|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdint.h> | 
|  | #include <stdio.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | #include "av1/common/enums.h" | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  | #include "config/aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom/aom_integer.h" | 
|  | #include "aom_dsp/blend.h" | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/cfl.h" | 
|  | #include "av1/common/mvref_common.h" | 
|  | #include "av1/common/mv.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/tip.h" | 
|  |  | 
|  | // This function will determine whether or not to create a warped | 
|  | // prediction. | 
|  | int av1_allow_warp(const MB_MODE_INFO *const mbmi, | 
|  | const WarpTypesAllowed *const warp_types, | 
|  | const WarpedMotionParams *const gm_params, int ref, | 
|  | const struct scale_factors *const sf, | 
|  | WarpedMotionParams *final_warp_params) { | 
|  | // Note: As per the spec, we must test the fixed point scales here, which are | 
|  | // at a higher precision (1 << 14) than the xs and ys in subpel_params (that | 
|  | // have 1 << 10 precision). | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | (void)sf; | 
|  | #else | 
|  | if (av1_is_scaled(sf)) return 0; | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  |  | 
|  | if (final_warp_params != NULL) *final_warp_params = default_warp_params; | 
|  |  | 
|  | if (warp_types->local_warp_allowed && !mbmi->wm_params[ref].invalid) { | 
|  | if (final_warp_params != NULL) | 
|  | memcpy(final_warp_params, &mbmi->wm_params[ref], | 
|  | sizeof(*final_warp_params)); | 
|  | return 1; | 
|  | } else if (warp_types->global_warp_allowed && !gm_params->invalid) { | 
|  | if (final_warp_params != NULL) | 
|  | memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width, | 
|  | int block_height, int pix_row, int pix_col, | 
|  | int subsampling_x, int subsampling_y, int bit_depth, | 
|  | int is_intrabc, const struct scale_factors *sf, | 
|  | const struct buf_2d *ref_buf, | 
|  | InterpFilter interp_filter) { | 
|  | inter_pred_params->block_width = block_width; | 
|  | inter_pred_params->block_height = block_height; | 
|  | inter_pred_params->orig_block_width = block_width; | 
|  | inter_pred_params->orig_block_height = block_height; | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | inter_pred_params->original_pu_width = block_width; | 
|  | inter_pred_params->original_pu_height = block_height; | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | inter_pred_params->pix_row = pix_row; | 
|  | inter_pred_params->pix_col = pix_col; | 
|  | inter_pred_params->subsampling_x = subsampling_x; | 
|  | inter_pred_params->subsampling_y = subsampling_y; | 
|  | inter_pred_params->bit_depth = bit_depth; | 
|  | inter_pred_params->is_intrabc = is_intrabc; | 
|  | inter_pred_params->scale_factors = sf; | 
|  | inter_pred_params->ref_frame_buf = *ref_buf; | 
|  | inter_pred_params->mode = TRANSLATION_PRED; | 
|  | inter_pred_params->comp_mode = UNIFORM_SINGLE; | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | inter_pred_params->use_ref_padding = 0; | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | inter_pred_params->use_damr_padding = 0; | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | inter_pred_params->ref_area = NULL; | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | inter_pred_params->use_warp_bd_box = 0; | 
|  | inter_pred_params->warp_bd_box = NULL; | 
|  | inter_pred_params->use_warp_bd_damr = 0; | 
|  | inter_pred_params->warp_bd_box_damr.x0 = 0; | 
|  | inter_pred_params->warp_bd_box_damr.y0 = 0; | 
|  | inter_pred_params->warp_bd_box_damr.x1 = ref_buf->width; | 
|  | inter_pred_params->warp_bd_box_damr.y1 = ref_buf->height; | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | inter_pred_params->border_data.enable_bacp = 0; | 
|  | inter_pred_params->border_data.bacp_block_data = NULL; | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | if (is_intrabc) { | 
|  | inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params; | 
|  | inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params; | 
|  | } else { | 
|  | inter_pred_params->interp_filter_params[0] = | 
|  | av1_get_interp_filter_params_with_block_size(interp_filter, | 
|  | block_width); | 
|  | inter_pred_params->interp_filter_params[1] = | 
|  | av1_get_interp_filter_params_with_block_size(interp_filter, | 
|  | block_height); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_init_comp_mode(InterPredParams *inter_pred_params) { | 
|  | inter_pred_params->comp_mode = UNIFORM_COMP; | 
|  | } | 
|  |  | 
|  | void av1_init_warp_params(InterPredParams *inter_pred_params, | 
|  | const WarpTypesAllowed *warp_types, int ref, | 
|  | const MACROBLOCKD *xd, const MB_MODE_INFO *mi) { | 
|  | #if !CONFIG_IMPROVE_EXT_WARP | 
|  | if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8) | 
|  | return; | 
|  | #endif  // !CONFIG_IMPROVE_EXT_WARP | 
|  |  | 
|  | if (is_tip_ref_frame(mi->ref_frame[0])) return; | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | // We do not do refineMV for warp blocks | 
|  | // We may need to return from here. | 
|  | if (mi->refinemv_flag) return; | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | if (xd->cur_frame_force_integer_mv) return; | 
|  |  | 
|  | if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], | 
|  | ref, inter_pred_params->scale_factors, | 
|  | &inter_pred_params->warp_params)) | 
|  | inter_pred_params->mode = WARP_PRED; | 
|  | } | 
|  |  | 
|  | void av1_make_inter_predictor(const uint16_t *src, int src_stride, | 
|  | uint16_t *dst, int dst_stride, | 
|  | InterPredParams *inter_pred_params, | 
|  | const SubpelParams *subpel_params) { | 
|  | assert(IMPLIES(inter_pred_params->conv_params.is_compound, | 
|  | inter_pred_params->conv_params.dst != NULL)); | 
|  |  | 
|  | // TODO(jingning): av1_warp_plane() can be further cleaned up. | 
|  | if (inter_pred_params->mode == WARP_PRED) { | 
|  | av1_warp_plane( | 
|  | &inter_pred_params->warp_params, inter_pred_params->bit_depth, | 
|  | inter_pred_params->ref_frame_buf.buf0, | 
|  | inter_pred_params->ref_frame_buf.width, | 
|  | inter_pred_params->ref_frame_buf.height, | 
|  | inter_pred_params->ref_frame_buf.stride, dst, | 
|  | inter_pred_params->pix_col, inter_pred_params->pix_row, | 
|  | inter_pred_params->block_width, inter_pred_params->block_height, | 
|  | dst_stride, inter_pred_params->subsampling_x, | 
|  | inter_pred_params->subsampling_y, &inter_pred_params->conv_params | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | inter_pred_params->scale_factors | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | inter_pred_params->use_damr_padding, inter_pred_params->ref_area | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | , | 
|  | inter_pred_params->use_warp_bd_box, inter_pred_params->warp_bd_box, | 
|  | inter_pred_params->use_warp_bd_damr, | 
|  | &inter_pred_params->warp_bd_box_damr | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | ); | 
|  | } else if (inter_pred_params->mode == TRANSLATION_PRED) { | 
|  | highbd_inter_predictor( | 
|  | src, src_stride, dst, dst_stride, subpel_params, | 
|  | inter_pred_params->block_width, inter_pred_params->block_height, | 
|  | &inter_pred_params->conv_params, | 
|  | inter_pred_params->interp_filter_params, inter_pred_params->bit_depth, | 
|  | inter_pred_params->is_intrabc); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_WEDGE_MOD_EXT | 
|  | static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { | 
|  | 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, | 
|  | 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  6,  18, | 
|  | 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, | 
|  | 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, | 
|  | }; | 
|  | static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { | 
|  | 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, | 
|  | 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  4,  11, 27, | 
|  | 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, | 
|  | 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, | 
|  | }; | 
|  | static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { | 
|  | 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, | 
|  | 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  2,  7,  21, | 
|  | 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, | 
|  | 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, | 
|  | }; | 
|  | #else | 
|  | /* clang-format off */ | 
|  | #if WEDGE_BLD_SIG | 
|  | // rounded cosine and sine look-up tables given by round(32*cos(i)) | 
|  | #if CONFIG_WEDGE_SIMPL | 
|  | static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { | 
|  | //  0,  1,  2,  4,  6, | 
|  | 32, 32, 32, 16, 16, | 
|  | //  8, 10, 12, 14, 15, | 
|  | 0,-16,-16,-32,-32, | 
|  | // 16, 17, 18, 20, 22, | 
|  | -32,-32,-32,-16,-16, | 
|  | // 24, 26, 28, 30, 31 | 
|  | 0, 16, 16, 32, 32 | 
|  | }; | 
|  | static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { | 
|  | //  0,  1,  2,  4,  6, | 
|  | 0, -8,-16,-16,-32, | 
|  | //  8, 10, 12, 14, 15, | 
|  | -32,-32,-16,-16, -8, | 
|  | // 16, 17, 18, 20, 22, | 
|  | 0,  8, 16, 16, 32, | 
|  | // 24, 26, 28, 30, 31 | 
|  | 32, 32, 16, 16,  8 | 
|  | }; | 
|  | #else | 
|  | static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { | 
|  | //  0,  1,  2,  4,  6, | 
|  | 32, 31, 29, 23, 14, | 
|  | //  8, 10, 12, 14, 15, | 
|  | 0,-14,-23,-29,-31, | 
|  | // 16, 17, 18, 20, 22, | 
|  | -32,-31,-29,-23,-14, | 
|  | // 24, 26, 28, 30, 31 | 
|  | 0, 14, 23, 29, 31 | 
|  | }; | 
|  | static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { | 
|  | //  0,  1,  2,  4,  6, | 
|  | 0, -8,-14,-23,-29, | 
|  | //  8, 10, 12, 14, 15, | 
|  | -32,-29,-23,-14, -8, | 
|  | // 16, 17, 18, 20, 22, | 
|  | 0,  8, 14, 23, 29, | 
|  | // 24, 26, 28, 30, 31 | 
|  | 32, 29, 23, 14,  8 | 
|  | }; | 
|  | #endif  // CONFIG_WEDGE_SIMPL | 
|  |  | 
|  |  | 
|  | #if CONFIG_WEDGE_SIMPL | 
|  | // rounded sigmoid function look-up talbe given by round(1/(1+exp(-x))) | 
|  | static const int8_t pos_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE] = { | 
|  | 8,  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  10, 10, 10, 10, 10, 10, | 
|  | 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, | 
|  | 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, | 
|  | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, | 
|  | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, | 
|  | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, | 
|  | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 | 
|  | }; | 
|  |  | 
|  | static const int8_t neg_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE] = { | 
|  | 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, | 
|  | 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | 
|  | 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, | 
|  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 
|  | 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | 
|  | }; | 
|  | #else | 
|  | // rounded sigmoid function look-up talbe given by round(1/(1+exp(-x))) | 
|  | static const int8_t pos_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={ | 
|  | 32, 32, 33, 33, 34, 34, 35, 35, | 
|  | 36, 36, 37, 37, 38, 38, 39, 39, | 
|  | 40, 40, 41, 41, 42, 42, 43, 43, | 
|  | 43, 44, 44, 45, 45, 46, 46, 46, | 
|  | 47, 47, 48, 48, 48, 49, 49, 49, | 
|  | 50, 50, 50, 51, 51, 51, 52, 52, | 
|  | 52, 53, 53, 53, 53, 54, 54, 54, | 
|  | 55, 55, 55, 55, 55, 56, 56, 56, | 
|  | 56, 57, 57, 57, 57, 57, 58, 58, | 
|  | 58, 58, 58, 58, 59, 59, 59, 59, | 
|  | 59, 59, 59, 60, 60, 60, 60, 60, | 
|  | 60, 60, 60, 60, 61, 61, 61, 61, | 
|  | 61, 61, 61, 61, 61, 61, 61, 62, | 
|  | 62, 62, 62, 62, 62, 62, 62, 62, | 
|  | 62, 62, 62, 62, 62, 62, 62, 62, | 
|  | 63, 63, 63, 63, 63, 63, 63, 64 | 
|  | }; | 
|  |  | 
|  | static const int8_t neg_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={ | 
|  | 32, 32, 31, 31, 30, 30, 29, 29, | 
|  | 28, 28, 27, 27, 26, 26, 25, 25, | 
|  | 24, 24, 23, 23, 22, 22, 21, 21, | 
|  | 21, 20, 20, 19, 19, 18, 18, 18, | 
|  | 17, 17, 16, 16, 16, 15, 15, 15, | 
|  | 14, 14, 14, 13, 13, 13, 12, 12, | 
|  | 12, 11, 11, 11, 11, 10, 10, 10, | 
|  | 9,  9,  9,  9,  9,  8,  8,  8, | 
|  | 8,  7,  7,  7,  7,  7,  6,  6, | 
|  | 6,  6,  6,  6,  5,  5,  5,  5, | 
|  | 5,  5,  5,  4,  4,  4,  4,  4, | 
|  | 4,  4,  4,  4,  3,  3,  3,  3, | 
|  | 3,  3,  3,  3,  3,  3,  3,  2, | 
|  | 2,  2,  2,  2,  2,  2,  2,  2, | 
|  | 2,  2,  2,  2,  2,  2,  2,  2, | 
|  | 1,  1,  1,  1,  1,  1,  1,  0 | 
|  | }; | 
|  | #endif  // CONFIG_WEDGE_SIMPL | 
|  | #else | 
|  | static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { | 
|  | //  0,  1,  2,  4,  6, | 
|  | 8,  8,  8,  4,  4, | 
|  | //  8, 10, 12, 14, 15, | 
|  | 0, -4, -4, -8, -8, | 
|  | // 16, 17, 18, 20, 22, | 
|  | -8, -8, -8, -4, -4, | 
|  | // 24, 26, 28, 30, 31 | 
|  | 0,  4,  4,  8,  8 | 
|  | }; | 
|  | static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { | 
|  | //  0,  1,  2,  4,  6, | 
|  | 0, -2, -4, -4, -8, | 
|  | //  8, 10, 12, 14, 15, | 
|  | -8, -8, -4, -4, -2, | 
|  | // 16, 17, 18, 20, 22, | 
|  | 0,  2,  4,  4,  8, | 
|  | // 24, 26, 28, 30, 31 | 
|  | 8,  8,  4,  4,  2 | 
|  | }; | 
|  | #endif | 
|  | /* clang-format on */ | 
|  | #endif  // !CONFIG_WEDGE_MOD_EXT | 
|  |  | 
|  | #if !CONFIG_WEDGE_MOD_EXT | 
|  | static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift, | 
|  | int width) { | 
|  | if (shift >= 0) { | 
|  | memcpy(dst + shift, src, width - shift); | 
|  | memset(dst, src[0], shift); | 
|  | } else { | 
|  | shift = -shift; | 
|  | memcpy(dst, src + shift, width - shift); | 
|  | memset(dst + width - shift, src[width - 1], shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clang-format off */ | 
|  | DECLARE_ALIGNED(16, static uint8_t, | 
|  | wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, | 
|  | { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used | 
|  | }; | 
|  | /* clang-format on */ | 
|  | #endif  // !CONFIG_WEDGE_MOD_EXT | 
|  |  | 
|  | // [negative][direction] | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | DECLARE_ALIGNED( | 
|  | 16, static uint8_t, | 
|  | wedge_master_mask[2][WEDGE_ANGLES][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); | 
|  | #else | 
|  | DECLARE_ALIGNED( | 
|  | 16, static uint8_t, | 
|  | wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  |  | 
|  | // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound | 
|  | // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | DECLARE_ALIGNED( | 
|  | 16, static uint8_t, | 
|  | wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]); | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | DECLARE_ALIGNED(16, static uint8_t, | 
|  | wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * | 
|  | MAX_WEDGE_SQUARE]); | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  | #else | 
|  | DECLARE_ALIGNED(16, static uint8_t, | 
|  | wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | DECLARE_ALIGNED( | 
|  | 16, static uint8_t, | 
|  | wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  |  | 
|  | DECLARE_ALIGNED(16, static uint8_t, | 
|  | smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL] | 
|  | [MAX_WEDGE_SQUARE]); | 
|  |  | 
|  | DECLARE_ALIGNED(16, static int8_t, cwp_mask[2][MAX_CWP_NUM][MAX_SB_SQUARE]); | 
|  |  | 
|  | static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | static wedge_decisions_type wedge_tmvp_decisions[BLOCK_SIZES_ALL][2]; | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  |  | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | static const wedge_code_type wedge_codebook_16[MAX_WEDGE_TYPES] = { | 
|  | { WEDGE_0, 5, 4 },   { WEDGE_0, 6, 4 },   { WEDGE_0, 7, 4 }, | 
|  | { WEDGE_14, 4, 4 },  { WEDGE_14, 5, 4 },  { WEDGE_14, 6, 4 }, | 
|  | { WEDGE_14, 7, 4 },  { WEDGE_27, 4, 4 },  { WEDGE_27, 5, 4 }, | 
|  | { WEDGE_27, 6, 4 },  { WEDGE_27, 7, 4 },  { WEDGE_45, 4, 4 }, | 
|  | { WEDGE_45, 5, 4 },  { WEDGE_45, 6, 4 },  { WEDGE_45, 7, 4 }, | 
|  | { WEDGE_63, 4, 4 },  { WEDGE_63, 4, 3 },  { WEDGE_63, 4, 2 }, | 
|  | { WEDGE_63, 4, 1 },  { WEDGE_90, 4, 3 },  { WEDGE_90, 4, 2 }, | 
|  | { WEDGE_90, 4, 1 },  { WEDGE_117, 4, 4 }, { WEDGE_117, 4, 3 }, | 
|  | { WEDGE_117, 4, 2 }, { WEDGE_117, 4, 1 }, { WEDGE_135, 4, 4 }, | 
|  | { WEDGE_135, 3, 4 }, { WEDGE_135, 2, 4 }, { WEDGE_135, 1, 4 }, | 
|  | { WEDGE_153, 4, 4 }, { WEDGE_153, 3, 4 }, { WEDGE_153, 2, 4 }, | 
|  | { WEDGE_153, 1, 4 }, { WEDGE_166, 4, 4 }, { WEDGE_166, 3, 4 }, | 
|  | { WEDGE_166, 2, 4 }, { WEDGE_166, 1, 4 }, { WEDGE_180, 3, 4 }, | 
|  | { WEDGE_180, 2, 4 }, { WEDGE_180, 1, 4 }, { WEDGE_194, 3, 4 }, | 
|  | { WEDGE_194, 2, 4 }, { WEDGE_194, 1, 4 }, { WEDGE_207, 3, 4 }, | 
|  | { WEDGE_207, 2, 4 }, { WEDGE_207, 1, 4 }, { WEDGE_225, 3, 4 }, | 
|  | { WEDGE_225, 2, 4 }, { WEDGE_225, 1, 4 }, { WEDGE_243, 4, 5 }, | 
|  | { WEDGE_243, 4, 6 }, { WEDGE_243, 4, 7 }, { WEDGE_270, 4, 5 }, | 
|  | { WEDGE_270, 4, 6 }, { WEDGE_270, 4, 7 }, { WEDGE_297, 4, 5 }, | 
|  | { WEDGE_297, 4, 6 }, { WEDGE_297, 4, 7 }, { WEDGE_315, 5, 4 }, | 
|  | { WEDGE_315, 6, 4 }, { WEDGE_315, 7, 4 }, { WEDGE_333, 5, 4 }, | 
|  | { WEDGE_333, 6, 4 }, { WEDGE_333, 7, 4 }, { WEDGE_346, 5, 4 }, | 
|  | { WEDGE_346, 6, 4 }, { WEDGE_346, 7, 4 }, | 
|  | }; | 
|  | #else | 
|  | static const wedge_code_type wedge_codebook_16_hgtw[16] = { | 
|  | { WEDGE_OBLIQUE27, 4, 4 },  { WEDGE_OBLIQUE63, 4, 4 }, | 
|  | { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, | 
|  | { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, | 
|  | { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, | 
|  | { WEDGE_OBLIQUE27, 4, 2 },  { WEDGE_OBLIQUE27, 4, 6 }, | 
|  | { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, | 
|  | { WEDGE_OBLIQUE63, 2, 4 },  { WEDGE_OBLIQUE63, 6, 4 }, | 
|  | { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, | 
|  | }; | 
|  |  | 
|  | static const wedge_code_type wedge_codebook_16_hltw[16] = { | 
|  | { WEDGE_OBLIQUE27, 4, 4 },  { WEDGE_OBLIQUE63, 4, 4 }, | 
|  | { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, | 
|  | { WEDGE_VERTICAL, 2, 4 },   { WEDGE_VERTICAL, 4, 4 }, | 
|  | { WEDGE_VERTICAL, 6, 4 },   { WEDGE_HORIZONTAL, 4, 4 }, | 
|  | { WEDGE_OBLIQUE27, 4, 2 },  { WEDGE_OBLIQUE27, 4, 6 }, | 
|  | { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, | 
|  | { WEDGE_OBLIQUE63, 2, 4 },  { WEDGE_OBLIQUE63, 6, 4 }, | 
|  | { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, | 
|  | }; | 
|  |  | 
|  | static const wedge_code_type wedge_codebook_16_heqw[16] = { | 
|  | { WEDGE_OBLIQUE27, 4, 4 },  { WEDGE_OBLIQUE63, 4, 4 }, | 
|  | { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, | 
|  | { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, | 
|  | { WEDGE_VERTICAL, 2, 4 },   { WEDGE_VERTICAL, 6, 4 }, | 
|  | { WEDGE_OBLIQUE27, 4, 2 },  { WEDGE_OBLIQUE27, 4, 6 }, | 
|  | { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, | 
|  | { WEDGE_OBLIQUE63, 2, 4 },  { WEDGE_OBLIQUE63, 6, 4 }, | 
|  | { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, | 
|  | }; | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  |  | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | // Look up table of params for wedge mode for different block sizes. | 
|  | const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8], | 
|  | wedge_tmvp_decisions[BLOCK_8X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16], | 
|  | wedge_tmvp_decisions[BLOCK_8X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8], | 
|  | wedge_tmvp_decisions[BLOCK_16X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16], | 
|  | wedge_tmvp_decisions[BLOCK_16X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32], | 
|  | wedge_tmvp_decisions[BLOCK_16X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16], | 
|  | wedge_tmvp_decisions[BLOCK_32X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32], | 
|  | wedge_tmvp_decisions[BLOCK_32X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64], | 
|  | wedge_tmvp_decisions[BLOCK_32X64] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32], | 
|  | wedge_tmvp_decisions[BLOCK_64X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64], | 
|  | wedge_tmvp_decisions[BLOCK_64X64] }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32], | 
|  | wedge_tmvp_decisions[BLOCK_8X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8], | 
|  | wedge_tmvp_decisions[BLOCK_32X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64], | 
|  | wedge_tmvp_decisions[BLOCK_16X64] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16], | 
|  | wedge_tmvp_decisions[BLOCK_64X16] }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64], | 
|  | wedge_tmvp_decisions[BLOCK_8X64] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8], | 
|  | wedge_tmvp_decisions[BLOCK_64X8] }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | }; | 
|  | #else | 
|  | const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64] }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16] }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8] }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | }; | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  | #else | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | // Look up table of params for wedge mode for different block sizes. | 
|  | const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], | 
|  | wedge_masks[BLOCK_8X8], wedge_tmvp_decisions[BLOCK_8X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], | 
|  | wedge_masks[BLOCK_8X16], wedge_tmvp_decisions[BLOCK_8X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], | 
|  | wedge_masks[BLOCK_16X8], wedge_tmvp_decisions[BLOCK_16X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], | 
|  | wedge_masks[BLOCK_16X16], wedge_tmvp_decisions[BLOCK_16X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], | 
|  | wedge_masks[BLOCK_16X32], wedge_tmvp_decisions[BLOCK_16X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], | 
|  | wedge_masks[BLOCK_32X16], wedge_tmvp_decisions[BLOCK_32X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], | 
|  | wedge_masks[BLOCK_32X32], wedge_tmvp_decisions[BLOCK_32X32] }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], | 
|  | wedge_masks[BLOCK_8X32], wedge_tmvp_decisions[BLOCK_8X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], | 
|  | wedge_masks[BLOCK_32X8], wedge_tmvp_decisions[BLOCK_32X8] }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL, NULL }, | 
|  | }; | 
|  | #else | 
|  | const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], | 
|  | wedge_masks[BLOCK_8X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], | 
|  | wedge_masks[BLOCK_8X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], | 
|  | wedge_masks[BLOCK_16X8] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], | 
|  | wedge_masks[BLOCK_16X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], | 
|  | wedge_masks[BLOCK_16X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], | 
|  | wedge_masks[BLOCK_32X16] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], | 
|  | wedge_masks[BLOCK_32X32] }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], | 
|  | wedge_masks[BLOCK_8X32] }, | 
|  | { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], | 
|  | wedge_masks[BLOCK_32X8] }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | { 0, NULL, NULL, NULL }, | 
|  | }; | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  | #endif | 
|  |  | 
|  | // Init the cwp masks, called by init_cwp_masks | 
|  | static AOM_INLINE void build_cwp_mask(int8_t *mask, int stride, | 
|  | BLOCK_SIZE plane_bsize, int8_t w) { | 
|  | const int bw = block_size_wide[plane_bsize]; | 
|  | const int bh = block_size_high[plane_bsize]; | 
|  | for (int i = 0; i < bh; ++i) { | 
|  | for (int j = 0; j < bw; ++j) mask[j] = w; | 
|  | mask += stride; | 
|  | } | 
|  | } | 
|  | // Init the cwp masks | 
|  | void init_cwp_masks() { | 
|  | const int bs = BLOCK_128X128; | 
|  | const int bw = block_size_wide[bs]; | 
|  | for (int list_idx = 0; list_idx < 2; ++list_idx) { | 
|  | for (int idx = 0; idx < MAX_CWP_NUM; ++idx) { | 
|  | int8_t weight = cwp_weighting_factor[list_idx][idx] * 4; | 
|  | build_cwp_mask(cwp_mask[list_idx][idx], bw, bs, weight); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Return the associated cwp mask | 
|  | const int8_t *av1_get_cwp_mask(int list_idx, int idx) { | 
|  | return cwp_mask[list_idx][idx]; | 
|  | } | 
|  |  | 
|  | static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, | 
|  | BLOCK_SIZE sb_type) { | 
|  | const uint8_t *master; | 
|  | const int bh = block_size_high[sb_type]; | 
|  | const int bw = block_size_wide[sb_type]; | 
|  | const wedge_code_type *a = | 
|  | av1_wedge_params_lookup[sb_type].codebook + wedge_index; | 
|  | int woff, hoff; | 
|  | #if !CONFIG_WEDGE_MOD_EXT | 
|  | const uint8_t wsignflip = | 
|  | av1_wedge_params_lookup[sb_type].signflip[wedge_index]; | 
|  | #endif | 
|  |  | 
|  | assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type)); | 
|  | woff = (a->x_offset * bw) >> 3; | 
|  | hoff = (a->y_offset * bh) >> 3; | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | master = wedge_master_mask[neg][a->direction] + | 
|  | MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + | 
|  | MASK_MASTER_SIZE / 2 - woff; | 
|  | #else | 
|  | master = wedge_mask_obl[neg ^ wsignflip][a->direction] + | 
|  | MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + | 
|  | MASK_MASTER_SIZE / 2 - woff; | 
|  | #endif  // CONFIG_WEDGE_MOD_EXT | 
|  | return master; | 
|  | } | 
|  |  | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | // For each 8x8 block, decide (if using wedge mode), whether it should store | 
|  | // both MVs as the TMVP MVs, or just 1 of them (and in this case which one to | 
|  | // store). | 
|  | static void get_wedge_tmvp_decision(const uint8_t *mask, int mask_stride, | 
|  | int bw, int bh, uint8_t *decision, | 
|  | int decision_stride) { | 
|  | for (int h_start = 0; h_start < bh; h_start += 8) { | 
|  | for (int w_start = 0; w_start < bw; w_start += 8) { | 
|  | const uint8_t *mask_start = mask + h_start * mask_stride + w_start; | 
|  | uint8_t *decision_start = decision + h_start * decision_stride + w_start; | 
|  | int ref0_count = 0; | 
|  | int ref1_count = 0; | 
|  | for (int h = 0; h < 8; h++) { | 
|  | for (int w = 0; w < 8; w++) { | 
|  | if (mask_start[h * mask_stride + w] > 60) { | 
|  | ref0_count++; | 
|  | } else if (mask_start[h * mask_stride + w] < 4) { | 
|  | ref1_count++; | 
|  | } | 
|  | } | 
|  | } | 
|  | int this_decision = 2; | 
|  | if (ref0_count >= 60) { | 
|  | this_decision = 0; | 
|  | } else if (ref1_count >= 60) { | 
|  | this_decision = 1; | 
|  | } | 
|  | for (int h = 0; h < 8; h++) { | 
|  | for (int w = 0; w < 8; w++) { | 
|  | decision_start[h * decision_stride + w] = this_decision; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  |  | 
|  | const uint8_t *av1_get_compound_type_mask( | 
|  | const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { | 
|  | #if !CONFIG_D071_IMP_MSK_BLD | 
|  | assert(is_masked_compound_type(comp_data->type)); | 
|  | #endif  // !CONFIG_D071_IMP_MSK_BLD | 
|  | (void)sb_type; | 
|  | switch (comp_data->type) { | 
|  | case COMPOUND_WEDGE: | 
|  | return av1_get_contiguous_soft_mask(comp_data->wedge_index, | 
|  | comp_data->wedge_sign, sb_type); | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | case COMPOUND_AVERAGE: | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | case COMPOUND_DIFFWTD: return comp_data->seg_mask; | 
|  | default: assert(0); return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void diffwtd_mask_d16( | 
|  | uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0, | 
|  | int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, | 
|  | ConvolveParams *conv_params, int bd) { | 
|  | int round = | 
|  | 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); | 
|  | int i, j, m, diff; | 
|  | for (i = 0; i < h; ++i) { | 
|  | for (j = 0; j < w; ++j) { | 
|  | diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); | 
|  | diff = ROUND_POWER_OF_TWO(diff, round); | 
|  | m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); | 
|  | mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_build_compound_diffwtd_mask_d16_c( | 
|  | uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, | 
|  | int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, | 
|  | ConvolveParams *conv_params, int bd) { | 
|  | switch (mask_type) { | 
|  | case DIFFWTD_38: | 
|  | diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, | 
|  | conv_params, bd); | 
|  | break; | 
|  | case DIFFWTD_38_INV: | 
|  | diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, | 
|  | conv_params, bd); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_FORCE_INLINE void diffwtd_mask_highbd( | 
|  | uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, | 
|  | int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, | 
|  | const unsigned int bd) { | 
|  | assert(bd >= 8); | 
|  | if (bd == 8) { | 
|  | if (which_inverse) { | 
|  | for (int i = 0; i < h; ++i) { | 
|  | for (int j = 0; j < w; ++j) { | 
|  | int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; | 
|  | unsigned int m = negative_to_zero(mask_base + diff); | 
|  | m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); | 
|  | mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; | 
|  | } | 
|  | src0 += src0_stride; | 
|  | src1 += src1_stride; | 
|  | mask += w; | 
|  | } | 
|  | } else { | 
|  | for (int i = 0; i < h; ++i) { | 
|  | for (int j = 0; j < w; ++j) { | 
|  | int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; | 
|  | unsigned int m = negative_to_zero(mask_base + diff); | 
|  | m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); | 
|  | mask[j] = m; | 
|  | } | 
|  | src0 += src0_stride; | 
|  | src1 += src1_stride; | 
|  | mask += w; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | const unsigned int bd_shift = bd - 8; | 
|  | if (which_inverse) { | 
|  | for (int i = 0; i < h; ++i) { | 
|  | for (int j = 0; j < w; ++j) { | 
|  | int diff = | 
|  | (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; | 
|  | unsigned int m = negative_to_zero(mask_base + diff); | 
|  | m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); | 
|  | mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; | 
|  | } | 
|  | src0 += src0_stride; | 
|  | src1 += src1_stride; | 
|  | mask += w; | 
|  | } | 
|  | } else { | 
|  | for (int i = 0; i < h; ++i) { | 
|  | for (int j = 0; j < w; ++j) { | 
|  | int diff = | 
|  | (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; | 
|  | unsigned int m = negative_to_zero(mask_base + diff); | 
|  | m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); | 
|  | mask[j] = m; | 
|  | } | 
|  | src0 += src0_stride; | 
|  | src1 += src1_stride; | 
|  | mask += w; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_build_compound_diffwtd_mask_highbd_c( | 
|  | uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint16_t *src0, | 
|  | int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, | 
|  | int bd) { | 
|  | switch (mask_type) { | 
|  | case DIFFWTD_38: | 
|  | diffwtd_mask_highbd(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, | 
|  | w, bd); | 
|  | break; | 
|  | case DIFFWTD_38_INV: | 
|  | diffwtd_mask_highbd(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, | 
|  | w, bd); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void init_wedge_master_masks() { | 
|  | #if CONFIG_WEDGE_MOD_EXT | 
|  | const int w = MASK_MASTER_SIZE; | 
|  | const int h = MASK_MASTER_SIZE; | 
|  | for (int angle = 0; angle < WEDGE_ANGLES; angle++) { | 
|  | int idx = 0; | 
|  | // printf("angle: %d\n", angle); | 
|  | for (int n = 0; n < h; n++) { | 
|  | int y = ((n << 1) - h + 1) * wedge_sin_lut[angle]; | 
|  | for (int m = 0; m < w; m++, idx++) { | 
|  | int d = ((m << 1) - w + 1) * wedge_cos_lut[angle] + y; | 
|  | #if WEDGE_BLD_SIG | 
|  | const int clamp_d = clamp(d, -127, 127); | 
|  | #if CONFIG_WEDGE_SIMPL | 
|  | wedge_master_mask[0][angle][idx] = | 
|  | clamp_d >= 0 ? (pos_dist_2_bld_weight[clamp_d] << (7 - 5)) | 
|  | : (neg_dist_2_bld_weight[-clamp_d] << (7 - 5)); | 
|  | #else | 
|  | wedge_master_mask[0][angle][idx] = | 
|  | clamp_d >= 0 ? pos_dist_2_bld_weight[clamp_d] | 
|  | : neg_dist_2_bld_weight[-clamp_d]; | 
|  | #endif  // CONFIG_WEDGE_SIMPL | 
|  | #else | 
|  | wedge_master_mask[0][angle][idx] = clamp((d + 32), 0, 64); | 
|  | #endif | 
|  | wedge_master_mask[1][angle][idx] = | 
|  | 64 - wedge_master_mask[0][angle][idx]; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | int i, j; | 
|  | const int w = MASK_MASTER_SIZE; | 
|  | const int h = MASK_MASTER_SIZE; | 
|  | const int stride = MASK_MASTER_STRIDE; | 
|  |  | 
|  | // Note: index [0] stores the masters, and [1] its complement. | 
|  | // Generate prototype by shifting the masters | 
|  | int shift = h / 4; | 
|  | for (i = 0; i < h; i += 2) { | 
|  | shift_copy(wedge_master_oblique_even, | 
|  | &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, | 
|  | MASK_MASTER_SIZE); | 
|  | shift--; | 
|  | shift_copy(wedge_master_oblique_odd, | 
|  | &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, | 
|  | MASK_MASTER_SIZE); | 
|  | memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], | 
|  | wedge_master_vertical, | 
|  | MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); | 
|  | memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], | 
|  | wedge_master_vertical, | 
|  | MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < h; ++i) { | 
|  | for (j = 0; j < w; ++j) { | 
|  | const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; | 
|  | wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; | 
|  | wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = | 
|  | wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = | 
