|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | /*!\defgroup gf_group_algo Golden Frame Group | 
|  | * \ingroup high_level_algo | 
|  | * Algorithms regarding determining the length of GF groups and defining GF | 
|  | * group structures. | 
|  | * @{ | 
|  | */ | 
|  | /*! @} - end defgroup gf_group_algo */ | 
|  |  | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom/aom_codec.h" | 
|  | #include "aom/aom_encoder.h" | 
|  |  | 
|  | #include "aom_ports/system_state.h" | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  |  | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/firstpass.h" | 
|  | #include "av1/encoder/gop_structure.h" | 
|  | #include "av1/encoder/pass2_strategy.h" | 
|  | #include "av1/encoder/ratectrl.h" | 
|  | #include "av1/encoder/subgop.h" | 
|  | #include "av1/encoder/rc_utils.h" | 
|  | #include "av1/encoder/tpl_model.h" | 
|  | #include "av1/encoder/use_flat_gop_model_params.h" | 
|  | #include "av1/encoder/encode_strategy.h" | 
|  | #include "av1/encoder/encoder_utils.h" | 
|  |  | 
|  | #define DEFAULT_KF_BOOST 2300 | 
|  | #define DEFAULT_GF_BOOST 2000 | 
|  | #define GROUP_ADAPTIVE_MAXQ 1 | 
|  | #define GF_BOOST_SCALE 50 | 
|  |  | 
|  | static void init_gf_stats(GF_GROUP_STATS *gf_stats); | 
|  |  | 
|  | // Calculate an active area of the image that discounts formatting | 
|  | // bars and partially discounts other 0 energy areas. | 
|  | #define MIN_ACTIVE_AREA 0.5 | 
|  | #define MAX_ACTIVE_AREA 1.0 | 
|  | static double calculate_active_area(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame) { | 
|  | const double active_pct = | 
|  | 1.0 - | 
|  | ((this_frame->intra_skip_pct / 2) + | 
|  | ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows)); | 
|  | return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); | 
|  | } | 
|  |  | 
|  | // Calculate a modified Error used in distributing bits between easier and | 
|  | // harder frames. | 
|  | #define ACT_AREA_CORRECTION 0.5 | 
|  |  | 
|  | // Resets the first pass file to the given position using a relative seek from | 
|  | // the current position. | 
|  | static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { | 
|  | p->stats_in = position; | 
|  | } | 
|  |  | 
|  | static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { | 
|  | if (p->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; | 
|  |  | 
|  | *fps = *p->stats_in; | 
|  | ++p->stats_in; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int input_stats_lap(TWO_PASS *p, FIRSTPASS_STATS *fps) { | 
|  | if (p->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; | 
|  |  | 
|  | *fps = *p->stats_in; | 
|  | /* Move old stats[0] out to accommodate for next frame stats  */ | 
|  | memmove(p->frame_stats_arr[0], p->frame_stats_arr[1], | 
|  | (p->stats_buf_ctx->stats_in_end - p->stats_in - 1) * | 
|  | sizeof(FIRSTPASS_STATS)); | 
|  | p->stats_buf_ctx->stats_in_end--; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Read frame stats at an offset from the current position. | 
|  | static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { | 
|  | if ((offset >= 0 && p->stats_in + offset >= p->stats_buf_ctx->stats_in_end) || | 
|  | (offset < 0 && p->stats_in + offset < p->stats_buf_ctx->stats_in_start)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return &p->stats_in[offset]; | 
|  | } | 
|  |  | 
|  | static void subtract_stats(FIRSTPASS_STATS *section, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | section->frame -= frame->frame; | 
|  | section->weight -= frame->weight; | 
|  | section->intra_error -= frame->intra_error; | 
|  | section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy; | 
|  | section->coded_error -= frame->coded_error; | 
|  | section->sr_coded_error -= frame->sr_coded_error; | 
|  | section->pcnt_inter -= frame->pcnt_inter; | 
|  | section->pcnt_motion -= frame->pcnt_motion; | 
|  | section->pcnt_second_ref -= frame->pcnt_second_ref; | 
|  | section->pcnt_neutral -= frame->pcnt_neutral; | 
|  | section->intra_skip_pct -= frame->intra_skip_pct; | 
|  | section->inactive_zone_rows -= frame->inactive_zone_rows; | 
|  | section->inactive_zone_cols -= frame->inactive_zone_cols; | 
|  | section->MVr -= frame->MVr; | 
|  | section->mvr_abs -= frame->mvr_abs; | 
|  | section->MVc -= frame->MVc; | 
|  | section->mvc_abs -= frame->mvc_abs; | 
|  | section->MVrv -= frame->MVrv; | 
|  | section->MVcv -= frame->MVcv; | 
|  | section->mv_in_out_count -= frame->mv_in_out_count; | 
|  | section->new_mv_count -= frame->new_mv_count; | 
|  | section->count -= frame->count; | 
|  | section->duration -= frame->duration; | 
|  | } | 
|  |  | 
|  | // This function returns the maximum target rate per frame. | 
|  | static int frame_max_bits(const RATE_CONTROL *rc, | 
|  | const AV1EncoderConfig *oxcf) { | 
|  | int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * | 
|  | (int64_t)oxcf->rc_cfg.vbrmax_section) / | 
|  | 100; | 
|  | if (max_bits < 0) | 
|  | max_bits = 0; | 
|  | else if (max_bits > rc->max_frame_bandwidth) | 
|  | max_bits = rc->max_frame_bandwidth; | 
|  |  | 
|  | return (int)max_bits; | 
|  | } | 
|  |  | 
|  | static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75, | 
|  | 0.80, 0.85, 0.90, | 
|  | 0.95, 0.95, 0.95 }; | 
|  | #define ERR_DIVISOR 96.0 | 
|  | static double calc_correction_factor(double err_per_mb, int q) { | 
|  | const double error_term = err_per_mb / ERR_DIVISOR; | 
|  | const int index = q >> 5; | 
|  | // Adjustment to power term based on qindex | 
|  | const double power_term = | 
|  | q_pow_term[index] + | 
|  | (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0); | 
|  | assert(error_term >= 0.0); | 
|  | return fclamp(pow(error_term, power_term), 0.05, 5.0); | 
|  | } | 
|  |  | 
|  | static void twopass_update_bpm_factor(TWO_PASS *twopass) { | 
|  | // Based on recent history adjust expectations of bits per macroblock. | 
|  | double last_group_rate_err = | 
|  | (double)twopass->rolling_arf_group_actual_bits / | 
|  | DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); | 
|  | last_group_rate_err = AOMMAX(0.25, AOMMIN(4.0, last_group_rate_err)); | 
|  | twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; | 
|  | twopass->bpm_factor = AOMMAX(0.25, AOMMIN(4.0, twopass->bpm_factor)); | 
|  | } | 
|  |  | 
|  | static int qbpm_enumerator(int rate_err_tol) { | 
|  | return 625000 + 150000 * AOMMIN(75, AOMMAX(rate_err_tol - 25, 0)) / 75; | 
|  | } | 
|  |  | 
|  | // Similar to find_qindex_by_rate() function in ratectrl.c, but includes | 
|  | // calculation of a correction_factor. | 
|  | static int find_qindex_by_rate_with_correction( | 
|  | int desired_bits_per_mb, aom_bit_depth_t bit_depth, double error_per_mb, | 
|  | double group_weight_factor, int rate_err_tol, int best_qindex, | 
|  | int worst_qindex) { | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  |  | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const double mid_factor = calc_correction_factor(error_per_mb, mid); | 
|  | const double q = av1_convert_qindex_to_q(mid, bit_depth); | 
|  | const int enumerator = qbpm_enumerator(rate_err_tol); | 
|  | const int mid_bits_per_mb = | 
|  | (int)((enumerator * mid_factor * group_weight_factor) / q); | 
|  |  | 
|  | if (mid_bits_per_mb > desired_bits_per_mb) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | return low; | 
|  | } | 
|  |  | 
|  | /*!\brief Choose a target maximum Q for a group of frames | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * | 
|  | * This function is used to estimate a suitable maximum Q for a | 
|  | * group of frames. Inititally it is called to get a crude estimate | 
|  | * for the whole clip. It is then called for each ARF/GF group to get | 
|  | * a revised estimate for that group. | 
|  | * | 
|  | * \param[in]    cpi                 Top-level encoder structure | 
|  | * \param[in]    av_frame_err        The average per frame coded error score | 
|  | *                                   for frames making up this section/group. | 
|  | * \param[in]    inactive_zone       Used to mask off /ignore part of the | 
|  | *                                   frame. The most common use case is where | 
|  | *                                   a wide format video (e.g. 16:9) is | 
|  | *                                   letter-boxed into a more square format. | 
|  | *                                   Here we want to ignore the bands at the | 
|  | *                                   top and bottom. | 
|  | * \param[in]    av_target_bandwidth The target bits per frame | 
|  | * \param[in]    group_weight_factor A correction factor allowing the algorithm | 
|  | *                                   to correct for errors over time. | 
|  | * | 
|  | * \return The maximum Q for frames in the group. | 
|  | */ | 
|  | static int get_twopass_worst_quality(AV1_COMP *cpi, const double av_frame_err, | 
|  | double inactive_zone, | 
|  | int av_target_bandwidth, | 
|  | double group_weight_factor) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; | 
|  | inactive_zone = fclamp(inactive_zone, 0.0, 1.0); | 
|  |  | 
|  | if (av_target_bandwidth <= 0) { | 
|  | return rc->worst_quality;  // Highest value allowed | 
|  | } else { | 
|  | const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.mi_params.MBs; | 
|  | const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); | 
|  | const double av_err_per_mb = av_frame_err / active_mbs; | 
|  | const int target_norm_bits_per_mb = | 
|  | (int)((uint64_t)av_target_bandwidth << BPER_MB_NORMBITS) / active_mbs; | 
|  | int rate_err_tol = AOMMIN(rc_cfg->under_shoot_pct, rc_cfg->over_shoot_pct); | 
|  |  | 
|  | twopass_update_bpm_factor(&cpi->twopass); | 
|  | // Try and pick a max Q that will be high enough to encode the | 
|  | // content at the given rate. | 
|  | int q = find_qindex_by_rate_with_correction( | 
|  | target_norm_bits_per_mb, cpi->common.seq_params.bit_depth, | 
|  | av_err_per_mb, group_weight_factor, rate_err_tol, rc->best_quality, | 
|  | rc->worst_quality); | 
|  |  | 
|  | // Restriction on active max q for constrained quality mode. | 
|  | if (rc_cfg->mode == AOM_CQ) q = AOMMAX(q, rc_cfg->qp); | 
|  | return q; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SR_DIFF_PART 0.0015 | 
|  | #define MOTION_AMP_PART 0.003 | 
|  | #define INTRA_PART 0.005 | 
|  | #define DEFAULT_DECAY_LIMIT 0.75 | 
|  | #define LOW_SR_DIFF_TRHESH 0.1 | 
|  | #define SR_DIFF_MAX 128.0 | 
|  | #define NCOUNT_FRAME_II_THRESH 5.0 | 
|  |  | 
|  | static double get_sr_decay_rate(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | const int num_mbs = frame_info->num_mbs; | 
|  | double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; | 
|  | double sr_decay = 1.0; | 
|  | double modified_pct_inter; | 
|  | double modified_pcnt_intra; | 
|  | const double motion_amplitude_factor = | 
|  | frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); | 
|  |  | 
|  | modified_pct_inter = frame->pcnt_inter; | 
|  | if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < | 
|  | (double)NCOUNT_FRAME_II_THRESH) { | 
|  | modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; | 
|  | } | 
|  | modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); | 
|  |  | 
|  | if ((sr_diff > LOW_SR_DIFF_TRHESH)) { | 
|  | sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX); | 
|  | sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - | 
|  | (MOTION_AMP_PART * motion_amplitude_factor) - | 
|  | (INTRA_PART * modified_pcnt_intra); | 
|  | } | 
|  | return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); | 
|  | } | 
|  |  | 
|  | // This function gives an estimate of how badly we believe the prediction | 
|  | // quality is decaying from frame to frame. | 
|  | static double get_zero_motion_factor(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; | 
|  | double sr_decay = get_sr_decay_rate(frame_info, frame); | 
|  | return AOMMIN(sr_decay, zero_motion_pct); | 
|  | } | 
|  |  | 
|  | #define ZM_POWER_FACTOR 0.75 | 
|  |  | 
|  | static double get_prediction_decay_rate(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *next_frame) { | 
|  | const double sr_decay_rate = get_sr_decay_rate(frame_info, next_frame); | 
|  | const double zero_motion_factor = | 
|  | (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), | 
|  | ZM_POWER_FACTOR)); | 
|  |  | 
|  | return AOMMAX(zero_motion_factor, | 
|  | (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); | 
|  | } | 
|  |  | 
|  | // Function to test for a condition where a complex transition is followed | 
|  | // by a static section. For example in slide shows where there is a fade | 
|  | // between slides. This is to help with more optimal kf and gf positioning. | 
|  | static int detect_transition_to_still(TWO_PASS *const twopass, | 
|  | const int min_gf_interval, | 
|  | const int frame_interval, | 
|  | const int still_interval, | 
|  | const double loop_decay_rate, | 
|  | const double last_decay_rate) { | 
|  | // Break clause to detect very still sections after motion | 
|  | // For example a static image after a fade or other transition | 
|  | // instead of a clean scene cut. | 
|  | if (frame_interval > min_gf_interval && loop_decay_rate >= 0.999 && | 
|  | last_decay_rate < 0.9) { | 
|  | int j; | 
