(&cpi->level_params, OBU_METADATA, 0, dst); | 
|  | obu_payload_size = | 
|  | av1_write_metadata_obu(current_metadata, dst + obu_header_size); | 
|  | length_field_size = obu_memmove(obu_header_size, obu_payload_size, dst); | 
|  | if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) == | 
|  | AOM_CODEC_OK) { | 
|  | const size_t obu_size = obu_header_size + obu_payload_size; | 
|  | dst += obu_size + length_field_size; | 
|  | total_bytes_written += obu_size + length_field_size; | 
|  | } else { | 
|  | aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Error writing metadata OBU size"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return total_bytes_written; | 
|  | } | 
|  |  | 
|  | static void write_frame_hash(AV1_COMP *const cpi, | 
|  | struct aom_write_bit_buffer *wb, | 
|  | aom_image_t *img) { | 
|  | MD5Context md5_ctx; | 
|  | unsigned char md5_digest[16]; | 
|  | const int yuv[3] = { AOM_PLANE_Y, AOM_PLANE_U, AOM_PLANE_V }; | 
|  | const int planes = img->monochrome ? 1 : 3; | 
|  | if (cpi->oxcf.tool_cfg.frame_hash_per_plane) { | 
|  | for (int i = 0; i < planes; i++) { | 
|  | MD5Init(&md5_ctx); | 
|  | raw_update_image_md5(img, &yuv[i], 1, &md5_ctx); | 
|  | MD5Final(md5_digest, &md5_ctx); | 
|  | for (size_t j = 0; j < sizeof(md5_digest); j++) | 
|  | aom_wb_write_literal(wb, md5_digest[j], 8); | 
|  | } | 
|  | } else { | 
|  | MD5Init(&md5_ctx); | 
|  | raw_update_image_md5(img, yuv, planes, &md5_ctx); | 
|  | MD5Final(md5_digest, &md5_ctx); | 
|  | for (size_t i = 0; i < sizeof(md5_digest); i++) | 
|  | aom_wb_write_literal(wb, md5_digest[i], 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t av1_write_frame_hash_metadata( | 
|  | AV1_COMP *const cpi, uint8_t *dst, | 
|  | const aom_film_grain_t *const grain_params) { | 
|  | if (!cpi->source) return 0; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | aom_image_t img; | 
|  | unsigned char | 
|  | payload[49];  // max three hash values per plane (48 bytes) + 1 bytes | 
|  | struct aom_write_bit_buffer wb = { payload, 0 }; | 
|  |  | 
|  | yuvconfig2image(&img, &cm->cur_frame->buf, NULL); | 
|  |  | 
|  | aom_wb_write_literal(&wb, 0, 4);  // hash_type, 0 = md5 | 
|  | aom_wb_write_literal(&wb, cpi->oxcf.tool_cfg.frame_hash_per_plane, 1); | 
|  | aom_wb_write_literal(&wb, !!grain_params, 1); | 
|  | aom_wb_write_literal(&wb, 0, 2); | 
|  | if (grain_params) { | 
|  | const int w_even = ALIGN_POWER_OF_TWO(img.d_w, 1); | 
|  | const int h_even = ALIGN_POWER_OF_TWO(img.d_h, 1); | 
|  | aom_image_t *grain_img = aom_img_alloc(NULL, img.fmt, w_even, h_even, 32); | 
|  | if (!grain_img) { | 
|  | aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR, | 
|  | "Error allocating film grain image"); | 
|  | } | 
|  | if (av1_add_film_grain(grain_params, &img, grain_img)) { | 
|  | aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR, | 
|  | "Grain systhesis failed"); | 
|  | } | 
|  | write_frame_hash(cpi, &wb, grain_img); | 
|  | aom_img_free(grain_img); | 
|  | } else { | 
|  | write_frame_hash(cpi, &wb, &img); | 
|  | } | 
|  |  | 
|  | aom_metadata_t *metadata = | 
|  | aom_img_metadata_alloc(OBU_METADATA_TYPE_DECODED_FRAME_HASH, payload, | 
|  | aom_wb_bytes_written(&wb), AOM_MIF_ANY_FRAME); | 
|  | if (!metadata) { | 
|  | aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR, | 
|  | "Error allocating metadata"); | 
|  | } | 
|  |  | 
|  | size_t total_bytes_written = 0; | 
|  | size_t obu_header_size = | 
|  | av1_write_obu_header(&cpi->level_params, OBU_METADATA, 0, dst); | 
|  | size_t obu_payload_size = | 
|  | av1_write_metadata_obu(metadata, dst + obu_header_size); | 
|  | size_t length_field_size = | 
|  | obu_memmove(obu_header_size, obu_payload_size, dst); | 
|  | if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) == | 
|  | AOM_CODEC_OK) { | 
|  | const size_t obu_size = obu_header_size + obu_payload_size; | 
|  | total_bytes_written += obu_size + length_field_size; | 
|  | } else { | 
|  | aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Error writing metadata OBU size"); | 
|  | } | 
|  | aom_img_metadata_free(metadata); | 
|  |  | 
|  | return total_bytes_written; | 
|  | } | 
|  |  | 
|  | int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size, | 
|  | int *const largest_tile_id) { | 
|  | uint8_t *data = dst; | 
|  | uint32_t data_size; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | AV1LevelParams *const level_params = &cpi->level_params; | 
|  | uint32_t obu_header_size = 0; | 
|  | uint32_t obu_payload_size = 0; | 
|  | FrameHeaderInfo fh_info = { NULL, 0, 0 }; | 
|  | const uint8_t obu_extension_header = | 
|  | cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0; | 
|  |  | 
|  | // If no non-zero delta_q has been used, reset delta_q_present_flag | 