|  | (1 << WEDGE_WEIGHT_BITS) - msk; | 
|  | wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = | 
|  | wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = | 
|  | (1 << WEDGE_WEIGHT_BITS) - msk; | 
|  | wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = | 
|  | wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; | 
|  | const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; | 
|  | wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; | 
|  | wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = | 
|  | wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = | 
|  | (1 << WEDGE_WEIGHT_BITS) - mskx; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void init_wedge_masks() { | 
|  | uint8_t *dst = wedge_mask_buf; | 
|  | BLOCK_SIZE bsize; | 
|  | memset(wedge_masks, 0, sizeof(wedge_masks)); | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | uint8_t *dst_tmvp_decision = wedge_tmvp_decision_buf; | 
|  | memset(wedge_tmvp_decisions, 0, sizeof(wedge_tmvp_decisions)); | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  | for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { | 
|  | const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize]; | 
|  | const int wtypes = wedge_params->wedge_types; | 
|  | if (wtypes == 0) continue; | 
|  | const uint8_t *mask; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  | int w; | 
|  | for (w = 0; w < wtypes; ++w) { | 
|  | mask = get_wedge_mask_inplace(w, 0, bsize); | 
|  | aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, | 
|  | bh); | 
|  | wedge_params->masks[0][w] = dst; | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw); | 
|  | wedge_params->tmvp_mv_decisions[0][w] = dst_tmvp_decision; | 
|  | dst_tmvp_decision += bw * bh; | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  | dst += bw * bh; | 
|  |  | 
|  | mask = get_wedge_mask_inplace(w, 1, bsize); | 
|  | aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, | 
|  | bh); | 
|  | wedge_params->masks[1][w] = dst; | 
|  | #if CONFIG_WEDGE_TMVP | 
|  | wedge_params->tmvp_mv_decisions[1][w] = dst_tmvp_decision; | 
|  | get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw); | 
|  | dst_tmvp_decision += bw * bh; | 
|  | #endif  // CONFIG_WEDGE_TMVP | 
|  | dst += bw * bh; | 
|  | } | 
|  | assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clang-format off */ | 
|  | static const uint8_t ii_weights1d[MAX_SB_SIZE] = { | 
|  | 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, | 
|  | 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, | 
|  | 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10,  9,  9,  9,  8, | 
|  | 8,  8,  8,  7,  7,  7,  7,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  4,  4, | 
|  | 4,  4,  4,  4,  4,  4,  3,  3,  3,  3,  3,  3,  3,  3,  3,  2,  2,  2,  2, | 
|  | 2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  1,  1,  1,  1,  1,  1,  1,  1, | 
|  | 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1 | 
|  | }; | 
|  | static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { | 
|  | 32, 16, 16, 16, 8, 8, 8, 4, | 
|  | 4,  4,  2,  2,  2, 1, 1, 1, | 
|  | 0,  0,  0,  // unused | 
|  | 8,  8,  4,  4,  2, 2, | 
|  | 4,  4,  2,  2,  2, 2, | 
|  | }; | 
|  | /* clang-format on */ | 
|  |  | 
|  | static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride, | 
|  | BLOCK_SIZE plane_bsize, | 
|  | INTERINTRA_MODE mode) { | 
|  | int i, j; | 
|  | const int bw = block_size_wide[plane_bsize]; | 
|  | const int bh = block_size_high[plane_bsize]; | 
|  | const int size_scale = ii_size_scales[plane_bsize]; | 
|  |  | 
|  | switch (mode) { | 
|  | case II_V_PRED: | 
|  | for (i = 0; i < bh; ++i) { | 
|  | memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); | 
|  | mask += stride; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case II_H_PRED: | 
|  | for (i = 0; i < bh; ++i) { | 
|  | for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; | 
|  | mask += stride; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case II_SMOOTH_PRED: | 
|  | for (i = 0; i < bh; ++i) { | 
|  | for (j = 0; j < bw; ++j) | 
|  | mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; | 
|  | mask += stride; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case II_DC_PRED: | 
|  | default: | 
|  | for (i = 0; i < bh; ++i) { | 
|  | memset(mask, 32, bw * sizeof(mask[0])); | 
|  | mask += stride; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void init_smooth_interintra_masks() { | 
|  | for (int m = 0; m < INTERINTRA_MODES; ++m) { | 
|  | for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) { | 
|  | const int bw = block_size_wide[bs]; | 
|  | const int bh = block_size_high[bs]; | 
|  | if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue; | 
|  | build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs, | 
|  | m); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_SUBBLK_REF_DS | 
|  | unsigned int get_highbd_sad_ds(const uint16_t *src_ptr, int source_stride, | 
|  | const uint16_t *ref_ptr, int ref_stride, int bd, | 
|  | int bw, int bh) { | 
|  | if (bd == 8) { | 
|  | if (bw == 16 && bh == 8) | 
|  | return aom_highbd_sad16x8_ds(src_ptr, source_stride, ref_ptr, ref_stride); | 
|  | else if (bw == 16 && bh == 16) | 
|  | return aom_highbd_sad16x16_ds(src_ptr, source_stride, ref_ptr, | 
|  | ref_stride); | 
|  | else if (bw == 8 && bh == 8) | 
|  | return aom_highbd_sad8x8_ds(src_ptr, source_stride, ref_ptr, ref_stride); | 
|  | else if (bw == 8 && bh == 16) | 
|  | return aom_highbd_sad8x16_ds(src_ptr, source_stride, ref_ptr, ref_stride); | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | else if (bw == 12 && bh == 12) | 
|  | return aom_highbd_sad12x12_ds(src_ptr, source_stride, ref_ptr, | 
|  | ref_stride); | 
|  | else if (bw == 20 && bh == 12) | 
|  | return aom_highbd_sad20x12_ds(src_ptr, source_stride, ref_ptr, | 
|  | ref_stride); | 
|  | else if (bw == 12 && bh == 20) | 
|  | return aom_highbd_sad12x20_ds(src_ptr, source_stride, ref_ptr, | 
|  | ref_stride); | 
|  | else if (bw == 20 && bh == 20) | 
|  | return aom_highbd_sad20x20_ds(src_ptr, source_stride, ref_ptr, | 
|  | ref_stride); | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  | else { | 
|  | assert(0); | 
|  | return 0; | 
|  | } | 
|  | } else if (bd == 10) { | 
|  | if (bw == 16 && bh == 8) | 
|  | return ( | 
|  | aom_highbd_sad16x8_ds(src_ptr, source_stride, ref_ptr, ref_stride) >> | 
|  | 2); | 
|  | else if (bw == 16 && bh == 16) | 
|  | return ( | 
|  | aom_highbd_sad16x16_ds(src_ptr, source_stride, ref_ptr, ref_stride) >> | 
|  | 2); | 
|  | else if (bw == 8 && bh == 8) | 
|  | return ( | 
|  | aom_highbd_sad8x8_ds(src_ptr, source_stride, ref_ptr, ref_stride) >> | 
|  | 2); | 
|  | else if (bw == 8 && bh == 16) | 
|  | return ( | 
|  | aom_highbd_sad8x16_ds(src_ptr, source_stride, ref_ptr, ref_stride) >> | 
|  | 2); | 
|  | else { | 
|  | assert(0); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | assert(0); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_SUBBLK_REF_DS | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | // Compute the SAD values for refineMV modes | 
|  | int get_refinemv_sad(uint16_t *src1, uint16_t *src2, int stride, int width, | 
|  | int height, int bd) { | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | (void)bd; | 
|  | #if CONFIG_SUBBLK_REF_DS | 
|  | return get_highbd_sad_ds(src1, stride, src2, stride, 8, width, height); | 
|  | #else | 
|  | return get_highbd_sad(src1, stride, src2, stride, 8, width, height); | 
|  | #endif | 
|  | #else | 
|  | #if CONFIG_SUBBLK_REF_DS | 
|  | return get_highbd_sad_ds(src1, stride, src2, stride, bd, width, height); | 
|  | #else | 
|  | return get_highbd_sad(src1, stride, src2, stride, bd, width, height); | 
|  | #endif  // CONFIG_SUBBLK_REF_DS | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT || CONFIG_E125_MHCCP_SIMPLIFY | 
|  | int64_t stable_mult_shift(const int64_t a, const int64_t b, const int shift, | 
|  | const int msb_a, const int msb_b, const int max_bd, | 
|  | int *rem_shift) { | 
|  | assert(shift >= 0); | 
|  |  | 
|  | // Remaining bit shifts (may be used in the next stage of multiplcation) | 
|  | int rem = AOMMAX(0, msb_a + msb_b - shift + 1 - max_bd); | 
|  | if (rem_shift) *rem_shift += rem; | 
|  | if (msb_a + msb_b + 2 < max_bd) | 
|  | return ROUND_POWER_OF_TWO_SIGNED_64(a * b, shift); | 
|  |  | 
|  | // To determine s1/s2/s3 in ((a>>s1)*(b>>s2))>>s3, consider the equation | 
|  | //   (1+msb_a-s1)+(1+msb_b-s2)+1 <= max_bd+rem, | 
|  | // where better numerical stability is obtained when | 
|  | //   msb_a-s1 ~= msb_b-s2. | 
|  | // This leads to the following solution | 
|  | int msb_diff = abs(msb_a - msb_b); | 
|  | // Total required shifts (s1 + s2) | 
|  | int s = msb_a + msb_b - max_bd - rem + 4; | 
|  | int diff = AOMMIN(s, msb_diff); | 
|  | int s1 = (s - diff) >> 1; | 
|  | int s2 = s1; | 
|  | if (msb_a >= msb_b) | 
|  | s1 = s - s2; | 
|  | else | 
|  | s2 = s - s1; | 
|  |  | 
|  | assert(s1 >= 0); | 
|  | assert(s2 >= 0); | 
|  | if (shift - s1 - s2 < 0) { | 
|  | // bit depth not large enough to hold the result | 
|  | return ((a > 0) ^ (b > 0)) ? -((1LL << (max_bd - 1)) - 1) | 
|  | : ((1LL << (max_bd - 1)) - 1); | 
|  | } | 
|  | return ROUND_POWER_OF_TWO_SIGNED_64( | 
|  | ROUND_POWER_OF_TWO_SIGNED_64(a, s1) * ROUND_POWER_OF_TWO_SIGNED_64(b, s2), | 
|  | shift - s1 - s2); | 
|  | } | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT || CONFIG_E125_MHCCP_SIMPLIFY | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | #if AFFINE_FAST_WARP_METHOD == 2 | 
|  | #define BICUBIC_PHASE_BITS 6 | 
|  | #define BICUBIC_WARP_PREC_BITS 10 | 
|  | // Warp prediction using bicubic interpolation (effectively 4-tap filter) | 
|  | void av1_warp_plane_bicubic(WarpedMotionParams *wm, int bd, const uint16_t *ref, | 
|  | int width, int height, int stride, uint16_t *pred, | 
|  | int p_col, int p_row, int p_width, int p_height, | 
|  | int p_stride, int subsampling_x, int subsampling_y, | 
|  | ConvolveParams *conv_params) { | 
|  | (void)conv_params; | 
|  | assert(wm->wmtype <= AFFINE); | 
|  | assert(!is_uneven_wtd_comp_avg(conv_params)); | 
|  | assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); | 
|  | const int32_t *const mat = wm->wmmat; | 
|  |  | 
|  | // bicubic coefficient matrix is the following one divided by 6 | 
|  | const int bicubic_mat[4][4] = { | 
|  | { -1, 3, -3, 1 }, { 3, -6, 3, 0 }, { -2, -3, 6, -1 }, { 0, 6, 0, 0 } | 
|  | }; | 
|  | const int onesixth_bits = 12; | 
|  | const int onesixth = 683;  // Integerized (1 << onesixth_bits) / 6 | 
|  |  | 
|  | int32_t sum = 0; | 
|  | int32_t tmp[4] = { 0 }; | 
|  | for (int i = p_row; i < p_row + p_height; i++) { | 
|  | for (int j = p_col; j < p_col + p_width; j++) { | 
|  | uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)]; | 
|  |  | 
|  | // Project to luma coordinates (if in a subsampled chroma plane), apply | 
|  | // the affine transformation, then convert back to the original | 
|  | // coordinates (if necessary) | 
|  | const int32_t src_x = j << subsampling_x; | 
|  | const int32_t src_y = i << subsampling_y; | 
|  | const int64_t dst_x = | 
|  | (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; | 
|  | const int64_t dst_y = | 
|  | (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; | 
|  | const int64_t x = dst_x >> subsampling_x; | 
|  | const int64_t y = dst_y >> subsampling_y; | 
|  |  | 
|  | const int32_t ix = (int32_t)(x >> WARPEDMODEL_PREC_BITS); | 
|  | const int32_t ixs[4] = { clamp(ix - 1, 0, width - 1), | 
|  | clamp(ix, 0, width - 1), | 
|  | clamp(ix + 1, 0, width - 1), | 
|  | clamp(ix + 2, 0, width - 1) }; | 
|  | const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
|  | const int32_t iy = (int32_t)(y >> WARPEDMODEL_PREC_BITS); | 
|  | const int32_t iys[4] = { clamp(iy - 1, 0, height - 1), | 
|  | clamp(iy, 0, height - 1), | 
|  | clamp(iy + 1, 0, height - 1), | 
|  | clamp(iy + 2, 0, height - 1) }; | 
|  | const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
|  | const int32_t spel_x = | 
|  | ROUND_POWER_OF_TWO(sx, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS); | 
|  | const int32_t spel_y = | 
|  | ROUND_POWER_OF_TWO(sy, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS); | 
|  |  | 
|  | int32_t xx[4] = { spel_x * spel_x * spel_x, spel_x * spel_x, spel_x, 1 }; | 
|  | int32_t yy[4] = { spel_y * spel_y * spel_y, spel_y * spel_y, spel_y, 1 }; | 
|  | assert(onesixth_bits - BICUBIC_WARP_PREC_BITS >= 0); | 
|  |  | 
|  | // Horizontal filter | 
|  | for (int k = 0; k < 4; k++) { | 
|  | tmp[k] = 0; | 
|  | for (int l = 0; l < 4; l++) { | 
|  | int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits - | 
|  | BICUBIC_WARP_PREC_BITS; | 
|  | tmp[k] += ROUND_POWER_OF_TWO_SIGNED( | 
|  | xx[l] * bicubic_mat[l][k] * onesixth, bits); | 
|  | } | 
|  | } | 
|  | for (int k = 0; k < 4; k++) { | 
|  | xx[k] = 0; | 
|  | for (int l = 0; l < 4; l++) { | 
|  | xx[k] += tmp[l] * ref[iys[k] * stride + ixs[l]]; | 
|  | } | 
|  | xx[k] = ROUND_POWER_OF_TWO(xx[k], BICUBIC_WARP_PREC_BITS); | 
|  | } | 
|  |  | 
|  | // Vertical filter | 
|  | for (int k = 0; k < 4; k++) { | 
|  | tmp[k] = 0; | 
|  | for (int l = 0; l < 4; l++) { | 
|  | int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits - | 
|  | BICUBIC_WARP_PREC_BITS; | 
|  | tmp[k] += ROUND_POWER_OF_TWO_SIGNED( | 
|  | yy[l] * bicubic_mat[l][k] * onesixth, bits); | 
|  | } | 
|  | } | 
|  | for (int l = 0; l < 4; l++) { | 
|  | sum += tmp[l] * xx[l]; | 
|  | } | 
|  | sum = ROUND_POWER_OF_TWO(sum, BICUBIC_WARP_PREC_BITS); | 
|  | *p = clip_pixel_highbd(sum, bd); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // AFFINE_FAST_WARP_METHOD == 2 | 
|  | void av1_warp_plane_bilinear_c(WarpedMotionParams *wm, int bd, | 
|  | const uint16_t *ref, int width, int height, | 
|  | int stride, uint16_t *pred, int p_col, int p_row, | 
|  | int p_width, int p_height, int p_stride, | 
|  | int subsampling_x, int subsampling_y, | 
|  | ConvolveParams *conv_params | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | , | 
|  | ReferenceArea *ref_area | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | ) { | 
|  | (void)conv_params; | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | (void)width; | 
|  | (void)height; | 
|  | int left_limit; | 
|  | int right_limit; | 
|  | int top_limit; | 
|  | int bottom_limit; | 
|  | if (ref_area) { | 
|  | left_limit = ref_area->pad_block.x0; | 
|  | right_limit = ref_area->pad_block.x1 - 1; | 
|  | top_limit = ref_area->pad_block.y0; | 
|  | bottom_limit = ref_area->pad_block.y1 - 1; | 
|  | } else { | 
|  | left_limit = 0; | 
|  | right_limit = width - 1; | 
|  | top_limit = 0; | 
|  | bottom_limit = height - 1; | 
|  | } | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | #if AFFINE_FAST_WARP_METHOD == 3 | 
|  | #define BILINEAR_WARP_PREC_BITS 12 | 
|  | assert(wm->wmtype <= AFFINE); | 
|  | assert(!is_uneven_wtd_comp_avg(conv_params)); | 
|  | assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); | 
|  | const int32_t *const mat = wm->wmmat; | 
|  |  | 
|  | for (int i = p_row; i < p_row + p_height; i++) { | 
|  | for (int j = p_col; j < p_col + p_width; j++) { | 
|  | uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)]; | 
|  |  | 
|  | // Project to luma coordinates (if in a subsampled chroma plane), apply | 
|  | // the affine transformation, then convert back to the original | 
|  | // coordinates (if necessary) | 
|  | const int32_t src_x = j << subsampling_x; | 
|  | const int32_t src_y = i << subsampling_y; | 
|  | const int64_t dst_x = | 
|  | (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; | 
|  | const int64_t dst_y = | 
|  | (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; | 
|  | const int64_t x = dst_x >> subsampling_x; | 
|  | const int64_t y = dst_y >> subsampling_y; | 
|  |  | 
|  | const int32_t ix = (int32_t)(x >> WARPEDMODEL_PREC_BITS); | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | const int32_t ix0 = clamp(ix, left_limit, right_limit); | 
|  | const int32_t ix1 = clamp(ix + 1, left_limit, right_limit); | 
|  | #else | 
|  | const int32_t ix0 = clamp(ix, 0, width - 1); | 
|  | const int32_t ix1 = clamp(ix + 1, 0, width - 1); | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
|  | const int32_t iy = (int32_t)(y >> WARPEDMODEL_PREC_BITS); | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | const int32_t iy0 = clamp(iy, top_limit, bottom_limit); | 
|  | const int32_t iy1 = clamp(iy + 1, top_limit, bottom_limit); | 
|  | #else | 
|  | const int32_t iy0 = clamp(iy, 0, height - 1); | 
|  | const int32_t iy1 = clamp(iy + 1, 0, height - 1); | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
|  |  | 
|  | const int32_t unit_offset = 1 << BILINEAR_WARP_PREC_BITS; | 
|  | const int32_t coeff_x = ROUND_POWER_OF_TWO( | 
|  | sx, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS); | 
|  | const int32_t coeff_y = ROUND_POWER_OF_TWO( | 
|  | sy, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS); | 
|  |  | 
|  | // Horizontal filter | 
|  | int32_t tmp0 = ref[iy0 * stride + ix0] * (unit_offset - coeff_x) + | 
|  | ref[iy0 * stride + ix1] * coeff_x; | 
|  | tmp0 = ROUND_POWER_OF_TWO(tmp0, BILINEAR_WARP_PREC_BITS); | 
|  | int32_t tmp1 = ref[iy1 * stride + ix0] * (unit_offset - coeff_x) + | 
|  | ref[iy1 * stride + ix1] * coeff_x; | 
|  | tmp1 = ROUND_POWER_OF_TWO(tmp1, BILINEAR_WARP_PREC_BITS); | 
|  |  | 
|  | // Vertical filter | 
|  | int32_t sum = tmp0 * (unit_offset - coeff_y) + tmp1 * coeff_y; | 
|  | sum = ROUND_POWER_OF_TWO(sum, BILINEAR_WARP_PREC_BITS); | 
|  |  | 
|  | *p = clip_pixel_highbd(sum, bd); | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)wm; | 
|  | (void)bd; | 
|  | (void)ref; | 
|  | (void)width; | 
|  | (void)height; | 
|  | (void)stride; | 
|  | (void)pred; | 
|  | (void)p_col; | 
|  | (void)p_row; | 
|  | (void)p_width; | 
|  | (void)p_height; | 
|  | (void)p_stride; | 
|  | (void)subsampling_x; | 
|  | (void)subsampling_y; | 
|  | #endif  // AFFINE_FAST_WARP_METHOD == 3 | 
|  | } | 
|  |  | 
|  | #define MAX_LS_DIM 4 | 
|  | // Swap two rows for Gaussian elimination routine | 
|  | void swap_rows(int64_t *mat, int64_t *sol, const int i, const int j, | 
|  | const int dim) { | 
|  | int64_t temp = sol[i]; | 
|  | sol[i] = sol[j]; | 
|  | sol[j] = temp; | 
|  | for (int col = 0; col < dim; col++) { | 
|  | temp = mat[i * dim + col]; | 
|  | mat[i * dim + col] = mat[j * dim + col]; | 
|  | mat[j * dim + col] = temp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For better precision, set this number as minimal bits for intermediate | 
|  | // result of Gaussian elimination. | 
|  | #define GE_MULT_PREC_BITS 12 | 
|  |  | 
|  | // Perform Gaussian elimination routine to solve a matrix inverse problem | 
|  | int gaussian_elimination(int64_t *mat, int64_t *sol, int *precbits, | 
|  | const int dim) { | 
|  | int shifts[MAX_LS_DIM] = { 0 }; | 
|  | int16_t inv_pivot[MAX_LS_DIM] = { 0 }; | 
|  | int16_t inv_pivot_shift[MAX_LS_DIM] = { 0 }; | 
|  |  | 
|  | // Bit range adjustment: add shifts such that the bit depths of shifted mat | 
|  | // and sol elements are capped by K-dim+1. This is because each element of | 
|  | // mat and sol during forward elimination is updated at most dim-1 times. | 
|  | // Each update is a subtraction that can increase the bit depth by 1 at the | 
|  | // extreme case. | 
|  | // Goal: shift Aij by si+sj+e bits, and shift bi by si+e+f bits. These shifts | 
|  | // will satisfy | 
|  | //     1+MSB(Aij)+si+sj+e <= (K-dim+1)-1 unsigned bits | 
|  | //     1+MSB(bi)+si+e+f <= (K-dim+1)-1 unsigned bits | 
|  | //     precbits[i]-f+si <= 0 | 
|  | // The last constraint is preferred but not strictly required, since | 
|  | // precbits[i]-f+si shifts will be applied to b at the end. Making all these | 
|  | // shifts negative means there is no loss of precision during the Gaussian | 
|  | // elimination procedure. One quick solution is given as follows: | 
|  | //     si=floor(min(K-dim+1-MSB(Aii), min(MSB(Aii))-MSB(Aii))/2) | 
|  | //     f=max_i(precbits[i]+si) | 
|  | //     e=min(K-dim+1-MSB(bi)-si) - max(precbits[i]+si) | 
|  | int bd_cap = MAX_LS_BITS - dim; | 
|  | int a_extra_shift = 64; | 
|  | int b_extra_shift = -64; | 
|  | int min_diag_msb = 64; | 
|  | int mat_diag_bits[MAX_LS_DIM] = { 0 }; | 
|  | int sol_bits[MAX_LS_DIM] = { 0 }; | 
|  | for (int i = 0; i < dim; i++) { | 
|  | mat_diag_bits[i] = 1 + get_msb_signed_64(mat[i * dim + i]); | 
|  | min_diag_msb = AOMMIN(min_diag_msb, mat_diag_bits[i]); | 
|  | sol_bits[i] = 1 + get_msb_signed_64(sol[i]); | 
|  | } | 
|  | for (int i = 0; i < dim; i++) { | 
|  | shifts[i] = | 
|  | -(AOMMAX(mat_diag_bits[i] - bd_cap, mat_diag_bits[i] - min_diag_msb) >> | 
|  | 1); | 
|  | a_extra_shift = AOMMIN(a_extra_shift, bd_cap - sol_bits[i] - shifts[i]); | 
|  | b_extra_shift = AOMMAX(b_extra_shift, precbits[i] + shifts[i]); | 
|  | } | 
|  | a_extra_shift -= b_extra_shift; | 
|  | for (int i = 0; i < dim; i++) { | 
|  | for (int j = 0; j < dim; j++) { | 
|  | int abits = a_extra_shift + shifts[i] + shifts[j]; | 
|  | assert(a_extra_shift < 64); | 
|  | mat[i * dim + j] = | 
|  | abits >= 0 ? (mat[i * dim + j] * (1 << abits)) | 
|  | : ROUND_POWER_OF_TWO_SIGNED_64(mat[i * dim + j], -abits); | 
|  | } | 
|  | int bbits = shifts[i] + a_extra_shift + b_extra_shift; | 
|  | sol[i] = bbits >= 0 ? (sol[i] * (1 << bbits)) | 
|  | : ROUND_POWER_OF_TWO_SIGNED_64(sol[i], -bbits); | 
|  | precbits[i] = precbits[i] - b_extra_shift + shifts[i]; | 
|  | } | 
|  |  | 
|  | // Elimination for the i-th column | 
|  | int64_t diff = 0; | 
|  | for (int i = 0; i < dim; i++) { | 
|  | int64_t pivot = mat[i * dim + i]; | 
|  | int idx_pivot = i; | 
|  |  | 
|  | for (int j = i + 1; j < dim; j++) { | 
|  | int64_t new_pivot = mat[j * dim + i]; | 
|  | if (llabs(new_pivot) > llabs(pivot)) { | 
|  | idx_pivot = j; | 
|  | pivot = new_pivot; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check singularity | 
|  | if (pivot == 0) return 0; | 
|  |  | 
|  | // Put the row with the pivot first, and get inverse of the pivot | 
|  | if (i != idx_pivot) swap_rows(mat, sol, i, idx_pivot, dim); | 
|  | inv_pivot[i] = (pivot > 0 ? 1 : -1) * | 
|  | resolve_divisor_64(llabs(pivot), inv_pivot_shift + i); | 
|  |  | 
|  | for (int k = i + 1; k < dim; k++) { | 
|  | // Compute Akj = Akj - Aki * Aij / Aii, while keeping all intermediate | 
|  | // result within K bits | 
|  | int msb_ki = get_msb_signed_64(mat[k * dim + i]); | 
|  | int msb_invpiv = get_msb_signed(inv_pivot[i]); | 
|  | // Apply an upshift first if intermediate results will be close to zero. | 
|  | int inc_bits = AOMMAX( | 
|  | 0, GE_MULT_PREC_BITS - msb_ki - msb_invpiv + inv_pivot_shift[i]); | 
|  | int fshift = inc_bits; | 
|  | int64_t f = stable_mult_shift(mat[k * dim + i], (int64_t)inv_pivot[i], | 
|  | inv_pivot_shift[i] - inc_bits, msb_ki, | 
|  | msb_invpiv, MAX_LS_BITS, &fshift); | 
|  | int msb_f = get_msb_signed_64(f); | 
|  | mat[k * dim + i] = 0; | 
|  |  | 
|  | for (int j = i + 1; j < dim; j++) { | 
|  | int msb_ij = get_msb_signed_64(mat[i * dim + j]); | 
|  | diff = stable_mult_shift(mat[i * dim + j], f, fshift, msb_ij, msb_f, | 
|  | MAX_LS_BITS, NULL); | 
|  | mat[k * dim + j] -= diff; | 
|  | } | 
|  | int msb_sol = get_msb_signed_64(sol[i]); | 
|  | diff = stable_mult_shift(sol[i], f, fshift, msb_sol, msb_f, MAX_LS_BITS, | 
|  | NULL); | 
|  | sol[k] -= diff; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Backward substitution | 
|  | for (int i = dim - 1; i >= 0; i--) { | 
|  | // To reduce bit depth requirement, do a MSB check and downshift the entire | 
|  | // matrix row: 1+MSB(Aij)+1+MSB(bj) <= K-1-2(3 subtractions), for all i,j. | 
|  | int max_mult_bits = 0; | 
|  | for (int j = i + 1; j < dim; j++) | 
|  | max_mult_bits = | 
|  | AOMMAX(max_mult_bits, 2 + get_msb_signed_64(mat[i * dim + j]) + | 
|  | get_msb_signed_64(sol[j])); | 
|  | int redbit = AOMMAX(0, max_mult_bits - MAX_LS_BITS + 3); | 
|  | sol[i] = ROUND_POWER_OF_TWO_SIGNED_64(sol[i], redbit); | 
|  | for (int j = i + 1; j < dim; j++) { | 
|  | diff = ROUND_POWER_OF_TWO_SIGNED_64(mat[i * dim + j], redbit) * sol[j]; | 
|  | sol[i] = sol[i] - diff; | 
|  | } | 
|  | sol[i] = stable_mult_shift(sol[i], (int64_t)inv_pivot[i], | 
|  | inv_pivot_shift[i] - redbit, | 
|  | get_msb_signed_64(sol[i]), | 
|  | get_msb_signed(inv_pivot[i]), MAX_LS_BITS, NULL); | 
|  | } | 
|  |  | 
|  | // Apply remaining downscaling | 
|  | for (int i = 0; i < dim; i++) | 
|  | sol[i] = precbits[i] >= 0 | 
|  | ? (sol[i] * (1 << precbits[i])) | 
|  | : ROUND_POWER_OF_TWO_SIGNED_64(sol[i], -precbits[i]); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Solve a 4-dimensional matrix inverse | 
|  | int solver_4d(const int32_t *mat_a, const int32_t *vec_b, int *precbits, | 
|  | int *sol) { | 
|  | int64_t mat[16] = { 0 }; | 
|  | int64_t vec[4] = { 0 }; | 
|  | for (int i = 0; i < 16; i++) mat[i] = (int64_t)mat_a[i]; | 
|  | for (int i = 0; i < 4; i++) vec[i] = (int64_t)vec_b[i]; | 
|  | int ret = gaussian_elimination(mat, vec, precbits, 4); | 
|  | for (int i = 0; i < 4; i++) sol[i] = (int)vec[i]; | 
|  | return ret; | 
|  | } | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  |  | 
|  | // Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity | 
|  | // in hardware. | 
|  | #define OPFL_CLAMP_MV_DELTA 1 | 
|  | #define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS) | 
|  |  | 
|  | // Divide d0 and d1 by their common factors (no divisions) | 
|  | void reduce_temporal_dist(int *d0, int *d1) { | 
|  | if (*d0 == 0 || *d1 == 0) return; | 
|  | int sign0 = *d0 < 0; | 
|  | int sign1 = *d1 < 0; | 
|  | int mag0 = sign0 ? -(*d0) : (*d0); | 
|  | int mag1 = sign1 ? -(*d1) : (*d1); | 
|  | // Only do simple checks for the case |d0|=|d1| and for factor 2 | 
|  | if (mag0 == mag1) { | 
|  | mag0 = mag1 = 1; | 
|  | } else { | 
|  | while (mag0 % 2 == 0 && mag1 % 2 == 0) { | 
|  | assert(mag0 > 0 && mag1 > 0); | 
|  | mag0 >>= 1; | 
|  | mag1 >>= 1; | 
|  | } | 
|  | } | 
|  | *d0 = sign0 ? -mag0 : mag0; | 
|  | *d1 = sign1 ? -mag1 : mag1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | void av1_opfl_build_inter_predictor( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, | 
|  | int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, | 
|  | InterPredParams *inter_pred_params, | 
|  | CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | const MV *const src_mv, int pu_width, int pu_height | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ) { | 
|  | assert(cm->seq_params.order_hint_info.enable_order_hint); | 
|  | const int is_intrabc = is_intrabc_block(mi, xd->tree_type); | 
|  | const int is_tip = mi->ref_frame[0] == TIP_FRAME; | 
|  |  | 
|  | // Do references one at a time | 
|  | const int is_compound = 0; | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | struct buf_2d *const dst_buf = &pd->dst; | 
|  |  | 
|  | const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; | 
|  | const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype), | 
|  | is_warp_mode(mi->motion_mode) }; | 
|  | const struct scale_factors *const sf = | 
|  | is_tip | 
|  | ? cm->tip_ref.ref_scale_factor[ref] | 
|  | : (is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]); | 
|  |  | 
|  | const int ss_x = pd->subsampling_x; | 
|  | const int ss_y = pd->subsampling_y; | 
|  | #if CONFIG_REFINEMV | 
|  | const int row_start = (bw == 4) && ss_y ? -1 : 0; | 
|  | const int col_start = (bh == 4) && ss_x ? -1 : 0; | 
|  | #else | 
|  | const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y]; | 
|  | const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; | 
|  | const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; | 
|  | const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; | 
|  |  | 
|  | const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; | 
|  |  | 
|  | av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x, | 
|  | pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, pre_buf, | 
|  | #if CONFIG_OPFL_BI | 
|  | BILINEAR | 
|  | #else | 
|  | mi->interp_fltr | 
|  | #endif | 
|  | ); | 
|  | #if CONFIG_REFINEMV | 
|  | inter_pred_params->original_pu_width = pu_width; | 
|  | inter_pred_params->original_pu_height = pu_height; | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | inter_pred_params->conv_params = get_conv_params_no_round( | 
|  | 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); | 
|  |  | 
|  | av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi); | 
|  | if (inter_pred_params->mode == WARP_PRED) return; | 
|  |  | 
|  | assert(mi->interinter_comp.type == COMPOUND_AVERAGE); | 
|  |  | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | #if CONFIG_REFINEMV | 
|  | const MV mv_1_16th_pel = convert_mv_to_1_16th_pel(src_mv); | 
|  | #else | 
|  | const MV mv_1_16th_pel = convert_mv_to_1_16th_pel(&mi->mv[ref].as_mv); | 
|  | #endif | 
|  |  | 
|  | av1_build_one_inter_predictor(pred_dst, bw, &mv_1_16th_pel, inter_pred_params, | 
|  | xd, mi_x, mi_y, ref, mc_buf, | 
|  | calc_subpel_params_func); | 
|  | #else | 
|  | av1_build_one_inter_predictor(pred_dst, bw, | 
|  | #if CONFIG_REFINEMV | 
|  | src_mv, | 
|  | #else | 
|  | &mi->mv[ref].as_mv, | 
|  | #endif  // CONFIG_REFINEMV | 
|  | inter_pred_params, xd, mi_x, mi_y, ref, mc_buf, | 
|  | calc_subpel_params_func); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | } | 
|  |  | 
|  | void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src, | 
|  | int16_t *x_grad, int16_t *y_grad, | 
|  | const int bw, const int bh) { | 
|  | #if OPFL_BICUBIC_GRAD | 
|  | for (int i = 0; i < bh; i++) { | 
|  | for (int j = 0; j < bw; j++) { | 
|  | int id_prev, id_prev2, id_next, id_next2, is_boundary; | 
|  | int32_t temp = 0; | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | if ((i + j) % 2 == 1) continue; | 
|  | #endif | 
|  | // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) | 
|  | id_prev = AOMMAX(j - 1, 0); | 
|  | id_prev2 = AOMMAX(j - 2, 0); | 
|  | id_next = AOMMIN(j + 1, bw - 1); | 
|  | id_next2 = AOMMIN(j + 2, bw - 1); | 
|  | is_boundary = (j + 1 > bw - 1 || j - 1 < 0); | 
|  | temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * | 
|  | (int32_t)(pred_src[i * bw + id_next] - | 
|  | pred_src[i * bw + id_prev]) + | 
|  | coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * | 
|  | (int32_t)(pred_src[i * bw + id_next2] - | 
|  | pred_src[i * bw + id_prev2]); | 
|  | x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), | 
|  | INT16_MIN, INT16_MAX); | 
|  |  | 
|  | // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) | 
|  | id_prev = AOMMAX(i - 1, 0); | 
|  | id_prev2 = AOMMAX(i - 2, 0); | 
|  | id_next = AOMMIN(i + 1, bh - 1); | 
|  | id_next2 = AOMMIN(i + 2, bh - 1); | 
|  | is_boundary = (i + 1 > bh - 1 || i - 1 < 0); | 
|  | temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * | 
|  | (int32_t)(pred_src[id_next * bw + j] - | 
|  | pred_src[id_prev * bw + j]) + | 
|  | coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * | 
|  | (int32_t)(pred_src[id_next2 * bw + j] - | 
|  | pred_src[id_prev2 * bw + j]); | 
|  | y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), | 
|  | INT16_MIN, INT16_MAX); | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)pred_src; | 
|  | (void)x_grad; | 
|  | (void)y_grad; | 
|  | (void)bw; | 
|  | (void)bh; | 
|  | #endif  // OPFL_BICUBIC_GRAD | 
|  | } | 
|  |  | 
|  | #if OPFL_BILINEAR_GRAD | 
|  | void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad, | 
|  | int16_t *y_grad, const int bw, | 
|  | const int bh) { | 
|  | int id_next, id_prev, is_boundary; | 
|  | int32_t temp = 0; | 
|  | for (int i = 0; i < bh; i++) { | 
|  | for (int j = 0; j < bw; j++) { | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | if ((i + j) % 2 == 1) continue; | 
|  | #endif | 
|  | // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) | 
|  | id_next = AOMMIN(j + 1, bw - 1); | 
|  | id_prev = AOMMAX(j - 1, 0); | 
|  | is_boundary = (j + 1 > bw - 1 || j - 1 < 0); | 
|  | temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * | 
|  | (int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]); | 
|  | x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), | 
|  | INT16_MIN, INT16_MAX); | 
|  | // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) | 
|  | id_next = AOMMIN(i + 1, bh - 1); | 
|  | id_prev = AOMMAX(i - 1, 0); | 
|  | is_boundary = (i + 1 > bh - 1 || i - 1 < 0); | 
|  | temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * | 
|  | (int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]); | 
|  | y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), | 
|  | INT16_MIN, INT16_MAX); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // OPFL_BILINEAR_GRAD | 
|  |  | 
|  | void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh, | 
|  | int *grad_prec_bits, int16_t *x_grad, | 
|  | int16_t *y_grad) { | 
|  | // Reuse pixels in pred_dst to compute gradients | 
|  | #if OPFL_BILINEAR_GRAD | 
|  | (void)is_hbd; | 
|  | av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh); | 
|  | #else | 
|  | #if CONFIG_OPFL_MV_SEARCH | 
|  | if (bw < 8 || bh < 8) | 
|  | av1_bicubic_grad_interpolation_highbd_c(pred_dst, x_grad, y_grad, bw, bh); | 
|  | else | 
|  | #endif  // CONFIG_OPFL_MV_SEARCH | 
|  | av1_bicubic_grad_interpolation_highbd(pred_dst, x_grad, y_grad, bw, bh); | 
|  | #endif  // OPFL_BILINEAR_GRAD | 
|  | *grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2; | 
|  | } | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH | 
|  | // Apply average pooling to reduce the sizes of pred difference and gradients | 
|  | // arrays. It reduces the complexity of the parameter solving routine | 
|  | void av1_avg_pooling_pdiff_gradients_c(int16_t *pdiff, const int pstride, | 
|  | int16_t *gx, int16_t *gy, | 
|  | const int gstride, const int bw, | 
|  | const int bh, const int n) { | 
|  | const int bh_low = AOMMIN(bh, n); | 