|  | // Look ahead a few frames to see if static condition persists... | 
|  | for (j = 0; j < still_interval; ++j) { | 
|  | const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; | 
|  | if (stats >= twopass->stats_buf_ctx->stats_in_end) break; | 
|  |  | 
|  | if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; | 
|  | } | 
|  | // Only if it does do we signal a transition to still. | 
|  | return j == still_interval; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function detects a flash through the high relative pcnt_second_ref | 
|  | // score in the frame following a flash frame. The offset passed in should | 
|  | // reflect this. | 
|  | static int detect_flash(const TWO_PASS *twopass, const int offset) { | 
|  | const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); | 
|  |  | 
|  | // What we are looking for here is a situation where there is a | 
|  | // brief break in prediction (such as a flash) but subsequent frames | 
|  | // are reasonably well predicted by an earlier (pre flash) frame. | 
|  | // The recovery after a flash is indicated by a high pcnt_second_ref | 
|  | // compared to pcnt_inter. | 
|  | return next_frame != NULL && | 
|  | next_frame->pcnt_second_ref > next_frame->pcnt_inter && | 
|  | next_frame->pcnt_second_ref >= 0.5; | 
|  | } | 
|  |  | 
|  | // Update the motion related elements to the GF arf boost calculation. | 
|  | static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, | 
|  | GF_GROUP_STATS *gf_stats) { | 
|  | const double pct = stats->pcnt_motion; | 
|  |  | 
|  | // Accumulate Motion In/Out of frame stats. | 
|  | gf_stats->this_frame_mv_in_out = stats->mv_in_out_count * pct; | 
|  | gf_stats->mv_in_out_accumulator += gf_stats->this_frame_mv_in_out; | 
|  | gf_stats->abs_mv_in_out_accumulator += fabs(gf_stats->this_frame_mv_in_out); | 
|  |  | 
|  | // Accumulate a measure of how uniform (or conversely how random) the motion | 
|  | // field is (a ratio of abs(mv) / mv). | 
|  | if (pct > 0.05) { | 
|  | const double mvr_ratio = | 
|  | fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); | 
|  | const double mvc_ratio = | 
|  | fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); | 
|  |  | 
|  | gf_stats->mv_ratio_accumulator += | 
|  | pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); | 
|  | gf_stats->mv_ratio_accumulator += | 
|  | pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void accumulate_this_frame_stats(const FIRSTPASS_STATS *stats, | 
|  | const double mod_frame_err, | 
|  | GF_GROUP_STATS *gf_stats) { | 
|  | gf_stats->gf_group_err += mod_frame_err; | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | gf_stats->gf_group_raw_error += stats->coded_error; | 
|  | #endif | 
|  | gf_stats->gf_group_skip_pct += stats->intra_skip_pct; | 
|  | gf_stats->gf_group_inactive_zone_rows += stats->inactive_zone_rows; | 
|  | } | 
|  |  | 
|  | static void accumulate_next_frame_stats(const FIRSTPASS_STATS *stats, | 
|  | const FRAME_INFO *frame_info, | 
|  | const int flash_detected, | 
|  | const int frames_since_key, | 
|  | const int cur_idx, | 
|  | GF_GROUP_STATS *gf_stats) { | 
|  | accumulate_frame_motion_stats(stats, gf_stats); | 
|  | // sum up the metric values of current gf group | 
|  | gf_stats->avg_sr_coded_error += stats->sr_coded_error; | 
|  | gf_stats->avg_tr_coded_error += stats->tr_coded_error; | 
|  | gf_stats->avg_pcnt_second_ref += stats->pcnt_second_ref; | 
|  | gf_stats->avg_pcnt_third_ref += stats->pcnt_third_ref; | 
|  | gf_stats->avg_new_mv_count += stats->new_mv_count; | 
|  | gf_stats->avg_wavelet_energy += stats->frame_avg_wavelet_energy; | 
|  | if (fabs(stats->raw_error_stdev) > 0.000001) { | 
|  | gf_stats->non_zero_stdev_count++; | 
|  | gf_stats->avg_raw_err_stdev += stats->raw_error_stdev; | 
|  | } | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay | 
|  | if (!flash_detected) { | 
|  | gf_stats->last_loop_decay_rate = gf_stats->loop_decay_rate; | 
|  | gf_stats->loop_decay_rate = get_prediction_decay_rate(frame_info, stats); | 
|  |  | 
|  | gf_stats->decay_accumulator = | 
|  | gf_stats->decay_accumulator * gf_stats->loop_decay_rate; | 
|  |  | 
|  | // Monitor for static sections. | 
|  | if ((frames_since_key + cur_idx - 1) > 1) { | 
|  | gf_stats->zero_motion_accumulator = | 
|  | AOMMIN(gf_stats->zero_motion_accumulator, | 
|  | get_zero_motion_factor(frame_info, stats)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void average_gf_stats(const int total_frame, | 
|  | const FIRSTPASS_STATS *last_stat, | 
|  | GF_GROUP_STATS *gf_stats) { | 
|  | if (total_frame) { | 
|  | gf_stats->avg_sr_coded_error /= total_frame; | 
|  | gf_stats->avg_tr_coded_error /= total_frame; | 
|  | gf_stats->avg_pcnt_second_ref /= total_frame; | 
|  | if (total_frame - 1) { | 
|  | gf_stats->avg_pcnt_third_ref_nolast = | 
|  | (gf_stats->avg_pcnt_third_ref - last_stat->pcnt_third_ref) / | 
|  | (total_frame - 1); | 
|  | } else { | 
|  | gf_stats->avg_pcnt_third_ref_nolast = | 
|  | gf_stats->avg_pcnt_third_ref / total_frame; | 
|  | } | 
|  | gf_stats->avg_pcnt_third_ref /= total_frame; | 
|  | gf_stats->avg_new_mv_count /= total_frame; | 
|  | gf_stats->avg_wavelet_energy /= total_frame; | 
|  | } | 
|  |  | 
|  | if (gf_stats->non_zero_stdev_count) | 
|  | gf_stats->avg_raw_err_stdev /= gf_stats->non_zero_stdev_count; | 
|  | } | 
|  |  | 
|  | static void get_features_from_gf_stats(const GF_GROUP_STATS *gf_stats, | 
|  | const GF_FRAME_STATS *first_frame, | 
|  | const GF_FRAME_STATS *last_frame, | 
|  | const int num_mbs, | 
|  | const int constrained_gf_group, | 
|  | const int kf_zeromotion_pct, | 
|  | const int num_frames, float *features) { | 
|  | *features++ = (float)gf_stats->abs_mv_in_out_accumulator; | 
|  | *features++ = (float)(gf_stats->avg_new_mv_count / num_mbs); | 
|  | *features++ = (float)gf_stats->avg_pcnt_second_ref; | 
|  | *features++ = (float)gf_stats->avg_pcnt_third_ref; | 
|  | *features++ = (float)gf_stats->avg_pcnt_third_ref_nolast; | 
|  | *features++ = (float)(gf_stats->avg_sr_coded_error / num_mbs); | 
|  | *features++ = (float)(gf_stats->avg_tr_coded_error / num_mbs); | 
|  | *features++ = (float)(gf_stats->avg_wavelet_energy / num_mbs); | 
|  | *features++ = (float)(constrained_gf_group); | 
|  | *features++ = (float)gf_stats->decay_accumulator; | 
|  | *features++ = (float)(first_frame->frame_coded_error / num_mbs); | 
|  | *features++ = (float)(first_frame->frame_sr_coded_error / num_mbs); | 
|  | *features++ = (float)(first_frame->frame_tr_coded_error / num_mbs); | 
|  | *features++ = (float)(first_frame->frame_err / num_mbs); | 
|  | *features++ = (float)(kf_zeromotion_pct); | 
|  | *features++ = (float)(last_frame->frame_coded_error / num_mbs); | 
|  | *features++ = (float)(last_frame->frame_sr_coded_error / num_mbs); | 
|  | *features++ = (float)(last_frame->frame_tr_coded_error / num_mbs); | 
|  | *features++ = (float)num_frames; | 
|  | *features++ = (float)gf_stats->mv_ratio_accumulator; | 
|  | *features++ = (float)gf_stats->non_zero_stdev_count; | 
|  | } | 
|  |  | 
|  | #define BOOST_FACTOR 12.5 | 
|  | static double baseline_err_per_mb(const FRAME_INFO *frame_info) { | 
|  | unsigned int screen_area = frame_info->frame_height * frame_info->frame_width; | 
|  |  | 
|  | // Use a different error per mb factor for calculating boost for | 
|  | //  different formats. | 
|  | if (screen_area <= 640 * 360) { | 
|  | return 500.0; | 
|  | } else { | 
|  | return 1000.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static double calc_frame_boost(const RATE_CONTROL *rc, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | double this_frame_mv_in_out, double max_boost) { | 
|  | double frame_boost; | 
|  | const double lq = av1_convert_qindex_to_q(rc->avg_frame_qindex[INTER_FRAME], | 
|  | frame_info->bit_depth); | 
|  | const double boost_q_correction = AOMMIN((0.5 + (lq * 0.030)), 1.5); | 
|  | const double active_area = calculate_active_area(frame_info, this_frame); | 
|  | int num_mbs = frame_info->num_mbs; | 
|  |  | 
|  | // Correct for any inactive region in the image | 
|  | num_mbs = (int)AOMMAX(1, num_mbs * active_area); | 
|  |  | 
|  | // Underlying boost factor is based on inter error ratio. | 
|  | frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * num_mbs, | 
|  | this_frame->intra_error * active_area) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error); | 
|  | frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; | 
|  |  | 
|  | // Increase boost for frames where new data coming into frame (e.g. zoom out). | 
|  | // Slightly reduce boost if there is a net balance of motion out of the frame | 
|  | // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. | 
|  | if (this_frame_mv_in_out > 0.0) | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); | 
|  | // In the extreme case the boost is halved. | 
|  | else | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); | 
|  |  | 
|  | return AOMMIN(frame_boost, max_boost * boost_q_correction); | 
|  | } | 
|  |  | 
|  | static double calc_kf_frame_boost(const RATE_CONTROL *rc, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | double *sr_accumulator, double max_boost) { | 
|  | double frame_boost; | 
|  | const double lq = av1_convert_qindex_to_q(rc->avg_frame_qindex[INTER_FRAME], | 
|  | frame_info->bit_depth); | 
|  | const double boost_q_correction = AOMMIN((0.50 + (lq * 0.030)), 2.00); | 
|  | const double active_area = calculate_active_area(frame_info, this_frame); | 
|  | int num_mbs = frame_info->num_mbs; | 
|  |  | 
|  | // Correct for any inactive region in the image | 
|  | num_mbs = (int)AOMMAX(1, num_mbs * active_area); | 
|  |  | 
|  | // Underlying boost factor is based on inter error ratio. | 
|  | frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * num_mbs, | 
|  | this_frame->intra_error * active_area) / | 
|  | DOUBLE_DIVIDE_CHECK( | 
|  | (this_frame->coded_error + *sr_accumulator) * active_area); | 
|  |  | 
|  | // Update the accumulator for second ref error difference. | 
|  | // This is intended to give an indication of how much the coded error is | 
|  | // increasing over time. | 
|  | *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); | 
|  | *sr_accumulator = AOMMAX(0.0, *sr_accumulator); | 
|  |  | 
|  | // Q correction and scaling | 
|  | // The 40.0 value here is an experimentally derived baseline minimum. | 
|  | // This value is in line with the minimum per frame boost in the alt_ref | 
|  | // boost calculation. | 
|  | frame_boost = ((frame_boost + 40.0) * boost_q_correction); | 
|  |  | 
|  | return AOMMIN(frame_boost, max_boost * boost_q_correction); | 
|  | } | 
|  |  | 
|  | static int get_projected_gfu_boost(const RATE_CONTROL *rc, int gfu_boost, | 
|  | int frames_to_project, | 
|  | int num_stats_used_for_gfu_boost) { | 
|  | /* | 
|  | * If frames_to_project is equal to num_stats_used_for_gfu_boost, | 
|  | * it means that gfu_boost was calculated over frames_to_project to | 
|  | * begin with(ie; all stats required were available), hence return | 
|  | * the original boost. | 
|  | */ | 
|  | if (num_stats_used_for_gfu_boost >= frames_to_project) return gfu_boost; | 
|  |  | 
|  | double min_boost_factor = sqrt(rc->baseline_gf_interval); | 
|  | // Get the current tpl factor (number of frames = frames_to_project). | 
|  | double tpl_factor = av1_get_gfu_boost_projection_factor( | 
|  | min_boost_factor, MAX_GFUBOOST_FACTOR, frames_to_project); | 
|  | // Get the tpl factor when number of frames = num_stats_used_for_prior_boost. | 
|  | double tpl_factor_num_stats = av1_get_gfu_boost_projection_factor( | 
|  | min_boost_factor, MAX_GFUBOOST_FACTOR, num_stats_used_for_gfu_boost); | 
|  | int projected_gfu_boost = | 
|  | (int)rint((tpl_factor * gfu_boost) / tpl_factor_num_stats); | 
|  | return projected_gfu_boost; | 
|  | } | 
|  |  | 
|  | #define GF_MAX_BOOST 90.0 | 
|  | #define MIN_DECAY_FACTOR 0.01 | 
|  | int av1_calc_arf_boost(const TWO_PASS *twopass, const RATE_CONTROL *rc, | 
|  | FRAME_INFO *frame_info, int offset, int f_frames, | 
|  | int b_frames, int *num_fpstats_used, | 
|  | int *num_fpstats_required) { | 
|  | int i; | 
|  | GF_GROUP_STATS gf_stats; | 
|  | init_gf_stats(&gf_stats); | 
|  | double boost_score = (double)NORMAL_BOOST; | 
|  | int arf_boost; | 
|  | int flash_detected = 0; | 
|  | if (num_fpstats_used) *num_fpstats_used = 0; | 
|  |  | 
|  | // Search forward from the proposed arf/next gf position. | 
|  | for (i = 0; i < f_frames; ++i) { | 
|  | const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats(this_frame, &gf_stats); | 
|  |  | 
|  | // We want to discount the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash(twopass, i + offset) || | 
|  | detect_flash(twopass, i + offset + 1); | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | gf_stats.decay_accumulator *= | 
|  | get_prediction_decay_rate(frame_info, this_frame); | 
|  | gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : gf_stats.decay_accumulator; | 
|  | } | 
|  |  | 
|  | boost_score += | 
|  | gf_stats.decay_accumulator * | 
|  | calc_frame_boost(rc, frame_info, this_frame, | 
|  | gf_stats.this_frame_mv_in_out, GF_MAX_BOOST); | 
|  | if (num_fpstats_used) (*num_fpstats_used)++; | 
|  | } | 
|  |  | 