|  | if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { | 
|  | cm->delta_q_info.delta_q_present_flag = 0; | 
|  | } | 
|  |  | 
|  | #if CONFIG_BITSTREAM_DEBUG | 
|  | bitstream_queue_reset_write(); | 
|  | #endif | 
|  |  | 
|  | level_params->frame_header_count = 0; | 
|  |  | 
|  | // The TD is now written outside the frame encode loop | 
|  |  | 
|  | // write sequence header obu if KEY_FRAME, preceded by 4-byte size | 
|  | if (cm->current_frame.frame_type == KEY_FRAME && !cpi->no_show_fwd_kf) { | 
|  | obu_header_size = | 
|  | av1_write_obu_header(level_params, OBU_SEQUENCE_HEADER, 0, data); | 
|  |  | 
|  | obu_payload_size = | 
|  | av1_write_sequence_header_obu(&cm->seq_params, data + obu_header_size); | 
|  | const size_t length_field_size = | 
|  | obu_memmove(obu_header_size, obu_payload_size, data); | 
|  | if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != | 
|  | AOM_CODEC_OK) { | 
|  | return AOM_CODEC_ERROR; | 
|  | } | 
|  |  | 
|  | data += obu_header_size + obu_payload_size + length_field_size; | 
|  | } | 
|  |  | 
|  | // write metadata obus before the frame obu that has the show_frame flag set | 
|  | if (cm->show_frame) data += av1_write_metadata_array(cpi, data); | 
|  |  | 
|  | if (cpi->oxcf.tool_cfg.frame_hash_metadata) { | 
|  | const aom_film_grain_t *grain_params = &cm->cur_frame->film_grain_params; | 
|  | const int apply_grain = | 
|  | cm->seq_params.film_grain_params_present && grain_params->apply_grain; | 
|  | // write frame hash metadata obu for raw frames before the frame obu that | 
|  | // has the tile groups | 
|  | const int write_raw_frame_hash = | 
|  | ((cpi->oxcf.tool_cfg.frame_hash_metadata & 1) || | 
|  | ((cpi->oxcf.tool_cfg.frame_hash_metadata & 2) && !apply_grain)) && | 
|  | (cm->show_frame || cm->showable_frame) && | 
|  | !encode_show_existing_frame(cm); | 
|  | if (write_raw_frame_hash) | 
|  | data += av1_write_frame_hash_metadata(cpi, data, NULL); | 
|  | // write frame hash metadata obu for frames with film grain params applied | 
|  | // before the frame obu that outputs the frame | 
|  | const int write_grain_frame_hash = | 
|  | (cpi->oxcf.tool_cfg.frame_hash_metadata & 2) && cm->show_frame && | 
|  | apply_grain; | 
|  | if (write_grain_frame_hash) | 
|  | data += av1_write_frame_hash_metadata(cpi, data, grain_params); | 
|  | } | 
|  |  | 
|  | const int write_frame_header = | 
|  | (cpi->num_tg > 1 || | 
|  | (encode_show_existing_frame(cm) && | 
|  | (!cm->seq_params.order_hint_info.enable_order_hint || | 
|  | !cm->seq_params.enable_frame_output_order)) || | 
|  | (encode_show_existing_frame(cm) && | 
|  | cm->cur_frame->frame_type == KEY_FRAME) || | 
|  | (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT)); | 
|  | struct aom_write_bit_buffer saved_wb = { NULL, 0 }; | 
|  | size_t length_field = 0; | 
|  | if (write_frame_header) { | 
|  | // Write Frame Header OBU. | 
|  | fh_info.frame_header = data; | 
|  | obu_header_size = av1_write_obu_header(level_params, OBU_FRAME_HEADER, | 
|  | obu_extension_header, data); | 
|  | obu_payload_size = | 
|  | write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1); | 
|  |  | 
|  | length_field = obu_memmove(obu_header_size, obu_payload_size, data); | 
|  | if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != | 
|  | AOM_CODEC_OK) { | 
|  | return AOM_CODEC_ERROR; | 
|  | } | 
|  |  | 
|  | fh_info.obu_header_byte_offset = 0; | 
|  | fh_info.total_length = obu_header_size + obu_payload_size + length_field; | 
|  | data += fh_info.total_length; | 
|  | } | 
|  |  | 
|  | // When enable_frame_output_order == 1, the OBU packet of show_existing_frame | 
|  | // is not signaled for non-error-resilient mode. | 
|  | // For error-resilienet mode, still an OBU is signaled. | 
|  | if ((cm->seq_params.order_hint_info.enable_order_hint && | 
|  | cm->seq_params.enable_frame_output_order && cm->show_existing_frame && | 
|  | !cm->features.error_resilient_mode) || | 
|  | ((!cm->seq_params.order_hint_info.enable_order_hint || | 
|  | !cm->seq_params.enable_frame_output_order) && | 
|  | encode_show_existing_frame(cm)) || | 
|  | (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT)) { | 
|  | data_size = 0; | 
|  | } else { | 
|  | // Since length_field is determined adaptively after frame header | 
|  | // encoding, saved_wb must be adjusted accordingly. | 
|  | if (saved_wb.bit_buffer) saved_wb.bit_buffer += length_field; | 
|  |  | 
|  | //  Each tile group obu will be preceded by 4-byte size of the tile group | 
|  | //  obu | 
|  | data_size = write_tiles_in_tg_obus( | 
|  | cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id); | 
|  | } | 
|  | data += data_size; | 
|  | *size = data - dst; | 
|  | return AOM_CODEC_OK; | 
|  | } |