|  | const int bw_low = AOMMIN(bw, n); | 
|  | if (bh == bh_low && bw == bw_low) return; | 
|  | const int step_h = bh / bh_low; | 
|  | const int step_w = bw / bw_low; | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w) - 1; | 
|  | #else | 
|  | int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w); | 
|  | #endif | 
|  | for (int i = 0; i < bh_low; i++) { | 
|  | for (int j = 0; j < bw_low; j++) { | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | if ((i + j) % 2 == 1) continue; | 
|  | #endif | 
|  | int32_t tmp_gx = 0, tmp_gy = 0, tmp_pdiff = 0; | 
|  | for (int k = 0; k < step_h; k++) { | 
|  | for (int l = 0; l < step_w; l++) { | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | if ((i * step_h + j * step_w + k + l) % 2 == 1) continue; | 
|  | #endif | 
|  | tmp_gx += gx[(i * step_h + k) * gstride + (j * step_w + l)]; | 
|  | tmp_gy += gy[(i * step_h + k) * gstride + (j * step_w + l)]; | 
|  | tmp_pdiff += pdiff[(i * step_h + k) * pstride + (j * step_w + l)]; | 
|  | } | 
|  | } | 
|  | gx[i * gstride + j] = | 
|  | (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gx, avg_bits); | 
|  | gy[i * gstride + j] = | 
|  | (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gy, avg_bits); | 
|  | pdiff[i * pstride + j] = | 
|  | (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_pdiff, avg_bits); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | /* Map affine model parameters to warped motion parameters based on signed | 
|  | temporal distance d (positive for past ref, negative for future ref). | 
|  |  | 
|  | For d < 0, let t = -d > 0, the affine model is | 
|  | /x'\ = / cos(t*theta)  -sin(t*theta) \ * /1+t*alpha   0   \ * /x\ + / t*tx \ | 
|  | \y'/   \ sin(t*theta)   cos(t*theta) /   \    0   1+t*beta/   \y/   \ t*ty / | 
|  |  | 
|  | which is associated with warped motion matrix | 
|  |  | 
|  | / (1+t*alpha)*cos(t*theta)  -(1+t*beta)*sin(t*theta)  t*tx \ | 
|  | A = |  (1+t*alpha)*sin(t*theta)   (1+t*beta)*cos(t*theta)  t*ty  | | 
|  | \            0                         0                1  / | 
|  |  | 
|  | For d > 0, we let t = d > 0, and the warped motion matrix is given by the | 
|  | inverse matrix of A. Approximate 1/(1+x) by 1-x, then | 
|  |  | 
|  | -1    / (1-t*alpha)*cos(t*theta)  (1-t*alpha)*sin(t*theta)  tx' \ | 
|  | A   = |  -(1-t*beta)*sin(t*theta)  (1-t*beta)*cos(t*theta)   ty'  | | 
|  | \             0                         0              1  /, | 
|  |  | 
|  | where tx' = -t*(1-t*alpha)*[cos(t*theta)*tx+sin(t*theta)*ty] | 
|  | ty' = t*(1-t*beta)*[cos(t*theta)*tx+sin(t*theta)*ty] | 
|  | */ | 
|  | void get_ref_affine_params(int bw, int bh, int mi_x, int mi_y, | 
|  | const AffineModelParams *am_params, | 
|  | WarpedMotionParams *wm, const int d, | 
|  | const MV *const mv | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | const struct scale_factors *sf | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ) { | 
|  | wm->invalid = 1; | 
|  |  | 
|  | const int64_t unit_offset = 1 << WARPEDMODEL_PREC_BITS; | 
|  | int64_t cos_angle = unit_offset; | 
|  | int64_t sin_angle = 0; | 
|  | const int64_t scale_x = unit_offset - d * am_params->scale_alpha; | 
|  | const int64_t scale_y = unit_offset - d * am_params->scale_beta; | 
|  |  | 
|  | const int64_t angle = -d * am_params->rot_angle; | 
|  | cos_angle = unit_offset; | 
|  | sin_angle = angle * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)); | 
|  | const int64_t diag_min = unit_offset - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1; | 
|  | const int64_t diag_max = unit_offset + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1; | 
|  | const int64_t ndiag_min = -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1; | 
|  | const int64_t ndiag_max = WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1; | 
|  | wm->wmmat[2] = (int32_t)clamp64( | 
|  | ROUND_POWER_OF_TWO_SIGNED_64(scale_x * cos_angle, WARPEDMODEL_PREC_BITS), | 
|  | diag_min, diag_max); | 
|  | wm->wmmat[5] = (int32_t)clamp64( | 
|  | ROUND_POWER_OF_TWO_SIGNED_64(scale_y * cos_angle, WARPEDMODEL_PREC_BITS), | 
|  | diag_min, diag_max); | 
|  | if (d > 0) { | 
|  | // Parameters of A^-1 | 
|  | wm->wmmat[3] = | 
|  | (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(-scale_x * sin_angle, | 
|  | WARPEDMODEL_PREC_BITS), | 
|  | ndiag_min, ndiag_max); | 
|  | wm->wmmat[4] = | 
|  | (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(scale_y * sin_angle, | 
|  | WARPEDMODEL_PREC_BITS), | 
|  | ndiag_min, ndiag_max); | 
|  | int64_t tmp_tx = (int64_t)wm->wmmat[2] * (int64_t)am_params->tran_x - | 
|  | (int64_t)wm->wmmat[3] * (int64_t)am_params->tran_y; | 
|  | int64_t tmp_ty = (int64_t)wm->wmmat[4] * (int64_t)am_params->tran_x + | 
|  | (int64_t)wm->wmmat[5] * (int64_t)am_params->tran_y; | 
|  | wm->wmmat[0] = (int32_t)clamp64( | 
|  | ROUND_POWER_OF_TWO_SIGNED_64(tmp_tx * (-d), WARPEDMODEL_PREC_BITS), | 
|  | -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  | wm->wmmat[1] = (int32_t)clamp64( | 
|  | ROUND_POWER_OF_TWO_SIGNED_64(tmp_ty * (-d), WARPEDMODEL_PREC_BITS), | 
|  | -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  | } else { | 
|  | // Parameters of A | 
|  | wm->wmmat[3] = | 
|  | (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(-scale_y * sin_angle, | 
|  | WARPEDMODEL_PREC_BITS), | 
|  | ndiag_min, ndiag_max); | 
|  | wm->wmmat[4] = | 
|  | (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(scale_x * sin_angle, | 
|  | WARPEDMODEL_PREC_BITS), | 
|  | ndiag_min, ndiag_max); | 
|  | wm->wmmat[0] = (int32_t)clamp64( | 
|  | (int64_t)am_params->tran_x * (-d), -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  | wm->wmmat[1] = (int32_t)clamp64( | 
|  | (int64_t)am_params->tran_y * (-d), -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  | } | 
|  | wm->wmmat[6] = wm->wmmat[7] = 0; | 
|  |  | 
|  | av1_reduce_warp_model(wm); | 
|  |  | 
|  | #if CONFIG_EXT_WARP_FILTER | 
|  | av1_get_shear_params(wm | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | sf | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ); | 
|  | #else | 
|  | // check compatibility with the fast warp filter | 
|  | if (!av1_get_shear_params(wm)) { | 
|  | wm->wmmat[2] = default_warp_params.wmmat[2]; | 
|  | wm->wmmat[3] = default_warp_params.wmmat[3]; | 
|  | wm->wmmat[4] = default_warp_params.wmmat[4]; | 
|  | wm->wmmat[5] = default_warp_params.wmmat[5]; | 
|  | wm->alpha = wm->beta = wm->gamma = wm->delta = 0; | 
|  | } | 
|  | #endif  // CONFIG_EXT_WARP_FILTER | 
|  |  | 
|  | // Apply offset based on the coordinate of the block center and the MV to | 
|  | // convert the base point of warped motion from block center to the top-left | 
|  | // pixel of the frame. | 
|  | const int center_x = mi_x + bw / 2 - 1; | 
|  | const int center_y = mi_y + bh / 2 - 1; | 
|  | int64_t wmmat0 = (int64_t)wm->wmmat[0] + | 
|  | (int64_t)mv->col * (1 << (WARPEDMODEL_PREC_BITS - 3)) - | 
|  | ((int64_t)center_x * (wm->wmmat[2] - unit_offset) + | 
|  | (int64_t)center_y * wm->wmmat[3]); | 
|  | int64_t wmmat1 = (int64_t)wm->wmmat[1] + | 
|  | (int64_t)mv->row * (1 << (WARPEDMODEL_PREC_BITS - 3)) - | 
|  | ((int64_t)center_x * wm->wmmat[4] + | 
|  | (int64_t)center_y * (wm->wmmat[5] - unit_offset)); | 
|  |  | 
|  | wm->wmmat[0] = | 
|  | (int32_t)clamp64(wmmat0, -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  | wm->wmmat[1] = | 
|  | (int32_t)clamp64(wmmat1, -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  |  | 
|  | wm->wmtype = AFFINE; | 
|  | wm->invalid = 0; | 
|  | } | 
|  |  | 
|  | // Find the maximum element of pdiff/gx/gy in absolute value | 
|  | int32_t find_max_matrix_element(const int16_t *pdiff, int pstride, | 
|  | const int16_t *gx, const int16_t *gy, | 
|  | int gstride, int bw, int bh) { | 
|  | // TODO(kslu) do it in a better way to remove repeated computations, or | 
|  | // handle this in gradient computation | 
|  | int max_el = 0; | 
|  | for (int i = 0; i < bh; i++) { | 
|  | for (int j = 0; j < bw; j++) { | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | if ((i + j) % 2 == 1) continue; | 
|  | #endif | 
|  | if (AOMMAX(i, j) >= AFFINE_AVG_MAX_SIZE) continue; | 
|  | max_el = AOMMAX(max_el, abs((int)gx[i * gstride + j])); | 
|  | max_el = AOMMAX(max_el, abs((int)gy[i * gstride + j])); | 
|  | max_el = AOMMAX(max_el, abs((int)pdiff[i * pstride + j])); | 
|  | } | 
|  | } | 
|  | return max_el; | 
|  | } | 
|  |  | 
|  | // Autocorrelation matrix filling procedure for affine refinement. | 
|  | void av1_calc_affine_autocorrelation_matrix_c(const int16_t *pdiff, int pstride, | 
|  | const int16_t *gx, | 
|  | const int16_t *gy, int gstride, | 
|  | int bw, int bh, | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | int x_offset, int y_offset, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | int32_t *mat_a, int32_t *vec_b) { | 
|  | int x_range_log2 = get_msb(bw); | 
|  | int y_range_log2 = get_msb(bh); | 
|  | int step_h = AOMMAX(1, bh >> AFFINE_AVG_MAX_SIZE_LOG2); | 
|  | int step_w = AOMMAX(1, bw >> AFFINE_AVG_MAX_SIZE_LOG2); | 
|  | int npel_log2 = AOMMIN(AFFINE_AVG_MAX_SIZE_LOG2, x_range_log2) + | 
|  | AOMMIN(AFFINE_AVG_MAX_SIZE_LOG2, y_range_log2); | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | npel_log2--; | 
|  | #endif | 
|  | // Check range of gradient and prediction differences. If maximum absolute | 
|  | // value is very large, matrix A is likely to be clamped. To improve | 
|  | // stability, we adaptively reduce the dynamic range here | 
|  | int32_t max_el = | 
|  | find_max_matrix_element(pdiff, pstride, gx, gy, gstride, bw, bh); | 
|  | int max_el_msb = max_el > 0 ? get_msb(max_el) : 0; | 
|  | int grad_bits = | 
|  | AOMMAX(0, max_el_msb * 2 + npel_log2 + | 
|  | AOMMAX(x_range_log2, y_range_log2) - AFFINE_GRAD_BITS_THR); | 
|  | const int coords_bits = AOMMAX( | 
|  | 0, ((x_range_log2 + y_range_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS); | 
|  | for (int i = 0; i < bh; ++i) { | 
|  | for (int j = 0; j < bw; ++j) { | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | if ((i + j) % 2 == 1) continue; | 
|  | #endif | 
|  | if (AOMMAX(i, j) >= AFFINE_AVG_MAX_SIZE) continue; | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | // Offsets are added in order to obtain affine parameter relative to | 
|  | // original block center rather than the subblock center | 
|  | const int x = step_w * j - bw / 2 + x_offset + 1; | 
|  | const int y = step_h * i - bh / 2 + y_offset + 1; | 
|  | #else | 
|  | const int x = step_w * j - bw / 2 + 1; | 
|  | const int y = step_h * i - bh / 2 + 1; | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | int gidx = i * gstride + j; | 
|  | int a[4]; | 
|  | a[0] = | 
|  | ROUND_POWER_OF_TWO_SIGNED(-gx[gidx] * y + gy[gidx] * x, coords_bits); | 
|  | a[1] = | 
|  | ROUND_POWER_OF_TWO_SIGNED(gx[gidx] * x + gy[gidx] * y, coords_bits); | 
|  | a[2] = gx[gidx]; | 
|  | a[3] = gy[gidx]; | 
|  | for (int s = 0; s < 4; ++s) | 
|  | a[s] = clamp(a[s], -AFFINE_SAMP_CLAMP_VAL, AFFINE_SAMP_CLAMP_VAL); | 
|  | const int d = clamp(pdiff[i * pstride + j], -AFFINE_SAMP_CLAMP_VAL, | 
|  | AFFINE_SAMP_CLAMP_VAL); | 
|  | for (int s = 0; s < 4; ++s) { | 
|  | for (int t = 0; t <= s; ++t) { | 
|  | mat_a[s * 4 + t] += ROUND_POWER_OF_TWO_SIGNED(a[s] * a[t], grad_bits); | 
|  | } | 
|  | vec_b[s] += ROUND_POWER_OF_TWO_SIGNED(a[s] * d, grad_bits); | 
|  | } | 
|  | } | 
|  | // Do a range check and add a downshift if range is getting close to the bit | 
|  | // depth cap. This check is done for every 16 pixels so it can be easily | 
|  | // replicated in the SIMD version. | 
|  | if (bw >= 16 || i % 2 == 1) { | 
|  | int32_t max_autocorr = | 
|  | AOMMAX(AOMMAX(mat_a[0], mat_a[5]), AOMMAX(mat_a[10], mat_a[15])); | 
|  | int32_t max_xcorr = AOMMAX(AOMMAX(abs(vec_b[0]), abs(vec_b[1])), | 
|  | AOMMAX(abs(vec_b[2]), abs(vec_b[3]))); | 
|  | if (get_msb_signed(AOMMAX(max_autocorr, max_xcorr)) >= | 
|  | MAX_AFFINE_AUTOCORR_BITS - 2) { | 
|  | for (int s = 0; s < 4; ++s) { | 
|  | for (int t = 0; t <= s; ++t) | 
|  | mat_a[s * 4 + t] = ROUND_POWER_OF_TWO_SIGNED(mat_a[s * 4 + t], 1); | 
|  | vec_b[s] = ROUND_POWER_OF_TWO_SIGNED(vec_b[s], 1); | 
|  | } | 
|  | grad_bits++; | 
|  | } | 
|  | } | 
|  | } | 
|  | for (int s = 0; s < 4; ++s) { | 
|  | for (int t = s + 1; t < 4; ++t) mat_a[s * 4 + t] = mat_a[t * 4 + s]; | 
|  | } | 
|  | const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM; | 
|  | mat_a[0] += rls_alpha; | 
|  | mat_a[5] += rls_alpha; | 
|  | mat_a[10] += rls_alpha; | 
|  | mat_a[15] += rls_alpha; | 
|  | } | 
|  |  | 
|  | // Derivation of four parameters in the rotation-scale-translation affine model | 
|  | // (in the pipeline where gradients are computed directly from d0*P0-d1*P1) | 
|  | int av1_opfl_affine_refinement(const int16_t *pdiff, int pstride, | 
|  | const int16_t *gx, const int16_t *gy, | 
|  | int gstride, int bw, int bh, | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | int x_offset, int y_offset, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | int grad_prec_bits, | 
|  | AffineModelParams *am_params) { | 
|  | int32_t mat_a[16] = { 0 }; | 
|  | int32_t vec_b[4] = { 0 }; | 
|  | int32_t vec_x[4]; | 
|  | #if !OPFL_DOWNSAMP_QUINCUNX | 
|  | av1_calc_affine_autocorrelation_matrix(pdiff, pstride, gx, gy, gstride, bw, | 
|  | bh, | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | x_offset, y_offset, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | mat_a, vec_b); | 
|  | #else | 
|  | av1_calc_affine_autocorrelation_matrix_c(pdiff, pstride, gx, gy, gstride, bw, | 
|  | bh, | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | x_offset, y_offset, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | mat_a, vec_b); | 
|  | #endif  // !OPFL_DOWNSAMP_QUINCUNX | 
|  |  | 
|  | const int coords_bits = | 
|  | AOMMAX(0, ((get_msb(bw) + get_msb(bh)) >> 1) - AFFINE_COORDS_OFFSET_BITS); | 
|  | int prec_bits[4] = { | 
|  | grad_prec_bits + AFFINE_PREC_BITS - coords_bits, | 
|  | grad_prec_bits + AFFINE_PREC_BITS - coords_bits, | 
|  | grad_prec_bits + AFFINE_PREC_BITS, | 
|  | grad_prec_bits + AFFINE_PREC_BITS, | 
|  | }; | 
|  | if (!solver_4d(mat_a, vec_b, prec_bits, vec_x)) return 1; | 
|  |  | 
|  | assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0); | 
|  | am_params->rot_angle = vec_x[0]; | 
|  | am_params->scale_alpha = (int)clamp64( | 
|  | (int64_t)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)), | 
|  | INT32_MIN, INT32_MAX); | 
|  | am_params->scale_beta = (int)clamp64( | 
|  | (int64_t)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)), | 
|  | INT32_MIN, INT32_MAX); | 
|  | am_params->tran_x = (int)clamp64( | 
|  | (int64_t)vec_x[2] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)), | 
|  | INT32_MIN, INT32_MAX); | 
|  | am_params->tran_y = (int)clamp64( | 
|  | (int64_t)vec_x[3] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS)), | 
|  | INT32_MIN, INT32_MAX); | 
|  | return 0; | 
|  | } | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  |  | 
|  | void calc_mv_process(int32_t su2, int32_t sv2, int32_t suv, int32_t suw, | 
|  | int32_t svw, const int d0, const int d1, const int bits, | 
|  | const int rls_alpha, int *vx0, int *vy0, int *vx1, | 
|  | int *vy1) { | 
|  | #if OPFL_REGULARIZED_LS | 
|  | su2 += rls_alpha; | 
|  | sv2 += rls_alpha; | 
|  | #else | 
|  | (void)rls_alpha; | 
|  | #endif | 
|  |  | 
|  | // Solve 2x2 matrix inverse: [ su2  suv ]   [ vx0 ]     [ -suw ] | 
|  | //                           [ suv  sv2 ] * [ vy0 ]  =  [ -svw ] | 
|  | int shifts[2] = { bits, bits }; | 
|  | int msb_su2 = 1 + get_msb_signed(su2); | 
|  | int msb_sv2 = 1 + get_msb_signed(sv2); | 
|  | int msb_suv = 1 + get_msb_signed(suv); | 
|  | int msb_suw = 1 + get_msb_signed(suw); | 
|  | int msb_svw = 1 + get_msb_signed(svw); | 
|  | // Make sure the max bit depth of det, sol[0], and sol[1] are within | 
|  | // MAX_LS_BITS | 
|  | int max_mult_msb = AOMMAX( | 
|  | msb_su2 + msb_sv2, AOMMAX(AOMMAX(msb_sv2 + msb_suw, msb_suv + msb_svw), | 
|  | AOMMAX(msb_su2 + msb_svw, msb_suv + msb_suw))); | 
|  | int redbit = AOMMAX(0, max_mult_msb - MAX_LS_BITS + 3) >> 1; | 
|  |  | 
|  | su2 = ROUND_POWER_OF_TWO_SIGNED(su2, redbit); | 
|  | sv2 = ROUND_POWER_OF_TWO_SIGNED(sv2, redbit); | 
|  | suv = ROUND_POWER_OF_TWO_SIGNED(suv, redbit); | 
|  | suw = ROUND_POWER_OF_TWO_SIGNED(suw, redbit); | 
|  | svw = ROUND_POWER_OF_TWO_SIGNED(svw, redbit); | 
|  | const int32_t det = su2 * sv2 - suv * suv; | 
|  | if (det <= 0) { | 
|  | *vx0 = 0; | 
|  | *vy0 = 0; | 
|  | *vx1 = 0; | 
|  | *vy1 = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | int32_t sol[2] = { sv2 * suw - suv * svw, su2 * svw - suv * suw }; | 
|  |  | 
|  | divide_and_round_array(sol, det, 2, shifts); | 
|  |  | 
|  | *vx0 = -sol[0]; | 
|  | *vy0 = -sol[1]; | 
|  | *vx1 = (*vx0) * d1; | 
|  | *vy1 = (*vy0) * d1; | 
|  | *vx0 = (*vx0) * d0; | 
|  | *vy0 = (*vy0) * d0; | 
|  | } | 
|  |  | 
|  | // Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of | 
|  | // d0 * P0 - d1 * P1. | 
|  | void av1_opfl_mv_refinement(const int16_t *pdiff, int pstride, | 
|  | const int16_t *gx, const int16_t *gy, int gstride, | 
|  | int bw, int bh, int d0, int d1, int grad_prec_bits, | 
|  | int mv_prec_bits, int *vx0, int *vy0, int *vx1, | 
|  | int *vy1) { | 
|  | int32_t su2 = 0; | 
|  | int32_t suv = 0; | 
|  | int32_t sv2 = 0; | 
|  | int32_t suw = 0; | 
|  | int32_t svw = 0; | 
|  | int grad_bits = 0; | 
|  | for (int i = 0; i < bh; ++i) { | 
|  | for (int j = 0; j < bw; ++j) { | 
|  | #if OPFL_DOWNSAMP_QUINCUNX | 
|  | if ((i + j) % 2 == 1) continue; | 
|  | #endif | 
|  | const int u = | 
|  | clamp(gx[i * gstride + j], -OPFL_SAMP_CLAMP_VAL, OPFL_SAMP_CLAMP_VAL); | 
|  | const int v = | 
|  | clamp(gy[i * gstride + j], -OPFL_SAMP_CLAMP_VAL, OPFL_SAMP_CLAMP_VAL); | 
|  | const int w = clamp(pdiff[i * pstride + j], -OPFL_SAMP_CLAMP_VAL, | 
|  | OPFL_SAMP_CLAMP_VAL); | 
|  | su2 += ROUND_POWER_OF_TWO_SIGNED(u * u, grad_bits); | 
|  | suv += ROUND_POWER_OF_TWO_SIGNED(u * v, grad_bits); | 
|  | sv2 += ROUND_POWER_OF_TWO_SIGNED(v * v, grad_bits); | 
|  | suw += ROUND_POWER_OF_TWO_SIGNED(u * w, grad_bits); | 
|  | svw += ROUND_POWER_OF_TWO_SIGNED(v * w, grad_bits); | 
|  | } | 
|  | // For every 8 pixels, do a range check and add a downshift if range is | 
|  | // getting close to the max allowed bit depth | 
|  | if (bw >= 8 || i % 2 == 1) { | 
|  | // Do a range check and add a downshift if range is getting close to the | 
|  | // bit depth cap | 
|  | int32_t max_autocorr = AOMMAX(su2, sv2); | 
|  | int32_t max_xcorr = AOMMAX(abs(suw), abs(svw)); | 
|  | if (get_msb_signed(AOMMAX(max_autocorr, max_xcorr)) >= | 
|  | MAX_OPFL_AUTOCORR_BITS - 2) { | 
|  | su2 = ROUND_POWER_OF_TWO_SIGNED(su2, 1); | 
|  | suv = ROUND_POWER_OF_TWO_SIGNED(suv, 1); | 
|  | sv2 = ROUND_POWER_OF_TWO_SIGNED(sv2, 1); | 
|  | suw = ROUND_POWER_OF_TWO_SIGNED(suw, 1); | 
|  | svw = ROUND_POWER_OF_TWO_SIGNED(svw, 1); | 
|  | grad_bits++; | 
|  | } | 
|  | } | 
|  | } | 
|  | const int bits = mv_prec_bits + grad_prec_bits; | 
|  | const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM; | 
|  |  | 
|  | calc_mv_process(su2, sv2, suv, suw, svw, d0, d1, bits, rls_alpha, vx0, vy0, | 
|  | vx1, vy1); | 
|  | } | 
|  |  | 
|  | int av1_opfl_mv_refinement_nxn_c(const int16_t *pdiff, int pstride, | 
|  | const int16_t *gx, const int16_t *gy, | 
|  | int gstride, int bw, int bh, int n, int d0, | 
|  | int d1, int grad_prec_bits, int mv_prec_bits, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int mi_x, int mi_y, int mi_cols, int mi_rows, | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  |  | 
|  | int *vx0, int *vy0, int *vx1, int *vy1) { | 
|  | assert(bw % n == 0 && bh % n == 0); | 
|  | int n_blocks = 0; | 
|  | for (int i = 0; i < bh; i += n) { | 
|  | for (int j = 0; j < bw; j += n) { | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | if (is_subblock_outside(mi_x + j, mi_y + i, mi_cols, mi_rows, | 
|  | build_for_decode)) { | 
|  | *(vx0 + n_blocks) = 0; | 
|  | *(vy0 + n_blocks) = 0; | 
|  | *(vx1 + n_blocks) = 0; | 
|  | *(vy1 + n_blocks) = 0; | 
|  | n_blocks++; | 
|  | continue; | 
|  | } | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | av1_opfl_mv_refinement(pdiff + (i * pstride + j), pstride, | 
|  | gx + (i * gstride + j), gy + (i * gstride + j), | 
|  | gstride, n, n, d0, d1, grad_prec_bits, | 
|  | mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, | 
|  | vx1 + n_blocks, vy1 + n_blocks); | 
|  | n_blocks++; | 
|  | } | 
|  | } | 
|  | return n_blocks; | 
|  | } | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | // Solve the affine model given pdiff = P0 - P1 and the gradients gx/gy of | 
|  | // d0 * P0 - d1 * P1. | 
|  | void av1_opfl_affine_refinement_mxn(int16_t *pdiff, int pstride, int16_t *gx, | 
|  | int16_t *gy, int gstride, int bw, int bh, | 
|  | int d0, int d1, int mi_x, int mi_y, | 
|  | #if CONFIG_REFINEMV | 
|  | const MV *const src_mv, | 
|  | #endif  // CONFIG_REFINEMV | 
|  | int grad_prec_bits, WarpedMotionParams *wms | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | const struct scale_factors *sf[2] | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ) { | 
|  | int n_blocks = 0; | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | int sub_bw = AOMMIN(AFFINE_MAX_UNIT, bw); | 
|  | int sub_bh = AOMMIN(AFFINE_MAX_UNIT, bh); | 
|  | #else | 
|  | int sub_bw = bw; | 
|  | int sub_bh = bh; | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  |  | 
|  | for (int i = 0; i < bh; i += sub_bh) { | 
|  | for (int j = 0; j < bw; j += sub_bw) { | 
|  | av1_avg_pooling_pdiff_gradients( | 
|  | pdiff + i * pstride + j, pstride, gx + i * gstride + j, | 
|  | gy + i * gstride + j, gstride, sub_bw, sub_bh, AFFINE_AVG_MAX_SIZE); | 
|  |  | 
|  | AffineModelParams affine_params = default_affine_params; | 
|  | // In some rare cases, the determinant in the solver may be zero or | 
|  | // negative due to numerical errors. In this case we still set invalid=0, | 
|  | // but the warped parameters remain the default values. | 
|  | if (!av1_opfl_affine_refinement( | 
|  | pdiff + i * pstride + j, pstride, gx + i * gstride + j, | 
|  | gy + i * gstride + j, gstride, sub_bw, sub_bh, | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | j + (sub_bw - bw) / 2, i + (sub_bh - bh) / 2, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | grad_prec_bits, &affine_params)) { | 
|  | #if CONFIG_REFINEMV | 
|  | get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, | 
|  | wms + n_blocks * 2, d0, &src_mv[0] | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | sf[0] | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ); | 
|  | get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, | 
|  | wms + n_blocks * 2 + 1, d1, &src_mv[1] | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | sf[1] | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ); | 
|  | #else | 
|  | get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, | 
|  | wms + n_blocks * 2, d0, &mbmi->mv[0].as_mv | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | sf[0] | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ); | 
|  | get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params, | 
|  | wms + n_blocks * 2 + 1, d1, &mbmi->mv[1].as_mv | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | sf[1] | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ); | 
|  | #endif  // CONFIG_REFINEMV | 
|  | } | 
|  | n_blocks++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if AFFINE_OPFL_BASED_ON_SAD | 
|  | // TODO(kslu) use SIMD versions | 
|  | static INLINE unsigned int sad_generic(const uint16_t *a, int a_stride, | 
|  | const uint16_t *b, int b_stride, | 
|  | int width, int height) { | 
|  | int y, x; | 
|  | unsigned int sad = 0; | 
|  | for (y = 0; y < height; y++) { | 
|  | for (x = 0; x < width; x++) { | 
|  | sad += abs(a[x] - b[x]); | 
|  | } | 
|  |  | 
|  | a += a_stride; | 
|  | b += b_stride; | 
|  | } | 
|  | return sad; | 
|  | } | 
|  | #endif  // AFFINE_OPFL_BASED_ON_SAD | 
|  |  | 
|  | // Update predicted blocks (P0 & P1) and their gradients based on the affine | 
|  | // model derived from the first DAMR step | 
|  | void update_pred_grad_with_affine_model( | 
|  | MACROBLOCKD *xd, int plane, int bw, int bh, WarpedMotionParams *wms, | 
|  | int mi_x, int mi_y, int16_t *tmp0, int16_t *tmp1, int16_t *gx0, | 
|  | int16_t *gy0, const int d0, const int d1, int *grad_prec_bits | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | , | 
|  | const AV1_COMMON *cm, MB_MODE_INFO *mi, int pu_width, int pu_height | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | ) { | 
|  | uint16_t *dst_warped = | 
|  | (uint16_t *)aom_memalign(16, 2 * bw * bh * sizeof(uint16_t)); | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | ConvolveParams conv_params = | 
|  | get_conv_params_no_round(0, plane, NULL, 0, 0, xd->bd); | 
|  | for (int ref = 0; ref < 2; ref++) { | 
|  | struct buf_2d *const pre_buf = &pd->pre[ref]; | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | int sub_bw = AOMMIN(AFFINE_MAX_UNIT, bw); | 
|  | int sub_bh = AOMMIN(AFFINE_MAX_UNIT, bh); | 
|  | int nb = 0; | 
|  | for (int i = 0; i < bh; i += sub_bh) { | 
|  | for (int j = 0; j < bw; j += sub_bw) { | 
|  | #if AFFINE_FAST_WARP_METHOD == 3 | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | ReferenceArea ref_area_damr_intermediate; | 
|  | av1_get_reference_area_with_padding_single( | 
|  | cm, xd, plane, mi, mi->mv[ref].as_mv, sub_bw, sub_bh, mi_x + j, | 
|  | mi_y + i, &ref_area_damr_intermediate, pu_width, pu_height, ref); | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | av1_warp_plane_bilinear( | 
|  | wms + 2 * nb + ref, xd->bd, pre_buf->buf0, pre_buf->width, | 
|  | pre_buf->height, pre_buf->stride, | 
|  | &dst_warped[ref * bw * bh + i * bw + j], mi_x + j, mi_y + i, sub_bw, | 
|  | sub_bh, bw, pd->subsampling_x, pd->subsampling_y, &conv_params | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | , | 
|  | &ref_area_damr_intermediate | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | ); | 
|  | #elif AFFINE_FAST_WARP_METHOD == 2 | 
|  | av1_warp_plane_bicubic( | 
|  | wms + 2 * nb + ref, xd->bd, pre_buf->buf0, pre_buf->width, | 
|  | pre_buf->height, pre_buf->stride, | 
|  | &dst_warped[ref * bw * bh + i * bw + j], mi_x + j, mi_y + i, sub_bw, | 
|  | sub_bh, bw, pd->subsampling_x, pd->subsampling_y, &conv_params); | 
|  | #elif AFFINE_FAST_WARP_METHOD == 1 && CONFIG_EXT_WARP_FILTER | 
|  | av1_warp_plane_ext(wms + 2 * nb + ref, xd->bd, pre_buf->buf0, | 
|  | pre_buf->width, pre_buf->height, pre_buf->stride, | 
|  | &dst_warped[ref * bw * bh + i * bw + j], mi_x + j, | 
|  | mi_y + i, sub_bw, sub_bh, bw, pd->subsampling_x, | 
|  | pd->subsampling_y, &conv_params); | 
|  | #else   // AFFINE_FAST_WARP_METHOD == 0 | 
|  | av1_warp_plane(wms + 2 * nb + ref, xd->bd, pre_buf->buf0, | 
|  | pre_buf->width, pre_buf->height, pre_buf->stride, | 
|  | &dst_warped[ref * bw * bh + i * bw + j], mi_x + j, | 
|  | mi_y + i, sub_bw, sub_bh, bw, pd->subsampling_x, | 
|  | pd->subsampling_y, &conv_params); | 
|  | #endif  // AFFINE_FAST_WARP_METHOD == 3 | 
|  | nb++; | 
|  | } | 
|  | } | 
|  | #else | 
|  | #if AFFINE_FAST_WARP_METHOD == 3 | 
|  | av1_warp_plane_bilinear(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, | 
|  | pre_buf->height, pre_buf->stride, | 
|  | &dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw, | 
|  | pd->subsampling_x, pd->subsampling_y, &conv_params); | 
|  | #elif AFFINE_FAST_WARP_METHOD == 2 | 
|  | av1_warp_plane_bicubic(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, | 
|  | pre_buf->height, pre_buf->stride, | 
|  | &dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw, | 
|  | pd->subsampling_x, pd->subsampling_y, &conv_params); | 
|  | #elif AFFINE_FAST_WARP_METHOD == 1 && CONFIG_EXT_WARP_FILTER | 
|  | av1_warp_plane_ext(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, | 
|  | pre_buf->height, pre_buf->stride, | 
|  | &dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw, | 
|  | pd->subsampling_x, pd->subsampling_y, &conv_params); | 
|  | #else   // AFFINE_FAST_WARP_METHOD == 0 | 
|  | av1_warp_plane(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width, | 
|  | pre_buf->height, pre_buf->stride, &dst_warped[ref * bw * bh], | 
|  | mi_x, mi_y, bw, bh, bw, pd->subsampling_x, pd->subsampling_y, | 
|  | &conv_params); | 
|  | #endif  // AFFINE_FAST_WARP_METHOD == 3 | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | } | 
|  | av1_copy_pred_array_highbd(&dst_warped[0], &dst_warped[bw * bh], tmp0, tmp1, | 
|  | bw, bh, d0, d1, 0); | 
|  | // Buffers gx0 and gy0 are used to store the gradients of tmp0 | 
|  | av1_compute_subpel_gradients_interp(tmp0, bw, bh, grad_prec_bits, gx0, gy0); | 
|  | aom_free(dst_warped); | 
|  | } | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  |  | 
|  | static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd( | 
|  | const uint16_t *src1, const uint16_t *src2, int16_t *dst1, int16_t *dst2, | 
|  | int bw, int bh, int d0, int d1, int centered) { | 
|  | for (int i = 0; i < bh; ++i) { | 
|  | for (int j = 0; j < bw; ++j) { | 
|  | // To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1. | 
|  | int32_t tmp_dst = | 
|  | d0 * (int32_t)src1[i * bw + j] - d1 * (int32_t)src2[i * bw + j]; | 
|  | if (centered) tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, 1); | 
|  | dst1[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX); | 
|  | if (dst2) { | 
|  | tmp_dst = (int32_t)src1[i * bw + j] - (int32_t)src2[i * bw + j]; | 
|  | dst2[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2, | 
|  | int16_t *dst1, int16_t *dst2, int bw, int bh, | 
|  | int d0, int d1, int centered) { | 
|  | compute_pred_using_interp_grad_highbd(src1, src2, dst1, dst2, bw, bh, d0, d1, | 
|  | centered); | 
|  | } | 
|  |  | 
|  | void av1_get_optflow_based_mv( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, | 
|  | #if !CONFIG_DAMR_CLEAN_UP | 
|  | const | 
|  | #endif  // !CONFIG_DAMR_CLEAN_UP | 
|  | MB_MODE_INFO *mbmi, | 
|  | int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func, | 
|  | int16_t *gx0, int16_t *gy0, int16_t *gx1, int16_t *gy1, | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | WarpedMotionParams *wms, int *use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | int *vx0, int *vy0, int *vx1, int *vy1, uint16_t *dst0, uint16_t *dst1, | 
|  | int do_pred, int use_4x4 | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | MV *best_mv_ref, int pu_width, int pu_height | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ) { | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | *use_affine_opfl = 0; | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | const int target_prec = MV_REFINE_PREC_BITS; | 
|  | const int n = opfl_get_subblock_size(bw, bh, plane, use_4x4); | 
|  | int n_blocks = (bw / n) * (bh / n); | 
|  | // Convert output MV to 1/16th pel | 
|  | assert(MV_REFINE_PREC_BITS >= 3); | 
|  | const int mv_mult = 1 << (MV_REFINE_PREC_BITS - 3); | 
|  | for (int mvi = 0; mvi < n_blocks; mvi++) { | 
|  | mv_refined[mvi * 2].as_mv.row = | 
|  | clamp(mv_refined[mvi * 2].as_mv.row * mv_mult, INT16_MIN, INT16_MAX); | 
|  | mv_refined[mvi * 2].as_mv.col = | 
|  | clamp(mv_refined[mvi * 2].as_mv.col * mv_mult, INT16_MIN, INT16_MAX); | 
|  | mv_refined[mvi * 2 + 1].as_mv.row = clamp( | 
|  | mv_refined[mvi * 2 + 1].as_mv.row * mv_mult, INT16_MIN, INT16_MAX); | 
|  | mv_refined[mvi * 2 + 1].as_mv.col = clamp( | 
|  | mv_refined[mvi * 2 + 1].as_mv.col * mv_mult, INT16_MIN, INT16_MAX); | 
|  | } | 
|  |  | 
|  | // Obtain d0 and d1 | 
|  | int d0, d1; | 
|  | if (mbmi->ref_frame[0] == TIP_FRAME) { | 
|  | d0 = cm->tip_ref.ref_offset[0]; | 
|  | d1 = cm->tip_ref.ref_offset[1]; | 
|  | } else { | 
|  | const RefCntBuffer *const r0_buf = | 
|  | get_ref_frame_buf(cm, mbmi->ref_frame[0]); | 
|  | const RefCntBuffer *const r1_buf = | 
|  | get_ref_frame_buf(cm, mbmi->ref_frame[1]); | 
|  | #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | d0 = get_relative_dist(&cm->seq_params.order_hint_info, | 
|  | cm->cur_frame->display_order_hint, | 
|  | r0_buf->display_order_hint); | 
|  | d1 = get_relative_dist(&cm->seq_params.order_hint_info, | 
|  | cm->cur_frame->display_order_hint, | 
|  | r1_buf->display_order_hint); | 
|  | #else | 
|  | d0 = get_relative_dist(&cm->seq_params.order_hint_info, | 
|  | cm->cur_frame->order_hint, r0_buf->order_hint); | 
|  | d1 = get_relative_dist(&cm->seq_params.order_hint_info, | 
|  | cm->cur_frame->order_hint, r1_buf->order_hint); | 
|  | #endif  // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC | 
|  | } | 
|  |  | 
|  | if (d0 == 0 || d1 == 0) { | 
|  | // Though OPFL is disabled when the distance from either of the reference | 
|  | // frames is zero, the MV offset buffers are still used to update the | 
|  | // mv_delta buffer. Hence, memset the MV offset buffers vx and vy to zero. | 
|  | av1_zero_array(vx0, n_blocks); | 
|  | av1_zero_array(vx1, n_blocks); | 
|  | av1_zero_array(vy0, n_blocks); | 
|  | av1_zero_array(vy1, n_blocks); | 
|  | return; | 
|  | } | 
|  |  | 
|  | reduce_temporal_dist(&d0, &d1); | 
|  |  | 
|  | if (do_pred) { | 
|  | // Obrain P0 and P1 | 
|  | InterPredParams params0, params1; | 
|  | av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, | 
|  | mc_buf, ¶ms0, calc_subpel_params_func, 0, | 
|  | dst0 | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | &best_mv_ref[0], pu_width, pu_height | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ); | 
|  | av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, | 
|  | mc_buf, ¶ms1, calc_subpel_params_func, 1, | 
|  | dst1 | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | &best_mv_ref[1], pu_width, pu_height | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ); | 
|  | } | 
|  |  | 
|  | int grad_prec_bits; | 
|  |  | 
|  | // Compute gradients of P0 and P1 with interpolation | 
|  | (void)gx1; | 
|  | (void)gy1; | 
|  |  | 
|  | // Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1 | 