|  | arf_boost = (int)boost_score; | 
|  |  | 
|  | // Reset for backward looking loop. | 
|  | boost_score = 0.0; | 
|  | init_gf_stats(&gf_stats); | 
|  | // Search backward towards last gf position. | 
|  | for (i = -1; i >= -b_frames; --i) { | 
|  | const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats(this_frame, &gf_stats); | 
|  |  | 
|  | // We want to discount the the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash(twopass, i + offset) || | 
|  | detect_flash(twopass, i + offset + 1); | 
|  |  | 
|  | // Cumulative effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | gf_stats.decay_accumulator *= | 
|  | get_prediction_decay_rate(frame_info, this_frame); | 
|  | gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : gf_stats.decay_accumulator; | 
|  | } | 
|  |  | 
|  | boost_score += | 
|  | gf_stats.decay_accumulator * | 
|  | calc_frame_boost(rc, frame_info, this_frame, | 
|  | gf_stats.this_frame_mv_in_out, GF_MAX_BOOST); | 
|  | if (num_fpstats_used) (*num_fpstats_used)++; | 
|  | } | 
|  | arf_boost += (int)boost_score; | 
|  |  | 
|  | if (num_fpstats_required) { | 
|  | *num_fpstats_required = f_frames + b_frames; | 
|  | if (num_fpstats_used) { | 
|  | arf_boost = get_projected_gfu_boost(rc, arf_boost, *num_fpstats_required, | 
|  | *num_fpstats_used); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (arf_boost < ((b_frames + f_frames) * GF_BOOST_SCALE)) | 
|  | arf_boost = ((b_frames + f_frames) * GF_BOOST_SCALE); | 
|  |  | 
|  | return arf_boost; | 
|  | } | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, | 
|  | const FIRSTPASS_STATS *end, | 
|  | int section_length) { | 
|  | const FIRSTPASS_STATS *s = begin; | 
|  | double intra_error = 0.0; | 
|  | double coded_error = 0.0; | 
|  | int i = 0; | 
|  |  | 
|  | while (s < end && i < section_length) { | 
|  | intra_error += s->intra_error; | 
|  | coded_error += s->coded_error; | 
|  | ++s; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); | 
|  | } | 
|  |  | 
|  | /*!\brief Calculates the bit target for this GF/ARF group | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * | 
|  | * Calculates the total bits to allocate in this GF/ARF group. | 
|  | * | 
|  | * \param[in]    cpi              Top-level encoder structure | 
|  | * \param[in]    gf_group_err     Cumulative coded error score for the | 
|  | *                                frames making up this group. | 
|  | * | 
|  | * \return The target total number of bits for this GF/ARF group. | 
|  | */ | 
|  | static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, | 
|  | double gf_group_err) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  | const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
|  | int64_t total_group_bits; | 
|  |  | 
|  | // Calculate the bits to be allocated to the group as a whole. | 
|  | if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { | 
|  | total_group_bits = (int64_t)(twopass->kf_group_bits * | 
|  | (gf_group_err / twopass->kf_group_error_left)); | 
|  | } else { | 
|  | total_group_bits = 0; | 
|  | } | 
|  |  | 
|  | // Clamp odd edge cases. | 
|  | total_group_bits = (total_group_bits < 0) ? 0 | 
|  | : (total_group_bits > twopass->kf_group_bits) | 
|  | ? twopass->kf_group_bits | 
|  | : total_group_bits; | 
|  |  | 
|  | // Clip based on user supplied data rate variability limit. | 
|  | if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) | 
|  | total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; | 
|  |  | 
|  | return total_group_bits; | 
|  | } | 
|  |  | 
|  | // Calculate the number of bits to assign to boosted frames in a group. | 
|  | static int calculate_boost_bits(int frame_count, int boost, | 
|  | int64_t total_group_bits) { | 
|  | int allocation_chunks; | 
|  |  | 
|  | // return 0 for invalid inputs (could arise e.g. through rounding errors) | 
|  | if (!boost || (total_group_bits <= 0)) return 0; | 
|  |  | 
|  | if (frame_count <= 0) return (int)(AOMMIN(total_group_bits, INT_MAX)); | 
|  |  | 
|  | allocation_chunks = (frame_count * 100) + boost; | 
|  |  | 
|  | // Prevent overflow. | 
|  | if (boost > 1023) { | 
|  | int divisor = boost >> 10; | 
|  | boost /= divisor; | 
|  | allocation_chunks /= divisor; | 
|  | } | 
|  |  | 
|  | // Calculate the number of extra bits for use in the boosted frame or frames. | 
|  | return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // Calculate the boost factor based on the number of bits assigned, i.e. the | 
|  | // inverse of calculate_boost_bits(). | 
|  | static int calculate_boost_factor(int frame_count, int bits, | 
|  | int64_t total_group_bits) { | 
|  | aom_clear_system_state(); | 
|  | return (int)(100.0 * frame_count * bits / (total_group_bits - bits)); | 
|  | } | 
|  |  | 
|  | // Reduce the number of bits assigned to keyframe or arf if necessary, to | 
|  | // prevent bitrate spikes that may break level constraints. | 
|  | // frame_type: 0: keyframe; 1: arf. | 
|  | static int adjust_boost_bits_for_target_level(const AV1_COMP *const cpi, | 
|  | RATE_CONTROL *const rc, | 
|  | int bits_assigned, | 
|  | int64_t group_bits, | 
|  | int frame_type) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | const int temporal_layer_id = cm->temporal_layer_id; | 
|  | const int spatial_layer_id = cm->spatial_layer_id; | 
|  | for (int index = 0; index < seq_params->operating_points_cnt_minus_1 + 1; | 
|  | ++index) { | 
|  | if (!is_in_operating_point(seq_params->operating_point_idc[index], | 
|  | temporal_layer_id, spatial_layer_id)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const AV1_LEVEL target_level = | 
|  | cpi->level_params.target_seq_level_idx[index]; | 
|  | if (target_level >= SEQ_LEVELS) continue; | 
|  |  | 
|  | assert(is_valid_seq_level_idx(target_level)); | 
|  |  | 
|  | const double level_bitrate_limit = av1_get_max_bitrate_for_level( | 
|  | target_level, seq_params->tier[0], seq_params->profile); | 
|  | const int target_bits_per_frame = | 
|  | (int)(level_bitrate_limit / cpi->framerate); | 
|  | if (frame_type == 0) { | 
|  | // Maximum bits for keyframe is 8 times the target_bits_per_frame. | 
|  | const int level_enforced_max_kf_bits = target_bits_per_frame * 8; | 
|  | if (bits_assigned > level_enforced_max_kf_bits) { | 
|  | const int frames = rc->frames_to_key - 1; | 
|  | rc->kf_boost = calculate_boost_factor( | 
|  | frames, level_enforced_max_kf_bits, group_bits); | 
|  | bits_assigned = calculate_boost_bits(frames, rc->kf_boost, group_bits); | 
|  | } | 
|  | } else if (frame_type == 1) { | 
|  | // Maximum bits for arf is 4 times the target_bits_per_frame. | 
|  | const int level_enforced_max_arf_bits = target_bits_per_frame * 4; | 
|  | if (bits_assigned > level_enforced_max_arf_bits) { | 
|  | rc->gfu_boost = calculate_boost_factor( | 
|  | rc->baseline_gf_interval, level_enforced_max_arf_bits, group_bits); | 
|  | bits_assigned = calculate_boost_bits(rc->baseline_gf_interval, | 
|  | rc->gfu_boost, group_bits); | 
|  | } | 
|  | } else { | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return bits_assigned; | 
|  | } | 
|  |  | 
|  | // Allocate bits to each frame in a GF / ARF group | 
|  | double layer_fraction[MAX_ARF_LAYERS + 1] = { 1.0,  0.70, 0.55, 0.60, | 
|  | 0.60, 1.0,  1.0 }; | 
|  | static void allocate_gf_group_bits(GF_GROUP *gf_group, RATE_CONTROL *const rc, | 
|  | int64_t gf_group_bits, int gf_arf_bits, | 
|  | int key_frame, int use_arf) { | 
|  | int64_t total_group_bits = gf_group_bits; | 
|  | int base_frame_bits; | 
|  | const int gf_group_size = gf_group->size; | 
|  | int layer_frames[MAX_ARF_LAYERS + 1] = { 0 }; | 
|  |  | 
|  | // For key frames the frame target rate is already set and it | 
|  | // is also the golden frame. | 
|  | // === [frame_index == 0] === | 
|  | int frame_index = !!key_frame; | 
|  |  | 
|  | // Subtract the extra bits set aside for ARF frames from the Group Total | 
|  | if (use_arf) total_group_bits -= gf_arf_bits; | 
|  |  | 
|  | int num_frames = | 
|  | AOMMAX(1, rc->baseline_gf_interval - (rc->frames_since_key == 0)); | 
|  | base_frame_bits = (int)(total_group_bits / num_frames); | 
|  |  | 
|  | if (use_arf) { | 
|  | for (; frame_index < gf_group->size; ++frame_index) { | 
|  | if (gf_group->update_type[frame_index] == ARF_UPDATE) { | 
|  | gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
|  | ++frame_index; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the number of frames in each layer in case we have a | 
|  | // non standard group length. | 
|  | int max_arf_layer = gf_group->max_layer_depth - 1; | 
|  | for (int idx = frame_index; idx < gf_group_size; ++idx) { | 
|  | if ((gf_group->update_type[idx] == ARF_UPDATE) || | 
|  | (gf_group->update_type[idx] == KFFLT_UPDATE) || | 
|  | (gf_group->update_type[idx] == INTNL_ARF_UPDATE)) { | 
|  | layer_frames[gf_group->layer_depth[idx]]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate extra bits to each ARF layer | 
|  | int i; | 
|  | int layer_extra_bits[MAX_ARF_LAYERS + 1] = { 0 }; | 
|  | for (i = 1; i <= max_arf_layer; ++i) { | 
|  | double fraction = (i == max_arf_layer) ? 1.0 : layer_fraction[i]; | 
|  | layer_extra_bits[i] = | 
|  | (int)((gf_arf_bits * fraction) / AOMMAX(1, layer_frames[i])); | 
|  | gf_arf_bits -= (int)(gf_arf_bits * fraction); | 
|  | } | 
|  |  | 
|  | // Now combine ARF layer and baseline bits to give total bits for each frame. | 
|  | int arf_extra_bits; | 
|  | for (int idx = frame_index; idx < gf_group_size; ++idx) { | 
|  | switch (gf_group->update_type[idx]) { | 
|  | case ARF_UPDATE: | 
|  | case INTNL_ARF_UPDATE: | 
|  | case KFFLT_UPDATE: | 
|  | arf_extra_bits = layer_extra_bits[gf_group->layer_depth[idx]]; | 
|  | gf_group->bit_allocation[idx] = base_frame_bits + arf_extra_bits; | 
|  | break; | 
|  | case INTNL_OVERLAY_UPDATE: | 
|  | case KFFLT_OVERLAY_UPDATE: | 
|  | case OVERLAY_UPDATE: gf_group->bit_allocation[idx] = 0; break; | 
|  | default: gf_group->bit_allocation[idx] = base_frame_bits; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the frame following the current GOP to 0 bit allocation. For ARF | 
|  | // groups, this next frame will be overlay frame, which is the first frame | 
|  | // in the next GOP. For GF group, next GOP will overwrite the rate allocation. | 
|  | // Setting this frame to use 0 bit (of out the current GOP budget) will | 
|  | // simplify logics in reference frame management. | 
|  | gf_group->bit_allocation[gf_group_size] = 0; | 
|  | } | 
|  |  | 
|  | // Returns true if KF group and GF group both are almost completely static. | 
|  | static INLINE int is_almost_static(double gf_zero_motion, int kf_zero_motion, | 
|  | int is_lap_enabled) { | 
|  | if (is_lap_enabled) { | 
|  | /* | 
|  | * when LAP enabled kf_zero_motion is not reliable, so use strict | 
|  | * constraint on gf_zero_motion. | 
|  | */ | 
|  | return (gf_zero_motion >= 0.999); | 
|  | } else { | 
|  | return (gf_zero_motion >= 0.995) && | 
|  | (kf_zero_motion >= STATIC_KF_GROUP_THRESH); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ARF_ABS_ZOOM_THRESH 4.4 | 
|  | static INLINE int detect_gf_cut(AV1_COMP *cpi, int frame_index, int cur_start, | 
|  | int flash_detected, int active_max_gf_interval, | 
|  | int active_min_gf_interval, | 
|  | GF_GROUP_STATS *gf_stats) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | InitialDimensions *const initial_dimensions = &cpi->initial_dimensions; | 
|  | // Motion breakout threshold for loop below depends on image size. | 
|  | const double mv_ratio_accumulator_thresh = | 
|  | (initial_dimensions->height + initial_dimensions->width) / 4.0; | 
|  |  | 
|  | if (!flash_detected) { | 
|  | // Break clause to detect very still sections after motion. For example, | 
|  | // a static image after a fade or other transition. | 
|  | if (detect_transition_to_still( | 
|  | twopass, rc->min_gf_interval, frame_index - cur_start, 5, | 
|  | gf_stats->loop_decay_rate, gf_stats->last_loop_decay_rate)) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some conditions to breakout after min interval. | 
|  | if (frame_index - cur_start >= active_min_gf_interval && | 
|  | // If possible don't break very close to a kf | 
|  | (rc->frames_to_key - frame_index >= rc->min_gf_interval) && | 
|  | ((frame_index - cur_start) & 0x01) && !flash_detected && | 
|  | (gf_stats->mv_ratio_accumulator > mv_ratio_accumulator_thresh || | 
|  | gf_stats->abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // If almost totally static, we will not use the the max GF length later, | 
|  | // so we can continue for more frames. | 
|  | if (((frame_index - cur_start) >= active_max_gf_interval + 1) && | 
|  | !is_almost_static(gf_stats->zero_motion_accumulator, | 
|  | twopass->kf_zeromotion_pct, cpi->lap_enabled)) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MAX_PAD_GF_CHECK 6  // padding length to check for gf length | 
|  | #define AVG_SI_THRES 0.6    // thres for average silouette | 
|  | #define GF_SHRINK_OUTPUT 0  // print output for gf length decision | 
|  | int determine_high_err_gf(double *errs, int *is_high, double *si, int len, | 
|  | double *ratio, int gf_start, int gf_end, | 
|  | int before_pad) { | 
|  | (void)gf_start; | 
|  | (void)gf_end; | 
|  | (void)before_pad; | 
|  | // alpha and beta controls the threshold placement | 