|  | const int tmp_w = (mbmi->ref_frame[0] == TIP_FRAME) ? bw : MAX_SB_SIZE; | 
|  | const int tmp_h = (mbmi->ref_frame[0] == TIP_FRAME) ? bh : MAX_SB_SIZE; | 
|  | int16_t *tmp0 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t)); | 
|  | int16_t *tmp1 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t)); | 
|  | av1_copy_pred_array_highbd(dst0, dst1, tmp0, tmp1, bw, bh, d0, d1, 0); | 
|  | // Buffers gx0 and gy0 are used to store the gradients of tmp0 | 
|  | av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0); | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | #if AFFINE_OPFL_BASED_ON_SAD | 
|  | const unsigned int sad_thr = 1; | 
|  | if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms) { | 
|  | unsigned int sad_pred = sad_generic(dst0, bw, dst1, bw, bw, bh); | 
|  | if (sad_pred >= sad_thr * bw * bh) *use_affine_opfl = 1; | 
|  | } | 
|  | #endif | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | const struct scale_factors *sf[2]; | 
|  | sf[0] = get_ref_scale_factors_const(cm, mbmi->ref_frame[0]); | 
|  | sf[1] = get_ref_scale_factors_const(cm, mbmi->ref_frame[1]); | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms && | 
|  | *use_affine_opfl) { | 
|  | av1_opfl_affine_refinement_mxn(tmp1, bw, gx0, gy0, bw, bw, bh, d0, d1, mi_x, | 
|  | mi_y, | 
|  | #if CONFIG_REFINEMV | 
|  | best_mv_ref, | 
|  | #endif  // CONFIG_REFINEMV | 
|  | grad_prec_bits, wms | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | , | 
|  | sf | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  | ); | 
|  |  | 
|  | update_pred_grad_with_affine_model(xd, plane, bw, bh, wms, mi_x, mi_y, tmp0, | 
|  | tmp1, gx0, gy0, d0, d1, &grad_prec_bits | 
|  | #if CONFIG_DAMR_CLEAN_UP | 
|  | , | 
|  | cm, mbmi, pu_width, pu_height | 
|  | #endif  // CONFIG_DAMR_CLEAN_UP | 
|  | ); | 
|  |  | 
|  | // Subblock wise translational refinement | 
|  | if (damr_refine_subblock(plane, bw, bh, mbmi->comp_refine_type, n, n)) { | 
|  | // Find translational parameters per subblock. | 
|  | n_blocks = | 
|  | av1_opfl_mv_refinement_nxn(tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, | 
|  | grad_prec_bits, target_prec, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | mi_x, mi_y, cm->mi_params.mi_cols, | 
|  | cm->mi_params.mi_rows, build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | vx0, vy0, vx1, vy1); | 
|  | } | 
|  | } else { | 
|  | n_blocks = av1_opfl_mv_refinement_nxn( | 
|  | tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | mi_x, mi_y, cm->mi_params.mi_cols, cm->mi_params.mi_rows, | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | vx0, vy0, vx1, vy1); | 
|  | } | 
|  | #else | 
|  | n_blocks = av1_opfl_mv_refinement_nxn(tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, | 
|  | d1, grad_prec_bits, target_prec, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | mi_x, mi_y, cm->mi_params.mi_cols, | 
|  | cm->mi_params.mi_rows, build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | vx0, vy0, vx1, vy1); | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  |  | 
|  | aom_free(tmp0); | 
|  | aom_free(tmp1); | 
|  |  | 
|  | for (int i = 0; i < n_blocks; i++) { | 
|  | vy0[i] = clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); | 
|  | vx0[i] = clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); | 
|  | vy1[i] = clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); | 
|  | vx1[i] = clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); | 
|  | mv_refined[i * 2].as_mv.row = | 
|  | clamp(mv_refined[i * 2].as_mv.row + vy0[i], INT16_MIN, INT16_MAX); | 
|  | mv_refined[i * 2].as_mv.col = | 
|  | clamp(mv_refined[i * 2].as_mv.col + vx0[i], INT16_MIN, INT16_MAX); | 
|  | mv_refined[i * 2 + 1].as_mv.row = | 
|  | clamp(mv_refined[i * 2 + 1].as_mv.row + vy1[i], INT16_MIN, INT16_MAX); | 
|  | mv_refined[i * 2 + 1].as_mv.col = | 
|  | clamp(mv_refined[i * 2 + 1].as_mv.col + vx1[i], INT16_MIN, INT16_MAX); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | int is_out_of_frame_block(const InterPredParams *inter_pred_params, | 
|  | int frame_width, int frame_height, int sub_block_id) { | 
|  | for (int ref = 0; ref < 2; ref++) { | 
|  | const BacpBlockData *const b_data = | 
|  | &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref]; | 
|  | if (b_data->x0 < 0 || b_data->x0 > frame_width - 1 || b_data->x1 < 0 || | 
|  | b_data->x1 > frame_width | 
|  |  | 
|  | || b_data->y0 < 0 || b_data->y0 > frame_height - 1 || b_data->y1 < 0 || | 
|  | b_data->y1 > frame_height) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 | 
|  | void av1_init_wedge_masks() { | 
|  | init_wedge_master_masks(); | 
|  | init_wedge_masks(); | 
|  | init_smooth_interintra_masks(); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void build_masked_compound_no_round( | 
|  | uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, | 
|  | const CONV_BUF_TYPE *src1, int src1_stride, | 
|  | const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, | 
|  | int w, InterPredParams *inter_pred_params) { | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | const int ssy = (inter_pred_params->conv_params.plane && | 
|  | comp_data->type == COMPOUND_AVERAGE) | 
|  | ? 0 | 
|  | : inter_pred_params->subsampling_y; | 
|  | const int ssx = (inter_pred_params->conv_params.plane && | 
|  | comp_data->type == COMPOUND_AVERAGE) | 
|  | ? 0 | 
|  | : inter_pred_params->subsampling_x; | 
|  | #else | 
|  | const int ssy = inter_pred_params->subsampling_y; | 
|  | const int ssx = inter_pred_params->subsampling_x; | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); | 
|  | const int mask_stride = block_size_wide[sb_type]; | 
|  | aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, | 
|  | src1_stride, mask, mask_stride, w, h, ssx, ssy, | 
|  | &inter_pred_params->conv_params, | 
|  | inter_pred_params->bit_depth); | 
|  | } | 
|  | #if !CONFIG_D071_IMP_MSK_BLD | 
|  | static | 
|  | #endif | 
|  | void | 
|  | make_masked_inter_predictor(const uint16_t *pre, int pre_stride, | 
|  | uint16_t *dst, int dst_stride, | 
|  | InterPredParams *inter_pred_params, | 
|  | const SubpelParams *subpel_params | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | , | 
|  | int use_bacp, int sub_block_id | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | ) { | 
|  | const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp; | 
|  | BLOCK_SIZE sb_type = inter_pred_params->sb_type; | 
|  |  | 
|  | // We're going to call av1_make_inter_predictor to generate a prediction into | 
|  | // a temporary buffer, then will blend that temporary buffer with that from | 
|  | // the other reference. | 
|  | DECLARE_ALIGNED(32, uint16_t, tmp_buf[MAX_SB_SQUARE]); | 
|  |  | 
|  | const int tmp_buf_stride = MAX_SB_SIZE; | 
|  | CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst; | 
|  | int org_dst_stride = inter_pred_params->conv_params.dst_stride; | 
|  | CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; | 
|  | inter_pred_params->conv_params.dst = tmp_buf16; | 
|  | inter_pred_params->conv_params.dst_stride = tmp_buf_stride; | 
|  | assert(inter_pred_params->conv_params.do_average == 0); | 
|  |  | 
|  | // This will generate a prediction in tmp_buf for the second reference | 
|  | av1_make_inter_predictor(pre, pre_stride, tmp_buf, MAX_SB_SIZE, | 
|  | inter_pred_params, subpel_params); | 
|  |  | 
|  | if (!inter_pred_params->conv_params.plane && | 
|  | comp_data->type == COMPOUND_DIFFWTD) { | 
|  | av1_build_compound_diffwtd_mask_d16( | 
|  | comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, | 
|  | tmp_buf16, tmp_buf_stride, inter_pred_params->block_height, | 
|  | inter_pred_params->block_width, &inter_pred_params->conv_params, | 
|  | inter_pred_params->bit_depth); | 
|  | } | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | // Mask is generated from luma and reuse for chroma | 
|  | const int generate_mask_for_this_plane = | 
|  | (!inter_pred_params->conv_params.plane || | 
|  | comp_data->type == COMPOUND_AVERAGE); | 
|  | if (use_bacp && generate_mask_for_this_plane) { | 
|  | uint8_t *mask = comp_data->seg_mask; | 
|  | int mask_stride = block_size_wide[sb_type]; | 
|  | BacpBlockData *b_data_0 = | 
|  | &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 0]; | 
|  | BacpBlockData *b_data_1 = | 
|  | &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 1]; | 
|  |  | 
|  | for (int i = 0; i < inter_pred_params->block_height; ++i) { | 
|  | for (int j = 0; j < inter_pred_params->block_width; ++j) { | 
|  | int x = b_data_0->x0 + j; | 
|  | int y = b_data_0->y0 + i; | 
|  |  | 
|  | int p0_available = | 
|  | (x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 && | 
|  | y < inter_pred_params->ref_frame_buf.height); | 
|  |  | 
|  | x = b_data_1->x0 + j; | 
|  | y = b_data_1->y0 + i; | 
|  | int p1_available = | 
|  | (x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 && | 
|  | y < inter_pred_params->ref_frame_buf.height); | 
|  |  | 
|  | if (p0_available && !p1_available) { | 
|  | mask[j] = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT; | 
|  | } else if (!p0_available && p1_available) { | 
|  | mask[j] = DEFAULT_IMP_MSK_WT; | 
|  | } else if (comp_data->type == COMPOUND_AVERAGE) { | 
|  | mask[j] = AOM_BLEND_A64_MAX_ALPHA >> 1; | 
|  | } | 
|  | } | 
|  | mask += mask_stride; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | build_masked_compound_no_round( | 
|  | dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, | 
|  | comp_data, sb_type, inter_pred_params->block_height, | 
|  | inter_pred_params->block_width, inter_pred_params); | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | // restore to previous state | 
|  | inter_pred_params->conv_params.dst = org_dst; | 
|  | inter_pred_params->conv_params.dst_stride = org_dst_stride; | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | } | 
|  |  | 
|  | // Makes the interpredictor for the region by dividing it up into nxn blocks | 
|  | // and running the interpredictor code on each one. | 
|  | void make_inter_pred_of_nxn( | 
|  | uint16_t *dst, int dst_stride, int_mv *const mv_refined, int *vxy_bufs, | 
|  | const int vxy_size, InterPredParams *inter_pred_params, MACROBLOCKD *xd, | 
|  | int mi_x, int mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | const AV1_COMMON *cm, int pu_width, int plane, | 
|  | CompoundRefineType comp_refine_type, WarpedMotionParams *wms, int_mv *mv, | 
|  | const int use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func, | 
|  | int use_4x4, SubpelParams *subpel_params | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | , | 
|  | MB_MODE_INFO *mi, int pu_height, const MV mi_mv[2] | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | int use_sub_pad | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | , | 
|  | int use_sub_pad_warp | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | ) { | 
|  | int opfl_sub_bw = OF_BSIZE; | 
|  | int opfl_sub_bh = OF_BSIZE; | 
|  | const int is_subsampling_422 = | 
|  | plane && (xd->plane[plane].subsampling_x == 1 && | 
|  | xd->plane[plane].subsampling_y == 0); | 
|  | opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh); | 
|  |  | 
|  | int n_blocks = 0; | 
|  | int bw = inter_pred_params->orig_block_width; | 
|  | int bh = inter_pred_params->orig_block_height; | 
|  | int sub_bw = opfl_sub_bw; | 
|  | int sub_bh = opfl_sub_bh; | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | MV ref_mv = mv_refined[ref].as_mv; | 
|  | if (comp_refine_type >= COMP_AFFINE_REFINE_START && | 
|  | !damr_refine_subblock(plane, bw, bh, comp_refine_type, sub_bw, sub_bh)) { | 
|  | sub_bw = bw; | 
|  | sub_bh = bh; | 
|  | } | 
|  | const int unit_offset = 1 << WARPEDMODEL_PREC_BITS; | 
|  | #if AFFINE_CHROMA_REFINE_METHOD >= 2 | 
|  | if (wms && comp_refine_type >= COMP_AFFINE_REFINE_START && plane) { | 
|  | WarpedMotionParams ref_wm = wms ? wms[ref] : default_warp_params; | 
|  | // Apply offsets based on the affine parameters. bw, bh, and wm are | 
|  | // for luma plane, so compute the warp MV in luma and then scale it | 
|  | // for chroma | 
|  | const int32_t blk_offset_x_hp = | 
|  | ref_wm.wmmat[0] - mv->as_mv.col * (1 << (WARPEDMODEL_PREC_BITS - 3)) + | 
|  | mi_x * (ref_wm.wmmat[2] - unit_offset) + mi_y * ref_wm.wmmat[3]; | 
|  | const int32_t blk_offset_y_hp = | 
|  | ref_wm.wmmat[1] - mv->as_mv.row * (1 << (WARPEDMODEL_PREC_BITS - 3)) + | 
|  | mi_x * ref_wm.wmmat[4] + mi_y * (ref_wm.wmmat[5] - unit_offset); | 
|  | ref_mv.col += ROUND_POWER_OF_TWO_SIGNED( | 
|  | blk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); | 
|  | ref_mv.row += ROUND_POWER_OF_TWO_SIGNED( | 
|  | blk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); | 
|  | } | 
|  | #else | 
|  | (void)mv; | 
|  | #endif | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | assert(bw % sub_bw == 0); | 
|  | assert(bh % sub_bh == 0); | 
|  | CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst; | 
|  | inter_pred_params->block_width = sub_bw; | 
|  | inter_pred_params->block_height = sub_bh; | 
|  |  | 
|  | MV *subblock_mv; | 
|  | MV avg_mv; | 
|  | uint16_t *pre; | 
|  | int src_stride = 0; | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | int sb_idx = 0; | 
|  | int affine_sub_bw = | 
|  | AOMMIN(AFFINE_MAX_UNIT >> inter_pred_params->subsampling_x, bw); | 
|  | int affine_sub_bh = | 
|  | AOMMIN(AFFINE_MAX_UNIT >> inter_pred_params->subsampling_y, bh); | 
|  | int wms_stride = bw / affine_sub_bw; | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  |  | 
|  | int *vx = &vxy_bufs[vxy_size * ref]; | 
|  | int *vy = &vxy_bufs[vxy_size * (2 + ref)]; | 
|  |  | 
|  | // Process whole nxn blocks. | 
|  | for (int j = 0; j < bh; j += sub_bh) { | 
|  | for (int i = 0; i < bw; i += sub_bw) { | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | ReferenceArea ref_area_opfl; | 
|  | if (sub_bh >= 8 && sub_bw >= 8 && use_sub_pad) { | 
|  | av1_get_reference_area_with_padding_single( | 
|  | cm, xd, plane, mi, mi_mv[ref], sub_bw, sub_bh, mi_x + i, mi_y + j, | 
|  | &ref_area_opfl, pu_width, pu_height, ref); | 
|  | inter_pred_params->use_ref_padding = 1; | 
|  | inter_pred_params->use_damr_padding = 1; | 
|  | inter_pred_params->ref_area = &ref_area_opfl; | 
|  | } | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | inter_pred_params->use_warp_bd_damr = 0; | 
|  | inter_pred_params->warp_bd_box_damr.x0 = 0; | 
|  | inter_pred_params->warp_bd_box_damr.y0 = 0; | 
|  | inter_pred_params->warp_bd_box_damr.x1 = cm->width; | 
|  | inter_pred_params->warp_bd_box_damr.y1 = cm->height; | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | const int x = mi_x + i * (1 << inter_pred_params->subsampling_x); | 
|  | const int y = mi_y + j * (1 << inter_pred_params->subsampling_y); | 
|  | if (is_subblock_outside(x, y, cm->mi_params.mi_cols, | 
|  | cm->mi_params.mi_rows, build_for_decode)) { | 
|  | n_blocks++; | 
|  | dst += sub_bw; | 
|  | inter_pred_params->conv_params.dst += sub_bw; | 
|  | inter_pred_params->pix_col += sub_bw; | 
|  | continue; | 
|  | } | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | // Identify warped parameter to used for this nxn subblock | 
|  | sb_idx = (j / affine_sub_bh) * wms_stride + (i / affine_sub_bw); | 
|  | WarpedMotionParams *wms_sb = wms ? (wms + 2 * sb_idx) : NULL; | 
|  | #else | 
|  | WarpedMotionParams *wms_sb = wms; | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | int delta_idx = (j / sub_bh) * (pu_width / sub_bw) + (i / sub_bw); | 
|  | if (wms_sb && comp_refine_type >= COMP_AFFINE_REFINE_START && | 
|  | use_affine_opfl) { | 
|  | // If warped model is not valid, wmmat[0] and wmmat[1] remain the | 
|  | // translational offset parameters in block-relative coordinates. Here | 
|  | // they are applied as MV offsets for simple translational prediction | 
|  | WarpedMotionParams this_wm = wms_sb[ref]; | 
|  | if (this_wm.invalid | 
|  | #if !CONFIG_EXT_WARP_FILTER | 
|  | || sub_bh < 8 || sub_bw < 8 | 
|  | #endif  // !CONFIG_EXT_WARP_FILTER | 
|  | #if AFFINE_CHROMA_REFINE_METHOD >= 2 | 
|  | || plane | 
|  | #endif  // AFFINE_CHROMA_REFINE_METHOD >= 2 | 
|  | ) { | 
|  | // When warp prediction is not allowed, apply translational prediction | 
|  | // based on warp parameters | 
|  | inter_pred_params->mode = TRANSLATION_PRED; | 
|  | MV cur_mv = ref_mv; | 
|  | WarpedMotionParams ref_wm = | 
|  | wms_sb ? wms_sb[ref] : default_warp_params; | 
|  | // Apply offsets based on current subblock center position | 
|  | const int subblk_center_x = (i + sub_bw / 2 - 1) | 
|  | << inter_pred_params->subsampling_x; | 
|  | const int subblk_center_y = (j + sub_bh / 2 - 1) | 
|  | << inter_pred_params->subsampling_y; | 
|  | const int32_t max_value = | 
|  | INT32_MAX - (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); | 
|  | const int32_t min_value = -max_value - 1; | 
|  | const int32_t subblk_offset_x_hp = (int32_t)clamp64( | 
|  | (int64_t)subblk_center_x * (ref_wm.wmmat[2] - unit_offset) + | 
|  | (int64_t)subblk_center_y * ref_wm.wmmat[3], | 
|  | min_value, max_value); | 
|  | const int32_t subblk_offset_y_hp = (int32_t)clamp64( | 
|  | (int64_t)subblk_center_x * ref_wm.wmmat[4] + | 
|  | (int64_t)subblk_center_y * (ref_wm.wmmat[5] - unit_offset), | 
|  | min_value, max_value); | 
|  | cur_mv.col += ROUND_POWER_OF_TWO_SIGNED( | 
|  | subblk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); | 
|  | cur_mv.row += ROUND_POWER_OF_TWO_SIGNED( | 
|  | subblk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS); | 
|  | #if AFFINE_CHROMA_REFINE_METHOD == 3 | 
|  | if (comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P | 
|  | #if !CONFIG_EXT_WARP_FILTER | 
|  | && n > 4 | 
|  | #endif  // !CONFIG_EXT_WARP_FILTER | 
|  | ) { | 
|  | // If this is a 4x4 colocated chroma block of a 8x8 luma block, | 
|  | // colocated subblocks will be 2x2. In this case we take the average | 
|  | // of 4 refined MVs and use it to refine prediction at 4x4 level. | 
|  | if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) { | 
|  | cur_mv.col += | 
|  | ROUND_POWER_OF_TWO_SIGNED(vx[0] + vx[1] + vx[2] + vx[3], 2); | 
|  | cur_mv.row += | 
|  | ROUND_POWER_OF_TWO_SIGNED(vy[0] + vy[1] + vy[2] + vy[3], 2); | 
|  | } else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4 && | 
|  | is_subsampling_422) { | 
|  | cur_mv.col += ROUND_POWER_OF_TWO_SIGNED( | 
|  | vx[delta_idx * 2] + vx[delta_idx * 2 + 1], 1); | 
|  | cur_mv.row += ROUND_POWER_OF_TWO_SIGNED( | 
|  | vy[delta_idx * 2] + vy[delta_idx * 2 + 1], 1); | 
|  | } else { | 
|  | cur_mv.col += vx[delta_idx]; | 
|  | cur_mv.row += vy[delta_idx]; | 
|  | } | 
|  | } | 
|  | #endif  // AFFINE_CHROMA_REFINE_METHOD == 3 | 
|  | subblock_mv = &cur_mv; | 
|  | subblock_mv->col = clamp(subblock_mv->col, MV_LOW + 1, MV_UPP - 1); | 
|  | subblock_mv->row = clamp(subblock_mv->row, MV_LOW + 1, MV_UPP - 1); | 
|  | } else { | 
|  | // Overwrite inter_pred_params to trigger warped prediction in | 
|  | // av1_make_inter_predictor() | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | WarpBoundaryBox warp_bd_box; | 
|  | if (use_sub_pad_warp && (sub_bh < 8 || sub_bw < 8)) { | 
|  | av1_get_reference_area_with_padding_single_warp( | 
|  | cm, xd, plane, mi, mi_mv[ref], sub_bw, sub_bh, | 
|  | mi_x + (i << inter_pred_params->subsampling_x), | 
|  | mi_y + (j << inter_pred_params->subsampling_y), &warp_bd_box, | 
|  | pu_width, pu_height, ref); | 
|  | inter_pred_params->use_warp_bd_damr = 1; | 
|  | inter_pred_params->warp_bd_box_damr = warp_bd_box; | 
|  | } | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | inter_pred_params->mode = WARP_PRED; | 
|  | inter_pred_params->warp_params = this_wm; | 
|  | if (comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P | 
|  | #if !CONFIG_EXT_WARP_FILTER | 
|  | && n > 4 | 
|  | #endif  // !CONFIG_EXT_WARP_FILTER | 
|  | ) { | 
|  | // If this is a 4x4 colocated chroma block of a 8x8 luma block, | 
|  | // colocated subblocks will be 2x2. In this case we take the average | 
|  | // of 4 refined MVs and use it to refine prediction at 4x4 level. | 
|  | if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) { | 
|  | inter_pred_params->warp_params.wmmat[0] += | 
|  | (vx[0] + vx[1] + vx[2] + vx[3]) * | 
|  | (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2)); | 
|  | inter_pred_params->warp_params.wmmat[1] += | 
|  | (vy[0] + vy[1] + vy[2] + vy[3]) * | 
|  | (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2)); | 
|  | } else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4 && | 
|  | is_subsampling_422) { | 
|  | inter_pred_params->warp_params.wmmat[0] += | 
|  | (vx[delta_idx * 2] + vx[(delta_idx * 2) + 1]) * | 
|  | (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 1)); | 
|  | inter_pred_params->warp_params.wmmat[1] += | 
|  | (vy[delta_idx * 2] + vy[(delta_idx * 2) + 1]) * | 
|  | (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 1)); | 
|  | } else { | 
|  | inter_pred_params->warp_params.wmmat[0] += | 
|  | vx[delta_idx] * | 
|  | (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS)); | 
|  | inter_pred_params->warp_params.wmmat[1] += | 
|  | vy[delta_idx] * | 
|  | (1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS)); | 
|  | } | 
|  | inter_pred_params->warp_params.wmmat[0] = | 
|  | clamp(inter_pred_params->warp_params.wmmat[0], | 
|  | -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  | inter_pred_params->warp_params.wmmat[1] = | 
|  | clamp(inter_pred_params->warp_params.wmmat[1], | 
|  | -WARPEDMODEL_TRANS_CLAMP, | 
|  | WARPEDMODEL_TRANS_CLAMP - (1 << WARP_PARAM_REDUCE_BITS)); | 
|  | } | 
|  | subblock_mv = &mv_refined[ref].as_mv; | 
|  | } | 
|  | } else { | 
|  | if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) { | 
|  | avg_mv.row = | 
|  | ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.row + | 
|  | mv_refined[1 * 2 + ref].as_mv.row + | 
|  | mv_refined[2 * 2 + ref].as_mv.row + | 
|  | mv_refined[3 * 2 + ref].as_mv.row, | 
|  | 2); | 
|  | avg_mv.col = | 
|  | ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.col + | 
|  | mv_refined[1 * 2 + ref].as_mv.col + | 
|  | mv_refined[2 * 2 + ref].as_mv.col + | 
|  | mv_refined[3 * 2 + ref].as_mv.col, | 
|  | 2); | 
|  | subblock_mv = &avg_mv; | 
|  | } else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4 && | 
|  | is_subsampling_422) { | 
|  | const int sub_idx = delta_idx * 2; | 
|  | avg_mv.row = ROUND_POWER_OF_TWO_SIGNED( | 
|  | mv_refined[sub_idx * 2 + ref].as_mv.row + | 
|  | mv_refined[(sub_idx + 1) * 2 + ref].as_mv.row, | 
|  | 1); | 
|  | avg_mv.col = ROUND_POWER_OF_TWO_SIGNED( | 
|  | mv_refined[sub_idx * 2 + ref].as_mv.col + | 
|  | mv_refined[(sub_idx + 1) * 2 + ref].as_mv.col, | 
|  | 1); | 
|  | subblock_mv = &avg_mv; | 
|  | } else { | 
|  | subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv); | 
|  | } | 
|  | } | 
|  |  | 
|  | const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2); | 
|  | const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2); | 
|  | inter_pred_params->dist_to_top_edge = -GET_MV_SUBPEL(mi_y + j); | 
|  | inter_pred_params->dist_to_bottom_edge = | 
|  | GET_MV_SUBPEL(height - bh - mi_y - j); | 
|  | inter_pred_params->dist_to_left_edge = -GET_MV_SUBPEL(mi_x + i); | 
|  | inter_pred_params->dist_to_right_edge = | 
|  | GET_MV_SUBPEL(width - bw - mi_x - i); | 
|  | #else | 
|  | subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv); | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  |  | 
|  | calc_subpel_params_func(subblock_mv, inter_pred_params, xd, mi_x + i, | 
|  | mi_y + j, ref, 1, mc_buf, &pre, subpel_params, | 
|  | &src_stride); | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | int use_bacp = 0; | 
|  | assert(inter_pred_params->mask_comp.type == COMPOUND_AVERAGE); | 
|  | assert(inter_pred_params->comp_mode == UNIFORM_COMP); | 
|  | int stored_do_average = inter_pred_params->conv_params.do_average; | 
|  | InterCompMode stored_comp_mode = inter_pred_params->comp_mode; | 
|  | uint8_t *stored_seg_mask = inter_pred_params->mask_comp.seg_mask; | 
|  |  | 
|  | if (inter_pred_params->border_data.enable_bacp) { | 
|  | inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x0 = | 
|  | subpel_params->x0; | 
|  | inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x1 = | 
|  | subpel_params->x1; | 
|  | inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y0 = | 
|  | subpel_params->y0; | 
|  | inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y1 = | 
|  | subpel_params->y1; | 
|  | if (ref == 1) { | 
|  | use_bacp = is_out_of_frame_block( | 
|  | inter_pred_params, inter_pred_params->ref_frame_buf.width, | 
|  | inter_pred_params->ref_frame_buf.height, n_blocks); | 
|  |  | 
|  | if (use_bacp && | 
|  | inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { | 
|  | inter_pred_params->conv_params.do_average = 0; | 
|  | inter_pred_params->comp_mode = MASK_COMP; | 
|  | inter_pred_params->mask_comp.seg_mask = xd->seg_mask; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(IMPLIES(ref == 0, !use_bacp)); | 
|  | if (use_bacp) { | 
|  | assert(inter_pred_params->comp_mode == MASK_COMP); | 
|  | make_masked_inter_predictor(pre, src_stride, dst, dst_stride, | 
|  | inter_pred_params, subpel_params, use_bacp, | 
|  | n_blocks); | 
|  |  | 
|  | } else { | 
|  | #endif | 
|  |  | 
|  | av1_make_inter_predictor(pre, src_stride, dst, dst_stride, | 
|  | inter_pred_params, subpel_params); | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | } | 
|  |  | 
|  | // Restored to original inter_pred_params | 
|  | if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { | 
|  | inter_pred_params->conv_params.do_average = stored_do_average; | 
|  | inter_pred_params->comp_mode = stored_comp_mode; | 
|  | inter_pred_params->mask_comp.seg_mask = stored_seg_mask; | 
|  | } | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | n_blocks++; | 
|  | dst += sub_bw; | 
|  | inter_pred_params->conv_params.dst += sub_bw; | 
|  | inter_pred_params->pix_col += sub_bw; | 
|  | } | 
|  | dst -= bw; | 
|  | inter_pred_params->conv_params.dst -= bw; | 
|  | inter_pred_params->pix_col -= bw; | 
|  |  | 
|  | dst += sub_bh * dst_stride; | 
|  | inter_pred_params->conv_params.dst += | 
|  | sub_bh * inter_pred_params->conv_params.dst_stride; | 
|  | inter_pred_params->pix_row += sub_bh; | 
|  | } | 
|  |  | 
|  | inter_pred_params->conv_params.dst = orig_conv_dst; | 
|  | } | 
|  |  | 
|  | // Use a second pass of motion compensation to rebuild inter predictor | 
|  | void av1_opfl_rebuild_inter_predictor( | 
|  | uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined, | 
|  | int *vxy_bufs, const int vxy_size, InterPredParams *inter_pred_params, | 
|  | MACROBLOCKD *xd, int mi_x, int mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | const AV1_COMMON *cm, int pu_width, CompoundRefineType comp_refine_type, | 
|  | WarpedMotionParams *wms, int_mv *mv, const int use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func, | 
|  | int use_4x4 | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | , | 
|  | MB_MODE_INFO *mi, int pu_height, const MV mi_mv[2] | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | int use_sub_pad | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | , | 
|  | int use_sub_pad_warp | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | ) { | 
|  | SubpelParams subpel_params; | 
|  |  | 
|  | make_inter_pred_of_nxn( | 
|  | dst, dst_stride, mv_refined, vxy_bufs, vxy_size, inter_pred_params, xd, | 
|  | mi_x, mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | cm, pu_width, plane, comp_refine_type, wms, mv, use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | ref, mc_buf, calc_subpel_params_func, use_4x4, &subpel_params | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | , | 
|  | mi, pu_height, mi_mv | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION||CONFIG_WARP_BD_BOX | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | use_sub_pad | 
|  | #endif | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | , | 
|  | use_sub_pad_warp | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | ); | 
|  | } | 
|  |  | 
|  | void av1_build_one_inter_predictor( | 
|  | uint16_t *dst, int dst_stride, const MV *const src_mv, | 
|  | InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, | 
|  | int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) { | 
|  | SubpelParams subpel_params; | 
|  | uint16_t *src; | 
|  | int src_stride; | 
|  | calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | 1 /* is_mv_1_16th_pel  */, | 
|  | #else | 
|  | 0, | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | mc_buf, &src, &subpel_params, &src_stride); | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | int use_bacp = 0; | 
|  | int sub_block_id = 0; | 
|  | if (inter_pred_params->border_data.enable_bacp) { | 
|  | inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x0 = | 
|  | subpel_params.x0; | 
|  | inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x1 = | 
|  | subpel_params.x1; | 
|  | inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y0 = | 
|  | subpel_params.y0; | 
|  | inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y1 = | 
|  | subpel_params.y1; | 
|  | if (ref == 1) { | 
|  | use_bacp = is_out_of_frame_block( | 
|  | inter_pred_params, inter_pred_params->ref_frame_buf.width, | 
|  | inter_pred_params->ref_frame_buf.height, sub_block_id); | 
|  | if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { | 
|  | inter_pred_params->conv_params.do_average = 0; | 
|  | inter_pred_params->comp_mode = MASK_COMP; | 
|  | inter_pred_params->mask_comp.seg_mask = xd->seg_mask; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(IMPLIES(ref == 0, !use_bacp)); | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | if (inter_pred_params->comp_mode == UNIFORM_SINGLE || | 
|  | inter_pred_params->comp_mode == UNIFORM_COMP) { | 
|  | av1_make_inter_predictor(src, src_stride, dst, dst_stride, | 
|  | inter_pred_params, &subpel_params); | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | assert(IMPLIES(use_bacp, ref == 0)); | 
|  | assert(use_bacp == 0); | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | } else { | 
|  | make_masked_inter_predictor(src, src_stride, dst, dst_stride, | 
|  | inter_pred_params, &subpel_params | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | , | 
|  | use_bacp, 0 | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | ); | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | assert(IMPLIES(inter_pred_params->border_data.enable_bacp, ref == 1)); | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | // The below functions are used for scaling X, Y position | 
|  | // for BAWP with across scale prediction | 
|  | // In future, more generalized implementations for all inter-coding tools | 
|  | // are required for supporting across scale prediction | 
|  | static INLINE int scaled_x_gen(int val, const struct scale_factors *sf) { | 
|  | const int64_t tval = (int64_t)val * sf->x_scale_fp; | 
|  | return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT); | 
|  | } | 
|  |  | 
|  | static INLINE int scaled_y_gen(int val, const struct scale_factors *sf) { | 
|  | const int64_t tval = (int64_t)val * sf->y_scale_fp; | 
|  | return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT); | 
|  | } | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | // Derive the scaling factor and offset of block adaptive weighted prediction | 
|  | // mode. One row from the top boundary and one column from the left boundary | 
|  | // are used in the less square error process. | 
|  |  | 
|  | #if CONFIG_BAWP_FIX_DIVISION_16x16_MC | 
|  | // The bellow arrays are used to map the number of BAWP reference samples to a | 
|  | // 2^N number for each side (left or above). | 
|  | static const uint8_t blk_size_log2_bawp[BAWP_MAX_REF_NUMB + 1] = { | 
|  | 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4 | 
|  | }; | 
|  | static const uint8_t log_to_blk_size[5] = { 0, 2, 4, 8, 16 }; | 
|  |  | 
|  | // The below function is used to allocate the number of reference samples for | 
|  | // the left and above based on the availablity of the left and above and the | 
|  | // total number of available samples. The final number should be 0, 4, 8, 16 or | 
|  | // 32 in total. | 
|  | static void derive_number_ref_samples_bawp(bool above_valid, bool left_valid, | 
|  | int width, int height, int *numb_up, | 
|  | int *numb_left) { | 
|  | // If the number of adjusted number of samples is zero, set the availability | 
|  | // to be false | 
|  | const bool above_available = width ? above_valid : false; | 
|  | const bool left_available = height ? left_valid : false; | 
|  |  | 
|  | // If both left and above references are availalbe, the numbers of reference | 
|  | // samples in each side are calculated based on the clamped width and clamped | 
|  | // height. Else, only the reference samples in the available side is used. | 
|  |  | 
|  | *numb_up = -1; | 
|  | *numb_left = -1; | 
|  | if (above_available && left_available) { | 
|  | if (width == 16 && height == 16) { | 
|  | *numb_up = 16; | 
|  | *numb_left = 16;  // Using 32 samples in total for 16x16 | 
|  | } else if (width > 4 && height > 4) { | 
|  | *numb_up = 8; | 
|  | *numb_left = 8;  // (16) 8x8, 8x16, 16x8 | 
|  | } else if (width < 16 && height < 16) { | 
|  | *numb_up = 4; | 
|  | *numb_left = 4;  // (8) 4x8, 8x4 | 
|  | } else if (width == 16) { | 
|  | *numb_up = 16; | 
|  | *numb_left = 0;  // (16) 16x4 | 
|  | } else { | 
|  | *numb_up = 0; | 
|  | *numb_left = 16;  // (16) 4x16 | 
|  | } | 
|  | } else if (above_available) { | 
|  | *numb_up = width; | 
|  | *numb_left = 0; | 
|  | } else if (left_available) { | 
|  | *numb_up = 0; | 
|  | *numb_left = height; | 
|  | } else { | 
|  | *numb_up = 0; | 
|  | *numb_left = 0; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_BAWP_FIX_DIVISION_16x16_MC | 
|  |  | 
|  | static void derive_bawp_parameters(MACROBLOCKD *xd, uint16_t *recon_top, | 
|  | uint16_t *recon_left, int rec_stride, | 
|  | uint16_t *ref_top, uint16_t *ref_left, | 
|  | int ref_stride, int ref, int plane, int bw, | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | int bh, const struct scale_factors *sf) | 
|  | #else   // CONFIG_BAWP_ACROSS_SCALES | 
|  | int bh) | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | { | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | #if CONFIG_MORPH_PRED | 
|  | if (!mbmi->morph_pred) assert(mbmi->bawp_flag[0] >= 1); | 
|  | #else | 
|  | assert(mbmi->bawp_flag[0] >= 1); | 
|  | #endif  // CONFIG_MORPH_PRED | 
|  | // only integer position of reference, may need to consider | 
|  | // fractional position of ref samples | 
|  | int count = 0; | 
|  | int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0; | 
|  |  | 
|  | #if CONFIG_BAWP_FIX_DIVISION_16x16_MC | 
|  | const int max_numb_each_size = | 
|  | plane ? (BAWP_MAX_REF_NUMB >> 1) : BAWP_MAX_REF_NUMB; | 
|  | // Clamp the bw and bh to use up to 16 samples in the left and above | 
|  | bw = AOMMIN(bw, max_numb_each_size); | 
|  | bh = AOMMIN(bh, max_numb_each_size); | 
|  |  | 
|  | // Make the number of samples in each side to 4, 8, or 16 by padding. If the | 
|  | // number of sample in a side is smaller than 3, dont use the reference in | 
|  | // this side (set the corresponding elements in blk_size_log2_bawp to zero). | 
|  | const int log2_width = blk_size_log2_bawp[bw]; | 
|  | const int width = log_to_blk_size[log2_width]; | 
|  |  | 
|  | const int log2_height = blk_size_log2_bawp[bh]; | 
|  | const int height = log_to_blk_size[log2_height]; | 
|  |  | 
|  | int numb_up = 0, numb_left = 0; | 
|  | derive_number_ref_samples_bawp(xd->up_available, xd->left_available, width, | 
|  | height, &numb_up, &numb_left); | 
|  |  | 
|  | uint16_t ref_pad[BAWP_MAX_REF_NUMB] = { 0 }; | 
|  | uint16_t recon_pad[BAWP_MAX_REF_NUMB] = { 0 }; | 
|  |  | 
|  | if (numb_up) { | 
|  | const int step = (int)width / numb_up; | 
|  | const int start = step == 1 ? 0 : step >> 1; | 
|  | const int delta_w = width - bw; | 
|  |  | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | if (sf != NULL && sf->x_scale_fp != REF_NO_SCALE) { | 
|  | for (int i = 0; i < bw; i++) { | 
|  | int idx = scaled_x_gen(i, sf); | 
|  | ref_pad[i] = ref_top[idx]; | 
|  | recon_pad[i] = recon_top[i]; | 
|  | } | 
|  | } else { | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | for (int i = 0; i < bw; ++i) { | 
|  | ref_pad[i] = ref_top[i]; | 
|  | recon_pad[i] = recon_top[i]; | 
|  | } | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | } | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | // Padding | 
|  | if (delta_w > 0) { | 
|  | for (int i = 0; i < delta_w; i++) { | 
|  | ref_pad[i + bw] = ref_pad[i]; | 
|  | recon_pad[i + bw] = recon_pad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = start; i < width; i = i + step) { | 
|  | sum_x += ref_pad[i]; | 
|  | sum_y += recon_pad[i]; | 
|  | sum_xy += ref_pad[i] * recon_pad[i]; | 
|  | sum_xx += ref_pad[i] * ref_pad[i]; | 
|  | } | 
|  | count += numb_up; | 
|  | } | 
|  |  | 
|  | if (numb_left) { | 
|  | const int step_left = (int)height / numb_left; | 
|  | const int start_left = step_left == 1 ? 0 : step_left >> 1; | 
|  | const int delta = height - bh; | 
|  |  | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | if (sf != NULL && sf->y_scale_fp != REF_NO_SCALE) { | 
|  | for (int i = 0; i < bh; i++) { | 
|  | int ref_left_tmp_idx = scaled_y_gen(i, sf) * ref_stride; | 
|  | ref_pad[i] = ref_left[ref_left_tmp_idx]; | 
|  | recon_pad[i] = recon_left[0]; | 
|  |  | 
|  | recon_left += rec_stride; | 
|  | } | 
|  | } else { | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | for (int i = 0; i < bh; ++i) { | 
|  | ref_pad[i] = ref_left[0]; | 
|  | recon_pad[i] = recon_left[0]; | 
|  |  | 
|  | recon_left += rec_stride; | 
|  | ref_left += ref_stride; | 
|  | } | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | } | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | // Padding | 
|  | if (delta > 0) { | 
|  | for (int i = 0; i < delta; i++) { | 
|  | ref_pad[i + bh] = ref_pad[i]; | 
|  | recon_pad[i + bh] = recon_pad[i]; | 
|  | } | 
|  | } | 
|  | for (int i = start_left; i < height; i = i + step_left) { | 
|  | sum_x += ref_pad[i]; | 
|  | sum_y += recon_pad[i]; | 
|  | sum_xy += ref_pad[i] * recon_pad[i]; | 
|  | sum_xx += ref_pad[i] * ref_pad[i]; | 
|  | } | 
|  | count += numb_left; | 
|  | } | 
|  | #else | 
|  | if (xd->up_available) { | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | if (sf != NULL && sf->x_scale_fp != REF_NO_SCALE) { | 
|  | for (int i = 0; i < bw; i++) { | 
|  | int idx = scaled_x_gen(i, sf); | 
|  | sum_x += ref_top[idx]; | 
|  | sum_y += recon_top[i]; | 
|  | sum_xy += ref_top[idx] * recon_top[i]; | 
|  | sum_xx += ref_top[idx] * ref_top[idx]; | 
|  | } | 
|  | } else { | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | for (int i = 0; i < bw; ++i) { | 
|  | sum_x += ref_top[i]; | 
|  | sum_y += recon_top[i]; | 
|  | sum_xy += ref_top[i] * recon_top[i]; | 
|  | sum_xx += ref_top[i] * ref_top[i]; | 
|  | } | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | } | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | count += bw; | 
|  | } | 
|  |  | 
|  | if (xd->left_available) { | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | if (sf != NULL && sf->y_scale_fp != REF_NO_SCALE) { | 
|  | for (int i = 0; i < bh; i++) { | 
|  | int ref_left_tmp_idx = scaled_y_gen(i, sf) * ref_stride; | 
|  | sum_x += ref_left[ref_left_tmp_idx]; | 
|  | sum_y += recon_left[0]; | 
|  | sum_xy += ref_left[ref_left_tmp_idx] * recon_left[0]; | 
|  | sum_xx += ref_left[ref_left_tmp_idx] * ref_left[ref_left_tmp_idx]; | 
|  | recon_left += rec_stride; | 
|  | } | 
|  | } else { | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | for (int i = 0; i < bh; ++i) { | 
|  | sum_x += ref_left[0]; | 
|  | sum_y += recon_left[0]; | 
|  | sum_xy += ref_left[0] * recon_left[0]; | 
|  | sum_xx += ref_left[0] * ref_left[0]; | 
|  |  | 
|  | recon_left += rec_stride; | 
|  | ref_left += ref_stride; | 
|  | } | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | } | 
|  | #endif                      // CONFIG_BAWP_ACROSS_SCALES | 
|  | count += bh; | 
|  | } | 
|  | #endif                      // CONFIG_BAWP_FIX_DIVISION_16x16_MC | 
|  | const int16_t shift = 8;  // maybe a smaller value can be used | 
|  |  | 
|  | if (mbmi->bawp_flag[0] > 1 && plane == 0) { | 
|  | if (count > 0) { | 
|  | const int beta = derive_linear_parameters_beta( | 
|  | sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]); | 
|  | mbmi->bawp_beta[plane][ref] = beta; | 
|  | } else { | 
|  | mbmi->bawp_beta[plane][ref] = -(1 << shift); | 
|  | } | 
|  | } else { | 
|  | if (count > 0) { | 
|  | if (plane == 0) { | 
|  | const int16_t alpha = derive_linear_parameters_alpha( | 
|  | sum_x, sum_y, sum_xx, sum_xy, count, shift); | 
|  | mbmi->bawp_alpha[plane][ref] = (alpha == 0) ? (1 << shift) : alpha; | 
|  | } else { | 
|  | mbmi->bawp_alpha[plane][ref] = mbmi->bawp_alpha[0][ref]; | 
|  | } | 
|  |  | 
|  | const int beta = derive_linear_parameters_beta( | 
|  | sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]); | 
|  | mbmi->bawp_beta[plane][ref] = beta; | 
|  | } else { | 
|  | mbmi->bawp_alpha[plane][ref] = 1 << shift; | 
|  | mbmi->bawp_beta[plane][ref] = -(1 << shift); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate weighted prediction of the block. | 
|  | void av1_make_bawp_block_c(uint16_t *dst, int dst_stride, int16_t alpha, | 
|  | int32_t beta, int shift, int bw, int bh, int bd) { | 
|  | for (int j = 0; j < bh; ++j) { | 
|  | for (int i = 0; i < bw; ++i) { | 
|  | dst[j * dst_stride + i] = clip_pixel_highbd( | 
|  | (dst[j * dst_stride + i] * alpha + beta) >> shift, bd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // generate inter prediction of a block coded in bwap mode enabled | 
|  | void av1_build_one_bawp_inter_predictor( | 
|  | uint16_t *dst, int dst_stride, const MV *const src_mv, | 
|  | InterPredParams *inter_pred_params, const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | const BUFFER_SET *dst_orig, int bw, int bh, int mi_x, int mi_y, int ref, | 
|  | int plane, uint16_t **mc_buf, | 
|  | CalcSubpelParamsFunc calc_subpel_params_func) { | 
|  | SubpelParams subpel_params; | 
|  | uint16_t *src; | 
|  | int src_stride; | 
|  | calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, 0, | 
|  | mc_buf, &src, &subpel_params, &src_stride); | 
|  |  | 
|  | assert(inter_pred_params->comp_mode == UNIFORM_SINGLE); | 
|  | if (inter_pred_params->comp_mode == UNIFORM_SINGLE || | 
|  | inter_pred_params->comp_mode == UNIFORM_COMP) { | 
|  | av1_make_inter_predictor(src, src_stride, dst, dst_stride, | 
|  | inter_pred_params, &subpel_params); | 
|  | } else { | 
|  | make_masked_inter_predictor(src, src_stride, dst, dst_stride, | 
|  | inter_pred_params, &subpel_params | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | , | 
|  | 0, 0 | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | ); | 
|  | } | 
|  |  | 
|  | const int shift = 8; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | const struct scale_factors *sf = inter_pred_params->scale_factors; | 
|  |  | 
|  | const int x_off = scaled_x_gen(mbmi->mv[ref].as_mv.col, sf) >> 3; | 
|  | const int y_off = scaled_y_gen(mbmi->mv[ref].as_mv.row, sf) >> 3; | 
|  |  | 
|  | const int x_off_p = x_off >> inter_pred_params->subsampling_x; | 
|  | const int y_off_p = y_off >> inter_pred_params->subsampling_y; | 
|  |  | 
|  | const int mi_x_p = scaled_x_gen(mi_x, sf) >> inter_pred_params->subsampling_x; | 
|  | const int mi_y_p = scaled_y_gen(mi_y, sf) >> inter_pred_params->subsampling_y; | 
|  |  | 
|  | const int width_p = | 
|  | (sf->x_scale_fp != REF_NO_SCALE) | 
|  | ? pd->pre[ref].width >> inter_pred_params->subsampling_x | 
|  | : cm->width >> inter_pred_params->subsampling_x; | 
|  | const int height_p = | 
|  | (sf->y_scale_fp != REF_NO_SCALE) | 
|  | ? pd->pre[ref].height >> inter_pred_params->subsampling_y | 
|  | : cm->height >> inter_pred_params->subsampling_y; | 
|  |  | 
|  | int ref_w = scaled_x_gen(bw, sf); | 
|  | if ((mi_x_p + ref_w) >= width_p) ref_w = width_p - mi_x_p; | 
|  |  | 
|  | int ref_h = scaled_y_gen(bh, sf); | 
|  | if ((mi_y_p + ref_h) >= height_p) ref_h = height_p - mi_y_p; | 
|  | #else  // CONFIG_BAWP_ACROSS_SCALES | 
|  | const int x_off = mbmi->mv[ref].as_mv.col >> 3; | 
|  | const int y_off = mbmi->mv[ref].as_mv.row >> 3; | 
|  |  | 
|  | const int x_off_p = x_off >> inter_pred_params->subsampling_x; | 
|  | const int y_off_p = y_off >> inter_pred_params->subsampling_y; | 
|  |  | 
|  | const int mi_x_p = mi_x >> inter_pred_params->subsampling_x; | 
|  | const int mi_y_p = mi_y >> inter_pred_params->subsampling_y; | 
|  |  | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | const int width_p = pd->dst.width; | 
|  | const int height_p = pd->dst.height; | 
|  | #else | 
|  | const int width_p = cm->width >> inter_pred_params->subsampling_x; | 
|  | const int height_p = cm->height >> inter_pred_params->subsampling_y; | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  |  | 
|  | int ref_w = bw; | 
|  | if ((mi_x_p + bw) >= width_p) ref_w = width_p - mi_x_p; | 
|  |  | 
|  | int ref_h = bh; | 
|  | if ((mi_y_p + bh) >= height_p) ref_h = height_p - mi_y_p; | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | if ((mi_x_p + x_off_p - scaled_x_gen(BAWP_REF_LINES, sf)) < 0 || | 
|  | (mi_y_p + y_off_p - scaled_y_gen(BAWP_REF_LINES, sf)) < 0 || | 
|  | #else   // CONFIG_BAWP_ACROSS_SCALES | 
|  | if ((mi_x_p + x_off_p - BAWP_REF_LINES) < 0 || | 
|  | (mi_y_p + y_off_p - BAWP_REF_LINES) < 0 || | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | ref_w <= 0 || ref_h <= 0 || (mi_x_p + ref_w + x_off_p) >= width_p || | 
|  | (mi_y_p + ref_h + y_off_p) >= height_p) { | 
|  | mbmi->bawp_alpha[plane][ref] = 1 << shift; | 
|  | mbmi->bawp_beta[plane][ref] = -(1 << shift); | 
|  | #if CONFIG_BAWP_FIX_DIVISION_16x16_MC | 
|  | return; | 
|  | #endif | 
|  | } else { | 
|  | uint16_t *recon_buf = xd->plane[plane].dst.buf; | 
|  | int recon_stride = xd->plane[plane].dst.stride; | 
|  | if (dst_orig != NULL) { | 
|  | recon_buf = dst_orig->plane[plane]; | 
|  | recon_stride = dst_orig->stride[plane]; | 
|  | } | 
|  | uint16_t *recon_top = recon_buf - BAWP_REF_LINES * recon_stride; | 
|  | uint16_t *recon_left = recon_buf - BAWP_REF_LINES; | 
|  |  | 
|  | // the picture boundary limitation to be checked. | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | int ref_stride = pd->pre[ref].stride; | 
|  | uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p; | 
|  | if (sf->x_scale_fp != REF_NO_SCALE || sf->y_scale_fp != REF_NO_SCALE) { | 
|  | const int mi_x_p_unscaled = mi_x >> inter_pred_params->subsampling_x; | 
|  | const int mi_y_p_unscaled = mi_y >> inter_pred_params->subsampling_y; | 
|  | const int width_p_unscaled = | 
|  | cm->width >> inter_pred_params->subsampling_x; | 
|  | const int height_p_unscaled = | 
|  | cm->height >> inter_pred_params->subsampling_y; | 
|  | ref_w = bw; | 
|  | if ((mi_x_p_unscaled + bw) >= width_p_unscaled) | 
|  | ref_w = width_p_unscaled - mi_x_p_unscaled; | 
|  | ref_h = bh; | 
|  | if ((mi_y_p_unscaled + bh) >= height_p_unscaled) | 
|  | ref_h = height_p_unscaled - mi_y_p_unscaled; | 
|  |  | 
|  | calc_subpel_params_func(&mbmi->mv[ref].as_mv, inter_pred_params, xd, mi_x, | 
|  | mi_y, ref, 0, mc_buf, &ref_buf, &subpel_params, | 
|  | &ref_stride); | 
|  | } | 
|  | uint16_t *ref_top = ref_buf - ref_stride * scaled_y_gen(BAWP_REF_LINES, sf); | 
|  | uint16_t *ref_left = ref_buf - scaled_x_gen(BAWP_REF_LINES, sf); | 
|  | #else   // CONFIG_BAWP_ACROSS_SCALES | 
|  | const int ref_stride = pd->pre[ref].stride; | 
|  | uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p; | 
|  | uint16_t *ref_top = ref_buf - BAWP_REF_LINES * ref_stride; | 
|  | uint16_t *ref_left = ref_buf - BAWP_REF_LINES; | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | if (mbmi->bawp_flag[0] > 1 && plane == 0) { | 
|  | const int first_ref_dist = | 
|  | cm->ref_frame_relative_dist[mbmi->ref_frame[0]]; | 
|  | const int bawp_scale_table[3][EXPLICIT_BAWP_SCALE_CNT] = { { -1, 1 }, | 
|  | { -2, 2 }, | 
|  | { -3, 3 } }; | 
|  | const int list_index = | 
|  | (mbmi->mode == NEARMV) | 
|  | ? 0 | 
|  | #if CONFIG_INTER_MODE_CONSOLIDATION | 
|  | : ((mbmi->mode == NEWMV && mbmi->use_amvd) ? 1 : 2); | 
|  | #else | 
|  | : (mbmi->mode == AMVDNEWMV ? 1 : 2); | 
|  | #endif  // CONFIG_INTER_MODE_CONSOLIDATION | 
|  |  | 
|  | int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag[0] - 2]; | 
|  | const int delta_sign = delta_scales > 0 ? 1 : -1; | 
|  | const int delta_magtitude = delta_sign * delta_scales; | 
|  | if (first_ref_dist > 4) delta_scales = delta_sign * (delta_magtitude + 1); | 
|  | mbmi->bawp_alpha[plane][ref] = 256 + (delta_scales * 16); | 
|  | } | 
|  |  | 
|  | derive_bawp_parameters(xd, recon_top, recon_left, recon_stride, ref_top, | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | ref_left, ref_stride, ref, plane, ref_w, ref_h, sf); | 
|  | #else   // CONFIG_BAWP_ACROSS_SCALES | 
|  | ref_left, ref_stride, ref, plane, ref_w, ref_h); | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | } | 
|  |  | 
|  | int16_t alpha = mbmi->bawp_alpha[plane][ref]; | 
|  | int32_t beta = mbmi->bawp_beta[plane][ref]; | 
|  | av1_make_bawp_block(dst, dst_stride, alpha, beta, shift, bw, bh, xd->bd); | 
|  | } | 
|  |  | 
|  | // True if the following hold: | 
|  | //  1. Not intrabc | 
|  | //  2. At least one dimension is size 4 with subsampling | 
|  | //  3. If sub-sampled, none of the previous blocks around the sub-sample | 
|  | //     are intrabc or inter-blocks | 
|  | static bool is_sub8x8_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *mi, int plane, int is_intrabc) { | 
|  | if (is_intrabc) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!(plane && | 
|  | (mi->sb_type[PLANE_TYPE_UV] != mi->chroma_ref_info.bsize_base))) | 
|  | return false; | 
|  |  | 
|  | // For sub8x8 chroma blocks, we may be covering more than one luma block's | 
|  | // worth of pixels. Thus (mi_row, mi_col) may not be the correct coordinates | 
|  | // for the top-left corner of the prediction source. So, we need to find the | 
|  | // correct top-left corner (row_start, col_start). | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | const int row_start = | 
|  | plane ? mi->chroma_ref_info.mi_row_chroma_base - mi_row : 0; | 
|  | const int col_start = | 
|  | plane ? mi->chroma_ref_info.mi_col_chroma_base - mi_col : 0; | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y]; | 
|  | const int plane_mi_height = mi_size_high[plane_bsize]; | 
|  | const int plane_mi_width = mi_size_wide[plane_bsize]; | 
|  | const int mi_rows = cm->mi_params.mi_rows; | 
|  | const int mi_cols = cm->mi_params.mi_cols; | 
|  |  | 
|  | // Scan through all the blocks in the current chroma unit | 
|  | for (int row = 0; row < plane_mi_height; ++row) { | 
|  | const int row_coord = row_start + row; | 
|  | if (mi_row + row_coord >= mi_rows) break; | 
|  | for (int col = 0; col < plane_mi_width; ++col) { | 
|  | const int col_coord = col_start + col; | 
|  | if (mi_col + col_coord >= mi_cols) break; | 
|  | // For the blocks at the lower right of the final chroma block, the mis | 
|  | // are not set up correctly yet, so we do not check them. | 
|  | if ((row_coord >= 0 && col_coord > 0) || | 
|  | (col_coord >= 0 && row_coord > 0)) { | 
|  | break; | 
|  | } | 
|  | const MB_MODE_INFO *this_mbmi = | 
|  | xd->mi[row_coord * xd->mi_stride + col_coord]; | 
|  | assert(this_mbmi != NULL); | 
|  | if (!is_inter_block(this_mbmi, xd->tree_type)) return false; | 
|  | if (is_intrabc_block(this_mbmi, xd->tree_type)) return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void build_inter_predictors_sub8x8( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, | 
|  | int mi_x, int mi_y, uint16_t **mc_buf, | 
|  | CalcSubpelParamsFunc calc_subpel_params_func) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const bool ss_x = pd->subsampling_x; | 
|  | const bool ss_y = pd->subsampling_y; | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y]; | 
|  | const int plane_mi_height = mi_size_high[plane_bsize]; | 
|  | const int plane_mi_width = mi_size_wide[plane_bsize]; | 
|  | assert(!is_intrabc_block(mi, xd->tree_type)); | 
|  |  | 
|  | // For sub8x8 chroma blocks, we may be covering more than one luma block's | 
|  | // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for | 
|  | // the top-left corner of the prediction source - the correct top-left corner | 
|  | // is at (pre_x, pre_y). | 
|  | const int row_start = | 
|  | plane ? (mi->chroma_ref_info.mi_row_chroma_base - xd->mi_row) : 0; | 
|  | const int col_start = | 
|  | plane ? (mi->chroma_ref_info.mi_col_chroma_base - xd->mi_col) : 0; | 
|  | const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; | 
|  | const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; | 
|  | const int mi_stride = xd->mi_stride; | 
|  | const int mi_rows = cm->mi_params.mi_rows; | 
|  | const int mi_cols = cm->mi_params.mi_cols; | 
|  |  | 
|  | const int mb_to_top_edge_start = xd->mb_to_top_edge; | 
|  | const int mb_to_left_edge_start = xd->mb_to_left_edge; | 
|  | const int mb_to_bottom_edge_start = xd->mb_to_bottom_edge; | 
|  | const int mb_to_right_edge_start = xd->mb_to_right_edge; | 
|  |  | 
|  | // Row progress keeps track of which mi block in the row has been set. | 
|  | SUB_8_BITMASK_T row_progress[MAX_MI_LUMA_SIZE_FOR_SUB_8] = { 0 }; | 
|  | assert(plane_mi_height <= MAX_MI_LUMA_SIZE_FOR_SUB_8); | 
|  | assert(plane_mi_width <= MAX_MI_LUMA_SIZE_FOR_SUB_8); | 
|  | assert(MAX_MI_LUMA_SIZE_FOR_SUB_8 == SUB_8_BITMASK_SIZE); | 
|  | for (int mi_row = 0; mi_row < plane_mi_height; mi_row++) { | 
|  | if (xd->mi_row + row_start + mi_row >= mi_rows) break; | 
|  | for (int mi_col = 0; mi_col < plane_mi_width; mi_col++) { | 
|  | if (xd->mi_col + col_start + mi_col >= mi_cols) break; | 
|  | const SUB_8_BITMASK_T check_flag = 1 << (SUB_8_BITMASK_SIZE - 1 - mi_col); | 
|  | if (row_progress[mi_row] & check_flag) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const MB_MODE_INFO *this_mbmi = | 
|  | xd->mi[(row_start + mi_row) * mi_stride + (col_start + mi_col)]; | 
|  | assert(this_mbmi != NULL); | 
|  |  | 
|  | const BLOCK_SIZE bsize = this_mbmi->sb_type[PLANE_TYPE_Y]; | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  |  | 
|  | int row = row_start + mi_row + xd->mi_row; | 
|  | int col = col_start + mi_col + xd->mi_col; | 
|  | xd->mb_to_top_edge = -GET_MV_SUBPEL(row * MI_SIZE); | 
|  | xd->mb_to_bottom_edge = | 
|  | GET_MV_SUBPEL((cm->mi_params.mi_rows - mi_height - row) * MI_SIZE); | 
|  | xd->mb_to_left_edge = -GET_MV_SUBPEL((col * MI_SIZE)); | 
|  | xd->mb_to_right_edge = | 
|  | GET_MV_SUBPEL((cm->mi_params.mi_cols - mi_width - col) * MI_SIZE); | 
|  |  | 
|  | // The flag here is a block of mi_width many 1s offset by the mi_col. | 
|  | // For example, if the current mi_col is 2, and the mi_width is 2, then | 
|  | // the flag will be 00110000. We or this with row_progress to update the | 
|  | // blocks that have been coded. | 
|  | // Note that because we are always coding in a causal order, we could | 
|  | // technically simplify the bitwise operation, and use the flag 11110000 | 
|  | // in the above example instead. However, we are not taking this approach | 
|  | // here to keep the logic simpler. | 
|  | const SUB_8_BITMASK_T set_flag = | 
|  | ((SUB_8_BITMASK_ON << (SUB_8_BITMASK_SIZE - mi_width)) & | 
|  | SUB_8_BITMASK_ON) >> | 
|  | mi_col; | 
|  | for (int mi_row_offset = 0; mi_row_offset < mi_height; mi_row_offset++) { | 
|  | row_progress[mi_row + mi_row_offset] |= set_flag; | 
|  | } | 
|  |  | 
|  | assert(is_inter_block(this_mbmi, xd->tree_type)); | 
|  | const int chroma_width = block_size_wide[bsize] >> ss_x; | 
|  | const int chroma_height = block_size_high[bsize] >> ss_y; | 
|  | const int pixel_row = (MI_SIZE * mi_row >> ss_y); | 
|  | const int pixel_col = (MI_SIZE * mi_col >> ss_x); | 
|  | // TODO(yuec): enabling compound prediction in none sub8x8 mbs in the | 
|  | // group | 
|  | bool is_compound = 0; | 
|  | struct buf_2d *const dst_buf = &pd->dst; | 
|  | uint16_t *dst = dst_buf->buf + dst_buf->stride * pixel_row + pixel_col; | 
|  | int ref = 0; | 
|  | const RefCntBuffer *ref_buf = | 
|  | get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]); | 
|  | const struct scale_factors *ref_scale_factors = | 
|  | get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]); | 
|  | const struct scale_factors *const sf = ref_scale_factors; | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | const struct buf_2d pre_buf = { | 
|  | NULL, | 
|  | (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, | 
|  | ref_buf->buf.uv_width, | 
|  | ref_buf->buf.uv_height, | 
|  | ref_buf->buf.uv_crop_width, | 
|  | ref_buf->buf.uv_crop_height, | 
|  | ref_buf->buf.uv_stride, | 
|  | }; | 
|  | #else | 
|  | const struct buf_2d pre_buf = { | 
|  | NULL, | 
|  | (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, | 
|  | ref_buf->buf.uv_crop_width, | 
|  | ref_buf->buf.uv_crop_height, | 
|  | ref_buf->buf.uv_crop_width, | 
|  | ref_buf->buf.uv_crop_height, | 
|  | ref_buf->buf.uv_stride, | 
|  | }; | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  |  | 
|  | const MV mv = this_mbmi->mv[ref].as_mv; | 
|  | InterPredParams inter_pred_params; | 
|  | av1_init_inter_params( | 
|  | &inter_pred_params, chroma_width, chroma_height, pre_y + pixel_row, | 
|  | pre_x + pixel_col, pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, &pre_buf, this_mbmi->interp_fltr); | 
|  | inter_pred_params.conv_params = | 
|  | get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd); | 
|  |  | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | if (is_thin_4xn_nx4_block(bsize) && has_second_ref(this_mbmi)) { | 
|  | assert(this_mbmi->interinter_comp.type != COMPOUND_DIFFWTD); | 
|  | } | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  |  | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | const MV mv_1_16th_pel = convert_mv_to_1_16th_pel(&mv); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | av1_build_one_inter_predictor(dst, dst_buf->stride, | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | &mv_1_16th_pel, | 
|  | #else | 
|  | &mv, | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | &inter_pred_params, xd, mi_x + pixel_col, | 
|  | mi_y + pixel_row, ref, mc_buf, | 
|  | calc_subpel_params_func); | 
|  | } | 
|  | } | 
|  | xd->mb_to_top_edge = mb_to_top_edge_start; | 
|  | xd->mb_to_bottom_edge = mb_to_bottom_edge_start; | 
|  | xd->mb_to_left_edge = mb_to_left_edge_start; | 
|  | xd->mb_to_right_edge = mb_to_right_edge_start; | 
|  | } | 
|  |  | 
|  | #if CONFIG_BRU | 
|  | AOM_INLINE void highbd_build_mc_border(const uint16_t *src, int src_stride, | 
|  | uint16_t *dst, int dst_stride, int x, | 
|  | int y, int b_w, int b_h, int w, int h) { | 
|  | // Get a pointer to the start of the real data for this row. | 
|  | const uint16_t *ref_row = src - x - y * src_stride; | 
|  |  | 
|  | if (y >= h) | 
|  | ref_row += (h - 1) * src_stride; | 
|  | else if (y > 0) | 
|  | ref_row += y * src_stride; | 
|  |  | 
|  | do { | 
|  | int right = 0, copy; | 
|  | int left = x < 0 ? -x : 0; | 
|  |  | 
|  | if (left > b_w) left = b_w; | 
|  |  | 
|  | if (x + b_w > w) right = x + b_w - w; | 
|  |  | 
|  | if (right > b_w) right = b_w; | 
|  |  | 
|  | copy = b_w - left - right; | 
|  |  | 
|  | if (left) aom_memset16(dst, ref_row[0], left); | 
|  |  | 
|  | if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); | 
|  |  | 
|  | if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right); | 
|  |  | 
|  | dst += dst_stride; | 
|  | ++y; | 
|  |  | 
|  | if (y > 0 && y < h) ref_row += src_stride; | 
|  | } while (--b_h); | 
|  | } | 
|  | /* Extend MC border for support SB in BRU optimized decoder */ | 
|  | void bru_extend_mc_border(const AV1_COMMON *const cm, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize, YV12_BUFFER_CONFIG *src) { | 
|  | const int org_bw = mi_size_wide[bsize]; | 
|  | const int org_bh = mi_size_high[bsize]; | 
|  | const int ss_x = src->uv_width < src->y_width; | 
|  | const int ss_y = src->uv_height < src->y_height; | 
|  | uint16_t *src_data; | 
|  | uint16_t *dst_data; | 
|  | for (int plane = 0; plane < av1_num_planes(cm); plane++) { | 
|  | const int is_uv = plane > 0; | 
|  | const int s_x = is_uv ? ss_x : 0; | 
|  | const int s_y = is_uv ? ss_y : 0; | 
|  | PadBlock block; | 
|  | PadBlock block_cur; | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | const int frame_H = is_uv ? src->uv_height : src->y_height; | 
|  | const int frame_W = is_uv ? src->uv_width : src->y_width; | 
|  | #else | 
|  | const int frame_H = is_uv ? src->uv_crop_height : src->y_crop_height; | 
|  | const int frame_W = is_uv ? src->uv_crop_width : src->y_crop_width; | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  | block.x0 = mi_col << (MI_SIZE_LOG2 - s_x); | 
|  | block.y0 = mi_row << (MI_SIZE_LOG2 - s_y); | 
|  | block.x1 = block.x0 + (org_bw << (MI_SIZE_LOG2 - s_x)); | 
|  | block.y1 = block.y0 + (org_bh << (MI_SIZE_LOG2 - s_y)); | 
|  | block_cur = block; | 
|  | if (block.x1 > frame_W) block.x1 = frame_W; | 
|  | if (block.y1 > frame_H) block.y1 = frame_H; | 
|  | block.x0 -= AOM_INTERP_EXTEND - 1; | 
|  | block.x1 += AOM_INTERP_EXTEND; | 
|  | block.y0 -= AOM_INTERP_EXTEND - 1; | 
|  | block.y1 += AOM_INTERP_EXTEND; | 
|  | if (block.x0 < 0 || block.x1 > frame_W - 1 || block.y0 < 0 || | 
|  | block.y1 > frame_H - 1) { | 
|  | // BRU extend border should not touch any pixel in the frame , but only in | 
|  | // the extend region if block - AOM_INTERP_EXTEND >= 0, means this is not | 
|  | // on the top/left border, then reset to current block | 
|  | if (block.x0 >= 0) block.x0 = block_cur.x0; | 
|  | if (block.y0 >= 0) block.y0 = block_cur.y0; | 
|  | // if block + AOM_INTERP_EXTEND <= W/H, means this is not on the | 
|  | // bottom/right border, then reset to current block | 
|  | if (block.x1 <= frame_W) block.x1 = block_cur.x1; | 
|  | if (block.y1 <= frame_H) block.y1 = block_cur.y1; | 
|  |  | 
|  | int b_w = block.x1 - block.x0; | 
|  | int b_h = block.y1 - block.y0; | 
|  |  | 
|  | int stride = src->strides[is_uv]; | 
|  | // Get reference block pointer. | 
|  | src_data = src->buffers[plane] + | 
|  | scaled_buffer_offset(block.x0, block.y0, stride, NULL); | 
|  | dst_data = src->buffers[plane] + | 
|  | scaled_buffer_offset(block.x0, block.y0, stride, NULL); | 
|  |  | 
|  | highbd_build_mc_border(src_data, stride, dst_data, stride, block.x0, | 
|  | block.y0, b_w, b_h, frame_W, frame_H); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_BRU | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | static inline void aom_memset16_optimized(uint16_t *dst, uint16_t value, | 
|  | int count) { | 
|  | while (count >= 8) { | 
|  | dst[0] = value; | 
|  | dst[1] = value; | 
|  | dst[2] = value; | 
|  | dst[3] = value; | 
|  | dst[4] = value; | 
|  | dst[5] = value; | 
|  | dst[6] = value; | 
|  | dst[7] = value; | 
|  | dst += 8; | 
|  | count -= 8; | 
|  | } | 
|  | while (count >= 4) { | 
|  | dst[0] = value; | 
|  | dst[1] = value; | 
|  | dst[2] = value; | 
|  | dst[3] = value; | 
|  | dst += 4; | 
|  | count -= 4; | 
|  | } | 
|  | while (count > 0) { | 
|  | *dst++ = value; | 
|  | count--; | 
|  | } | 
|  | } | 
|  |  | 
|  | void refinemv_highbd_pad_mc_border(const uint16_t *src, int src_stride, | 
|  | uint16_t *dst, int dst_stride, int x0, | 
|  | int y0, int b_w, int b_h, | 
|  | const ReferenceArea *ref_area) { | 
|  | const int ref_x0 = ref_area->pad_block.x0; | 
|  | const int ref_y0 = ref_area->pad_block.y0; | 
|  | const int ref_x1 = ref_area->pad_block.x1; | 
|  | const int ref_y1 = ref_area->pad_block.y1; | 
|  |  | 
|  | // Get a pointer to the start of the real data for this row. | 
|  | const uint16_t *ref_row = src - x0 - y0 * src_stride; | 
|  |  | 
|  | if (y0 >= ref_area->pad_block.y1) | 
|  | ref_row += (ref_area->pad_block.y1 - 1) * src_stride; | 
|  | else if (y0 >= ref_area->pad_block.y0) | 
|  | ref_row += y0 * src_stride; | 
|  | else | 
|  | ref_row += ref_area->pad_block.y0 * src_stride; | 
|  |  | 
|  | int left = x0 < ref_x0 ? ref_x0 - x0 : 0; | 
|  | if (left > b_w) left = b_w; | 
|  | int right = (x0 + b_w > ref_x1) ? (x0 + b_w - ref_x1) : 0; | 
|  | if (right > b_w) right = b_w; | 
|  | const int copy = b_w - left - right; | 
|  |  | 
|  | do { | 
|  | if (left) | 
|  | aom_memset16_optimized(dst, ref_row[ref_area->pad_block.x0], left); | 
|  | if (copy) memcpy(dst + left, ref_row + x0 + left, copy * sizeof(uint16_t)); | 
|  | if (right) | 
|  | aom_memset16_optimized(dst + left + copy, | 
|  | ref_row[ref_area->pad_block.x1 - 1], right); | 
|  |  | 
|  | dst += dst_stride; | 
|  | ++y0; | 
|  |  | 
|  | if (y0 > ref_y0 && y0 < ref_y1) ref_row += src_stride; | 
|  | } while (--b_h); | 
|  | } | 
|  |  | 
|  | // check if padding is required during motion compensation | 
|  | // return 1 means reference pixel is outside of the reference range and padding | 
|  | // is required return 0 means no padding. | 
|  | int update_extend_mc_border_params(const struct scale_factors *const sf, | 
|  | struct buf_2d *const pre_buf, MV32 scaled_mv, | 
|  | PadBlock *block, int subpel_x_mv, | 
|  | int subpel_y_mv, int do_warp, int is_intrabc, | 
|  | int *x_pad, int *y_pad, | 
|  | const ReferenceArea *ref_area) { | 
|  | // Get reference width and height. | 
|  | int frame_width = pre_buf->width; | 
|  | int frame_height = pre_buf->height; | 
|  |  | 
|  | // Do border extension if there is motion or | 
|  | // width/height is not a multiple of 8 pixels. | 
|  | // Extension is needed in optical flow refinement to obtain MV offsets | 
|  | (void)scaled_mv; | 
|  | if (!is_intrabc && !do_warp) { | 
|  | if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { | 
|  | block->x0 -= AOM_INTERP_EXTEND - 1; | 
|  | block->x1 += AOM_INTERP_EXTEND; | 
|  | *x_pad = 1; | 
|  | } | 
|  |  | 
|  | if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { | 
|  | block->y0 -= AOM_INTERP_EXTEND - 1; | 
|  | block->y1 += AOM_INTERP_EXTEND; | 
|  | *y_pad = 1; | 
|  | } | 
|  |  | 
|  | // Skip border extension if block is inside the frame. | 
|  | if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || | 
|  | block->y1 > frame_height - 1) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (ref_area) { | 
|  | // Skip border extension if block is in the reference area. | 
|  | if (block->x0 < ref_area->pad_block.x0 || | 
|  | block->x1 > ref_area->pad_block.x1 || | 
|  | block->y0 < ref_area->pad_block.y0 || | 
|  | block->y1 > ref_area->pad_block.y1) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | }; | 
|  |  | 
|  | // perform padding of the motion compensated block if requires. | 
|  | // Padding is performed if the motion compensated block is partially out of the | 
|  | // reference area. | 
|  | static void refinemv_extend_mc_border( | 
|  | const struct scale_factors *const sf, struct buf_2d *const pre_buf, | 
|  | MV32 scaled_mv, PadBlock block, int subpel_x_mv, int subpel_y_mv, | 
|  | int do_warp, int is_intrabc, uint16_t *paded_ref_buf, | 
|  | int paded_ref_buf_stride, uint16_t **pre, int *src_stride, | 
|  | const ReferenceArea *ref_area) { | 
|  | int x_pad = 0, y_pad = 0; | 
|  | if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, | 
|  | subpel_x_mv, subpel_y_mv, do_warp, | 
|  | is_intrabc, &x_pad, &y_pad, ref_area)) { | 
|  | // Get reference block pointer. | 
|  | const uint16_t *const buf_ptr = | 
|  | pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; | 
|  | int buf_stride = pre_buf->stride; | 
|  | const int b_w = block.x1 - block.x0; | 
|  | const int b_h = block.y1 - block.y0; | 
|  |  | 
|  | refinemv_highbd_pad_mc_border(buf_ptr, buf_stride, paded_ref_buf, | 