|  | // e.g. a smaller alpha makes the lower group more rigid | 
|  | const double alpha = 0.5; | 
|  | const double beta = 1 - alpha; | 
|  | double mean = 0; | 
|  | double mean_low = 0; | 
|  | double mean_high = 0; | 
|  | double prev_mean_low = 0; | 
|  | double prev_mean_high = 0; | 
|  | int count_low = 0; | 
|  | int count_high = 0; | 
|  | // calculate mean of errs | 
|  | for (int i = 0; i < len; i++) { | 
|  | mean += errs[i]; | 
|  | } | 
|  | mean /= len; | 
|  | // separate into two initial groups with greater / lower than mean | 
|  | for (int i = 0; i < len; i++) { | 
|  | if (errs[i] <= mean) { | 
|  | is_high[i] = 0; | 
|  | count_low++; | 
|  | prev_mean_low += errs[i]; | 
|  | } else { | 
|  | is_high[i] = 1; | 
|  | count_high++; | 
|  | prev_mean_high += errs[i]; | 
|  | } | 
|  | } | 
|  | prev_mean_low /= AOMMAX(1, count_low); | 
|  | prev_mean_high /= AOMMAX(1, count_high); | 
|  | // kmeans to refine | 
|  | int count = 0; | 
|  | while (count < 10) { | 
|  | // re-group | 
|  | mean_low = 0; | 
|  | mean_high = 0; | 
|  | count_low = 0; | 
|  | count_high = 0; | 
|  | double thres = prev_mean_low * alpha + prev_mean_high * beta; | 
|  | for (int i = 0; i < len; i++) { | 
|  | if (errs[i] <= thres) { | 
|  | is_high[i] = 0; | 
|  | count_low++; | 
|  | mean_low += errs[i]; | 
|  | } else { | 
|  | is_high[i] = 1; | 
|  | count_high++; | 
|  | mean_high += errs[i]; | 
|  | } | 
|  | } | 
|  | mean_low /= AOMMAX(1, count_low); | 
|  | mean_high /= AOMMAX(1, count_high); | 
|  |  | 
|  | // break if not changed much | 
|  | if (fabs((mean_low - prev_mean_low) / (prev_mean_low + 0.00001)) < | 
|  | 0.00001 && | 
|  | fabs((mean_high - prev_mean_high) / (prev_mean_high + 0.00001)) < | 
|  | 0.00001) | 
|  | break; | 
|  |  | 
|  | // update means | 
|  | prev_mean_high = mean_high; | 
|  | prev_mean_low = mean_low; | 
|  |  | 
|  | count++; | 
|  | } | 
|  |  | 
|  | // count how many jumps of group changes | 
|  | int num_change = 0; | 
|  | for (int i = 0; i < len - 1; i++) { | 
|  | if (is_high[i] != is_high[i + 1]) num_change++; | 
|  | } | 
|  |  | 
|  | // get silhouette as a measure of the classification quality | 
|  | double avg_si = 0; | 
|  | // ai: avg dist of its own class, bi: avg dist to the other class | 
|  | double ai, bi; | 
|  | if (count_low > 1 && count_high > 1) { | 
|  | for (int i = 0; i < len; i++) { | 
|  | ai = 0; | 
|  | bi = 0; | 
|  | // calculate average distance to everyone in the same group | 
|  | // and in the other group | 
|  | for (int j = 0; j < len; j++) { | 
|  | if (i == j) continue; | 
|  | if (is_high[i] == is_high[j]) { | 
|  | ai += fabs(errs[i] - errs[j]); | 
|  | } else { | 
|  | bi += fabs(errs[i] - errs[j]); | 
|  | } | 
|  | } | 
|  | if (is_high[i] == 0) { | 
|  | ai = ai / (count_low - 1); | 
|  | bi = bi / count_high; | 
|  | } else { | 
|  | ai = ai / (count_high - 1); | 
|  | bi = bi / count_low; | 
|  | } | 
|  | if (ai <= bi) { | 
|  | si[i] = 1 - ai / (bi + 0.00001); | 
|  | } else { | 
|  | si[i] = bi / (ai + 0.00001) - 1; | 
|  | } | 
|  | avg_si += si[i]; | 
|  | } | 
|  | avg_si /= len; | 
|  | } | 
|  |  | 
|  | int reset = 0; | 
|  | *ratio = mean_high / (mean_low + 0.00001); | 
|  | // if the two groups too similar, or | 
|  | // if too many numbers of changes, or | 
|  | // silhouette is too small, not confident | 
|  | // reset everything to 0 later so we fallback to the original decision | 
|  | if (*ratio < 1.3 || num_change > AOMMAX(len / 3, 6) || | 
|  | avg_si < AVG_SI_THRES) { | 
|  | reset = 1; | 
|  | } | 
|  |  | 
|  | #if GF_SHRINK_OUTPUT | 
|  | printf("\n"); | 
|  | for (int i = 0; i < len; i++) { | 
|  | printf("%d: err %.1f, ishigh %d, si %.2f, (i=%d)\n", | 
|  | gf_start + i - before_pad, errs[i], is_high[i], si[i], gf_end); | 
|  | } | 
|  | printf( | 
|  | "count: %d, mean_high: %.1f, mean_low: %.1f, avg_si: %.2f, num_change: " | 
|  | "%d, ratio %.2f, reset: %d\n", | 
|  | count, mean_high, mean_low, avg_si, num_change, | 
|  | mean_high / (mean_low + 0.000001), reset); | 
|  | #endif | 
|  |  | 
|  | if (reset) { | 
|  | memset(is_high, 0, sizeof(is_high[0]) * len); | 
|  | memset(si, 0, sizeof(si[0]) * len); | 
|  | } | 
|  | return reset; | 
|  | } | 
|  |  | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | #define RC_FACTOR_MIN 0.75 | 
|  | #define RC_FACTOR_MAX 1.25 | 
|  | #endif  // GROUP_ADAPTIVE_MAXQ | 
|  | #define MIN_FWD_KF_INTERVAL 8 | 
|  | #define MIN_SHRINK_LEN 6      // the minimum length of gf if we are shrinking | 
|  | #define SI_HIGH AVG_SI_THRES  // high quality classification | 
|  | #define SI_LOW 0.3            // very unsure classification | 
|  | // this function finds an low error frame previously to the current last frame | 
|  | // in the gf group, and set the last frame to it. | 
|  | // The resulting last frame is then returned by *cur_last_ptr | 
|  | // *cur_start_ptr and cut_pos[n] could also change due to shrinking | 
|  | // previous gf groups | 
|  | void set_last_prev_low_err(int *cur_start_ptr, int *cur_last_ptr, int *cut_pos, | 
|  | int count_cuts, int before_pad, double ratio, | 
|  | int *is_high, double *si, int prev_lows, | 
|  | int min_shrink_len) { | 
|  | int n; | 
|  | int cur_start = *cur_start_ptr; | 
|  | int cur_last = *cur_last_ptr; | 
|  | for (n = cur_last; n >= cur_start + min_shrink_len; n--) { | 
|  | // try to find a point that is very probable to be good | 
|  | if (is_high[n - cur_start + before_pad] == 0 && | 
|  | si[n - cur_start + before_pad] > SI_HIGH) { | 
|  | *cur_last_ptr = n; | 
|  | return; | 
|  | } | 
|  | } | 
|  | // could not find a low-err point, then let's try find an "unsure" | 
|  | // point at least | 
|  | for (n = cur_last; n >= cur_start + min_shrink_len; n--) { | 
|  | if ((is_high[n - cur_start + before_pad] == 0) || | 
|  | (is_high[n - cur_start + before_pad] && | 
|  | si[n - cur_start + before_pad] < SI_LOW)) { | 
|  | *cur_last_ptr = n; | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (prev_lows) { | 
|  | // try with shrinking previous all_zero interval | 
|  | for (n = cur_start + min_shrink_len - 1; n > cur_start; n--) { | 
|  | if (is_high[n - cur_start + before_pad] == 0 && | 
|  | si[n - cur_start + before_pad] > SI_HIGH) { | 
|  | int tentative_start = n - min_shrink_len; | 
|  | // check if the previous interval can shrink this much | 
|  | int available = | 
|  | tentative_start - cut_pos[count_cuts - 2] > min_shrink_len && | 
|  | cur_start - tentative_start < prev_lows; | 
|  | // shrinking too agressively may worsen performance | 
|  | // set stricter thres for shorter length | 
|  | double ratio_thres = | 
|  | 1.0 * (cur_start - tentative_start) / (double)(min_shrink_len) + | 
|  | 1.0; | 
|  |  | 
|  | if (available && (ratio > ratio_thres)) { | 
|  | cut_pos[count_cuts - 1] = tentative_start; | 
|  | *cur_start_ptr = tentative_start; | 
|  | *cur_last_ptr = n; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (prev_lows) { | 
|  | // try with shrinking previous all_zero interval with unsure points | 
|  | for (n = cur_start + min_shrink_len - 1; n > cur_start; n--) { | 
|  | if ((is_high[n - cur_start + before_pad] == 0) || | 
|  | (is_high[n - cur_start + before_pad] && | 
|  | si[n - cur_start + before_pad] < SI_LOW)) { | 
|  | int tentative_start = n - min_shrink_len; | 
|  | // check if the previous interval can shrink this much | 
|  | int available = | 
|  | tentative_start - cut_pos[count_cuts - 2] > min_shrink_len && | 
|  | cur_start - tentative_start < prev_lows; | 
|  | // shrinking too agressively may worsen performance | 
|  | double ratio_thres = | 
|  | 1.0 * (cur_start - tentative_start) / (double)(min_shrink_len) + | 
|  | 1.0; | 
|  |  | 
|  | if (available && (ratio > ratio_thres)) { | 
|  | cut_pos[count_cuts - 1] = tentative_start; | 
|  | *cur_start_ptr = tentative_start; | 
|  | *cur_last_ptr = n; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | }  // prev_lows | 
|  | return; | 
|  | } | 
|  |  | 
|  | /*!\brief Determine the length of future GF groups. | 
|  | * | 
|  | * \ingroup gf_group_algo | 
|  | * This function decides the gf group length of future frames in batch | 
|  | * | 
|  | * \param[in]    cpi                 Top-level encoder structure | 
|  | * \param[in]    max_gop_length      Maximum length of the GF group | 
|  | * \param[in]    max_intervals       Maximum number of intervals to decide | 
|  | * \param[in]    curr_frame_type     Frame type of the current frame in subgop | 
|  | * | 
|  | * Nothing is returned. Instead, cpi->rc.gf_intervals is changed to store | 
|  | * the decided GF group lengths. | 
|  | */ | 
|  | static void calculate_gf_length(AV1_COMP *cpi, int max_gop_length, | 
|  | int max_intervals, FRAME_TYPE curr_frame_type) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | FIRSTPASS_STATS next_frame; | 
|  | const FIRSTPASS_STATS *const start_pos = twopass->stats_in; | 
|  | FRAME_INFO *frame_info = &cpi->frame_info; | 
|  | int i; | 
|  |  | 
|  | int flash_detected; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | av1_zero(next_frame); | 
|  |  | 
|  | // Is current subgop the first subgop in kf-interval. | 
|  | // This does not include special condition - all intra frames, | 
|  | // where frames_to_key <=1 and subgop contains key frame. | 
|  | const int is_keyframe_subgop = | 
|  | rc->frames_to_key > 1 && curr_frame_type == KEY_FRAME; | 
|  | if (has_no_stats_stage(cpi)) { | 
|  | for (i = 0; i < MAX_NUM_GF_INTERVALS; i++) { | 
|  | rc->gf_intervals[i] = AOMMIN(rc->max_gf_interval, max_gop_length); | 
|  | if (cpi->oxcf.gf_cfg.lag_in_frames >= MIN_GF_INTERVAL) | 
|  | rc->gf_intervals[i] = | 
|  | AOMMIN(rc->gf_intervals[i], cpi->oxcf.gf_cfg.lag_in_frames); | 
|  | // When there exists a single subgop in a kf-interval, correct the | 
|  | // gf_interval appropriately. | 
|  | if (rc->gf_intervals[i] >= rc->frames_to_key && is_keyframe_subgop) | 
|  | rc->gf_intervals[i] = rc->gf_intervals[i] - 1; | 
|  | } | 
|  | rc->cur_gf_index = 0; | 
|  | rc->intervals_till_gf_calculate_due = MAX_NUM_GF_INTERVALS; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO(urvang): Try logic to vary min and max interval based on q. | 
|  | const int active_min_gf_interval = rc->min_gf_interval; | 
|  | const int active_max_gf_interval = | 
|  | AOMMIN(rc->max_gf_interval, max_gop_length); | 
|  | const int min_shrink_int = AOMMAX(MIN_SHRINK_LEN, active_min_gf_interval); | 
|  |  | 
|  | i = 0; | 
|  | max_intervals = cpi->lap_enabled ? 1 : max_intervals; | 
|  | int cut_pos[MAX_NUM_GF_INTERVALS + 1] = { 0 }; | 
|  | int count_cuts = 1; | 
|  | int cur_start = 0, cur_last; | 
|  | int cut_here; | 
|  | int prev_lows = 0; | 
|  | GF_GROUP_STATS gf_stats; | 
|  | init_gf_stats(&gf_stats); | 
|  | while (count_cuts < max_intervals + 1) { | 
|  | ++i; | 
|  |  | 
|  | // reaches next key frame, break here | 
|  | if (i >= rc->frames_to_key) { | 
|  | cut_pos[count_cuts] = i; | 
|  | // When there exists a single subgop in a kf-interval, correct the | 
|  | // gf_interval appropriately. gf-interval always accounts only for the | 
|  | // total number of inter frames in the sub-gop. | 
|  | // | 
|  | // Special conditions - when KEY_FRAME is accounted in gf-interval: | 
|  | // If all intra case: kf-min-dist = kf-max-dist = 0, then frames_to_key | 
|  | // is 0. Hence gf-interval will account for KEY_FRAME. | 
|  | // Similarly if frames_to_key is 1 due to kf-min-dist = 0 or 1, | 
|  | // kf-max-dist = 1 or scenecut or application forced key, also if the | 
|  | // curr_frame_type == KEY_FRAME, which is the only frame in subgop, | 
|  | // then gf-interval will account for KEY_FRAME. | 
|  | if (is_keyframe_subgop) cut_pos[count_cuts] = cut_pos[count_cuts] - 1; | 
|  | cut_pos[count_cuts] = AOMMIN(cut_pos[count_cuts], active_max_gf_interval); | 
|  | count_cuts++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == (cpi->oxcf.gf_cfg.lag_in_frames - 1) && | 
|  | (cpi->oxcf.gf_cfg.lag_in_frames >= MIN_GF_INTERVAL)) { | 
|  | // Enforce lag in frames | 
|  | cut_here = 1; | 
|  | } else if (i - cur_start >= rc->static_scene_max_gf_interval) { | 
|  | // reached maximum len, but nothing special yet (almost static) | 
|  | // let's look at the next interval | 
|  | cut_here = 1; | 
|  | } else { | 
|  | // reaches last frame, break | 
|  | if (EOF == input_stats(twopass, &next_frame)) { | 
|  | cut_pos[count_cuts] = i - 1; | 
|  | count_cuts++; | 
|  | break; | 
|  | } | 
|  | // Test for the case where there is a brief flash but the prediction | 
|  | // quality back to an earlier frame is then restored. | 
|  | flash_detected = detect_flash(twopass, 0); | 
|  | // TODO(bohanli): remove redundant accumulations here, or unify | 
|  | // this and the ones in define_gf_group | 
|  | accumulate_next_frame_stats(&next_frame, frame_info, flash_detected, | 
|  | rc->frames_since_key, i, &gf_stats); | 
|  |  | 
|  | cut_here = detect_gf_cut(cpi, i, cur_start, flash_detected, | 
|  | active_max_gf_interval, active_min_gf_interval, | 
|  | &gf_stats); | 
|  | } | 
|  | if (cut_here) { | 
|  | cur_last = i - 1;  // the current last frame in the gf group | 
|  | if (cpi->oxcf.kf_cfg.fwd_kf_enabled && rc->next_is_fwd_key) { | 
|  | const int frames_left = rc->frames_to_key - i; | 
|  | const int min_int = AOMMIN(MIN_FWD_KF_INTERVAL, active_min_gf_interval); | 
|  | if (frames_left < min_int) { | 
|  | cur_last = rc->frames_to_key - min_int - 1; | 
|  | } | 
|  | } | 
|  | // only try shrinking if interval smaller than active_max_gf_interval | 
|  | if (cur_last - cur_start <= active_max_gf_interval) { | 
|  | // determine in the current decided gop the higher and lower errs | 
|  | int n; | 
|  | double ratio; | 
|  |  | 
|  | // load neighboring coded errs | 
|  | int is_high[MAX_GF_INTERVAL + 1 + MAX_PAD_GF_CHECK * 2] = { 0 }; | 
|  | double errs[MAX_GF_INTERVAL + 1 + MAX_PAD_GF_CHECK * 2] = { 0 }; | 
|  | double si[MAX_GF_INTERVAL + 1 + MAX_PAD_GF_CHECK * 2] = { 0 }; | 
|  | int before_pad = | 
|  | AOMMIN(MAX_PAD_GF_CHECK, rc->frames_since_key - 1 + cur_start); | 
|  | int after_pad = | 
|  | AOMMIN(MAX_PAD_GF_CHECK, rc->frames_to_key - cur_last - 1); | 
|  | for (n = cur_start - before_pad; n <= cur_last + after_pad; n++) { | 
|  | if (start_pos + n - 1 > twopass->stats_buf_ctx->stats_in_end) { | 
|  | after_pad = n - cur_last - 1; | 
|  | assert(after_pad >= 0); | 
|  | break; | 
|  | } else if (start_pos + n - 1 < | 
|  | twopass->stats_buf_ctx->stats_in_start) { | 
|  | before_pad = cur_start - n - 1; | 
|  | continue; | 
|  | } | 
|  | errs[n + before_pad - cur_start] = (start_pos + n - 1)->coded_error; | 
|  | } | 
|  | const int len = before_pad + after_pad + cur_last - cur_start + 1; | 
|  | const int reset = determine_high_err_gf( | 
|  | errs, is_high, si, len, &ratio, cur_start, cur_last, before_pad); | 
|  |  | 
|  | // if the current frame may have high error, try shrinking | 
|  | if (is_high[cur_last - cur_start + before_pad] == 1 || | 
|  | (!reset && si[cur_last - cur_start + before_pad] < SI_LOW)) { | 
|  | // try not to cut in high err area | 
|  | set_last_prev_low_err(&cur_start, &cur_last, cut_pos, count_cuts, | 
|  | before_pad, ratio, is_high, si, prev_lows, | 
|  | min_shrink_int); | 
|  | }  // if current frame high error | 
|  | // count how many trailing lower error frames we have in this decided | 
|  | // gf group | 
|  | prev_lows = 0; | 
|  | for (n = cur_last - 1; n > cur_start + min_shrink_int; n--) { | 
|  | if (is_high[n - cur_start + before_pad] == 0 && | 
|  | (si[n - cur_start + before_pad] > SI_HIGH || reset)) { | 
|  | prev_lows++; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | cut_pos[count_cuts] = cur_last; | 
|  | count_cuts++; | 
|  |  | 
|  | // reset pointers to the shrinked location | 
|  | twopass->stats_in = start_pos + cur_last; | 
|  | cur_start = cur_last; | 
|  | i = cur_last; | 
|  |  | 
|  | // reset accumulators | 
|  | init_gf_stats(&gf_stats); | 
|  | } | 
|  | } | 
|  |  | 
|  | // save intervals | 
|  | rc->intervals_till_gf_calculate_due = count_cuts - 1; | 
|  | for (int n = 1; n < count_cuts; n++) { | 
|  | int point_next_key = | 
|  | (cpi->oxcf.kf_cfg.fwd_kf_enabled && cpi->rc.next_is_fwd_key && | 
|  | ((cut_pos[n] - cut_pos[n - 1]) == rc->frames_to_key)); | 
|  | rc->gf_intervals[n - 1] = | 
|  | cut_pos[n] - cut_pos[n - 1] + (point_next_key ? 1 : 0); | 
|  | } | 
|  | rc->cur_gf_index = 0; | 
|  | twopass->stats_in = start_pos; | 
|  |  | 
|  | #if GF_SHRINK_OUTPUT | 
|  | printf("\nf_to_key: %d, count_cut: %d. ", rc->frames_to_key, count_cuts); | 
|  | for (int n = 0; n < count_cuts; n++) { | 
|  | printf("%d ", cut_pos[n]); | 
|  | } | 
|  | printf("\n"); | 
|  |  | 
|  | for (int n = 0; n < rc->intervals_till_gf_calculate_due; n++) { | 
|  | printf("%d ", rc->gf_intervals[n]); | 
|  | } | 
|  | printf("\n\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void correct_frames_to_key(AV1_COMP *cpi) { | 
|  | int lookahead_size = | 
|  | (int)av1_lookahead_depth(cpi->lookahead, cpi->compressor_stage); | 
|  | if (lookahead_size < | 
|  | av1_lookahead_pop_sz(cpi->lookahead, cpi->compressor_stage)) { | 
|  | cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, lookahead_size); | 
|  | } else if (cpi->frames_left > 0) { | 
|  | // Correct frames to key based on limit | 
|  | cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, cpi->frames_left); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int is_last_subgop(AV1_COMP *cpi) { | 
|  | const int lookahead_size = | 
|  | (int)av1_lookahead_depth(cpi->lookahead, cpi->compressor_stage); | 
|  | // Check if last subgop in the clip. | 
|  | const int is_last_sub = (cpi->oxcf.gf_cfg.lag_in_frames > lookahead_size) && | 
|  | (lookahead_size == cpi->rc.frames_to_key); | 
|  | return is_last_sub; | 
|  | } | 
|  |  | 
|  | /*!\brief Define a GF group in one pass mode when no look ahead stats are | 
|  | * available. | 
|  | * | 
|  | * \ingroup gf_group_algo | 
|  | * This function defines the structure of a GF group, along with various | 
|  | * parameters regarding bit-allocation and quality setup in the special | 
|  | * case of one pass encoding where no lookahead stats are avialable. | 
|  | * | 
|  | * \param[in]    cpi               Top-level encoder structure | 
|  | * \param[in]    curr_frame_type   Frame type of the current frame in subgop | 
|  | * | 
|  | * Nothing is returned. Instead, cpi->gf_group is changed. | 
|  | */ | 
|  | static void define_gf_group_pass0(AV1_COMP *cpi, FRAME_TYPE curr_frame_type) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const GFConfig *const gf_cfg = &oxcf->gf_cfg; | 
|  | int target; | 
|  |  | 
|  | if (oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) { | 
|  | av1_cyclic_refresh_set_golden_update(cpi); | 
|  | } else { | 
|  | rc->baseline_gf_interval = rc->gf_intervals[rc->cur_gf_index]; | 
|  | rc->intervals_till_gf_calculate_due--; | 
|  | rc->cur_gf_index++; | 
|  | } | 
|  |  | 
|  | // correct frames_to_key when lookahead queue is flushing | 
|  | correct_frames_to_key(cpi); | 
|  |  | 
|  | if (rc->baseline_gf_interval > rc->frames_to_key) { | 
|  | rc->baseline_gf_interval = rc->frames_to_key; | 
|  | } | 
|  |  | 
|  | // To introduce forward kf, baseline_gf_interval needs to point to keyframe | 
|  | // in the next subgop appropriately. | 
|  | // However baseline_gf_intervals need not be incremented for following | 
|  | // conditions. | 
|  | // (1) When there exist single subgop in the kf-interval, | 
|  | // rc->baseline_gf_interval is already pointing to the next key frame. | 
|  | // (2) When more than one subgop exists in kf-interval, when rc->frames_to_key | 
|  | // is not equal to baseline_gf_interval + 1. | 
|  | // (3) When the current subgop is the end of the clip, next key frame will not | 
|  | // be available. | 
|  |  | 
|  | if (cpi->oxcf.kf_cfg.fwd_kf_enabled && cpi->rc.next_is_fwd_key && | 
|  | (curr_frame_type != KEY_FRAME || | 
|  | rc->baseline_gf_interval + 1 == rc->frames_to_key) && | 
|  | !is_last_subgop(cpi)) | 
|  | rc->baseline_gf_interval++; | 
|  | rc->gfu_boost = DEFAULT_GF_BOOST; | 
|  | // This will effectively use qindex returned by 'get_gf_high_motion_quality()' | 
|  | // for level 1 frames. | 
|  | rc->arf_boost_factor = 0.0f; | 
|  | rc->constrained_gf_group = | 
|  | (rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0; | 
|  |  | 
|  | // TODO(sarahparker): finish bit allocation for one pass pyramid. | 
|  | gf_group->max_layer_depth_allowed = | 
|  | AOMMIN(gf_cfg->gf_max_pyr_height, USE_ALTREF_FOR_ONE_PASS); | 
|  |  | 
|  | // Rare case when the look-ahead is less than the target GOP length, can't | 
|  | // generate ARF frame. | 
|  | if (rc->baseline_gf_interval > gf_cfg->lag_in_frames || | 
|  | !is_altref_enabled(gf_cfg->lag_in_frames, gf_cfg->enable_auto_arf) || | 
|  | rc->baseline_gf_interval < rc->min_gf_interval) | 
|  | gf_group->max_layer_depth_allowed = 0; | 
|  |  | 
|  | // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) | 
|  | av1_gop_setup_structure(cpi); | 
|  |  | 
|  | // Allocate bits to each of the frames in the GF group. | 
|  | // TODO(sarahparker) Extend this to work with pyramid structure. | 
|  | for (int cur_index = 0; cur_index < gf_group->size; ++cur_index) { | 
|  | const FRAME_UPDATE_TYPE cur_update_type = gf_group->update_type[cur_index]; | 
|  | #if CONFIG_KEY_OVERLAY | 
|  | const int is_key_frame = | 
|  | cur_update_type == KF_UPDATE || cur_update_type == KFFLT_UPDATE; | 
|  | #endif  // CONFIG_KEY_OVERLAY | 
|  | if (oxcf->rc_cfg.mode == AOM_CBR) { | 
|  | #if CONFIG_KEY_OVERLAY | 
|  | if (is_key_frame) { | 
|  | #else | 
|  | if (cur_update_type == KEY_FRAME) { | 
|  | #endif  // CONFIG_KEY_OVERLAY | 
|  | target = av1_calc_iframe_target_size_one_pass_cbr(cpi); | 
|  | } else { | 
|  | target = av1_calc_pframe_target_size_one_pass_cbr(cpi, cur_update_type); | 
|  | } | 
|  | } else { | 
|  | #if CONFIG_KEY_OVERLAY | 
|  | if (is_key_frame) { | 
|  | #else | 
|  | if (cur_update_type == KEY_FRAME) { | 
|  | #endif  // CONFIG_KEY_OVERLAY | 
|  | target = av1_calc_iframe_target_size_one_pass_vbr(cpi); | 
|  | } else { | 
|  | target = av1_calc_pframe_target_size_one_pass_vbr(cpi, cur_update_type); | 
|  | } | 
|  | } | 
|  | gf_group->bit_allocation[cur_index] = target; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void set_baseline_gf_interval(AV1_COMP *cpi, int arf_position, | 
|  | int active_max_gf_interval, | 
|  | int use_alt_ref, | 
|  | FRAME_TYPE curr_frame_type) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | // Set the interval until the next gf. | 
|  | // If forward keyframes are enabled, ensure the final gf group obeys the | 
|  | // MIN_FWD_KF_INTERVAL. | 
|  | const int is_last_kf = | 
|  | (twopass->stats_in - arf_position + rc->frames_to_key) >= | 
|  | twopass->stats_buf_ctx->stats_in_end; | 
|  |  | 
|  | if (cpi->oxcf.kf_cfg.fwd_kf_enabled && use_alt_ref && !is_last_kf && | 
|  | cpi->rc.next_is_fwd_key) { | 
|  | if (arf_position == rc->frames_to_key) { | 
|  | rc->baseline_gf_interval = arf_position; | 
|  | if (curr_frame_type != KEY_FRAME) | 
|  | rc->baseline_gf_interval = rc->baseline_gf_interval + 1; | 
|  | // if the last gf group will be smaller than MIN_FWD_KF_INTERVAL | 
|  | } else if ((rc->frames_to_key - arf_position < | 
|  | AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) && | 
|  | (rc->frames_to_key != arf_position)) { | 
|  | // if possible, merge the last two gf groups | 
|  | if (rc->frames_to_key <= active_max_gf_interval) { | 
|  | rc->baseline_gf_interval = rc->frames_to_key; | 
|  | if (curr_frame_type != KEY_FRAME) | 
|  | rc->baseline_gf_interval = rc->baseline_gf_interval + 1; | 
|  | rc->intervals_till_gf_calculate_due = 0; | 
|  | // if merging the last two gf groups creates a group that is too long, | 
|  | // split them and force the last gf group to be the MIN_FWD_KF_INTERVAL | 
|  | } else { | 
|  | rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL; | 
|  | rc->intervals_till_gf_calculate_due = 0; | 
|  | } | 
|  | } else { | 
|  | rc->baseline_gf_interval = arf_position; | 
|  | } | 
|  | } else { | 
|  | rc->baseline_gf_interval = arf_position; | 
|  | } | 
|  | assert(rc->baseline_gf_interval > 0); | 
|  | } | 
|  |  | 
|  | // initialize GF_GROUP_STATS | 
|  | static void init_gf_stats(GF_GROUP_STATS *gf_stats) { | 
|  | gf_stats->gf_group_err = 0.0; | 
|  | gf_stats->gf_group_raw_error = 0.0; | 
|  | gf_stats->gf_group_skip_pct = 0.0; | 
|  | gf_stats->gf_group_inactive_zone_rows = 0.0; | 
|  |  | 
|  | gf_stats->mv_ratio_accumulator = 0.0; | 
|  | gf_stats->decay_accumulator = 1.0; | 
|  | gf_stats->zero_motion_accumulator = 1.0; | 
|  | gf_stats->loop_decay_rate = 1.0; | 
|  | gf_stats->last_loop_decay_rate = 1.0; | 
|  | gf_stats->this_frame_mv_in_out = 0.0; | 
|  | gf_stats->mv_in_out_accumulator = 0.0; | 
|  | gf_stats->abs_mv_in_out_accumulator = 0.0; | 
|  |  | 
|  | gf_stats->avg_sr_coded_error = 0.0; | 
|  | gf_stats->avg_tr_coded_error = 0.0; | 
|  | gf_stats->avg_pcnt_second_ref = 0.0; | 
|  | gf_stats->avg_pcnt_third_ref = 0.0; | 
|  | gf_stats->avg_pcnt_third_ref_nolast = 0.0; | 
|  | gf_stats->avg_new_mv_count = 0.0; | 
|  | gf_stats->avg_wavelet_energy = 0.0; | 
|  | gf_stats->avg_raw_err_stdev = 0.0; | 
|  | gf_stats->non_zero_stdev_count = 0; | 
|  | } | 
|  |  | 
|  | // Analyse and define a gf/arf group. | 
|  | #define MAX_GF_BOOST 5400 | 
|  | /*!\brief Define a GF group. | 
|  | * | 
|  | * \ingroup gf_group_algo | 
|  | * This function defines the structure of a GF group, along with various | 
|  | * parameters regarding bit-allocation and quality setup. | 
|  | * | 
|  | * \param[in]    cpi             Top-level encoder structure | 
|  | * \param[in]    this_frame      First pass statistics structure | 
|  | * \param[in]    frame_params    Structure with frame parameters | 
|  | * \param[in]    max_gop_length  Maximum length of the GF group | 
|  | * | 
|  | * Nothing is returned. Instead, cpi->gf_group is changed. | 
|  | */ | 
|  | static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame, | 
|  | EncodeFrameParams *frame_params, | 
|  | int max_gop_length) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | FIRSTPASS_STATS next_frame; | 
|  | const FIRSTPASS_STATS *const start_pos = twopass->stats_in; | 
|  | GF_GROUP *gf_group = &cpi->gf_group; | 
|  | FRAME_INFO *frame_info = &cpi->frame_info; | 
|  | const GFConfig *const gf_cfg = &oxcf->gf_cfg; | 
|  | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; | 