|  | paded_ref_buf_stride, block.x0, block.y0, b_w, | 
|  | b_h, ref_area); | 
|  | *src_stride = paded_ref_buf_stride; | 
|  | *pre = paded_ref_buf + | 
|  | y_pad * (AOM_INTERP_EXTEND - 1) * paded_ref_buf_stride + | 
|  | x_pad * (AOM_INTERP_EXTEND - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void dec_calc_subpel_params(const MV *const src_mv, | 
|  | InterPredParams *const inter_pred_params, | 
|  | const MACROBLOCKD *const xd, int mi_x, int mi_y, | 
|  | uint16_t **pre, SubpelParams *subpel_params, | 
|  | int *src_stride, PadBlock *block, | 
|  | int use_optflow_refinement, MV32 *scaled_mv, | 
|  | int *subpel_x_mv, int *subpel_y_mv) { | 
|  | const struct scale_factors *sf = inter_pred_params->scale_factors; | 
|  | struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | const int bw = inter_pred_params->original_pu_width; | 
|  | const int bh = inter_pred_params->original_pu_height; | 
|  | #else | 
|  |  | 
|  | // Use original block size to clamp MV and to extend block boundary | 
|  | const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width | 
|  | : inter_pred_params->block_width; | 
|  | const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height | 
|  | : inter_pred_params->block_height; | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | const int is_scaled = av1_is_scaled(sf); | 
|  | if (is_scaled) { | 
|  | int ssx = inter_pred_params->subsampling_x; | 
|  | int ssy = inter_pred_params->subsampling_y; | 
|  | int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; | 
|  | int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; | 
|  | if (use_optflow_refinement) { | 
|  | orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS), | 
|  | MV_REFINE_PREC_BITS + ssy); | 
|  | orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS), | 
|  | MV_REFINE_PREC_BITS + ssx); | 
|  | } else { | 
|  | orig_pos_y += src_mv->row * (1 << (1 - ssy)); | 
|  | orig_pos_x += src_mv->col * (1 << (1 - ssx)); | 
|  | } | 
|  | int pos_y = sf->scale_value_y(orig_pos_y, sf); | 
|  | int pos_x = sf->scale_value_x(orig_pos_x, sf); | 
|  | pos_x += SCALE_EXTRA_OFF; | 
|  | pos_y += SCALE_EXTRA_OFF; | 
|  |  | 
|  | const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); | 
|  | const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); | 
|  | const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) | 
|  | << SCALE_SUBPEL_BITS; | 
|  | const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; | 
|  | pos_y = clamp(pos_y, top, bottom); | 
|  | pos_x = clamp(pos_x, left, right); | 
|  |  | 
|  | subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; | 
|  | subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; | 
|  | subpel_params->xs = sf->x_step_q4; | 
|  | subpel_params->ys = sf->y_step_q4; | 
|  |  | 
|  | // Get reference block top left coordinate. | 
|  | block->x0 = pos_x >> SCALE_SUBPEL_BITS; | 
|  | block->y0 = pos_y >> SCALE_SUBPEL_BITS; | 
|  |  | 
|  | // Get reference block bottom right coordinate. | 
|  | block->x1 = | 
|  | ((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >> | 
|  | SCALE_SUBPEL_BITS) + | 
|  | 1; | 
|  | block->y1 = | 
|  | ((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >> | 
|  | SCALE_SUBPEL_BITS) + | 
|  | 1; | 
|  |  | 
|  | MV temp_mv; | 
|  | temp_mv = clamp_mv_to_umv_border_sb( | 
|  | xd, src_mv, bw, bh, use_optflow_refinement, | 
|  | inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); | 
|  | *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); | 
|  | scaled_mv->row += SCALE_EXTRA_OFF; | 
|  | scaled_mv->col += SCALE_EXTRA_OFF; | 
|  |  | 
|  | *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; | 
|  | *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; | 
|  | } else { | 
|  | // Get block position in current frame. | 
|  | int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; | 
|  | int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; | 
|  |  | 
|  | const MV mv_q4 = clamp_mv_to_umv_border_sb( | 
|  | xd, src_mv, bw, bh, use_optflow_refinement, | 
|  | inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); | 
|  | subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; | 
|  | subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; | 
|  | subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; | 
|  |  | 
|  | // Get reference block top left coordinate. | 
|  | pos_x += mv_q4.col; | 
|  | pos_y += mv_q4.row; | 
|  | block->x0 = pos_x >> SUBPEL_BITS; | 
|  | block->y0 = pos_y >> SUBPEL_BITS; | 
|  |  | 
|  | // Get reference block bottom right coordinate. | 
|  | block->x1 = | 
|  | (pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1; | 
|  | block->y1 = | 
|  | (pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1; | 
|  |  | 
|  | scaled_mv->row = mv_q4.row; | 
|  | scaled_mv->col = mv_q4.col; | 
|  | *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; | 
|  | *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; | 
|  | } | 
|  | *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; | 
|  | *src_stride = pre_buf->stride; | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | if (inter_pred_params->border_data.enable_bacp) { | 
|  | subpel_params->x0 = block->x0; | 
|  | subpel_params->x1 = block->x1; | 
|  | subpel_params->y0 = block->y0; | 
|  | subpel_params->y1 = block->y1; | 
|  | } | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  | } | 
|  |  | 
|  | void common_calc_subpel_params_and_extend( | 
|  | const MV *const src_mv, InterPredParams *const inter_pred_params, | 
|  | MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, | 
|  | int use_optflow_refinement, uint16_t **mc_buf, uint16_t **pre, | 
|  | SubpelParams *subpel_params, int *src_stride) { | 
|  | (void)ref; | 
|  | (void)mc_buf; | 
|  |  | 
|  | PadBlock block; | 
|  | MV32 scaled_mv; | 
|  | int subpel_x_mv, subpel_y_mv; | 
|  | assert(inter_pred_params->use_ref_padding); | 
|  | dec_calc_subpel_params( | 
|  | src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride, | 
|  | &block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv); | 
|  |  | 
|  | // printf(" Use ref padding \n"); | 
|  | const int paded_ref_buf_stride = | 
|  | inter_pred_params->ref_area->paded_ref_buf_stride; | 
|  | refinemv_extend_mc_border( | 
|  | inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf, | 
|  | scaled_mv, block, subpel_x_mv, subpel_y_mv, | 
|  | inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc, | 
|  | &inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre, | 
|  | src_stride, inter_pred_params->ref_area); | 
|  | } | 
|  |  | 
|  | static void get_ref_area_info(const MV *const src_mv, | 
|  | InterPredParams *const inter_pred_params, | 
|  | MACROBLOCKD *const xd, int mi_x, int mi_y, | 
|  | int use_optflow_refinement, uint16_t **pre, | 
|  | SubpelParams *subpel_params, int *src_stride, | 
|  | ReferenceArea *ref_area) { | 
|  | PadBlock block; | 
|  | MV32 scaled_mv; | 
|  | int subpel_x_mv, subpel_y_mv; | 
|  |  | 
|  | dec_calc_subpel_params( | 
|  | src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride, | 
|  | &block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv); | 
|  |  | 
|  | struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf; | 
|  | int frame_height = pre_buf->height; | 
|  | int frame_width = pre_buf->width; | 
|  | block.x0 -= REF_LEFT_BORDER; | 
|  | block.x1 += REF_RIGHT_BORDER; | 
|  | block.y0 -= REF_TOP_BORDER; | 
|  | block.y1 += REF_BOTTOM_BORDER; | 
|  |  | 
|  | ref_area->pad_block.x0 = CLIP(block.x0, 0, frame_width - 1); | 
|  | ref_area->pad_block.y0 = CLIP(block.y0, 0, frame_height - 1); | 
|  | ref_area->pad_block.x1 = CLIP(block.x1, 1, frame_width); | 
|  | ref_area->pad_block.y1 = CLIP(block.y1, 1, frame_height); | 
|  | } | 
|  |  | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | void av1_get_reference_area_with_padding_single( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, | 
|  | const MV mv, int bw, int bh, int mi_x, int mi_y, ReferenceArea *ref_area, | 
|  | int pu_width, int pu_height, int ref) { | 
|  | const int is_tip = mi->ref_frame[0] == TIP_FRAME; | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  |  | 
|  | int row_start = 0; | 
|  | int col_start = 0; | 
|  | const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; | 
|  | col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; | 
|  |  | 
|  | const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x); | 
|  | const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y); | 
|  |  | 
|  | const struct scale_factors *const sf = is_tip | 
|  | ? cm->tip_ref.ref_scale_factor[ref] | 
|  | : xd->block_ref_scale_factors[ref]; | 
|  | const struct buf_2d *const pre_buf = &pd->pre[ref]; | 
|  |  | 
|  | // initialize the reference buffer | 
|  | ref_area->pad_block.x0 = 0; | 
|  | ref_area->pad_block.y0 = 0; | 
|  | ref_area->pad_block.x1 = cm->width; | 
|  | ref_area->pad_block.y1 = cm->height; | 
|  | ref_area->paded_ref_buf_stride = REF_BUFFER_WIDTH; | 
|  |  | 
|  | InterPredParams inter_pred_params; | 
|  | av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, | 
|  | pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); | 
|  |  | 
|  | inter_pred_params.original_pu_width = pu_width; | 
|  | inter_pred_params.original_pu_height = pu_height; | 
|  |  | 
|  | SubpelParams subpel_params; | 
|  | uint16_t *src; | 
|  | int src_stride; | 
|  |  | 
|  | const MV *src_mv = &mv; | 
|  | get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src, | 
|  | &subpel_params, &src_stride, ref_area); | 
|  | } | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  |  | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | static void get_ref_area_info_warp(const MV *const src_mv, | 
|  | InterPredParams *const inter_pred_params, | 
|  | MACROBLOCKD *const xd, int mi_x, int mi_y, | 
|  | int use_optflow_refinement, uint16_t **pre, | 
|  | SubpelParams *subpel_params, int *src_stride, | 
|  | WarpBoundaryBox *ref_area) { | 
|  | PadBlock block; | 
|  | MV32 scaled_mv; | 
|  | int subpel_x_mv, subpel_y_mv; | 
|  |  | 
|  | dec_calc_subpel_params( | 
|  | src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride, | 
|  | &block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv); | 
|  |  | 
|  | struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf; | 
|  | int frame_height = pre_buf->height; | 
|  | int frame_width = pre_buf->width; | 
|  | block.x0 -= REF_LEFT_BORDER_WARP; | 
|  | block.x1 += REF_RIGHT_BORDER_WARP; | 
|  | block.y0 -= REF_TOP_BORDER_WARP; | 
|  | block.y1 += REF_BOTTOM_BORDER_WARP; | 
|  |  | 
|  | ref_area->x0 = CLIP(block.x0, 0, frame_width - 1); | 
|  | ref_area->y0 = CLIP(block.y0, 0, frame_height - 1); | 
|  | ref_area->x1 = CLIP(block.x1, 1, frame_width); | 
|  | ref_area->y1 = CLIP(block.y1, 1, frame_height); | 
|  | } | 
|  |  | 
|  | void av1_get_reference_area_with_padding_single_warp( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, | 
|  | const MV mv, int bw, int bh, int mi_x, int mi_y, WarpBoundaryBox *ref_area, | 
|  | int pu_width, int pu_height, int ref) { | 
|  | const int is_tip = mi->ref_frame[0] == TIP_FRAME; | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  |  | 
|  | int row_start = 0; | 
|  | int col_start = 0; | 
|  | const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; | 
|  | col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; | 
|  |  | 
|  | const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x); | 
|  | const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y); | 
|  |  | 
|  | const struct scale_factors *const sf = is_tip | 
|  | ? cm->tip_ref.ref_scale_factor[ref] | 
|  | : xd->block_ref_scale_factors[ref]; | 
|  | const struct buf_2d *const pre_buf = &pd->pre[ref]; | 
|  |  | 
|  | // initialize the reference buffer | 
|  | ref_area->x0 = 0; | 
|  | ref_area->y0 = 0; | 
|  | ref_area->x1 = cm->width; | 
|  | ref_area->y1 = cm->height; | 
|  |  | 
|  | InterPredParams inter_pred_params; | 
|  | av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, | 
|  | pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); | 
|  |  | 
|  | inter_pred_params.original_pu_width = pu_width; | 
|  | inter_pred_params.original_pu_height = pu_height; | 
|  |  | 
|  | SubpelParams subpel_params; | 
|  | uint16_t *src; | 
|  | int src_stride; | 
|  |  | 
|  | const MV *src_mv = &mv; | 
|  | get_ref_area_info_warp(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src, | 
|  | &subpel_params, &src_stride, ref_area); | 
|  | } | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  |  | 
|  | void av1_get_reference_area_with_padding(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | int plane, MB_MODE_INFO *mi, | 
|  | const MV mv[2], int bw, int bh, | 
|  | int mi_x, int mi_y, | 
|  | ReferenceArea ref_area[2], | 
|  | int pu_width, int pu_height) { | 
|  | const int is_tip = mi->ref_frame[0] == TIP_FRAME; | 
|  | assert(IMPLIES(!is_tip, has_second_ref(mi))); | 
|  | assert(!is_intrabc_block(mi, xd->tree_type)); | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  |  | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | if (is_tip && bw < 8 && bh < 8) return; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  |  | 
|  | int row_start = 0; | 
|  | int col_start = 0; | 
|  | const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; | 
|  | col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; | 
|  |  | 
|  | const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x); | 
|  | const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y); | 
|  |  | 
|  | for (int ref = 0; ref < 2; ++ref) { | 
|  | const struct scale_factors *const sf = | 
|  | is_tip ? cm->tip_ref.ref_scale_factor[ref] | 
|  | : xd->block_ref_scale_factors[ref]; | 
|  | const struct buf_2d *const pre_buf = &pd->pre[ref]; | 
|  |  | 
|  | // initialize the reference buffer | 
|  | ref_area[ref].pad_block.x0 = 0; | 
|  | ref_area[ref].pad_block.y0 = 0; | 
|  | ref_area[ref].pad_block.x1 = cm->width; | 
|  | ref_area[ref].pad_block.y1 = cm->height; | 
|  | ref_area[ref].paded_ref_buf_stride = REF_BUFFER_WIDTH; | 
|  |  | 
|  | InterPredParams inter_pred_params; | 
|  | av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, | 
|  | pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); | 
|  |  | 
|  | inter_pred_params.original_pu_width = pu_width; | 
|  | inter_pred_params.original_pu_height = pu_height; | 
|  |  | 
|  | SubpelParams subpel_params; | 
|  | uint16_t *src; | 
|  | int src_stride; | 
|  |  | 
|  | assert(!inter_pred_params.use_ref_padding); | 
|  |  | 
|  | const MV *src_mv = ref == 0 ? &mv[0] : &mv[1]; | 
|  | get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src, | 
|  | &subpel_params, &src_stride, &ref_area[ref]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_16_FULL_SEARCH_DMVR || CONFIG_24_FULL_SEARCH_DMVR | 
|  | void av1_refinemv_build_predictors(MACROBLOCKD *xd, int mi_x, int mi_y, | 
|  | uint16_t **mc_buf, | 
|  | CalcSubpelParamsFunc calc_subpel_params_func, | 
|  | uint16_t *dst_ref0, uint16_t *dst_ref1, | 
|  | int dst_stride, MV mv0, MV mv1, | 
|  | InterPredParams *inter_pred_params) { | 
|  | for (int ref = 0; ref < 2; ref++) { | 
|  | SubpelParams subpel_params; | 
|  | uint16_t *src; | 
|  | int src_stride; | 
|  |  | 
|  | uint16_t *dst_ref = ref == 0 ? dst_ref0 : dst_ref1; | 
|  | MV *src_mv = ref == 0 ? &mv0 : &mv1; | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | src_mv->row -= 8 * SUBBLK_REF_EXT_LINES; | 
|  | src_mv->col -= 8 * SUBBLK_REF_EXT_LINES; | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  | calc_subpel_params_func(src_mv, &inter_pred_params[ref], xd, mi_x, mi_y, | 
|  | ref, 0, mc_buf, &src, &subpel_params, &src_stride); | 
|  | assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE || | 
|  | inter_pred_params[ref].comp_mode == UNIFORM_COMP); | 
|  | av1_make_inter_predictor(src, src_stride, dst_ref, dst_stride, | 
|  | &inter_pred_params[ref], &subpel_params); | 
|  | } | 
|  | } | 
|  | #else | 
|  | int av1_refinemv_build_predictors_and_get_sad( | 
|  | MACROBLOCKD *xd, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, | 
|  | CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst_ref0, | 
|  | uint16_t *dst_ref1, MV mv0, MV mv1, InterPredParams *inter_pred_params) { | 
|  | for (int ref = 0; ref < 2; ref++) { | 
|  | SubpelParams subpel_params; | 
|  | uint16_t *src; | 
|  | int src_stride; | 
|  | uint16_t *dst_ref = ref == 0 ? dst_ref0 : dst_ref1; | 
|  | MV *src_mv = ref == 0 ? &mv0 : &mv1; | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | src_mv->row -= 8 * SUBBLK_REF_EXT_LINES; | 
|  | src_mv->col -= 8 * SUBBLK_REF_EXT_LINES; | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  | calc_subpel_params_func(src_mv, &inter_pred_params[ref], xd, mi_x, mi_y, | 
|  | ref, 0, mc_buf, &src, &subpel_params, &src_stride); | 
|  | assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE || | 
|  | inter_pred_params[ref].comp_mode == UNIFORM_COMP); | 
|  | av1_make_inter_predictor(src, src_stride, dst_ref, bw, | 
|  | &inter_pred_params[ref], &subpel_params); | 
|  | } | 
|  |  | 
|  | return get_refinemv_sad(dst_ref0, dst_ref1, bw, bw, bh, xd->bd); | 
|  | } | 
|  | #endif  // CONFIG_16_FULL_SEARCH_DMVR || CONFIG_24_FULL_SEARCH_DMVR | 
|  |  | 
|  | void apply_mv_refinement(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, | 
|  | MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y, | 
|  | uint16_t **mc_buf, const MV mv[2], | 
|  | CalcSubpelParamsFunc calc_subpel_params_func, | 
|  | int pre_x, int pre_y, uint16_t *dst_ref0, | 
|  | uint16_t *dst_ref1, MV *best_mv_ref, int pu_width, | 
|  | int pu_height | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | ReferenceArea ref_area[2] | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | ) { | 
|  | // initialize basemv as best MV | 
|  | best_mv_ref[0] = mv[0]; | 
|  | best_mv_ref[1] = mv[1]; | 
|  |  | 
|  | // Check if any component of the MV exceed maximum value | 
|  | // If any of the MV components exceed the maximum value, do not refine mv | 
|  | const int max_sr = 2;  // Maximum search range at unit of 1-pel | 
|  | for (int k = 0; k < 2; k++) { | 
|  | for (int comp = 0; comp < 2; comp++) { | 
|  | int val = comp == 0 ? mv[k].row : mv[k].col; | 
|  | int min_mv_comp = val - max_sr * 8; | 
|  | int max_mv_comp = val + max_sr * 8; | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | min_mv_comp -= 8 * SUBBLK_REF_EXT_LINES; | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  | if (min_mv_comp < (MV_LOW + 1) || min_mv_comp > (MV_UPP - 1) || | 
|  | max_mv_comp < (MV_LOW + 1) || max_mv_comp > (MV_UPP - 1)) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | bw += 2 * SUBBLK_REF_EXT_LINES; | 
|  | bh += 2 * SUBBLK_REF_EXT_LINES; | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  |  | 
|  | const MV center_mvs[2] = { best_mv_ref[0], best_mv_ref[1] }; | 
|  | assert(mi->refinemv_flag < REFINEMV_NUM_MODES); | 
|  | assert(cm->seq_params.enable_refinemv); | 
|  |  | 
|  | // Generate MV independent inter_pred_params for both references | 
|  | InterPredParams inter_pred_params[2]; | 
|  | for (int ref = 0; ref < 2; ref++) { | 
|  | const int is_compound = 0; | 
|  | const int is_intrabc = is_intrabc_block(mi, xd->tree_type); | 
|  | const int is_tip = mi->ref_frame[0] == TIP_FRAME; | 
|  |  | 
|  | assert(is_intrabc == 0); | 
|  | assert(plane == 0); | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | struct buf_2d *const dst_buf = &pd->dst; | 
|  |  | 
|  | const struct scale_factors *const sf = | 
|  | is_tip ? cm->tip_ref.ref_scale_factor[ref] | 
|  | : (is_intrabc ? &cm->sf_identity | 
|  | : xd->block_ref_scale_factors[ref]); | 
|  | const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; | 
|  |  | 
|  | av1_init_inter_params(&inter_pred_params[ref], bw, bh, pre_y, pre_x, | 
|  | pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, pre_buf, BILINEAR); | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | inter_pred_params[ref].original_pu_width = pu_width; | 
|  | inter_pred_params[ref].original_pu_height = pu_height; | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | inter_pred_params[ref].conv_params = get_conv_params_no_round( | 
|  | 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); | 
|  |  | 
|  | assert(inter_pred_params[ref].mode == TRANSLATION_PRED); | 
|  | assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE); | 
|  | assert(inter_pred_params[ref].conv_params.is_compound == 0); | 
|  | assert(inter_pred_params[ref].conv_params.do_average == 0); | 
|  | assert(mi->interinter_comp.type == COMPOUND_AVERAGE); | 
|  | } | 
|  |  | 
|  | #if !CONFIG_16_FULL_SEARCH_DMVR && !CONFIG_24_FULL_SEARCH_DMVR | 
|  | #if !SINGLE_STEP_SEARCH | 
|  | // Search integer-delta values | 
|  | const int search_range = 2; | 
|  | #endif  //! SINGLE_STEP_SEARCH | 
|  | #endif  // !CONFIG_16_FULL_SEARCH_DMVR && !CONFIG_24_FULL_SEARCH_DMVR | 
|  |  | 
|  | int switchable_refinemv_flags = | 
|  | (mi->ref_frame[0] != TIP_FRAME) && switchable_refinemv_flag(cm, mi); | 
|  |  | 
|  | // If we signal the refinemv_flags we do not select sad0 | 
|  | // Set sad0 a large value so that it does not be selected | 
|  | #if CONFIG_16_FULL_SEARCH_DMVR || CONFIG_24_FULL_SEARCH_DMVR | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | const int dst_stride = REFINEMV_SUBBLOCK_WIDTH + | 
|  | 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES); | 
|  | #else | 
|  | const int dst_stride = REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES; | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  | int sad0 = INT32_MAX >> 1; | 
|  | if (!switchable_refinemv_flags) { | 
|  | av1_refinemv_build_predictors( | 
|  | xd, mi_x, mi_y, mc_buf, calc_subpel_params_func, dst_ref0, dst_ref1, | 
|  | dst_stride, center_mvs[0], center_mvs[1], inter_pred_params); | 
|  | sad0 = get_refinemv_sad(dst_ref0, dst_ref1, dst_stride, bw, bh, xd->bd); | 
|  | } | 
|  | #else | 
|  | int sad0 = switchable_refinemv_flags | 
|  | ? (INT32_MAX >> 1) | 
|  | : av1_refinemv_build_predictors_and_get_sad( | 
|  | xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func, | 
|  | dst_ref0, dst_ref1, center_mvs[0], center_mvs[1], | 
|  | inter_pred_params); | 
|  | #endif  // CONFIG_16_FULL_SEARCH_DMVR || CONFIG_24_FULL_SEARCH_DMVR | 
|  | #if !CONFIG_SUBBLK_REF_EXT | 
|  | assert(IMPLIES(mi->ref_frame[0] == TIP_FRAME, bw == 8 && bh == 8)); | 
|  | #endif  // !CONFIG_SUBBLK_REF_EXT | 
|  | if (mi->ref_frame[0] == TIP_FRAME) { | 
|  | const int tip_sad_thres = bw * bh; | 
|  | if (!switchable_refinemv_flags && sad0 < tip_sad_thres) return; | 
|  | } | 
|  |  | 
|  | if (!switchable_refinemv_flags) { | 
|  | int shift = 3; | 
|  | int th = (bw * bh) << 1; | 
|  | sad0 -= (sad0 >> shift); | 
|  | assert(sad0 >= 0); | 
|  | if (sad0 < th) return; | 
|  | } | 
|  |  | 
|  | int min_sad = sad0; | 
|  | MV refined_mv[2]; | 
|  | refined_mv[0] = center_mvs[0]; | 
|  | refined_mv[1] = center_mvs[1]; | 
|  |  | 
|  | #if CONFIG_16_FULL_SEARCH_DMVR || CONFIG_24_FULL_SEARCH_DMVR | 
|  | #if CONFIG_24_FULL_SEARCH_DMVR | 
|  | static const MV neighbors[DMVR_SEARCH_NUM_NEIGHBORS] = { | 
|  | { -2, -2 }, { -2, -1 }, { -2, 0 }, { -2, 1 }, { -2, 2 }, { -1, -2 }, | 
|  | { -1, -1 }, { -1, 0 },  { -1, 1 }, { -1, 2 }, { 0, -2 }, { 0, -1 }, | 
|  | { 0, 1 },   { 0, 2 },   { 1, -2 }, { 1, -1 }, { 1, 0 },  { 1, 1 }, | 
|  | { 1, 2 },   { 2, -2 },  { 2, -1 }, { 2, 0 },  { 2, 1 },  { 2, 2 } | 
|  | }; | 
|  | #elif CONFIG_16_FULL_SEARCH_DMVR | 
|  | static const MV neighbors[DMVR_SEARCH_NUM_NEIGHBORS] = { | 
|  | { 0, -1 },  { 1, 0 },   { 0, 1 }, { -1, 0 }, { 1, -1 }, { 1, 1 }, | 
|  | { -1, -1 }, { -1, 1 },  { 2, 1 }, { 2, 0 },  { 2, -1 }, { -2, 1 }, | 
|  | { -2, 0 },  { -2, -1 }, { 0, 2 }, { 0, -2 } | 
|  | }; | 
|  | #endif  // CONFIG_24_FULL_SEARCH_DMVR | 
|  | MV best_offset = { 0, 0 }; | 
|  | // Prediction is generated at once for (bw+4) x (bh+4) block, by extending 2 | 
|  | // samples (search range of the refinement stage) on each side. Later, the | 
|  | // prediction buffers are appropriately offset for SAD calculation. | 
|  | const int ext_bw = bw + 4; | 
|  | const int ext_bh = bh + 4; | 
|  | for (int ref = 0; ref < 2; ref++) { | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | inter_pred_params[ref].use_ref_padding = 1; | 
|  | inter_pred_params[ref].ref_area = &ref_area[ref]; | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | inter_pred_params[ref].block_width = ext_bw; | 
|  | inter_pred_params[ref].block_height = ext_bh; | 
|  | #if CONFIG_REFINEMV | 
|  | inter_pred_params[ref].original_pu_width = pu_width + 4; | 
|  | inter_pred_params[ref].original_pu_height = pu_height + 4; | 
|  | #endif  // CONFIG_REFINEMV | 
|  | refined_mv[ref].row -= 8 * DMVR_SEARCH_EXT_LINES; | 
|  | refined_mv[ref].col -= 8 * DMVR_SEARCH_EXT_LINES; | 
|  | } | 
|  |  | 
|  | av1_refinemv_build_predictors(xd, mi_x, mi_y, mc_buf, calc_subpel_params_func, | 
|  | dst_ref0, dst_ref1, dst_stride, refined_mv[0], | 
|  | refined_mv[1], inter_pred_params); | 
|  |  | 
|  | for (int idx = 0; idx < DMVR_SEARCH_NUM_NEIGHBORS; ++idx) { | 
|  | const MV offset = { neighbors[idx].row, neighbors[idx].col }; | 
|  |  | 
|  | uint16_t *dst_ref0_offset = | 
|  | dst_ref0 + (2 + offset.row) * dst_stride + 2 + offset.col; | 
|  | uint16_t *dst_ref1_offset = | 
|  | dst_ref1 + (2 - offset.row) * dst_stride + 2 - offset.col; | 
|  |  | 
|  | const int this_sad = get_refinemv_sad(dst_ref0_offset, dst_ref1_offset, | 
|  | dst_stride, bw, bh, xd->bd); | 
|  |  | 
|  | if (this_sad < min_sad) { | 
|  | min_sad = this_sad; | 
|  | best_offset = offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row; | 
|  | best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col; | 
|  | best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row; | 
|  | best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col; | 
|  |  | 
|  | #else | 
|  | (void)ref_area; | 
|  | int et_sad_th = (bw * bh) << 1; | 
|  | #if !SINGLE_STEP_SEARCH | 
|  | uint8_t already_searched[5][5]; | 
|  | for (int i = 0; i < 5; i++) { | 
|  | for (int j = 0; j < 5; j++) { | 
|  | already_searched[i][j] = 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | MV best_offset = { 0, 0 }; | 
|  |  | 
|  | #if SINGLE_STEP_SEARCH | 
|  | const int num_neighbors = 24; | 
|  | static const MV neighbors[24] = { | 
|  | { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, 1 },   { 1, 1 },   { 1, 0 }, | 
|  | { 1, -1 },  { 0, -1 }, { 0, -2 }, { -1, -2 }, { -2, -2 }, { -2, -1 }, | 
|  | { -2, 0 },  { -2, 1 }, { -2, 2 }, { -1, 2 },  { 0, 2 },   { 1, 2 }, | 
|  | { 2, 2 },   { 2, 1 },  { 2, 0 },  { 2, -1 },  { 2, -2 },  { 1, -2 } | 
|  |  | 
|  | }; | 
|  |  | 
|  | #else | 
|  | const int num_neighbors = 8; | 
|  | // Apply two-step full pel refinement | 
|  | static const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 },   { -1, 0 }, | 
|  | { 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } }; | 
|  |  | 
|  | const int num_iterations = search_range; | 
|  | already_searched[0 + search_range][0 + search_range] = | 
|  | 1;  // center point is already searched before | 
|  | for (int ite = 0; ite < num_iterations; ++ite) { | 
|  | #endif  // SINGLE_STEP_SEARCH | 
|  |  | 
|  | int best_idx = -1; | 
|  |  | 
|  | for (int idx = 0; idx < num_neighbors; ++idx) { | 
|  | MV offset = { best_offset.row + neighbors[idx].row, | 
|  | best_offset.col + neighbors[idx].col }; | 
|  | #if !SINGLE_STEP_SEARCH | 
|  | if (already_searched[offset.row + search_range][offset.col + search_range]) | 
|  | continue; | 
|  | #endif | 
|  | refined_mv[0].row = center_mvs[0].row + 8 * offset.row; | 
|  | refined_mv[0].col = center_mvs[0].col + 8 * offset.col; | 
|  | refined_mv[1].row = center_mvs[1].row - 8 * offset.row; | 
|  | refined_mv[1].col = center_mvs[1].col - 8 * offset.col; | 
|  |  | 
|  | int this_sad = av1_refinemv_build_predictors_and_get_sad( | 
|  | xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func, dst_ref0, | 
|  | dst_ref1, refined_mv[0], refined_mv[1], inter_pred_params); | 
|  |  | 
|  | #if !SINGLE_STEP_SEARCH | 
|  | already_searched[offset.row + search_range][offset.col + search_range] = 1; | 
|  | #endif | 
|  |  | 
|  | if (this_sad < min_sad) { | 
|  | min_sad = this_sad; | 
|  | best_idx = idx; | 
|  | // if the SAD is less than predefined threshold consider this candidate | 
|  | // as good enough to skip rest of the search. | 
|  | if (min_sad < et_sad_th) { | 
|  | best_mv_ref[0] = refined_mv[0]; | 
|  | best_mv_ref[1] = refined_mv[1]; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // if the center is best, skip rest of the search. | 
|  | if (best_idx == -1) { | 
|  | best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row; | 
|  | best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col; | 
|  | best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row; | 
|  | best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (best_idx >= 0) { | 
|  | best_offset.row += neighbors[best_idx].row; | 
|  | best_offset.col += neighbors[best_idx].col; | 
|  | } | 
|  | #if !SINGLE_STEP_SEARCH | 
|  | } | 
|  | #endif | 
|  |  | 
|  | best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row; | 
|  | best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col; | 
|  | best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row; | 
|  | best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col; | 
|  |  | 
|  | #endif  // CONFIG_16_FULL_SEARCH_DMVR || CONFIG_24_FULL_SEARCH_DMVR | 
|  |  | 
|  | assert(min_sad <= sad0); | 
|  |  | 
|  | assert(IMPLIES(switchable_refinemv_flags, | 
|  | !(best_mv_ref[0].row == center_mvs[0].row && | 
|  | best_mv_ref[0].col == center_mvs[0].col && | 
|  | best_mv_ref[1].row == center_mvs[1].row && | 
|  | best_mv_ref[1].col == center_mvs[1].col))); | 
|  | } | 
|  |  | 
|  | // This function consolidates the refinemv enabling check for both TIP ref mode | 
|  | // blocks and non-TIP ref mode blocks. | 
|  | static AOM_INLINE int is_sub_block_refinemv_enabled(const AV1_COMMON *cm, | 
|  | const MB_MODE_INFO *mi, | 
|  | #if !CONFIG_IMPROVE_REFINED_MV | 
|  | int plane, | 
|  | #endif  // !CONFIG_IMPROVE_REFINED_MV | 
|  | int tip_ref_frame) { | 
|  | if (!cm->seq_params.enable_refinemv) return 0; | 
|  |  | 
|  | if (tip_ref_frame) { | 
|  | #if CONFIG_TIP_ENHANCEMENT | 
|  | const int tip_wtd_index = cm->tip_global_wtd_index; | 
|  | const int8_t tip_weight = tip_weighting_factors[tip_wtd_index]; | 
|  | return ( | 
|  | #if !CONFIG_IMPROVE_REFINED_MV | 
|  | plane == 0 && | 
|  | #endif  // !CONFIG_IMPROVE_REFINED_MV | 
|  | cm->has_both_sides_refs && tip_weight == TIP_EQUAL_WTD); | 
|  | #else | 
|  | #if CONFIG_TIP_LD | 
|  | return ( | 
|  | #if !CONFIG_IMPROVE_REFINED_MV | 
|  | plane == 0 && | 
|  | #endif  // !CONFIG_IMPROVE_REFINED_MV | 
|  | cm->has_both_sides_refs); | 
|  | #else | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | return 1; | 
|  | #else | 
|  | return (plane == 0); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | #endif  // CONFIG_TIP_LD | 
|  | #endif  // CONFIG_TIP_ENHANCEMENT | 
|  | } else { | 
|  | int apply_sub_block_refinemv = | 
|  | mi->refinemv_flag && | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | (is_damr_allowed_with_refinemv(mi->mode) || | 
|  | mi->comp_refine_type < COMP_AFFINE_REFINE_START) && | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | !is_tip_ref_frame(mi->ref_frame[0]); | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | if (apply_sub_block_refinemv && default_refinemv_modes(cm, mi)) | 
|  | #else | 
|  | if (apply_sub_block_refinemv && default_refinemv_modes(mi)) | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | apply_sub_block_refinemv &= | 
|  | (mi->comp_group_idx == 0 && | 
|  | mi->interinter_comp.type == COMPOUND_AVERAGE); | 
|  | return apply_sub_block_refinemv; | 
|  | } | 
|  | } | 
|  |  | 
|  | // check if the refinemv mode is allowed for a given block | 
|  | static INLINE int is_mv_refine_allowed(const AV1_COMMON *cm, | 
|  | const MB_MODE_INFO *mbmi, int plane) { | 
|  | if (plane != 0) return 0; | 
|  | if (is_tip_ref_frame(mbmi->ref_frame[0])) | 
|  | return is_refinemv_allowed_tip_blocks(cm, mbmi); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Calculate the SAD of 2 compound prediction blocks and use it to decide | 
|  | // whether or not to skip the optical flow MV refinement for the TIP block. | 
|  | static AOM_INLINE int skip_opfl_refine_with_tip( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, int bw, int bh, | 
|  | int pu_width, int pu_height, int mi_x, int mi_y, uint16_t **mc_buf, | 
|  | MV best_mv_ref[2], CalcSubpelParamsFunc calc_subpel_params_func, | 
|  | uint16_t *dst0, uint16_t *dst1) { | 
|  | MB_MODE_INFO mbmi; | 
|  | memset(&mbmi, 0, sizeof(mbmi)); | 
|  | mbmi.mv[0].as_mv = best_mv_ref[0]; | 
|  | mbmi.mv[1].as_mv = best_mv_ref[1]; | 
|  | mbmi.ref_frame[0] = TIP_FRAME; | 
|  | mbmi.ref_frame[1] = NONE_FRAME; | 
|  | mbmi.interp_fltr = cm->tip_interp_filter; | 
|  | mbmi.use_intrabc[xd->tree_type == CHROMA_PART] = 0; | 
|  | mbmi.use_intrabc[0] = 0; | 
|  | mbmi.mode = NEWMV; | 
|  | mbmi.motion_mode = SIMPLE_TRANSLATION; | 
|  | mbmi.sb_type[PLANE_TYPE_Y] = BLOCK_8X8; | 
|  | mbmi.interinter_comp.type = COMPOUND_AVERAGE; | 
|  | mbmi.max_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL; | 
|  | mbmi.pb_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL; | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | mbmi.comp_refine_type = COMP_REFINE_SUBBLK2P; | 
|  | #endif | 
|  | #if CONFIG_MORPH_PRED | 
|  | mbmi.morph_pred = 0; | 
|  | #endif  // CONFIG_MORPH_PRED | 
|  |  | 
|  | InterPredParams params0, params1; | 
|  | av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y, | 
|  | mc_buf, ¶ms0, calc_subpel_params_func, 0, | 
|  | dst0 | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | &best_mv_ref[0], pu_width, pu_height | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ); | 