|  | int i; | 
|  |  | 
|  | int flash_detected; | 
|  | int64_t gf_group_bits; | 
|  | const int is_intra_only = rc->frames_since_key == 0; | 
|  |  | 
|  | cpi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1); | 
|  |  | 
|  | // Reset the GF group data structures unless this is a key | 
|  | // frame in which case it will already have been done. | 
|  | if (!is_intra_only) { | 
|  | av1_zero(cpi->gf_group); | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | av1_zero(next_frame); | 
|  |  | 
|  | if (has_no_stats_stage(cpi)) { | 
|  | define_gf_group_pass0(cpi, frame_params->frame_type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // correct frames_to_key when lookahead queue is emptying | 
|  | if (cpi->lap_enabled) { | 
|  | correct_frames_to_key(cpi); | 
|  | } | 
|  |  | 
|  | GF_GROUP_STATS gf_stats; | 
|  | init_gf_stats(&gf_stats); | 
|  | GF_FRAME_STATS first_frame_stats, last_frame_stats; | 
|  |  | 
|  | const int can_disable_arf = !gf_cfg->gf_min_pyr_height; | 
|  |  | 
|  | // Load stats for the current frame. | 
|  | double mod_frame_err = 0.0; | 
|  |  | 
|  | // Note the error of the frame at the start of the group. This will be | 
|  | // the GF frame error if we code a normal gf. | 
|  | first_frame_stats.frame_err = mod_frame_err; | 
|  | first_frame_stats.frame_coded_error = this_frame->coded_error; | 
|  | first_frame_stats.frame_sr_coded_error = this_frame->sr_coded_error; | 
|  | first_frame_stats.frame_tr_coded_error = this_frame->tr_coded_error; | 
|  |  | 
|  | // TODO(urvang): Try logic to vary min and max interval based on q. | 
|  | const int active_min_gf_interval = rc->min_gf_interval; | 
|  | const int active_max_gf_interval = | 
|  | AOMMIN(rc->max_gf_interval, max_gop_length); | 
|  |  | 
|  | i = 0; | 
|  | // get the determined gf group length from rc->gf_intervals | 
|  | while (i <= rc->gf_intervals[rc->cur_gf_index]) { | 
|  | ++i; | 
|  | // Accumulate error score of frames in this gf group. | 
|  | mod_frame_err = 0.0; | 
|  | // accumulate stats for this frame | 
|  | accumulate_this_frame_stats(this_frame, mod_frame_err, &gf_stats); | 
|  |  | 
|  | // read in the next frame | 
|  | if (EOF == input_stats(twopass, &next_frame)) { | 
|  | // Avoid baseline_gf_interval being set as 0 at EOF | 
|  | if (rc->frames_to_key <= 1 && i == 1) i++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Test for the case where there is a brief flash but the prediction | 
|  | // quality back to an earlier frame is then restored. | 
|  | flash_detected = detect_flash(twopass, 0); | 
|  |  | 
|  | // accumulate stats for next frame | 
|  | accumulate_next_frame_stats(&next_frame, frame_info, flash_detected, | 
|  | rc->frames_since_key, i, &gf_stats); | 
|  |  | 
|  | *this_frame = next_frame; | 
|  | } | 
|  | // save the errs for the last frame | 
|  | last_frame_stats.frame_coded_error = next_frame.coded_error; | 
|  | last_frame_stats.frame_sr_coded_error = next_frame.sr_coded_error; | 
|  | last_frame_stats.frame_tr_coded_error = next_frame.tr_coded_error; | 
|  |  | 
|  | rc->intervals_till_gf_calculate_due--; | 
|  | rc->cur_gf_index++; | 
|  |  | 
|  | // Was the group length constrained by the requirement for a new KF? | 
|  | rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; | 
|  |  | 
|  | const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cm->mi_params.MBs; | 
|  | assert(num_mbs > 0); | 
|  |  | 
|  | average_gf_stats(i, &next_frame, &gf_stats); | 
|  |  | 
|  | // Disable internal ARFs for "still" gf groups. | 
|  | //   zero_motion_accumulator: minimum percentage of (0,0) motion; | 
|  | //   avg_sr_coded_error:      average of the SSE per pixel of each frame; | 
|  | //   avg_raw_err_stdev:       average of the standard deviation of (0,0) | 
|  | //                            motion error per block of each frame. | 
|  | const int can_disable_internal_arfs = gf_cfg->gf_min_pyr_height <= 1; | 
|  | if (can_disable_internal_arfs && | 
|  | gf_stats.zero_motion_accumulator > MIN_ZERO_MOTION && | 
|  | gf_stats.avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR && | 
|  | gf_stats.avg_raw_err_stdev < MAX_RAW_ERR_VAR) { | 
|  | cpi->internal_altref_allowed = 0; | 
|  | } | 
|  |  | 
|  | int use_alt_ref; | 
|  | if (can_disable_arf) { | 
|  | use_alt_ref = | 
|  | !is_almost_static(gf_stats.zero_motion_accumulator, | 
|  | twopass->kf_zeromotion_pct, cpi->lap_enabled) && | 
|  | rc->use_arf_in_this_kf_group && (i <= gf_cfg->lag_in_frames) && | 
|  | (i >= MIN_GF_INTERVAL); | 
|  |  | 
|  | // TODO(urvang): Improve and use model for VBR, CQ etc as well. | 
|  | if (use_alt_ref && rc_cfg->mode == AOM_Q && rc_cfg->qp <= 200) { | 
|  | aom_clear_system_state(); | 
|  | float features[21]; | 
|  | get_features_from_gf_stats( | 
|  | &gf_stats, &first_frame_stats, &last_frame_stats, num_mbs, | 
|  | rc->constrained_gf_group, twopass->kf_zeromotion_pct, i, features); | 
|  | // Infer using ML model. | 
|  | float score; | 
|  | av1_nn_predict(features, &av1_use_flat_gop_nn_config, 1, &score); | 
|  | use_alt_ref = (score <= 0.0); | 
|  | } | 
|  | } else { | 
|  | use_alt_ref = | 
|  | rc->use_arf_in_this_kf_group && (i <= gf_cfg->lag_in_frames) && (i > 2); | 
|  | } | 
|  |  | 
|  | #define REDUCE_GF_LENGTH_THRESH 4 | 
|  | #define REDUCE_GF_LENGTH_TO_KEY_THRESH 9 | 
|  | #define REDUCE_GF_LENGTH_BY 1 | 
|  | int alt_offset = 0; | 
|  | // The length reduction strategy is tweaked for certain cases, and doesn't | 
|  | // work well for certain other cases. | 
|  | const int allow_gf_length_reduction = | 
|  | ((rc_cfg->mode == AOM_Q && rc_cfg->qp <= 128) || | 
|  | !cpi->internal_altref_allowed) && | 
|  | !av1_find_subgop_config_exact(&cpi->subgop_config_set, i - 1, | 
|  | SUBGOP_IN_GOP_LAST) && | 
|  | !is_lossless_requested(rc_cfg); | 
|  |  | 
|  | if (allow_gf_length_reduction && use_alt_ref) { | 
|  | // adjust length of this gf group if one of the following condition met | 
|  | // 1: only one overlay frame left and this gf is too long | 
|  | // 2: next gf group is too short to have arf compared to the current gf | 
|  |  | 
|  | // maximum length of next gf group | 
|  | const int next_gf_len = rc->frames_to_key - i; | 
|  | // the next gf is probably going to have a ARF but it will be shorter than | 
|  | // this gf | 
|  | const int unbalanced_gf = | 
|  | i > REDUCE_GF_LENGTH_TO_KEY_THRESH && | 
|  | next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH && | 
|  | next_gf_len + 1 >= rc->min_gf_interval; | 
|  |  | 
|  | if (unbalanced_gf) { | 
|  | const int roll_back = REDUCE_GF_LENGTH_BY; | 
|  | // Reduce length only if active_min_gf_interval will be respected later. | 
|  | if (i - roll_back >= active_min_gf_interval + 1) { | 
|  | alt_offset = -roll_back; | 
|  | i -= roll_back; | 
|  | rc->intervals_till_gf_calculate_due = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Should we use the alternate reference frame. | 
|  | if (use_alt_ref) { | 
|  | gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height; | 
|  | set_baseline_gf_interval(cpi, (i - 1), active_max_gf_interval, use_alt_ref, | 
|  | frame_params->frame_type); | 
|  |  | 
|  | const int forward_frames = (rc->frames_to_key - i + 1 >= (i - 1)) | 
|  | ? (i - 1) | 
|  | : AOMMAX(0, rc->frames_to_key - i + 1); | 
|  |  | 
|  | // Calculate the boost for alt ref. | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_Q && | 
|  | cpi->oxcf.q_cfg.use_fixed_qp_offsets) { | 
|  | const int b_frames = i - 1; | 
|  | const int f_frames = forward_frames; | 
|  | rc->gfu_boost = | 
|  | AOMMIN(MAX_GF_BOOST, (b_frames + f_frames) * GF_BOOST_SCALE); | 
|  | } else { | 
|  | rc->gfu_boost = AOMMIN( | 
|  | MAX_GF_BOOST, | 
|  | av1_calc_arf_boost( | 
|  | twopass, rc, frame_info, alt_offset, forward_frames, (i - 1), | 
|  | cpi->lap_enabled ? &rc->num_stats_used_for_gfu_boost : NULL, | 
|  | cpi->lap_enabled ? &rc->num_stats_required_for_gfu_boost : NULL)); | 
|  | } | 
|  | } else { | 
|  | reset_fpf_position(twopass, start_pos); | 
|  | gf_group->max_layer_depth_allowed = 0; | 
|  | set_baseline_gf_interval(cpi, (i - 1), active_max_gf_interval, use_alt_ref, | 
|  | frame_params->frame_type); | 
|  |  | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_Q && | 
|  | cpi->oxcf.q_cfg.use_fixed_qp_offsets) { | 
|  | const int b_frames = 0; | 
|  | const int f_frames = i - 1; | 
|  | rc->gfu_boost = | 
|  | AOMMIN(MAX_GF_BOOST, (b_frames + f_frames) * GF_BOOST_SCALE); | 
|  | } else { | 
|  | rc->gfu_boost = AOMMIN( | 
|  | MAX_GF_BOOST, | 
|  | av1_calc_arf_boost( | 
|  | twopass, rc, frame_info, alt_offset, (i - 1), 0, | 
|  | cpi->lap_enabled ? &rc->num_stats_used_for_gfu_boost : NULL, | 
|  | cpi->lap_enabled ? &rc->num_stats_required_for_gfu_boost : NULL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // rc->gf_intervals assumes the usage of alt_ref, therefore adding one overlay | 
|  | // frame to the next gf. If no alt_ref is used, should substract 1 frame from | 
|  | // the next gf group. | 
|  | // TODO(bohanli): should incorporate the usage of alt_ref into | 
|  | // calculate_gf_length | 
|  | if (rc->intervals_till_gf_calculate_due > 0) { | 
|  | rc->gf_intervals[rc->cur_gf_index]--; | 
|  | } | 
|  |  | 
|  | #define LAST_ALR_BOOST_FACTOR 0.2f | 
|  | rc->arf_boost_factor = 1.0; | 
|  | if (use_alt_ref && !is_lossless_requested(rc_cfg)) { | 
|  | // Reduce the boost of altref in the last gf group | 
|  | if (rc->frames_to_key - i + 1 == REDUCE_GF_LENGTH_BY || | 
|  | rc->frames_to_key - i + 1 == 0) { | 
|  | rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  |  | 
|  | // Reset the file position. | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | if (cpi->lap_enabled) { | 
|  | // Since we don't have enough stats to know the actual error of the | 
|  | // gf group, we assume error of each frame to be equal to 1 and set | 
|  | // the error of the group as baseline_gf_interval. | 
|  | gf_stats.gf_group_err = rc->baseline_gf_interval; | 
|  | } | 
|  | // Calculate the bits to be allocated to the gf/arf group as a whole | 
|  | gf_group_bits = calculate_total_gf_group_bits(cpi, gf_stats.gf_group_err); | 
|  | rc->gf_group_bits = gf_group_bits; | 
|  |  | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | // Calculate an estimate of the maxq needed for the group. | 
|  | // We are more agressive about correcting for sections | 
|  | // where there could be significant overshoot than for easier | 
|  | // sections where we do not wish to risk creating an overshoot | 
|  | // of the allocated bit budget. | 
|  | if ((rc_cfg->mode != AOM_Q) && (rc->baseline_gf_interval > 1)) { | 
|  | const int vbr_group_bits_per_frame = | 
|  | (int)(gf_group_bits / rc->baseline_gf_interval); | 
|  | const double group_av_err = | 
|  | gf_stats.gf_group_raw_error / rc->baseline_gf_interval; | 
|  | const double group_av_skip_pct = | 
|  | gf_stats.gf_group_skip_pct / rc->baseline_gf_interval; | 
|  | const double group_av_inactive_zone = | 
|  | ((gf_stats.gf_group_inactive_zone_rows * 2) / | 
|  | (rc->baseline_gf_interval * (double)cm->mi_params.mb_rows)); | 
|  |  | 
|  | int tmp_q; | 
|  | // rc factor is a weight factor that corrects for local rate control drift. | 
|  | double rc_factor = 1.0; | 
|  | int64_t bits = rc_cfg->target_bandwidth; | 
|  |  | 
|  | if (bits > 0) { | 
|  | int rate_error; | 
|  |  | 
|  | rate_error = (int)((rc->vbr_bits_off_target * 100) / bits); | 
|  | rate_error = clamp(rate_error, -100, 100); | 
|  | if (rate_error > 0) { | 
|  | rc_factor = AOMMAX(RC_FACTOR_MIN, (double)(100 - rate_error) / 100.0); | 
|  | } else { | 
|  | rc_factor = AOMMIN(RC_FACTOR_MAX, (double)(100 - rate_error) / 100.0); | 
|  | } | 
|  | } | 
|  |  | 
|  | tmp_q = get_twopass_worst_quality( | 
|  | cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), | 
|  | vbr_group_bits_per_frame, rc_factor); | 
|  | rc->active_worst_quality = AOMMAX(tmp_q, rc->active_worst_quality >> 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Adjust KF group bits and error remaining. | 
|  | twopass->kf_group_error_left -= (int64_t)gf_stats.gf_group_err; | 
|  |  | 
|  | // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) | 
|  | av1_gop_setup_structure(cpi); | 
|  |  | 
|  | // Reset the file position. | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | if (frame_params->frame_type != KEY_FRAME) { | 
|  | twopass->section_intra_rating = calculate_section_intra_ratio( | 
|  | start_pos, twopass->stats_buf_ctx->stats_in_end, | 
|  | rc->baseline_gf_interval); | 
|  | } | 
|  |  | 
|  | // Reset rolling actual and target bits counters for ARF groups. | 
|  | twopass->rolling_arf_group_target_bits = 1; | 
|  | twopass->rolling_arf_group_actual_bits = 1; | 
|  |  | 
|  | av1_gop_bit_allocation(cpi, rc, gf_group, | 
|  | frame_params->frame_type == KEY_FRAME, use_alt_ref, | 
|  | gf_group_bits); | 
|  | } | 
|  |  | 
|  | // #define FIXED_ARF_BITS | 
|  | #ifdef FIXED_ARF_BITS | 
|  | #define ARF_BITS_FRACTION 0.75 | 
|  | #endif | 
|  | void av1_gop_bit_allocation(const AV1_COMP *cpi, RATE_CONTROL *const rc, | 
|  | GF_GROUP *gf_group, int is_key_frame, int use_arf, | 
|  | int64_t gf_group_bits) { | 
|  | // Calculate the extra bits to be used for boosted frame(s) | 
|  | #ifdef FIXED_ARF_BITS | 
|  | int gf_arf_bits = (int)(ARF_BITS_FRACTION * gf_group_bits); | 
|  | #else | 
|  | int gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, | 
|  | rc->gfu_boost, gf_group_bits); | 
|  | #endif | 
|  |  | 
|  | gf_arf_bits = adjust_boost_bits_for_target_level(cpi, rc, gf_arf_bits, | 
|  | gf_group_bits, 1); | 
|  |  | 
|  | // Allocate bits to each of the frames in the GF group. | 
|  | allocate_gf_group_bits(gf_group, rc, gf_group_bits, gf_arf_bits, is_key_frame, | 
|  | use_arf); | 
|  | } | 
|  |  | 
|  | // Minimum % intra coding observed in first pass (1.0 = 100%) | 
|  | #define MIN_INTRA_LEVEL 0.25 | 
|  | // Minimum ratio between the % of intra coding and inter coding in the first | 
|  | // pass after discounting neutral blocks (discounting neutral blocks in this | 
|  | // way helps catch scene cuts in clips with very flat areas or letter box | 
|  | // format clips with image padding. | 
|  | #define INTRA_VS_INTER_THRESH 2.0 | 
|  | // Hard threshold where the first pass chooses intra for almost all blocks. | 
|  | // In such a case even if the frame is not a scene cut coding a key frame | 
|  | // may be a good option. | 
|  | #define VERY_LOW_INTER_THRESH 0.05 | 
|  | // Maximum threshold for the relative ratio of intra error score vs best | 
|  | // inter error score. | 
|  | #define KF_II_ERR_THRESHOLD 2.5 | 
|  | // In real scene cuts there is almost always a sharp change in the intra | 
|  | // or inter error score. | 
|  | #define ERR_CHANGE_THRESHOLD 0.4 | 
|  | // For real scene cuts we expect an improvment in the intra inter error | 
|  | // ratio in the next frame. | 
|  | #define II_IMPROVEMENT_THRESHOLD 3.5 | 
|  | #define KF_II_MAX 128.0 | 
|  |  | 
|  | // Threshold for use of the lagging second reference frame. High second ref | 
|  | // usage may point to a transient event like a flash or occlusion rather than | 
|  | // a real scene cut. | 
|  | // We adapt the threshold based on number of frames in this key-frame group so | 
|  | // far. | 
|  | static double get_second_ref_usage_thresh(int frame_count_so_far) { | 
|  | const int adapt_upto = 32; | 
|  | const double min_second_ref_usage_thresh = 0.085; | 
|  | const double second_ref_usage_thresh_max_delta = 0.035; | 
|  | if (frame_count_so_far >= adapt_upto) { | 
|  | return min_second_ref_usage_thresh + second_ref_usage_thresh_max_delta; | 
|  | } | 
|  | return min_second_ref_usage_thresh + | 
|  | ((double)frame_count_so_far / (adapt_upto - 1)) * | 
|  | second_ref_usage_thresh_max_delta; | 
|  | } | 
|  |  | 
|  | static int test_candidate_kf(TWO_PASS *twopass, | 
|  | const FIRSTPASS_STATS *last_frame, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | const FIRSTPASS_STATS *next_frame, | 
|  | int frame_count_so_far, enum aom_rc_mode rc_mode, | 
|  | int scenecut_mode) { | 
|  | int is_viable_kf = 0; | 
|  | double pcnt_intra = 1.0 - this_frame->pcnt_inter; | 
|  | double modified_pcnt_inter = | 
|  | this_frame->pcnt_inter - this_frame->pcnt_neutral; | 
|  | const double second_ref_usage_thresh = | 
|  | get_second_ref_usage_thresh(frame_count_so_far); | 
|  | int total_frames_to_test = SCENE_CUT_KEY_TEST_INTERVAL; | 
|  | int count_for_tolerable_prediction = 3; | 
|  | int num_future_frames = 0; | 
|  | FIRSTPASS_STATS curr_frame; | 
|  |  | 
|  | if (scenecut_mode == ENABLE_SCENECUT_MODE_1) { | 
|  | curr_frame = *this_frame; | 
|  | const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
|  | for (num_future_frames = 0; num_future_frames < SCENE_CUT_KEY_TEST_INTERVAL; | 
|  | num_future_frames++) | 
|  | if (EOF == input_stats(twopass, &curr_frame)) break; | 
|  | reset_fpf_position(twopass, start_position); | 
|  | if (num_future_frames < 3) { | 
|  | return 0; | 
|  | } else { | 
|  | total_frames_to_test = 3; | 
|  | count_for_tolerable_prediction = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Does the frame satisfy the primary criteria of a key frame? | 
|  | // See above for an explanation of the test criteria. | 
|  | // If so, then examine how well it predicts subsequent frames. | 
|  | if (IMPLIES(rc_mode == AOM_Q, frame_count_so_far >= 3) && | 
|  | (this_frame->pcnt_second_ref < second_ref_usage_thresh) && | 
|  | (next_frame->pcnt_second_ref < second_ref_usage_thresh) && | 
|  | ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || | 
|  | ((pcnt_intra > MIN_INTRA_LEVEL) && | 
|  | (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && | 
|  | ((this_frame->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < | 
|  | KF_II_ERR_THRESHOLD) && | 
|  | ((fabs(last_frame->coded_error - this_frame->coded_error) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > | 
|  | ERR_CHANGE_THRESHOLD) || | 
|  | (fabs(last_frame->intra_error - this_frame->intra_error) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > | 
|  | ERR_CHANGE_THRESHOLD) || | 
|  | ((next_frame->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > | 
|  | II_IMPROVEMENT_THRESHOLD))))) { | 
|  | int i; | 
|  | const FIRSTPASS_STATS *start_pos = twopass->stats_in; | 
|  | double boost_score = 0.0; | 
|  | double old_boost_score = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  |  | 
|  | // Examine how well the key frame predicts subsequent frames. | 
|  | for (i = 0; i < total_frames_to_test; ++i) { | 
|  | // Get the next frame details | 
|  | FIRSTPASS_STATS local_next_frame; | 
|  | if (EOF == input_stats(twopass, &local_next_frame)) break; | 
|  | double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); | 
|  |  | 
|  | if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; | 
|  |  | 
|  | // Cumulative effect of decay in prediction quality. | 
|  | if (local_next_frame.pcnt_inter > 0.85) | 
|  | decay_accumulator *= local_next_frame.pcnt_inter; | 
|  | else | 
|  | decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; | 
|  |  | 
|  | // Keep a running total. | 
|  | boost_score += (decay_accumulator * next_iiratio); | 
|  |  | 
|  | // Test various breakout clauses. | 
|  | if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || | 
|  | (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < | 
|  | 0.20) && | 
|  | (next_iiratio < 3.0)) || | 
|  | ((boost_score - old_boost_score) < 3.0) || | 
|  | (local_next_frame.intra_error < 200)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | old_boost_score = boost_score; | 
|  | } | 
|  |  | 
|  | // If there is tolerable prediction for at least the next 3 frames then | 
|  | // break out else discard this potential key frame and move on | 
|  | if (boost_score > 30.0 && (i > count_for_tolerable_prediction)) { | 
|  | is_viable_kf = 1; | 
|  | } else { | 
|  | is_viable_kf = 0; | 
|  | } | 
|  |  | 
|  | // Reset the file position | 
|  | reset_fpf_position(twopass, start_pos); | 
|  | } | 
|  | return is_viable_kf; | 
|  | } | 
|  |  | 
|  | #define FRAMES_TO_CHECK_DECAY 8 | 
|  | #define KF_MIN_FRAME_BOOST 80.0 | 
|  | #define KF_MAX_FRAME_BOOST 128.0 | 
|  | #define MIN_KF_BOOST 600  // Minimum boost for non-static KF interval | 
|  | #define MAX_KF_BOOST 3200 | 
|  | #define MIN_STATIC_KF_BOOST 5400  // Minimum boost for static KF interval | 
|  |  | 
|  | static int detect_app_forced_key(AV1_COMP *cpi) { | 
|  | if (cpi->oxcf.kf_cfg.fwd_kf_enabled) cpi->rc.next_is_fwd_key = 1; | 
|  | int num_frames_to_app_forced_key = get_forced_keyframe_position( | 
|  | cpi->lookahead, cpi->lookahead->max_sz, cpi->compressor_stage); | 
|  | if (num_frames_to_app_forced_key != -1) cpi->rc.next_is_fwd_key = 0; | 
|  | return num_frames_to_app_forced_key; | 
|  | } | 
|  |  | 
|  | static int get_projected_kf_boost(AV1_COMP *cpi) { | 
|  | /* | 
|  | * If num_stats_used_for_kf_boost >= frames_to_key, then | 
|  | * all stats needed for prior boost calculation are available. | 
|  | * Hence projecting the prior boost is not needed in this cases. | 
|  | */ | 
|  | if (cpi->rc.num_stats_used_for_kf_boost >= cpi->rc.frames_to_key) | 
|  | return cpi->rc.kf_boost; | 
|  |  | 
|  | // Get the current tpl factor (number of frames = frames_to_key). | 
|  | double tpl_factor = av1_get_kf_boost_projection_factor(cpi->rc.frames_to_key); | 
|  | // Get the tpl factor when number of frames = num_stats_used_for_kf_boost. | 
|  | double tpl_factor_num_stats = | 
|  | av1_get_kf_boost_projection_factor(cpi->rc.num_stats_used_for_kf_boost); | 
|  | int projected_kf_boost = | 
|  | (int)rint((tpl_factor * cpi->rc.kf_boost) / tpl_factor_num_stats); | 
|  | return projected_kf_boost; | 
|  | } | 
|  |  | 
|  | /*!\brief Determine the location of the next key frame | 
|  | * | 
|  | * \ingroup gf_group_algo | 
|  | * This function decides the placement of the next key frame when a | 
|  | * scenecut is detected or the maximum key frame distance is reached. | 
|  | * | 
|  | * \param[in]    cpi              Top-level encoder structure | 
|  | * \param[in]    this_frame       Pointer to first pass stats | 
|  | * \param[out]   kf_group_err     The total error in the KF group | 
|  | * \param[in]    num_frames_to_detect_scenecut Maximum lookahead frames. | 
|  | * | 
|  | * \return       Number of frames to the next key. | 
|  | */ | 
|  | static int define_kf_interval(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame, | 
|  | double *kf_group_err, | 
|  | int num_frames_to_detect_scenecut) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg; | 
|  | double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; | 
|  | FIRSTPASS_STATS last_frame = { 0 }; | 
|  | double decay_accumulator = 1.0; | 
|  | int i = 0, j; | 
|  | int frames_to_key = 1; | 
|  | int frames_since_key = rc->frames_since_key + 1; | 
|  | FRAME_INFO *const frame_info = &cpi->frame_info; | 
|  | int num_stats_used_for_kf_boost = 1; | 
|  | int scenecut_detected = 0; | 
|  |  | 
|  | int num_frames_to_next_key = detect_app_forced_key(cpi); | 
|  |  | 
|  | if (num_frames_to_detect_scenecut == 0) { | 
|  | if (num_frames_to_next_key != -1) | 
|  | return num_frames_to_next_key; | 
|  | else | 
|  | return rc->frames_to_key; | 
|  | } | 
|  |  | 
|  | if (num_frames_to_next_key != -1) | 
|  | num_frames_to_detect_scenecut = | 
|  | AOMMIN(num_frames_to_detect_scenecut, num_frames_to_next_key); | 
|  |  | 
|  | // Initialize the decay rates for the recent frames to check | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; | 
|  |  | 
|  | i = 0; | 
|  | while (twopass->stats_in < twopass->stats_buf_ctx->stats_in_end && | 
|  | frames_to_key < num_frames_to_detect_scenecut) { | 
|  | // Accumulate total number of stats available till next key frame | 
|  | num_stats_used_for_kf_boost++; | 
|  |  | 
|  | // Load the next frame's stats. | 
|  | last_frame = *this_frame; | 
|  | input_stats(twopass, this_frame); | 
|  |  | 
|  | // Provided that we are not at the end of the file... | 
|  | if ((cpi->rc.enable_scenecut_detection > 0) && kf_cfg->auto_key && | 
|  | twopass->stats_in < twopass->stats_buf_ctx->stats_in_end) { | 
|  | double loop_decay_rate; | 
|  |  | 
|  | // Check for a scene cut. | 
|  | if (frames_since_key >= kf_cfg->key_freq_min && | 
|  | test_candidate_kf(twopass, &last_frame, this_frame, twopass->stats_in, | 
|  | frames_since_key, oxcf->rc_cfg.mode, | 
|  | cpi->rc.enable_scenecut_detection)) { | 
|  | scenecut_detected = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // How fast is the prediction quality decaying? | 
|  | loop_decay_rate = | 
|  | get_prediction_decay_rate(frame_info, twopass->stats_in); | 
|  |  | 
|  | // We want to know something about the recent past... rather than | 
|  | // as used elsewhere where we are concerned with decay in prediction | 
|  | // quality since the last GF or KF. | 
|  | recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; | 
|  | decay_accumulator = 1.0; | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) | 
|  | decay_accumulator *= recent_loop_decay[j]; | 
|  |  | 
|  | // Special check for transition or high motion followed by a | 
|  | // static scene. | 
|  | if (frames_since_key >= kf_cfg->key_freq_min && | 
|  | detect_transition_to_still(twopass, rc->min_gf_interval, i, | 
|  | kf_cfg->key_freq_max - i, loop_decay_rate, | 
|  | decay_accumulator)) { | 
|  | scenecut_detected = 1; | 
|  | // In the case of transition followed by a static scene, the key frame | 
|  | // could be a good predictor for the following frames, therefore we | 
|  | // do not use an arf. | 
|  | rc->use_arf_in_this_kf_group = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Step on to the next frame. | 
|  | ++frames_to_key; | 
|  | ++frames_since_key; | 
|  |  | 
|  | // If we don't have a real key frame within the next two | 
|  | // key_freq_max intervals then break out of the loop. | 
|  | if (frames_to_key >= 2 * kf_cfg->key_freq_max) break; | 
|  | } else { | 
|  | ++frames_to_key; | 
|  | ++frames_since_key; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | if (kf_group_err != NULL) | 
|  | rc->num_stats_used_for_kf_boost = num_stats_used_for_kf_boost; | 
|  |  | 
|  | if (cpi->lap_enabled && !scenecut_detected) | 
|  | frames_to_key = num_frames_to_next_key; | 
|  |  | 
|  | if (kf_cfg->fwd_kf_enabled && scenecut_detected) rc->next_is_fwd_key = 0; | 
|  |  | 
|  | return frames_to_key; | 
|  | } | 
|  |  | 
|  | static double get_kf_group_avg_error(TWO_PASS *twopass, | 