|  | av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y, | 
|  | mc_buf, ¶ms1, calc_subpel_params_func, 1, | 
|  | dst1 | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | &best_mv_ref[1], pu_width, pu_height | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | ); | 
|  | const int bd = cm->seq_params.bit_depth; | 
|  | const unsigned int sad_thres = | 
|  | cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT ? 15 : 6; | 
|  |  | 
|  | const unsigned int sad = get_highbd_sad(dst0, bw, dst1, bw, bd, 8, 8); | 
|  |  | 
|  | return (sad < sad_thres); | 
|  | } | 
|  |  | 
|  | static void build_inter_predictors_8x8_and_bigger_refinemv( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, MV mi_mv[2], | 
|  | CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst, int dst_stride, | 
|  | #if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP | 
|  | int subblk_start_x, int subblk_start_y, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP | 
|  | int pu_width, int pu_height, uint16_t *dst0_16_refinemv, | 
|  | uint16_t *dst1_16_refinemv, int row_start, int col_start, MV *sb_refined_mv, | 
|  | MV *chroma_refined_mv, int build_for_refine_mv_only, | 
|  | ReferenceArea ref_area[2], int_mv *mv_refined | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | , | 
|  | int *opfl_vxy_bufs | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | ) { | 
|  | const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]); | 
|  | const int is_compound = has_second_ref(mi) || tip_ref_frame; | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const int ss_x = pd->subsampling_x; | 
|  | const int ss_y = pd->subsampling_y; | 
|  | assert(!is_intrabc_block(mi, xd->tree_type)); | 
|  | assert(is_compound); | 
|  | assert(!mi->bawp_flag[0]); | 
|  | assert(!is_masked_compound_type(mi->interinter_comp.type)); | 
|  |  | 
|  | assert(mi->cwp_idx == CWP_EQUAL); | 
|  |  | 
|  | int is_global[2] = { 0, 0 }; | 
|  | if (!tip_ref_frame) { | 
|  | for (int ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | const WarpedMotionParams *const wm = | 
|  | &xd->global_motion[mi->ref_frame[ref]]; | 
|  | is_global[ref] = is_global_mv_block(mi, wm->wmtype); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!is_global[0] && !is_global[1]); | 
|  |  | 
|  | const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x; | 
|  | const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y; | 
|  |  | 
|  | int apply_refinemv = is_mv_refine_allowed(cm, mi, plane); | 
|  |  | 
|  | MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] }; | 
|  | if (apply_refinemv) { | 
|  | uint16_t *dst_ref0 = NULL, *dst_ref1 = NULL; | 
|  | dst_ref0 = &dst0_16_refinemv[0]; | 
|  | dst_ref1 = &dst1_16_refinemv[0]; | 
|  |  | 
|  | apply_mv_refinement(cm, xd, plane, mi, bw, bh, mi_x, mi_y, mc_buf, mi_mv, | 
|  | calc_subpel_params_func, pre_x, pre_y, dst_ref0, | 
|  | dst_ref1, best_mv_ref, pu_width, pu_height | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | ref_area | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | ); | 
|  | if (sb_refined_mv) { | 
|  | // store the DMVR refined MV so that chroma can use it | 
|  | sb_refined_mv[0] = best_mv_ref[0]; | 
|  | sb_refined_mv[1] = best_mv_ref[1]; | 
|  | } | 
|  | assert(IMPLIES(plane, !build_for_refine_mv_only)); | 
|  | // if build_for_refine_mv_only is non-zero, we build only to get the | 
|  | // refinemv values The actual prediction values are not necessary | 
|  | if (build_for_refine_mv_only) { | 
|  | return; | 
|  | } | 
|  | } else if (!tip_ref_frame) { | 
|  | best_mv_ref[0] = chroma_refined_mv[0]; | 
|  | best_mv_ref[1] = chroma_refined_mv[1]; | 
|  | } | 
|  |  | 
|  | if (tip_ref_frame | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | && plane == 0) { | 
|  | mv_refined[0].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[0]); | 
|  | mv_refined[1].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[1]); | 
|  | #else | 
|  | ) { | 
|  | mv_refined[0].as_mv.row = best_mv_ref[0].row * (1 << (1 - ss_y)); | 
|  | mv_refined[0].as_mv.col = best_mv_ref[0].col * (1 << (1 - ss_x)); | 
|  | mv_refined[1].as_mv.row = best_mv_ref[1].row * (1 << (1 - ss_y)); | 
|  | mv_refined[1].as_mv.col = best_mv_ref[1].col * (1 << (1 - ss_x)); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | } | 
|  | int use_optflow_refinement = | 
|  | is_optflow_refinement_enabled(cm, | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | xd, | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | mi, plane, tip_ref_frame); | 
|  | assert(IMPLIES(use_optflow_refinement, | 
|  | cm->features.opfl_refine_type != REFINE_NONE)); | 
|  |  | 
|  | // Optical flow refinement with masked comp types or with non-sharp | 
|  | // interpolation filter should only exist in REFINE_ALL. | 
|  | assert(IMPLIES( | 
|  | use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE, | 
|  | cm->features.opfl_refine_type == REFINE_ALL)); | 
|  | assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0)); | 
|  |  | 
|  | int use_4x4 = tip_ref_frame ? 0 : 1; | 
|  | int n = opfl_get_subblock_size(bw, bh, plane, use_4x4); | 
|  | const int n_blocks = (bw / n) * (bh / n); | 
|  |  | 
|  | // optical flow refined MVs in a subblock (16x16) unit | 
|  | int_mv mv_refined_sb[4 * 2]; | 
|  | memset(mv_refined_sb, 0, 4 * 2 * sizeof(int_mv)); | 
|  | const int opfl_mv_stride = pu_width / n; | 
|  | const int opfl_sb_idx = | 
|  | (subblk_start_y / n) * opfl_mv_stride + subblk_start_x / n; | 
|  | const int sb_rows = bh / n; | 
|  | const int sb_cols = bw / n; | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | int use_affine_opfl = use_optflow_refinement && | 
|  | is_damr_allowed_with_refinemv(mi->mode) && | 
|  | mi->comp_refine_type >= COMP_AFFINE_REFINE_START; | 
|  | WarpedMotionParams wms[2]; | 
|  | wms[0] = wms[1] = default_warp_params; | 
|  | const int wms_stride = pu_width / bw; | 
|  | const int sb_idx = (subblk_start_y / bh) * wms_stride + subblk_start_x / bw; | 
|  | #if AFFINE_CHROMA_REFINE_METHOD > 0 | 
|  | if (use_affine_opfl && plane) { | 
|  | use_affine_opfl = xd->use_affine_opfl; | 
|  | memcpy(wms, xd->wm_params_sb + 2 * sb_idx, 2 * sizeof(wms[0])); | 
|  |  | 
|  | // Optical flow refined luma MVs are reused for chroma only when affine | 
|  | // refinement is applied | 
|  | for (int i = 0; i < sb_rows; i++) { | 
|  | for (int j = 0; j < sb_cols; j++) { | 
|  | int mvidx = opfl_sb_idx + i * opfl_mv_stride + j; | 
|  | int mvidx_sb = i * sb_cols + j; | 
|  | mv_refined_sb[2 * mvidx_sb].as_mv = mv_refined[2 * mvidx].as_mv; | 
|  | mv_refined_sb[2 * mvidx_sb + 1].as_mv = mv_refined[2 * mvidx + 1].as_mv; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  |  | 
|  | if (use_optflow_refinement && plane == 0) { | 
|  | // Pointers to hold optical flow MV offsets in a subblock unit. | 
|  | int vx0_sb[4] = { 0 }; | 
|  | int vx1_sb[4] = { 0 }; | 
|  | int vy0_sb[4] = { 0 }; | 
|  | int vy1_sb[4] = { 0 }; | 
|  |  | 
|  | // Pointers to hold gradient and dst buffers. | 
|  | int16_t *gx0 = xd->opfl_gxy_bufs; | 
|  | int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1); | 
|  | int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2); | 
|  | int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3); | 
|  |  | 
|  | // Initialize refined mv | 
|  | const MV mv0 = best_mv_ref[0]; | 
|  | const MV mv1 = best_mv_ref[1]; | 
|  |  | 
|  | // Refine MV using optical flow. The final output MV will be in 1/16 | 
|  | // precision. | 
|  | uint16_t *dst0 = xd->opfl_dst_bufs; | 
|  | uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE; | 
|  | if (tip_ref_frame) { | 
|  | use_optflow_refinement = !skip_opfl_refine_with_tip( | 
|  | cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf, | 
|  | best_mv_ref, calc_subpel_params_func, dst0, dst1); | 
|  | } | 
|  | int do_pred = tip_ref_frame ? 0 : 1; | 
|  | if (use_optflow_refinement) { | 
|  | for (int mvi = 0; mvi < n_blocks; mvi++) { | 
|  | mv_refined_sb[mvi * 2].as_mv = mv0; | 
|  | mv_refined_sb[mvi * 2 + 1].as_mv = mv1; | 
|  | } | 
|  | av1_get_optflow_based_mv( | 
|  | cm, xd, plane, mi, mv_refined_sb, bw, bh, mi_x, mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | mc_buf, calc_subpel_params_func, gx0, gy0, gx1, gy1, | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | use_affine_opfl ? wms : NULL, &use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | vx0_sb, vy0_sb, vx1_sb, vy1_sb, dst0, dst1, use_4x4, do_pred, | 
|  | best_mv_ref, pu_width, pu_height); | 
|  | for (int i = 0; i < sb_rows; i++) { | 
|  | for (int j = 0; j < sb_cols; j++) { | 
|  | int mvidx = opfl_sb_idx + i * opfl_mv_stride + j; | 
|  | int mvidx_sb = i * sb_cols + j; | 
|  | mv_refined[2 * mvidx].as_mv = mv_refined_sb[2 * mvidx_sb].as_mv; | 
|  | mv_refined[2 * mvidx + 1].as_mv = | 
|  | mv_refined_sb[2 * mvidx_sb + 1].as_mv; | 
|  | // Store subblock MV delta at the prediction block level | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | opfl_vxy_bufs[mvidx] = vx0_sb[mvidx_sb]; | 
|  | opfl_vxy_bufs[N_OF_OFFSETS * 1 + mvidx] = vx1_sb[mvidx_sb]; | 
|  | opfl_vxy_bufs[N_OF_OFFSETS * 2 + mvidx] = vy0_sb[mvidx_sb]; | 
|  | opfl_vxy_bufs[N_OF_OFFSETS * 3 + mvidx] = vy1_sb[mvidx_sb]; | 
|  | #else | 
|  | xd->opfl_vxy_bufs[mvidx] = vx0_sb[mvidx_sb]; | 
|  | xd->opfl_vxy_bufs[N_OF_OFFSETS * 1 + mvidx] = vx1_sb[mvidx_sb]; | 
|  | xd->opfl_vxy_bufs[N_OF_OFFSETS * 2 + mvidx] = vy0_sb[mvidx_sb]; | 
|  | xd->opfl_vxy_bufs[N_OF_OFFSETS * 3 + mvidx] = vy1_sb[mvidx_sb]; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | } | 
|  | } | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | xd->use_affine_opfl = use_affine_opfl; | 
|  | memcpy(xd->wm_params_sb + 2 * sb_idx, wms, 2 * sizeof(wms[0])); | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | BacpBlockData bacp_block_data[2 * N_OF_OFFSETS]; | 
|  | uint8_t use_bacp = | 
|  | tip_ref_frame | 
|  | ? cm->features.enable_imp_msk_bld && | 
|  | !av1_is_scaled(cm->tip_ref.ref_scale_factor[0]) && | 
|  | !av1_is_scaled(cm->tip_ref.ref_scale_factor[1]) | 
|  | : use_border_aware_compound(cm, xd, mi) && mi->cwp_idx == CWP_EQUAL && | 
|  | cm->features.enable_imp_msk_bld; | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | int opfl_sub_bw = OF_BSIZE; | 
|  | int opfl_sub_bh = OF_BSIZE; | 
|  | opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh); | 
|  |  | 
|  | for (int ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | const struct scale_factors *const sf = | 
|  | tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref] | 
|  | : xd->block_ref_scale_factors[ref]; | 
|  | struct buf_2d *const pre_buf = &pd->pre[ref]; | 
|  |  | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | MV mv = best_mv_ref[ref]; | 
|  | #else | 
|  | const MV mv = best_mv_ref[ref]; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | const WarpTypesAllowed warp_types = { is_global[ref], | 
|  | is_warp_mode(mi->motion_mode) }; | 
|  | InterPredParams inter_pred_params; | 
|  | const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw; | 
|  | const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh; | 
|  |  | 
|  | av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x, | 
|  | pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); | 
|  | #if CONFIG_REFINEMV | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | const int use_ref_padding = | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | tip_ref_frame ? ((apply_refinemv || use_optflow_refinement) || | 
|  | (plane && (comp_bw > 4 || comp_bh > 4))) | 
|  | : 1; | 
|  | #else | 
|  | tip_ref_frame ? (apply_refinemv || use_optflow_refinement) : 1; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | #else | 
|  | const int use_ref_padding = | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | tip_ref_frame | 
|  | ? apply_refinemv || (plane && (comp_bw > 4 || comp_bh > 4)) | 
|  | : 1; | 
|  | #else | 
|  | tip_ref_frame ? apply_refinemv : 1; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | if (use_ref_padding) { | 
|  | inter_pred_params.use_ref_padding = 1; | 
|  | inter_pred_params.ref_area = &ref_area[ref]; | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | inter_pred_params.original_pu_width = pu_width; | 
|  | inter_pred_params.original_pu_height = pu_height; | 
|  |  | 
|  | if (is_compound) av1_init_comp_mode(&inter_pred_params); | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | inter_pred_params.border_data.enable_bacp = use_bacp; | 
|  | inter_pred_params.border_data.bacp_block_data = | 
|  | &bacp_block_data[0];  // Always point to the first ref | 
|  | #endif                        // CONFIG_D071_IMP_MSK_BLD | 
|  | inter_pred_params.conv_params = get_conv_params_no_round( | 
|  | ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); | 
|  |  | 
|  | av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); | 
|  | assert(inter_pred_params.mode != WARP_PRED); | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | if (is_compound) { | 
|  | inter_pred_params.sb_type = | 
|  | tip_ref_frame ? BLOCK_8X8 : mi->sb_type[PLANE_TYPE_Y]; | 
|  | inter_pred_params.mask_comp = mi->interinter_comp; | 
|  | } | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | if (use_optflow_refinement && (use_affine_opfl || plane == 0)) { | 
|  | #else | 
|  | if (use_optflow_refinement && plane == 0) { | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | inter_pred_params.interp_filter_params[0] = | 
|  | av1_get_interp_filter_params_with_block_size(mi->interp_fltr, | 
|  | opfl_sub_bw); | 
|  |  | 
|  | inter_pred_params.interp_filter_params[1] = | 
|  | av1_get_interp_filter_params_with_block_size(mi->interp_fltr, | 
|  | opfl_sub_bh); | 
|  |  | 
|  | av1_opfl_rebuild_inter_predictor( | 
|  | dst, dst_stride, plane, mv_refined_sb, | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | opfl_vxy_bufs, | 
|  | #else | 
|  | xd->opfl_vxy_bufs, | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | N_OF_OFFSETS, &inter_pred_params, xd, mi_x, mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | cm, pu_width, mi->comp_refine_type, use_affine_opfl ? wms : NULL, | 
|  | &mi->mv[ref], use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | ref, mc_buf, calc_subpel_params_func, use_4x4 | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | , | 
|  | mi, pu_height, mi_mv | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | 0 | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | , | 
|  | 0 | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | ); | 
|  | continue; | 
|  | } | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | const MV mv_1_16th_pel = (tip_ref_frame && plane) | 
|  | ? mv_refined[ref].as_mv | 
|  | : convert_mv_to_1_16th_pel(&mv); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | av1_build_one_inter_predictor(dst, dst_stride, | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | &mv_1_16th_pel, | 
|  | #else | 
|  | &mv, | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | &inter_pred_params, xd, mi_x, mi_y, ref, | 
|  | mc_buf, calc_subpel_params_func); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | static void build_inter_predictors_8x8_and_bigger( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, | 
|  | const BUFFER_SET *dst_orig, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, MV mi_mv[2], | 
|  | CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst, int dst_stride, | 
|  | int pu_width, int pu_height, | 
|  | #if CONFIG_REFINEMV | 
|  | int build_for_refine_mv_only, | 
|  | #endif  // CONFIG_REFINEMV | 
|  | bool *ext_warp_used, int_mv *mv_refined | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | , | 
|  | REFINEMV_SUBMB_INFO *block_refinemv_subinfo, int *opfl_vxy_bufs | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | ) { | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | // In case of chroma, even for 4xN and Nx4 blocks, single prediction is used. | 
|  | int singleref_for_compound = | 
|  | plane && has_second_ref(mi) && | 
|  | is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]); | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | #if CONFIG_TIP_LD || CONFIG_TIP_ENHANCEMENT | 
|  | const int has_both_sides_refs = cm->has_both_sides_refs; | 
|  | #endif  // CONFIG_TIP_LD || CONFIG_TIP_ENHANCEMENT | 
|  | #if CONFIG_TIP_ENHANCEMENT | 
|  | const int tip_wtd_index = cm->tip_global_wtd_index; | 
|  | const int8_t tip_weight = tip_weighting_factors[tip_wtd_index]; | 
|  | #endif  // CONFIG_TIP_ENHANCEMENT | 
|  | const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]); | 
|  | const int is_compound = ( | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | !singleref_for_compound && | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | has_second_ref(mi)) || | 
|  | #if CONFIG_TIP_ENHANCEMENT | 
|  | (tip_ref_frame && tip_weight != TIP_SINGLE_WTD) | 
|  | #else | 
|  | tip_ref_frame | 
|  | #endif  // CONFIG_TIP_ENHANCEMENT | 
|  | ; | 
|  | if (tip_ref_frame) { | 
|  | #if CONFIG_TIP_LD | 
|  | mi->comp_refine_type = has_both_sides_refs | 
|  | #if CONFIG_TIP_ENHANCEMENT | 
|  | && tip_weight == TIP_EQUAL_WTD | 
|  | #endif  // CONFIG_TIP_ENHANCEMENT | 
|  | ? COMP_REFINE_SUBBLK2P | 
|  | : COMP_REFINE_NONE; | 
|  | #else | 
|  | mi->comp_refine_type = COMP_REFINE_SUBBLK2P; | 
|  | #endif  // CONFIG_TIP_LD | 
|  | } | 
|  | const int is_intrabc = is_intrabc_block(mi, xd->tree_type); | 
|  | assert(IMPLIES(is_intrabc, !is_compound)); | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const int ss_x = pd->subsampling_x; | 
|  | const int ss_y = pd->subsampling_y; | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | assert(IMPLIES(mi->refinemv_flag, !is_intrabc)); | 
|  | assert(IMPLIES(mi->refinemv_flag, is_compound)); | 
|  | assert(IMPLIES(mi->refinemv_flag && switchable_refinemv_flag(cm, mi), | 
|  | mi->interinter_comp.type == COMPOUND_AVERAGE)); | 
|  | assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag[0] == 0)); | 
|  | assert(IMPLIES(mi->refinemv_flag, mi->interp_fltr == MULTITAP_SHARP)); | 
|  |  | 
|  | assert(IMPLIES(tip_ref_frame, | 
|  | mi->use_intrabc[0] == 0 && mi->use_intrabc[1] == 0)); | 
|  | assert(IMPLIES(tip_ref_frame, mi->motion_mode == SIMPLE_TRANSLATION)); | 
|  | assert(IMPLIES(tip_ref_frame, mi->interinter_comp.type == COMPOUND_AVERAGE)); | 
|  |  | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | assert(IMPLIES( | 
|  | mi->refinemv_flag, | 
|  | !is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]))); | 
|  | if (is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]) && | 
|  | has_second_ref(mi)) { | 
|  | assert(mi->interinter_comp.type != COMPOUND_DIFFWTD); | 
|  | } | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  |  | 
|  | if (is_sub_block_refinemv_enabled(cm, mi, | 
|  | #if !CONFIG_IMPROVE_REFINED_MV | 
|  | plane, | 
|  | #endif  // !CONFIG_IMPROVE_REFINED_MV | 
|  | tip_ref_frame)) { | 
|  | assert(IMPLIES(mi->refinemv_flag, mi->cwp_idx == CWP_EQUAL)); | 
|  | #if !CONFIG_IMPROVE_REFINED_MV | 
|  | assert(IMPLIES(tip_ref_frame, plane == 0)); | 
|  | #endif  // !CONFIG_IMPROVE_REFINED_MV | 
|  | int refinemv_sb_size_width = | 
|  | AOMMIN((REFINEMV_SUBBLOCK_WIDTH >> pd->subsampling_x), bw); | 
|  | int refinemv_sb_size_height = | 
|  | AOMMIN(REFINEMV_SUBBLOCK_HEIGHT >> pd->subsampling_y, bh); | 
|  | #if CONFIG_SUBBLK_REF_EXT | 
|  | uint16_t | 
|  | dst0_16_refinemv[(REFINEMV_SUBBLOCK_WIDTH + | 
|  | 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) * | 
|  | (REFINEMV_SUBBLOCK_HEIGHT + | 
|  | 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES))]; | 
|  | uint16_t | 
|  | dst1_16_refinemv[(REFINEMV_SUBBLOCK_WIDTH + | 
|  | 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) * | 
|  | (REFINEMV_SUBBLOCK_HEIGHT + | 
|  | 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES))]; | 
|  | #else | 
|  | uint16_t | 
|  | dst0_16_refinemv[(REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES) * | 
|  | (REFINEMV_SUBBLOCK_HEIGHT + | 
|  | 2 * DMVR_SEARCH_EXT_LINES)]; | 
|  | uint16_t | 
|  | dst1_16_refinemv[(REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES) * | 
|  | (REFINEMV_SUBBLOCK_HEIGHT + | 
|  | 2 * DMVR_SEARCH_EXT_LINES)]; | 
|  | #endif  // CONFIG_SUBBLK_REF_EXT | 
|  |  | 
|  | ReferenceArea ref_area[2]; | 
|  | #if !CONFIG_SUBBLK_PAD | 
|  | av1_get_reference_area_with_padding(cm, xd, plane, mi, mi_mv, bw, bh, mi_x, | 
|  | mi_y, ref_area, pu_width, pu_height); | 
|  | #endif  //! CONFIG_SUBBLK_PAD | 
|  | CONV_BUF_TYPE *tmp_conv_dst = xd->tmp_conv_dst; | 
|  | assert(bw % refinemv_sb_size_width == 0); | 
|  | assert(bh % refinemv_sb_size_height == 0); | 
|  | for (int h = 0; h < bh; h += refinemv_sb_size_height) { | 
|  | for (int w = 0; w < bw; w += refinemv_sb_size_width) { | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | const int x = mi_x + w * (1 << pd->subsampling_x); | 
|  | const int y = mi_y + h * (1 << pd->subsampling_y); | 
|  | if (is_subblock_outside(x, y, cm->mi_params.mi_cols, | 
|  | cm->mi_params.mi_rows, build_for_decode)) { | 
|  | continue; | 
|  | } | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | uint16_t *dst_buf = dst + h * dst_stride + w; | 
|  | xd->tmp_conv_dst = tmp_conv_dst + h * MAX_SB_SIZE + w; | 
|  |  | 
|  | const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | int row_start = | 
|  | plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; | 
|  | int col_start = | 
|  | plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; | 
|  | MV luma_refined_mv[2] = | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | { { mi_mv[0].row, mi_mv[0].col }, { mi_mv[1].row, mi_mv[1].col } }; | 
|  | #else | 
|  | { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col }, | 
|  | { mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } }; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  |  | 
|  | MV chroma_refined_mv[2] = { | 
|  | { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col }, | 
|  | { mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } | 
|  | }; | 
|  |  | 
|  | if (plane != 0) { | 
|  | int luma_h = (h << pd->subsampling_y); | 
|  | int luma_w = (w << pd->subsampling_x); | 
|  | REFINEMV_SUBMB_INFO *refinemv_subinfo = | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | &block_refinemv_subinfo[(luma_h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + | 
|  | (luma_w >> MI_SIZE_LOG2)]; | 
|  | #else | 
|  | &xd->refinemv_subinfo[(luma_h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + | 
|  | (luma_w >> MI_SIZE_LOG2)]; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | chroma_refined_mv[0] = refinemv_subinfo->refinemv[0].as_mv; | 
|  | chroma_refined_mv[1] = refinemv_subinfo->refinemv[1].as_mv; | 
|  | } | 
|  | #if CONFIG_SUBBLK_PAD | 
|  | // sub_mi_x, and sub_mi_y are the top-left position of the luma samples | 
|  | // of the sub-block | 
|  | const int sub_mi_x = mi_x + w * (1 << pd->subsampling_x); | 
|  | const int sub_mi_y = mi_y + h * (1 << pd->subsampling_y); | 
|  | const int comp_bw = tip_ref_frame ? (refinemv_sb_size_width >> ss_x) | 
|  | : refinemv_sb_size_width; | 
|  | const int comp_bh = tip_ref_frame ? (refinemv_sb_size_height >> ss_y) | 
|  | : refinemv_sb_size_height; | 
|  | av1_get_reference_area_with_padding(cm, xd, plane, mi, mi_mv, comp_bw, | 
|  | comp_bh, sub_mi_x, sub_mi_y, | 
|  | ref_area, pu_width, pu_height); | 
|  | #endif  // CONFIG_SUBBLK_PAD | 
|  | // mi_x, and mi_y are the top-left position of the luma samples of the | 
|  | // sub-block | 
|  | build_inter_predictors_8x8_and_bigger_refinemv( | 
|  | cm, xd, plane, mi, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | refinemv_sb_size_width, refinemv_sb_size_height, | 
|  | mi_x + w * (1 << pd->subsampling_x), | 
|  | mi_y + h * (1 << pd->subsampling_y), mc_buf, mi_mv, | 
|  | calc_subpel_params_func, dst_buf, dst_stride, | 
|  | #if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP | 
|  | w, h, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP | 
|  | pu_width, pu_height, dst0_16_refinemv, dst1_16_refinemv, row_start, | 
|  | col_start, plane == 0 ? luma_refined_mv : NULL, chroma_refined_mv, | 
|  | build_for_refine_mv_only, ref_area, mv_refined | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | , | 
|  | opfl_vxy_bufs | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | ); | 
|  |  | 
|  | if (plane == 0 | 
|  | #if !CONFIG_IMPROVE_REFINED_MV | 
|  | && !tip_ref_frame | 
|  | #endif  // !CONFIG_IMPROVE_REFINED_MV | 
|  | ) { | 
|  | REFINEMV_SUBMB_INFO *refinemv_subinfo = | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | &block_refinemv_subinfo[(h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + | 
|  | (w >> MI_SIZE_LOG2)]; | 
|  | #else | 
|  | &xd->refinemv_subinfo[(h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + | 
|  | (w >> MI_SIZE_LOG2)]; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | fill_subblock_refine_mv(refinemv_subinfo, refinemv_sb_size_width, | 
|  | refinemv_sb_size_height, luma_refined_mv[0], | 
|  | luma_refined_mv[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  | xd->tmp_conv_dst = tmp_conv_dst; | 
|  | return; | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | int is_global[2] = { 0, 0 }; | 
|  | if (!tip_ref_frame) { | 
|  | for (int ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | const WarpedMotionParams *const wm = | 
|  | &xd->global_motion[mi->ref_frame[ref]]; | 
|  | is_global[ref] = is_global_mv_block(mi, wm->wmtype); | 
|  | } | 
|  | } | 
|  |  | 
|  | int row_start = 0; | 
|  | int col_start = 0; | 
|  | const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; | 
|  | row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; | 
|  | col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; | 
|  | const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x; | 
|  | const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y; | 
|  | #if CONFIG_REFINEMV | 
|  | MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] }; | 
|  | #endif  // CONFIG_REFINEMV | 
|  | if (tip_ref_frame | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | && plane == 0) { | 
|  | mv_refined[0].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[0]); | 
|  | mv_refined[1].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[1]); | 
|  | #else | 
|  | ) { | 
|  | mv_refined[0].as_mv.row = best_mv_ref[0].row * (1 << (1 - ss_y)); | 
|  | mv_refined[0].as_mv.col = best_mv_ref[0].col * (1 << (1 - ss_x)); | 
|  | mv_refined[1].as_mv.row = best_mv_ref[1].row * (1 << (1 - ss_y)); | 
|  | mv_refined[1].as_mv.col = best_mv_ref[1].col * (1 << (1 - ss_x)); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | } | 
|  | int use_optflow_refinement = | 
|  | is_optflow_refinement_enabled(cm, | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | xd, | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  | mi, plane, tip_ref_frame); | 
|  | int use_4x4 = tip_ref_frame ? 0 : 1; | 
|  | assert(IMPLIES(use_optflow_refinement, | 
|  | cm->features.opfl_refine_type != REFINE_NONE)); | 
|  |  | 
|  | // Optical flow refinement with masked comp types or with non-sharp | 
|  | // interpolation filter should only exist in REFINE_ALL. | 
|  | assert(IMPLIES( | 
|  | use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE, | 
|  | cm->features.opfl_refine_type == REFINE_ALL)); | 
|  | assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0)); | 
|  |  | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | assert(IMPLIES( | 
|  | use_optflow_refinement, | 
|  | !is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]))); | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | int use_affine_opfl = mi->comp_refine_type >= COMP_AFFINE_REFINE_START; | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | const int affine_sub_bw = AOMMIN(AFFINE_MAX_UNIT >> pd->subsampling_x, bw); | 
|  | const int affine_sub_bh = AOMMIN(AFFINE_MAX_UNIT >> pd->subsampling_y, bh); | 
|  | const int wm_blocks = (bw / affine_sub_bw) * (bh / affine_sub_bh); | 
|  | // Used to store warped motion parameters for non-refinemv cases. When affine | 
|  | // refinement is enabled, the parameters stored in this structure is used for | 
|  | // pred data calculation. The default initialization of 'wms' is required for | 
|  | // necessary sub-blocks as it can be utilized without population in some rare | 
|  | // cases when av1_opfl_affine_refinement() returns one. | 
|  | WarpedMotionParams wms[2 * NUM_AFFINE_PARAMS]; | 
|  | for (int i = 0; i < 2 * wm_blocks; i++) wms[i] = default_warp_params; | 
|  | #if AFFINE_CHROMA_REFINE_METHOD > 0 | 
|  | if (use_optflow_refinement && plane | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | && !tip_ref_frame | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | ) { | 
|  | use_affine_opfl = xd->use_affine_opfl; | 
|  | memcpy(wms, xd->wm_params_sb, 2 * NUM_AFFINE_PARAMS * sizeof(wms[0])); | 
|  | } | 
|  | #endif | 
|  | #else | 
|  | WarpedMotionParams wms[2]; | 
|  | wms[0] = default_warp_params; | 
|  | wms[1] = default_warp_params; | 
|  | #if AFFINE_CHROMA_REFINE_METHOD > 0 | 
|  | if (use_optflow_refinement && plane) { | 
|  | wms[0] = mi->wm_params[0]; | 
|  | wms[1] = mi->wm_params[1]; | 
|  | } | 
|  | #endif | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  |  | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | assert(IMPLIES( | 
|  | use_optflow_refinement, | 
|  | !is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]))); | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  |  | 
|  | // Pointers to gradient and dst buffers | 
|  |  | 
|  | if (use_optflow_refinement && plane == 0) { | 
|  | // Pointers to hold optical flow MV offsets. | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | int *vx0 = opfl_vxy_bufs; | 
|  | int *vx1 = opfl_vxy_bufs + (N_OF_OFFSETS * 1); | 
|  | int *vy0 = opfl_vxy_bufs + (N_OF_OFFSETS * 2); | 
|  | int *vy1 = opfl_vxy_bufs + (N_OF_OFFSETS * 3); | 
|  | #else | 
|  | int *vx0 = xd->opfl_vxy_bufs; | 
|  | int *vx1 = xd->opfl_vxy_bufs + (N_OF_OFFSETS * 1); | 
|  | int *vy0 = xd->opfl_vxy_bufs + (N_OF_OFFSETS * 2); | 
|  | int *vy1 = xd->opfl_vxy_bufs + (N_OF_OFFSETS * 3); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | assert(mi->comp_refine_type > COMP_REFINE_NONE); | 
|  | assert(IMPLIES(mi->comp_refine_type >= COMP_AFFINE_REFINE_START, | 
|  | is_affine_refinement_allowed(cm, xd, mi->mode))); | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | // Allocate gradient and dst buffers | 
|  | const int n = opfl_get_subblock_size(bw, bh, plane, use_4x4); | 
|  | const int n_blocks = (bw / n) * (bh / n); | 
|  | int16_t *gx0 = xd->opfl_gxy_bufs; | 
|  | int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1); | 
|  | int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2); | 
|  | int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3); | 
|  |  | 
|  | // Initialize refined mv | 
|  | #if CONFIG_REFINEMV | 
|  | const MV mv0 = best_mv_ref[0]; | 
|  | const MV mv1 = best_mv_ref[1]; | 
|  | #else | 
|  | const MV mv0 = mi->mv[0].as_mv; | 
|  | const MV mv1 = mi->mv[1].as_mv; | 
|  | #endif  // CONFIG_REFINEMV | 
|  | // Refine MV using optical flow. The final output MV will be in 1/16 | 
|  | // precision. | 
|  | uint16_t *dst0 = xd->opfl_dst_bufs; | 
|  | uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE; | 
|  |  | 
|  | if (tip_ref_frame) { | 
|  | use_optflow_refinement = !skip_opfl_refine_with_tip( | 
|  | cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf, | 
|  | best_mv_ref, calc_subpel_params_func, dst0, dst1); | 
|  | } | 
|  | if (use_optflow_refinement) { | 
|  | int do_pred = tip_ref_frame ? 0 : 1; | 
|  | for (int mvi = 0; mvi < n_blocks; mvi++) { | 
|  | mv_refined[mvi * 2].as_mv = mv0; | 
|  | mv_refined[mvi * 2 + 1].as_mv = mv1; | 
|  | } | 
|  | av1_get_optflow_based_mv( | 
|  | cm, xd, plane, mi, mv_refined, bw, bh, mi_x, mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | mc_buf, calc_subpel_params_func, gx0, gy0, gx1, gy1, | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | wms, &use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | vx0, vy0, vx1, vy1, dst0, dst1, use_4x4, do_pred | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | best_mv_ref, pu_width, pu_height | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ); | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | xd->use_affine_opfl = use_affine_opfl; | 
|  | #endif | 
|  | #if CONFIG_AFFINE_REFINEMENT_SB | 
|  | memcpy(xd->wm_params_sb, wms, 2 * NUM_AFFINE_PARAMS * sizeof(wms[0])); | 
|  | #elif CONFIG_AFFINE_REFINEMENT | 
|  | // parameters derived are saved here and may be reused by chroma | 
|  | mi->wm_params[0] = wms[0]; | 
|  | mi->wm_params[1] = wms[1]; | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT_SB | 
|  | } | 
|  | } | 
|  |  | 
|  | int opfl_sub_bw = OF_BSIZE; | 
|  | int opfl_sub_bh = OF_BSIZE; | 
|  | opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh); | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | BacpBlockData bacp_block_data[2 * N_OF_OFFSETS]; | 
|  | uint8_t use_bacp = tip_ref_frame | 
|  | ? | 
|  | #if CONFIG_TIP_ENHANCEMENT | 
|  | is_compound && tip_weight == TIP_EQUAL_WTD && | 
|  | #endif  // CONFIG_TIP_ENHANCEMENT | 
|  | cm->features.enable_imp_msk_bld && | 
|  | !av1_is_scaled(cm->tip_ref.ref_scale_factor[0]) && | 
|  | !av1_is_scaled(cm->tip_ref.ref_scale_factor[1]) | 
|  | : use_border_aware_compound(cm, xd, mi) && | 
|  | mi->cwp_idx == CWP_EQUAL && | 
|  | cm->features.enable_imp_msk_bld; | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | WarpBoundaryBox warp_bd_box_mem[MAX_WARP_BD_SQ]; | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  |  | 
|  | #if CONFIG_COMPOUND_4XN | 
|  | assert(IMPLIES(singleref_for_compound, !is_compound)); | 
|  | #endif  // CONFIG_COMPOUND_4XN | 
|  |  | 
|  | for (int ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | const struct scale_factors *const sf = | 
|  | tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref] | 
|  | : (is_intrabc ? &cm->sf_identity | 
|  | : xd->block_ref_scale_factors[ref]); | 
|  | struct buf_2d *const pre_buf = is_intrabc ? &pd->dst : &pd->pre[ref]; | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | MV mv = mi_mv[ref]; | 
|  | #else | 
|  | const MV mv = mi_mv[ref]; | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | const WarpTypesAllowed warp_types = { is_global[ref], | 
|  | is_warp_mode(mi->motion_mode) }; | 
|  |  | 
|  | InterPredParams inter_pred_params; | 
|  | const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw; | 
|  | const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh; | 
|  | av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x, | 
|  | pd->subsampling_x, pd->subsampling_y, xd->bd, | 
|  | mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); | 
|  | inter_pred_params.original_pu_width = pu_width; | 
|  | inter_pred_params.original_pu_height = pu_height; | 
|  |  | 
|  | if (is_compound) av1_init_comp_mode(&inter_pred_params); | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | inter_pred_params.border_data.enable_bacp = use_bacp; | 
|  | inter_pred_params.border_data.bacp_block_data = | 
|  | &bacp_block_data[0];  // Always point to the first ref | 
|  | #endif                        // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | inter_pred_params.conv_params = get_conv_params_no_round( | 
|  | ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); | 
|  |  | 
|  | av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); | 
|  | #if CONFIG_EXT_WARP_FILTER | 
|  | #if CONFIG_IMPROVE_EXT_WARP | 
|  | if (inter_pred_params.mode == WARP_PRED && | 
|  | (!inter_pred_params.warp_params.use_affine_filter || | 
|  | (comp_bw < 8 || comp_bh < 8))) { | 
|  | #else | 
|  | if (inter_pred_params.mode == WARP_PRED && | 
|  | !inter_pred_params.warp_params.use_affine_filter) { | 
|  | #endif  // CONFIG_IMPROVE_EXT_WARP | 
|  | *ext_warp_used = true; | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | inter_pred_params.use_warp_bd_box = 1; | 
|  | inter_pred_params.warp_bd_box = &warp_bd_box_mem[0]; | 
|  | const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; | 
|  | const int_mv warp_mv = get_int_warp_mv_for_fb( | 
|  | xd, &inter_pred_params.warp_params, bsize, (mi_x >> MI_SIZE_LOG2), | 
|  | (mi_y >> MI_SIZE_LOG2)); | 
|  | // printf("warpmv (%d, %d), loc (%d, %d)\n", warp_mv.as_mv.col, | 
|  | //        warp_mv.as_mv.row, mi_x, mi_y); | 
|  | // printf("precision %d\n", mi->pb_mv_precision); | 
|  |  | 
|  | int warp_bd_box_mem_stride = MAX_WARP_BD_SIZE; | 
|  | for (int sub_mi_y = pre_y; sub_mi_y < pre_y + pu_height; sub_mi_y += 4) { | 
|  | for (int sub_mi_x = pre_x; sub_mi_x < pre_x + pu_width; sub_mi_x += 4) { | 
|  | int x_loc = sub_mi_x - pre_x; | 
|  | int y_loc = sub_mi_y - pre_y; | 
|  | #if CONFIG_IMPROVE_EXT_WARP | 
|  | int block_width = AOMMIN(8, comp_bw); | 
|  | int block_height = AOMMIN(8, comp_bh); | 
|  | #endif  // CONFIG_IMPROVE_EXT_WARP | 
|  | if ((x_loc & 7) == 0 && (y_loc & 7) == 0) { | 
|  | av1_get_reference_area_with_padding_single_warp( | 
|  | cm, xd, plane, mi, warp_mv.as_mv, | 
|  | #if CONFIG_IMPROVE_EXT_WARP | 
|  | block_width, block_height, | 
|  | #else | 
|  | 8, 8, | 
|  | #endif  // CONFIG_IMPROVE_EXT_WARP | 
|  | (sub_mi_x << pd->subsampling_x), | 
|  | (sub_mi_y << pd->subsampling_y), | 
|  | &inter_pred_params | 
|  | .warp_bd_box[(x_loc >> 3) + | 
|  | (y_loc >> 3) * warp_bd_box_mem_stride], | 
|  | pu_width, pu_height, ref); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | } | 
|  |  | 
|  | #if CONFIG_ACROSS_SCALE_WARP | 
|  | assert(IMPLIES(av1_is_scaled(sf), | 
|  | mi->comp_refine_type < COMP_AFFINE_REFINE_START)); | 
|  | #endif  // CONFIG_ACROSS_SCALE_WARP | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | if (use_optflow_refinement && | 
|  | mi->comp_refine_type >= COMP_AFFINE_REFINE_START && | 
|  | (opfl_sub_bw < 8 || opfl_sub_bh < 8)) | 
|  | *ext_warp_used = true; | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | #endif  // CONFIG_EXT_WARP_FILTER | 
|  |  | 
|  | #if CONFIG_D071_IMP_MSK_BLD | 
|  | if (is_compound) { | 
|  | inter_pred_params.sb_type = | 
|  | tip_ref_frame ? BLOCK_8X8 : mi->sb_type[PLANE_TYPE_Y]; | 
|  | inter_pred_params.mask_comp = mi->interinter_comp; | 
|  | } | 
|  | #endif  // CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | if (is_masked_compound_type(mi->interinter_comp.type)) { | 
|  | #if !CONFIG_D071_IMP_MSK_BLD | 
|  | inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y]; | 
|  | inter_pred_params.mask_comp = mi->interinter_comp; | 
|  | #endif  // !CONFIG_D071_IMP_MSK_BLD | 
|  |  | 
|  | if (ref == 1) { | 
|  | inter_pred_params.conv_params.do_average = 0; | 
|  | inter_pred_params.comp_mode = MASK_COMP; | 
|  | } | 
|  | // Assign physical buffer. | 
|  | inter_pred_params.mask_comp.seg_mask = xd->seg_mask; | 
|  | } | 
|  |  | 
|  | if (ref == 1 && inter_pred_params.conv_params.do_average == 1) { | 
|  | if (get_cwp_idx(mi) != CWP_EQUAL) { | 
|  | int8_t weight = get_cwp_idx(mi); | 
|  | assert(mi->cwp_idx >= CWP_MIN && mi->cwp_idx <= CWP_MAX); | 
|  | inter_pred_params.conv_params.fwd_offset = weight; | 
|  | inter_pred_params.conv_params.bck_offset = | 
|  | (1 << CWP_WEIGHT_BITS) - weight; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | if (use_optflow_refinement && | 
|  | #if AFFINE_CHROMA_REFINE_METHOD > 0 | 
|  | (mi->comp_refine_type >= COMP_AFFINE_REFINE_START || plane == 0) | 
|  | #else | 
|  | mi->comp_refine_type >= COMP_AFFINE_REFINE_START && plane == 0 | 
|  | #endif | 
|  | ) { | 
|  | #else | 
|  | if (use_optflow_refinement && plane == 0) { | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | inter_pred_params.interp_filter_params[0] = | 
|  | av1_get_interp_filter_params_with_block_size(mi->interp_fltr, | 
|  | opfl_sub_bw); | 
|  | inter_pred_params.interp_filter_params[1] = | 
|  | av1_get_interp_filter_params_with_block_size(mi->interp_fltr, | 
|  | opfl_sub_bh); | 
|  | av1_opfl_rebuild_inter_predictor( | 
|  | dst, dst_stride, plane, mv_refined, | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | opfl_vxy_bufs, | 
|  | #else | 
|  | xd->opfl_vxy_bufs, | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | N_OF_OFFSETS, &inter_pred_params, xd, mi_x, mi_y, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | #if CONFIG_AFFINE_REFINEMENT | 
|  | cm, pu_width, mi->comp_refine_type, wms, &mi->mv[ref], | 
|  | use_affine_opfl, | 
|  | #endif  // CONFIG_AFFINE_REFINEMENT | 
|  | ref, mc_buf, calc_subpel_params_func, use_4x4 | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | , | 
|  | mi, pu_height, mi_mv | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION || CONFIG_WARP_BD_BOX | 
|  | #if CONFIG_OPFL_MEMBW_REDUCTION | 
|  | , | 
|  | 1 | 
|  | #endif  // CONFIG_OPFL_MEMBW_REDUCTION | 
|  | #if CONFIG_WARP_BD_BOX | 
|  | , | 
|  | *ext_warp_used | 
|  | #endif  // CONFIG_WARP_BD_BOX | 
|  | ); | 
|  | continue; | 
|  | } | 
|  | if (mi->bawp_flag[0] > 0 && (plane == 0 || mi->bawp_flag[1])) { | 
|  | av1_build_one_bawp_inter_predictor( | 
|  | dst, dst_stride, &mv, &inter_pred_params, cm, xd, dst_orig, bw, bh, | 
|  | mi_x, mi_y, ref, plane, mc_buf, calc_subpel_params_func); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #if CONFIG_TIP_ENHANCEMENT | 
|  | if (tip_ref_frame) { | 
|  | set_tip_interp_weight_factor(cm, ref, &inter_pred_params); | 
|  | } | 
|  | #endif  // CONFIG_TIP_ENHANCEMENT | 
|  |  | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | const MV mv_1_16th_pel = (tip_ref_frame && plane) | 
|  | ? mv_refined[ref].as_mv | 
|  | : convert_mv_to_1_16th_pel(&mv); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | av1_build_one_inter_predictor(dst, dst_stride, | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | &mv_1_16th_pel, | 
|  | #else | 
|  | &mv, | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | &inter_pred_params, xd, mi_x, mi_y, ref, | 
|  | mc_buf, calc_subpel_params_func); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function consolidates the prediction process of the TIP ref mode block | 
|  | // and the non-TIP ref mode block. | 
|  | static void build_inter_predictors_8x8_and_bigger_facade( | 
|  | const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, | 
|  | const BUFFER_SET *dst_orig, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, | 
|  | CalcSubpelParamsFunc calc_subpel_params_func | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | int build_for_refine_mv_only | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ) { | 
|  | const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]); | 
|  | bool ext_warp_used = false; | 
|  |  | 
|  | struct macroblockd_plane *pd = &xd->plane[plane]; | 
|  | struct buf_2d *dst_buf = &pd->dst; | 
|  | const int dst_stride = dst_buf->stride; | 
|  | uint16_t *const dst = dst_buf->buf; | 
|  |  | 
|  | if (tip_ref_frame) { | 
|  | // TMVP_MI_SIZE_UV is the block size in luma unit for Chroma | 
|  | // TIP interpolation, will convert to the step size in TMVP 8x8 unit | 
|  | const int unit_blk_size = (plane == 0) ? TMVP_MI_SIZE : TMVP_MI_SIZE_UV; | 
|  | const int end_pixel_row = mi_y + (xd->height << MI_SIZE_LOG2); | 
|  | const int end_pixel_col = mi_x + (xd->width << MI_SIZE_LOG2); | 
|  |  | 
|  | for (int pixel_row = mi_y; pixel_row < end_pixel_row; | 
|  | pixel_row += unit_blk_size) { | 
|  | for (int pixel_col = mi_x; pixel_col < end_pixel_col; | 
|  | pixel_col += unit_blk_size) { | 
|  | const int tpl_row = pixel_row >> TMVP_MI_SZ_LOG2; | 
|  | const int tpl_col = pixel_col >> TMVP_MI_SZ_LOG2; | 
|  | const int row_offset = (pixel_row - mi_y) >> TMVP_MI_SZ_LOG2; | 
|  | const int col_offset = (pixel_col - mi_x) >> TMVP_MI_SZ_LOG2; | 
|  | const int tip_mv_offset = (row_offset * TIP_MV_STRIDE + col_offset) | 
|  | << 1; | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | const int refinemv_offset = | 
|  | ((pixel_row - mi_y) >> MI_SIZE_LOG2) * MAX_MIB_SIZE + | 
|  | ((pixel_col - mi_x) >> MI_SIZE_LOG2); | 
|  | const int opfl_vxy_offset = | 
|  | ((pixel_row - mi_y) >> OF_BSIZE_LOG2) * | 
|  | (xd->width >> (OF_BSIZE_LOG2 - MI_SIZE_LOG2)) + | 
|  | ((pixel_col - mi_x) >> OF_BSIZE_LOG2); | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | const int ss_x = pd->subsampling_x; | 
|  | const int ss_y = pd->subsampling_y; | 
|  | MV tip_mv[2]; | 
|  | int_mv tip_mv_tmp[2]; | 
|  |  | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | if (is_subblock_outside(pixel_col, pixel_row, cm->mi_params.mi_cols, | 
|  | cm->mi_params.mi_rows, build_for_decode)) { | 
|  | continue; | 
|  | } | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  |  | 
|  | get_tip_mv(cm, &mi->mv[0].as_mv, tpl_col, tpl_row, tip_mv_tmp); | 
|  |  | 
|  | #if CONFIG_ACROSS_SCALE_TPL_MVS | 
|  | clamp_mv_ref(&tip_mv_tmp[0].as_mv, xd->width << MI_SIZE_LOG2, | 
|  | xd->height << MI_SIZE_LOG2, xd); | 
|  | clamp_mv_ref(&tip_mv_tmp[1].as_mv, xd->width << MI_SIZE_LOG2, | 
|  | xd->height << MI_SIZE_LOG2, xd); | 
|  | #endif  // CONFIG_ACROSS_SCALE_TPL_MVS | 
|  |  | 
|  | tip_mv[0] = tip_mv_tmp[0].as_mv; | 
|  | tip_mv[1] = tip_mv_tmp[1].as_mv; | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | if (plane == 0) { | 
|  | REFINEMV_SUBMB_INFO *refinemv_subinfo = | 
|  | &xd->refinemv_subinfo[refinemv_offset]; | 
|  | fill_subblock_refine_mv(refinemv_subinfo, unit_blk_size, | 
|  | unit_blk_size, tip_mv[0], tip_mv[1]); | 
|  | xd->opfl_vxy_bufs[opfl_vxy_offset] = 0; | 
|  | xd->opfl_vxy_bufs[N_OF_OFFSETS * 1 + opfl_vxy_offset] = 0; | 
|  | xd->opfl_vxy_bufs[N_OF_OFFSETS * 2 + opfl_vxy_offset] = 0; | 
|  | xd->opfl_vxy_bufs[N_OF_OFFSETS * 3 + opfl_vxy_offset] = 0; | 
|  | } | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | dst_buf->buf = dst + | 
|  | ((row_offset << TMVP_MI_SZ_LOG2) >> ss_y) * dst_stride + | 
|  | ((col_offset << TMVP_MI_SZ_LOG2) >> ss_x); | 
|  |  | 
|  | build_inter_predictors_8x8_and_bigger( | 
|  | cm, xd, plane, mi, dst_orig, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | unit_blk_size, unit_blk_size, pixel_col, pixel_row, mc_buf, tip_mv, | 
|  | calc_subpel_params_func, dst_buf->buf, dst_stride, bw, bh, | 
|  | #if CONFIG_REFINEMV | 
|  | build_for_refine_mv_only, | 
|  | #endif  // CONFIG_REFINEMV | 
|  | &ext_warp_used, &xd->mv_refined[tip_mv_offset] | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | , | 
|  | &xd->refinemv_subinfo[refinemv_offset], | 
|  | &xd->opfl_vxy_bufs[opfl_vxy_offset] | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | dst_buf->buf = dst; | 
|  | } else { | 
|  | MV mv[2] = { mi->mv[0].as_mv, mi->mv[1].as_mv }; | 
|  | build_inter_predictors_8x8_and_bigger( | 
|  | cm, xd, plane, mi, dst_orig, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | bw, bh, mi_x, mi_y, mc_buf, mv, calc_subpel_params_func, dst, | 
|  | dst_stride, bw, bh, | 
|  | #if CONFIG_REFINEMV | 
|  | build_for_refine_mv_only, | 
|  | #endif  // CONFIG_REFINEMV | 
|  | &ext_warp_used, xd->mv_refined | 
|  | #if CONFIG_IMPROVE_REFINED_MV | 
|  | , | 
|  | xd->refinemv_subinfo, xd->opfl_vxy_bufs | 
|  | #endif  // CONFIG_IMPROVE_REFINED_MV | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | int plane, MB_MODE_INFO *mi, | 
|  | const BUFFER_SET *dst_orig, | 
|  | #if CONFIG_REFINEMV | 
|  | int build_for_refine_mv_only, | 
|  | #endif  // CONFIG_REFINEMV | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | int bw, int bh, int mi_x, int mi_y, | 
|  | uint16_t **mc_buf, | 
|  | CalcSubpelParamsFunc calc_subpel_params_func) { | 
|  | if (plane == AOM_PLANE_Y) | 
|  | memset(xd->mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv)); | 
|  | // just for debugging purpose | 
|  | // Can be removed later on | 
|  | if (mi->mode == WARPMV) { | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | assert(mi->ref_mv_idx[0] == 0); | 
|  | assert(mi->ref_mv_idx[1] == 0); | 
|  | #else | 
|  | assert(mi->ref_mv_idx == 0); | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | assert(mi->motion_mode == WARP_DELTA || mi->motion_mode == WARP_CAUSAL); | 
|  | } | 
|  |  | 
|  | if (is_sub8x8_inter(cm, xd, mi, plane, is_intrabc_block(mi, xd->tree_type))) { | 
|  | build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf, | 
|  | calc_subpel_params_func); | 
|  | } else { | 
|  | build_inter_predictors_8x8_and_bigger_facade(cm, xd, plane, mi, dst_orig, | 
|  | #if CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | build_for_decode, | 
|  | #endif  // CONFIG_E191_OFS_PRED_RES_HANDLE | 
|  | bw, bh, mi_x, mi_y, mc_buf, | 
|  | calc_subpel_params_func | 
|  | #if CONFIG_REFINEMV | 
|  | , | 
|  | build_for_refine_mv_only | 
|  | #endif  // CONFIG_REFINEMV | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_setup_dst_planes(struct macroblockd_plane *planes, | 
|  | const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, | 
|  | const int plane_start, const int plane_end, | 
|  | const CHROMA_REF_INFO *chroma_ref_info) { | 
|  | // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet | 
|  | // the static analysis warnings. | 
|  | for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { | 
|  | struct macroblockd_plane *const pd = &planes[i]; | 
|  | const int is_uv = i > 0; | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | setup_pred_plane(&pd->dst, src->buffers[i], src->widths[is_uv], | 
|  | src->heights[is_uv], src->crop_widths[is_uv], | 
|  | src->crop_heights[is_uv], src->strides[is_uv], mi_row, | 
|  | mi_col, NULL, pd->subsampling_x, pd->subsampling_y, | 
|  | chroma_ref_info); | 
|  | #else | 
|  | setup_pred_plane(&pd->dst, src->buffers[i], src->crop_widths[is_uv], | 
|  | src->crop_heights[is_uv], src->crop_widths[is_uv], | 
|  | src->crop_heights[is_uv], src->strides[is_uv], mi_row, | 
|  | mi_col, NULL, pd->subsampling_x, pd->subsampling_y, | 
|  | chroma_ref_info); | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, | 
|  | const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, | 
|  | const struct scale_factors *sf, const int num_planes, | 
|  | const CHROMA_REF_INFO *chroma_ref_info) { | 
|  | if (src != NULL) { | 
|  | // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet | 
|  | // the static analysis warnings. | 
|  | for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[i]; | 
|  | const int is_uv = i > 0; | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | setup_pred_plane(&pd->pre[idx], src->buffers[i], src->widths[is_uv], | 
|  | src->heights[is_uv], src->crop_widths[is_uv], | 
|  | src->crop_heights[is_uv], src->strides[is_uv], mi_row, | 
|  | mi_col, sf, pd->subsampling_x, pd->subsampling_y, | 
|  | chroma_ref_info); | 
|  | #else | 
|  | setup_pred_plane(&pd->pre[idx], src->buffers[i], src->crop_widths[is_uv], | 
|  | src->crop_heights[is_uv], src->crop_widths[is_uv], | 
|  | src->crop_heights[is_uv], src->strides[is_uv], mi_row, | 
|  | mi_col, sf, pd->subsampling_x, pd->subsampling_y, | 
|  | chroma_ref_info); | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void combine_interintra_highbd( | 
|  | INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index, | 
|  | int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, | 
|  | uint16_t *comppred8, int compstride, const uint16_t *interpred8, | 
|  | int interstride, const uint16_t *intrapred8, int intrastride, int bd) { | 
|  | const int bw = block_size_wide[plane_bsize]; | 
|  | const int bh = block_size_high[plane_bsize]; | 
|  |  | 
|  | if (use_wedge_interintra) { | 
|  | if (av1_is_wedge_used(bsize)) { | 
|  | const uint8_t *mask = | 
|  | av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); | 
|  | const int subh = 2 * mi_size_high[bsize] == bh; | 
|  | const int subw = 2 * mi_size_wide[bsize] == bw; | 
|  | aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, | 
|  | interpred8, interstride, mask, | 
|  | block_size_wide[bsize], bw, bh, subw, subh, bd); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint8_t mask[MAX_SB_SQUARE]; | 
|  | build_smooth_interintra_mask(mask, bw, plane_bsize, mode); | 
|  | aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, | 
|  | interpred8, interstride, mask, bw, bw, bh, 0, 0, | 
|  | bd); | 
|  | } | 
|  |  | 
|  | void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd, int plane, | 
|  | const BUFFER_SET *ctx, | 
|  | uint16_t *dst, int dst_stride) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const int ssx = xd->plane[plane].subsampling_x; | 
|  | const int ssy = xd->plane[plane].subsampling_y; | 
|  | BLOCK_SIZE plane_bsize = | 
|  | get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy); | 
|  | PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; | 
|  | assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0); | 
|  | assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0); | 
|  | assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0); | 
|  | assert(xd->mi[0]->use_intrabc[PLANE_TYPE_Y] == 0); | 
|  | #if CONFIG_NEW_TX_PARTITION | 
|  | xd->mi[0]->txb_idx = 0; | 
|  | #endif  // CONFIG_NEW_TX_PARTITION | 
|  | av1_predict_intra_block(cm, xd, pd->width, pd->height, | 
|  | max_txsize_rect_lookup[plane_bsize], mode, 0, 0, | 
|  | FILTER_INTRA_MODES, ctx->plane[plane], | 
|  | ctx->stride[plane], dst, dst_stride, 0, 0, plane); | 
|  | } | 
|  |  | 
|  | void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, | 
|  | const uint16_t *inter_pred, int inter_stride, | 
|  | const uint16_t *intra_pred, int intra_stride) { | 
|  | const int ssx = xd->plane[plane].subsampling_x; | 
|  | const int ssy = xd->plane[plane].subsampling_y; | 
|  | BLOCK_SIZE plane_bsize = | 
|  | get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy); | 
|  |  | 
|  | combine_interintra_highbd( | 
|  | xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, | 
|  | xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize, | 
|  | plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, | 
|  | inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); | 
|  | } | 
|  |  | 
|  | // build interintra_predictors for one plane | 
|  | void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | uint16_t *pred, int stride, | 
|  | const BUFFER_SET *ctx, int plane, | 
|  | BLOCK_SIZE bsize) { | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); | 
|  | av1_build_intra_predictors_for_interintra(cm, xd, plane, ctx, intrapredictor, | 
|  | MAX_SB_SIZE); | 
|  | av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor, | 
|  | MAX_SB_SIZE); | 
|  | } | 
|  |  | 
|  | int av1_get_mpp_flag_context(const AV1_COMMON *cm, const MACROBLOCKD *xd) { | 
|  | (void)cm; | 
|  | const MB_MODE_INFO *const above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | const int above_mpp_flag = | 
|  | (above_mi && is_inter_block(above_mi, SHARED_PART) && | 
|  | !is_intrabc_block(above_mi, SHARED_PART)) | 
|  | ? (above_mi->most_probable_pb_mv_precision == | 
|  | above_mi->pb_mv_precision) | 
|  | : 0; | 
|  | const int left_mpp_flag = | 
|  | (left_mi && is_inter_block(left_mi, SHARED_PART) && | 
|  | !is_intrabc_block(left_mi, SHARED_PART)) | 
|  | ? (left_mi->most_probable_pb_mv_precision == left_mi->pb_mv_precision) | 
|  | : 0; | 
|  |  | 
|  | return (above_mpp_flag + left_mpp_flag); | 
|  | } | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | // Derive the context index for refinemv flag | 
|  | int av1_get_refinemv_context(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | BLOCK_SIZE bsize) { | 
|  | (void)cm; | 
|  | (void)bsize; | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | if (mbmi->skip_mode) return 0; | 
|  | return (1 + (mbmi->mode - NEAR_NEARMV)); | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | int av1_get_pb_mv_precision_down_context(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd) { | 
|  | (void)cm; | 
|  | const MB_MODE_INFO *const above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | const int above_down = | 
|  | (above_mi && is_inter_block(above_mi, SHARED_PART) && | 
|  | !is_intrabc_block(above_mi, SHARED_PART)) | 
|  | ? above_mi->max_mv_precision - above_mi->pb_mv_precision | 
|  | : 0; | 
|  | const int left_down = | 
|  | (left_mi && is_inter_block(left_mi, SHARED_PART) && | 
|  | !is_intrabc_block(left_mi, SHARED_PART))  // && !left_mi->skip_mode) | 
|  | ? left_mi->max_mv_precision - left_mi->pb_mv_precision | 
|  | : 0; | 
|  | assert(above_down >= 0); | 
|  | assert(left_down >= 0); | 
|  | return (above_down + left_down > 0); | 
|  | } | 
|  |  | 
|  | int av1_get_mv_class_context(const MvSubpelPrecision pb_mv_precision) { | 
|  | return pb_mv_precision; | 
|  | } | 
|  |  | 
|  | void set_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) { | 
|  | mbmi->pb_mv_precision = precision; | 
|  | } | 
|  |  | 
|  | #if CONFIG_IBC_SUBPEL_PRECISION | 
|  | // Function to check if precision need to be signaled or not | 
|  | int is_intraBC_bv_precision_active(const AV1_COMMON *const cm, | 
|  | const int intrabc_mode) { | 
|  | assert(IMPLIES(!cm->features.allow_screen_content_tools, | 
|  | !cm->features.cur_frame_force_integer_mv)); | 
|  | assert(IMPLIES(cm->features.cur_frame_force_integer_mv, | 
|  | cm->features.allow_screen_content_tools)); | 
|  | return (!cm->features.cur_frame_force_integer_mv && intrabc_mode == 0); | 
|  | } | 
|  | // Set max value as default precision | 
|  | void set_default_intraBC_bv_precision(const AV1_COMMON *const cm, | 
|  | MB_MODE_INFO *mbmi) { | 
|  | assert(IMPLIES(!cm->features.allow_screen_content_tools, | 
|  | !cm->features.cur_frame_force_integer_mv)); | 
|  | assert(IMPLIES(cm->features.cur_frame_force_integer_mv, | 
|  | cm->features.allow_screen_content_tools)); | 
|  | mbmi->pb_mv_precision = | 
|  | cm->features.cur_frame_force_integer_mv | 
|  | ? MV_PRECISION_ONE_PEL | 
|  | : av1_intraBc_precision_sets | 
|  | .precision[av1_intraBc_precision_sets.num_precisions - 1]; | 
|  | } | 
|  | #endif  // CONFIG_IBC_SUBPEL_PRECISION | 
|  |  | 
|  | #if BUGFIX_AMVD_AMVR | 
|  | // set the mv precision for amvd applied mode | 
|  | void set_amvd_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) { | 
|  | mbmi->pb_mv_precision = | 
|  | precision <= MV_PRECISION_QTR_PEL ? precision : MV_PRECISION_QTR_PEL; | 
|  | } | 
|  | #endif  // BUGFIX_AMVD_AMVR | 
|  | int av1_get_pb_mv_precision_index(const MB_MODE_INFO *mbmi) { | 
|  | const PRECISION_SET *precision_def = | 
|  | &av1_mv_precision_sets[mbmi->mb_precision_set]; | 
|  | int coded_precision_idx = -1; | 
|  | for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; | 
|  | precision_dx--) { | 
|  | MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx]; | 
|  | if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) { | 
|  | coded_precision_idx++; | 
|  | if (pb_mv_precision == mbmi->pb_mv_precision) return coded_precision_idx; | 
|  | } | 
|  | } | 
|  | assert(0); | 
|  | return coded_precision_idx; | 
|  | } | 
|  |  | 
|  | MvSubpelPrecision av1_get_precision_from_index(MB_MODE_INFO *mbmi, | 
|  | int precision_idx_coded_value) { | 
|  | const PRECISION_SET *precision_def = | 
|  | &av1_mv_precision_sets[mbmi->mb_precision_set]; | 
|  | int coded_precision_idx = -1; | 
|  | MvSubpelPrecision pb_mv_precision = NUM_MV_PRECISIONS; | 
|  | for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; | 
|  | precision_dx--) { | 
|  | pb_mv_precision = precision_def->precision[precision_dx]; | 
|  | if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) { | 
|  | coded_precision_idx++; | 
|  | if (coded_precision_idx == precision_idx_coded_value) | 
|  | return pb_mv_precision; | 
|  | } | 
|  | } | 
|  | assert(0); | 
|  | return pb_mv_precision; | 
|  | } | 
|  | void set_most_probable_mv_precision(const AV1_COMMON *const cm, | 
|  | MB_MODE_INFO *mbmi, | 
|  | const BLOCK_SIZE bsize) { | 
|  | (void)bsize; | 
|  | (void)cm; | 
|  | const PRECISION_SET *precision_def = | 
|  | &av1_mv_precision_sets[mbmi->mb_precision_set]; | 
|  | mbmi->most_probable_pb_mv_precision = | 
|  | precision_def->precision[precision_def->num_precisions - 1]; | 
|  |  | 
|  | #if CONFIG_DEBUG | 
|  | int mpp_found = 0; | 
|  | for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; | 
|  | precision_dx--) { | 
|  | MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx]; | 
|  | if (pb_mv_precision == mbmi->most_probable_pb_mv_precision) { | 
|  | mpp_found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | (void)mpp_found; | 
|  | assert(mpp_found); | 
|  | #endif | 
|  | } | 
|  | void set_precision_set(const AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize, | 
|  | #if CONFIG_SEP_COMP_DRL | 
|  | int *ref_mv_idx) { | 
|  | #else | 
|  | uint8_t ref_mv_idx) { | 
|  | #endif  // CONFIG_SEP_COMP_DRL | 
|  | (void)bsize; | 
|  | (void)cm; | 
|  | (void)xd; | 
|  | (void)ref_mv_idx; | 
|  |  | 
|  | int set_idx = 0; | 
|  |  | 
|  | int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL) | 
|  | ? NUMBER_OF_PRECISION_SETS | 
|  | : 0; | 
|  | mbmi->mb_precision_set = set_idx + offset_idx; | 
|  | } | 
|  | void set_default_precision_set(const AV1_COMMON *const cm, MB_MODE_INFO *mbmi, | 
|  | const BLOCK_SIZE bsize) { | 
|  | (void)bsize; | 
|  | (void)cm; | 
|  | int set_idx = 0; | 
|  | int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL) | 
|  | ? NUMBER_OF_PRECISION_SETS | 
|  | : 0; | 
|  | mbmi->mb_precision_set = set_idx + offset_idx; | 
|  | } | 
|  | void set_default_max_mv_precision(MB_MODE_INFO *mbmi, | 
|  | MvSubpelPrecision precision) { | 
|  | mbmi->max_mv_precision = precision; | 
|  | } | 
|  | MvSubpelPrecision av1_get_mbmi_max_mv_precision(const AV1_COMMON *const cm, | 
|  | const SB_INFO *sbi, | 
|  | const MB_MODE_INFO *mbmi) { | 
|  | (void)mbmi; | 
|  | (void)sbi; | 
|  | return cm->features.fr_mv_precision; | 
|  | } | 
|  |  | 
|  | int is_pb_mv_precision_active(const AV1_COMMON *const cm, | 
|  | const MB_MODE_INFO *mbmi, | 
|  | const BLOCK_SIZE bsize) { | 
|  | (void)bsize; | 
|  | if (enable_adaptive_mvd_resolution(cm, mbmi)) return 0; | 
|  | return cm->seq_params.enable_flex_mvres && | 
|  | (mbmi->max_mv_precision >= MV_PRECISION_HALF_PEL) && | 
|  | cm->features.use_pb_mv_precision && | 
|  | have_newmv_in_inter_mode(mbmi->mode); | 
|  | } | 
|  |  | 
|  | #if CONFIG_REFINEMV | 
|  | // Copy mv0 and mv1 to the sub-blocks | 
|  | // submi is the top-left corner of the sub-block need to fill | 
|  | // bw is the block width in the unit of pixel | 
|  | // bh is the block height in unit of pixel | 
|  | void fill_subblock_refine_mv(REFINEMV_SUBMB_INFO *refinemv_subinfo, int bw, | 
|  | int bh, MV mv0, MV mv1) { | 
|  | const int stride = MAX_MIB_SIZE; | 
|  | for (int y = 0; y < (bh >> MI_SIZE_LOG2); y++) { | 
|  | for (int x = 0; x < (bw >> MI_SIZE_LOG2); x++) { | 
|  | refinemv_subinfo[x].refinemv[0].as_mv = mv0; | 
|  | refinemv_subinfo[x].refinemv[1].as_mv = mv1; | 
|  | } | 
|  | refinemv_subinfo += stride; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_REFINEMV | 
|  |  | 
|  | #if CONFIG_MORPH_PRED | 
|  | bool av1_build_morph_pred(const AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | const BLOCK_SIZE bsize, const int mi_row, | 
|  | const int mi_col) { | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | (void)cm; | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  | // Predictor, i.e., the reconstructed block found from intrabc. | 
|  | struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; | 
|  | uint16_t *const dst = pd->dst.buf; | 
|  | const int dst_stride = pd->dst.stride; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | FULLPEL_MV dv = get_fullmv_from_mv(&mbmi->mv[0].as_mv); | 
|  | const int cur_x = mi_col * MI_SIZE; | 
|  | const int cur_y = mi_row * MI_SIZE; | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | if (cur_x >= pd->dst.width || cur_y >= pd->dst.height) return false; | 
|  | #else | 
|  | if (cur_x >= cm->width || cur_y >= cm->height) return false; | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  |  | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  | int ref_w = bw; | 
|  | int ref_h = bh; | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | if (cur_x + bw >= pd->dst.width) ref_w = pd->dst.width - cur_x; | 
|  | if (cur_y + bh >= pd->dst.height) ref_h = pd->dst.height - cur_y; | 
|  | #else | 
|  | if (cur_x + bw >= cm->width) ref_w = cm->width - cur_x; | 
|  | if (cur_y + bh >= cm->height) ref_h = cm->height - cur_y; | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  |  | 
|  | const int cur_tmplt_x = cur_x - BAWP_REF_LINES; | 
|  | const int cur_tmplt_y = cur_y - BAWP_REF_LINES; | 
|  | const int ref_x = cur_x + dv.col; | 
|  | const int ref_y = cur_y + dv.row; | 
|  | const int ref_tmplt_x = ref_x - BAWP_REF_LINES; | 
|  | const int ref_tmplt_y = ref_y - BAWP_REF_LINES; | 
|  | #if CONFIG_F054_PIC_BOUNDARY | 
|  | assert(cur_tmplt_x + ref_w < pd->dst.width); | 
|  | assert(cur_tmplt_y + ref_h < pd->dst.height); | 
|  | if (ref_tmplt_x < 0 || ref_tmplt_y < 0 || ref_x + ref_w >= pd->dst.width || | 
|  | ref_y + ref_h >= pd->dst.height) { | 
|  | #else | 
|  | assert(cur_tmplt_x + ref_w < cm->width); | 
|  | assert(cur_tmplt_y + ref_h < cm->height); | 
|  | if (ref_tmplt_x < 0 || ref_tmplt_y < 0 || ref_x + ref_w >= cm->width || | 
|  | ref_y + ref_h >= cm->height) { | 
|  | #endif  // CONFIG_F054_PIC_BOUNDARY | 
|  | return false; | 
|  | } | 
|  | // Restriction: the reference block's template can't be outside the local | 
|  | // 64x64 block for local intra block copy. | 
|  | // If local intra block copy extends to 128x128, one has to change the | 
|  | // restrictions here to make it match. | 
|  | const int is_same_unit_x = (cur_x >> 6) == (ref_x >> 6); | 
|  | const int is_same_unit_y = (cur_y >> 6) == (ref_y >> 6); | 
|  | if (is_same_unit_x && is_same_unit_y) { | 
|  | if (ref_x > 0 && (ref_x % 64 == 0)) return false; | 
|  | if (ref_y > 0 && (ref_y % 64 == 0)) return false; | 
|  | } | 
|  | // Restriction: the reference block's template can't be outside the current | 
|  | // tile. | 
|  | const TileInfo *const tile = &xd->tile; | 
|  | // Is the source top-left inside the current tile? | 
|  | const int tile_top_edge = tile->mi_row_start * MI_SIZE; | 
|  | if (ref_tmplt_y < tile_top_edge) return false; | 
|  | const int tile_left_edge = tile->mi_col_start * MI_SIZE; | 
|  | if (ref_tmplt_x < tile_left_edge) return false; | 
|  | // Is the bottom right inside the current tile? | 
|  | const int ref_bottom_edge = ref_y + bh; | 
|  | const int tile_bottom_edge = tile->mi_row_end * MI_SIZE; | 
|  | if (ref_bottom_edge > tile_bottom_edge) return false; | 
|  | const int ref_right_edge = ref_x + bw; | 
|  | const int tile_right_edge = tile->mi_col_end * MI_SIZE; | 
|  | if (ref_right_edge > tile_right_edge) return false; | 
|  | // The current block's template can't be outside the current tile too. | 
|  | if (cur_tmplt_y < tile_top_edge) return false; | 
|  | if (cur_tmplt_x < tile_left_edge) return false; | 
|  |  | 
|  | uint16_t *recon_buf = xd->plane[0].dst.buf; | 
|  | uint16_t *recon_top = dst - BAWP_REF_LINES * dst_stride; | 
|  | uint16_t *recon_left = dst - BAWP_REF_LINES; | 
|  | uint16_t *ref_buf = recon_buf + dv.row * dst_stride + dv.col; | 
|  | uint16_t *ref_top = ref_buf - BAWP_REF_LINES * dst_stride; | 
|  | uint16_t *ref_left = ref_buf - BAWP_REF_LINES; | 
|  | #if CONFIG_BAWP_ACROSS_SCALES | 
|  | derive_bawp_parameters(xd, recon_top, recon_left, dst_stride, ref_top, | 
|  | ref_left, dst_stride, /*ref=*/0, /*plane=*/0, ref_w, | 
|  | ref_h, | 
|  | /*sf=*/NULL); | 
|  | #else   // CONFIG_BAWP_ACROSS_SCALES | 
|  | derive_bawp_parameters(xd, recon_top, recon_left, dst_stride, ref_top, | 
|  | ref_left, dst_stride, /*ref=*/0, /*plane=*/0, ref_w, | 
|  | ref_h); | 
|  | #endif  // CONFIG_BAWP_ACROSS_SCALES | 
|  | int16_t alpha = mbmi->bawp_alpha[0][0]; | 
|  | int32_t beta = mbmi->bawp_beta[0][0]; | 
|  | const int shift = 8; | 
|  | for (int j = 0; j < bh; ++j) { | 
|  | for (int i = 0; i < bw; ++i) { | 
|  | dst[j * dst_stride + i] = clip_pixel_highbd( | 
|  | (dst[j * dst_stride + i] * alpha + beta) >> shift, xd->bd); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | #endif  // CONFIG_MORPH_PRED |