|  | const FIRSTPASS_STATS *first_frame, | 
|  | const FIRSTPASS_STATS *start_position, | 
|  | int frames_to_key) { | 
|  | FIRSTPASS_STATS cur_frame = *first_frame; | 
|  | int num_frames, i; | 
|  | double kf_group_avg_error = 0.0; | 
|  |  | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | for (i = 0; i < frames_to_key; ++i) { | 
|  | kf_group_avg_error += cur_frame.coded_error; | 
|  | if (EOF == input_stats(twopass, &cur_frame)) break; | 
|  | } | 
|  | num_frames = i + 1; | 
|  | num_frames = AOMMIN(num_frames, frames_to_key); | 
|  | kf_group_avg_error = kf_group_avg_error / num_frames; | 
|  |  | 
|  | return (kf_group_avg_error); | 
|  | } | 
|  |  | 
|  | static int64_t get_kf_group_bits(AV1_COMP *cpi, double kf_group_err, | 
|  | double kf_group_avg_error) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | int64_t kf_group_bits; | 
|  | if (cpi->lap_enabled) { | 
|  | kf_group_bits = (int64_t)rc->frames_to_key * rc->avg_frame_bandwidth; | 
|  | if (cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap) { | 
|  | const int num_mbs = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.mi_params.MBs; | 
|  |  | 
|  | double vbr_corpus_complexity_lap = | 
|  | cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap / 10.0; | 
|  | /* Get the average corpus complexity of the frame */ | 
|  | vbr_corpus_complexity_lap = vbr_corpus_complexity_lap * num_mbs; | 
|  | kf_group_bits = (int64_t)(kf_group_bits * (kf_group_avg_error / | 
|  | vbr_corpus_complexity_lap)); | 
|  | } | 
|  | } else { | 
|  | kf_group_bits = (int64_t)(twopass->bits_left * | 
|  | (kf_group_err / twopass->modified_error_left)); | 
|  | } | 
|  |  | 
|  | return kf_group_bits; | 
|  | } | 
|  |  | 
|  | static int calc_avg_stats(AV1_COMP *cpi, FIRSTPASS_STATS *avg_frame_stat) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | FIRSTPASS_STATS cur_frame; | 
|  | av1_zero(cur_frame); | 
|  | int num_frames = 0; | 
|  | // Accumulate total stat using available number of stats. | 
|  | for (num_frames = 0; num_frames < (rc->frames_to_key - 1); ++num_frames) { | 
|  | if (EOF == input_stats(twopass, &cur_frame)) break; | 
|  | av1_accumulate_stats(avg_frame_stat, &cur_frame); | 
|  | } | 
|  |  | 
|  | if (num_frames < 2) { | 
|  | return num_frames; | 
|  | } | 
|  | // Average the total stat | 
|  | avg_frame_stat->weight = avg_frame_stat->weight / num_frames; | 
|  | avg_frame_stat->intra_error = avg_frame_stat->intra_error / num_frames; | 
|  | avg_frame_stat->frame_avg_wavelet_energy = | 
|  | avg_frame_stat->frame_avg_wavelet_energy / num_frames; | 
|  | avg_frame_stat->coded_error = avg_frame_stat->coded_error / num_frames; | 
|  | avg_frame_stat->sr_coded_error = avg_frame_stat->sr_coded_error / num_frames; | 
|  | avg_frame_stat->pcnt_inter = avg_frame_stat->pcnt_inter / num_frames; | 
|  | avg_frame_stat->pcnt_motion = avg_frame_stat->pcnt_motion / num_frames; | 
|  | avg_frame_stat->pcnt_second_ref = | 
|  | avg_frame_stat->pcnt_second_ref / num_frames; | 
|  | avg_frame_stat->pcnt_neutral = avg_frame_stat->pcnt_neutral / num_frames; | 
|  | avg_frame_stat->intra_skip_pct = avg_frame_stat->intra_skip_pct / num_frames; | 
|  | avg_frame_stat->inactive_zone_rows = | 
|  | avg_frame_stat->inactive_zone_rows / num_frames; | 
|  | avg_frame_stat->inactive_zone_cols = | 
|  | avg_frame_stat->inactive_zone_cols / num_frames; | 
|  | avg_frame_stat->MVr = avg_frame_stat->MVr / num_frames; | 
|  | avg_frame_stat->mvr_abs = avg_frame_stat->mvr_abs / num_frames; | 
|  | avg_frame_stat->MVc = avg_frame_stat->MVc / num_frames; | 
|  | avg_frame_stat->mvc_abs = avg_frame_stat->mvc_abs / num_frames; | 
|  | avg_frame_stat->MVrv = avg_frame_stat->MVrv / num_frames; | 
|  | avg_frame_stat->MVcv = avg_frame_stat->MVcv / num_frames; | 
|  | avg_frame_stat->mv_in_out_count = | 
|  | avg_frame_stat->mv_in_out_count / num_frames; | 
|  | avg_frame_stat->new_mv_count = avg_frame_stat->new_mv_count / num_frames; | 
|  | avg_frame_stat->count = avg_frame_stat->count / num_frames; | 
|  | avg_frame_stat->duration = avg_frame_stat->duration / num_frames; | 
|  |  | 
|  | return num_frames; | 
|  | } | 
|  |  | 
|  | static double get_kf_boost_score(AV1_COMP *cpi, double kf_raw_err, | 
|  | double *zero_motion_accumulator, | 
|  | double *sr_accumulator, int use_avg_stat) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | FRAME_INFO *const frame_info = &cpi->frame_info; | 
|  | FIRSTPASS_STATS frame_stat; | 
|  | av1_zero(frame_stat); | 
|  | int i = 0, num_stat_used = 0; | 
|  | double boost_score = 0.0; | 
|  | const double kf_max_boost = | 
|  | cpi->oxcf.rc_cfg.mode == AOM_Q | 
|  | ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST), | 
|  | KF_MAX_FRAME_BOOST) | 
|  | : KF_MAX_FRAME_BOOST; | 
|  |  | 
|  | // Calculate the average using available number of stats. | 
|  | if (use_avg_stat) num_stat_used = calc_avg_stats(cpi, &frame_stat); | 
|  |  | 
|  | for (i = num_stat_used; i < (rc->frames_to_key - 1); ++i) { | 
|  | if (!use_avg_stat && EOF == input_stats(twopass, &frame_stat)) break; | 
|  |  | 
|  | // Monitor for static sections. | 
|  | // For the first frame in kf group, the second ref indicator is invalid. | 
|  | if (i > 0) { | 
|  | *zero_motion_accumulator = | 
|  | AOMMIN(*zero_motion_accumulator, | 
|  | get_zero_motion_factor(frame_info, &frame_stat)); | 
|  | } else { | 
|  | *zero_motion_accumulator = frame_stat.pcnt_inter - frame_stat.pcnt_motion; | 
|  | } | 
|  |  | 
|  | // Not all frames in the group are necessarily used in calculating boost. | 
|  | if ((*sr_accumulator < (kf_raw_err * 1.50)) && | 
|  | (i <= rc->max_gf_interval * 2)) { | 
|  | double frame_boost; | 
|  | double zm_factor; | 
|  |  | 
|  | // Factor 0.75-1.25 based on how much of frame is static. | 
|  | zm_factor = (0.75 + (*zero_motion_accumulator / 2.0)); | 
|  |  | 
|  | if (i < 2) *sr_accumulator = 0.0; | 
|  | frame_boost = calc_kf_frame_boost(rc, frame_info, &frame_stat, | 
|  | sr_accumulator, kf_max_boost); | 
|  | boost_score += frame_boost * zm_factor; | 
|  | } | 
|  | } | 
|  | return boost_score; | 
|  | } | 
|  |  | 
|  | /*!\brief Interval(in seconds) to clip key-frame distance to in LAP. | 
|  | */ | 
|  | #define MAX_KF_BITS_INTERVAL_SINGLE_PASS 5 | 
|  |  | 
|  | /*!\brief Determine the next key frame group | 
|  | * | 
|  | * \ingroup gf_group_algo | 
|  | * This function decides the placement of the next key frame, and | 
|  | * calculates the bit allocation of the KF group and the keyframe itself. | 
|  | * | 
|  | * \param[in]    cpi              Top-level encoder structure | 
|  | * \param[in]    this_frame       Pointer to first pass stats | 
|  | */ | 
|  | static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | CurrentFrame *const current_frame = &cm->current_frame; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg; | 
|  | const FIRSTPASS_STATS first_frame = *this_frame; | 
|  | FIRSTPASS_STATS next_frame; | 
|  | av1_zero(next_frame); | 
|  |  | 
|  | rc->frames_since_key = 0; | 
|  | // Use arfs if possible. | 
|  | rc->use_arf_in_this_kf_group = is_altref_enabled( | 
|  | oxcf->gf_cfg.lag_in_frames, oxcf->gf_cfg.enable_auto_arf); | 
|  |  | 
|  | // Reset the GF group data structures. | 
|  | av1_zero(*gf_group); | 
|  |  | 
|  | // KF is always a GF so clear frames till next gf counter. | 
|  | rc->frames_till_gf_update_due = 0; | 
|  |  | 
|  | rc->frames_to_key = 1; | 
|  |  | 
|  | if (has_no_stats_stage(cpi)) { | 
|  | int num_frames_to_app_forced_key = detect_app_forced_key(cpi); | 
|  | rc->this_key_frame_forced = | 
|  | current_frame->frame_number != 0 && rc->frames_to_key == 0; | 
|  | if (num_frames_to_app_forced_key != -1) | 
|  | rc->frames_to_key = num_frames_to_app_forced_key; | 
|  | else | 
|  | rc->frames_to_key = AOMMAX(1, kf_cfg->key_freq_max); | 
|  | correct_frames_to_key(cpi); | 
|  | rc->kf_boost = DEFAULT_KF_BOOST; | 
|  | gf_group->update_type[0] = KF_UPDATE; | 
|  | return; | 
|  | } | 
|  | int i; | 
|  | const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
|  | int kf_bits = 0; | 
|  | double zero_motion_accumulator = 1.0; | 
|  | double boost_score = 0.0; | 
|  | double kf_raw_err = 0.0; | 
|  | double kf_mod_err = 0.0; | 
|  | double kf_group_err = 0.0; | 
|  | double sr_accumulator = 0.0; | 
|  | double kf_group_avg_error = 0.0; | 
|  | int frames_to_key, frames_to_key_clipped = INT_MAX; | 
|  | int64_t kf_group_bits_clipped = INT64_MAX; | 
|  |  | 
|  | // Is this a forced key frame by interval. | 
|  | rc->this_key_frame_forced = rc->next_key_frame_forced; | 
|  |  | 
|  | twopass->kf_group_bits = 0;        // Total bits available to kf group | 
|  | twopass->kf_group_error_left = 0;  // Group modified error score. | 
|  |  | 
|  | kf_raw_err = this_frame->intra_error; | 
|  | kf_mod_err = 0.0; | 
|  |  | 
|  | frames_to_key = | 
|  | define_kf_interval(cpi, this_frame, &kf_group_err, kf_cfg->key_freq_max); | 
|  |  | 
|  | if (frames_to_key != -1) | 
|  | rc->frames_to_key = AOMMIN(kf_cfg->key_freq_max, frames_to_key); | 
|  | else | 
|  | rc->frames_to_key = kf_cfg->key_freq_max; | 
|  |  | 
|  | if (cpi->lap_enabled) correct_frames_to_key(cpi); | 
|  |  | 
|  | // If there is a max kf interval set by the user we must obey it. | 
|  | // We already breakout of the loop above at 2x max. | 
|  | // This code centers the extra kf if the actual natural interval | 
|  | // is between 1x and 2x. | 
|  | if (kf_cfg->auto_key && rc->frames_to_key > kf_cfg->key_freq_max) { | 
|  | FIRSTPASS_STATS tmp_frame = first_frame; | 
|  |  | 
|  | rc->frames_to_key /= 2; | 
|  |  | 
|  | // Reset to the start of the group. | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | kf_group_err = 0.0; | 
|  |  | 
|  | // Rescan to get the correct error data for the forced kf group. | 
|  | for (i = 0; i < rc->frames_to_key; ++i) { | 
|  | if (EOF == input_stats(twopass, &tmp_frame)) break; | 
|  | } | 
|  | rc->next_key_frame_forced = 1; | 
|  |  | 
|  | } else if (rc->frames_to_key >= kf_cfg->key_freq_max) { | 
|  | rc->next_key_frame_forced = 1; | 
|  | } else { | 
|  | rc->next_key_frame_forced = 0; | 
|  | } | 
|  |  | 
|  | if (kf_cfg->fwd_kf_enabled) rc->next_is_fwd_key |= rc->next_key_frame_forced; | 
|  |  | 
|  | // Special case for the last key frame of the file. | 
|  | if (twopass->stats_in >= twopass->stats_buf_ctx->stats_in_end) { | 
|  | // Accumulate kf group error. | 
|  | } | 
|  |  | 
|  | // Calculate the number of bits that should be assigned to the kf group. | 
|  | if ((twopass->bits_left > 0 && twopass->modified_error_left > 0.0) || | 
|  | (cpi->lap_enabled && oxcf->rc_cfg.mode != AOM_Q)) { | 
|  | // Maximum number of bits for a single normal frame (not key frame). | 
|  | const int max_bits = frame_max_bits(rc, oxcf); | 
|  |  | 
|  | // Maximum number of bits allocated to the key frame group. | 
|  | int64_t max_grp_bits; | 
|  |  | 
|  | if (oxcf->rc_cfg.vbr_corpus_complexity_lap) { | 
|  | kf_group_avg_error = get_kf_group_avg_error( | 
|  | twopass, &first_frame, start_position, rc->frames_to_key); | 
|  | } | 
|  |  | 
|  | // Default allocation based on bits left and relative | 
|  | // complexity of the section. | 
|  | twopass->kf_group_bits = | 
|  | get_kf_group_bits(cpi, kf_group_err, kf_group_avg_error); | 
|  | // Clip based on maximum per frame rate defined by the user. | 
|  | max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; | 
|  | if (twopass->kf_group_bits > max_grp_bits) | 
|  | twopass->kf_group_bits = max_grp_bits; | 
|  | } else { | 
|  | twopass->kf_group_bits = 0; | 
|  | } | 
|  | twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); | 
|  |  | 
|  | if (cpi->lap_enabled) { | 
|  | // In the case of single pass based on LAP, frames to  key may have an | 
|  | // inaccurate value, and hence should be clipped to an appropriate | 
|  | // interval. | 
|  | frames_to_key_clipped = | 
|  | (int)(MAX_KF_BITS_INTERVAL_SINGLE_PASS * cpi->framerate); | 
|  |  | 
|  | // This variable calculates the bits allocated to kf_group with a clipped | 
|  | // frames_to_key. | 
|  | if (rc->frames_to_key > frames_to_key_clipped) { | 
|  | kf_group_bits_clipped = | 
|  | (int64_t)((double)twopass->kf_group_bits * frames_to_key_clipped / | 
|  | rc->frames_to_key); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reset the first pass file position. | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | // Scan through the kf group collating various stats used to determine | 
|  | // how many bits to spend on it. | 
|  | boost_score = get_kf_boost_score(cpi, kf_raw_err, &zero_motion_accumulator, | 
|  | &sr_accumulator, 0); | 
|  | reset_fpf_position(twopass, start_position); | 
|  | // Store the zero motion percentage | 
|  | twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | twopass->section_intra_rating = calculate_section_intra_ratio( | 
|  | start_position, twopass->stats_buf_ctx->stats_in_end, rc->frames_to_key); | 
|  |  | 
|  | rc->kf_boost = (int)boost_score; | 
|  |  | 
|  | if (cpi->lap_enabled) { | 
|  | if (oxcf->rc_cfg.mode == AOM_Q) { | 
|  | rc->kf_boost = get_projected_kf_boost(cpi); | 
|  | } else { | 
|  | // TODO(any): Explore using average frame stats for AOM_Q as well. | 
|  | boost_score = get_kf_boost_score( | 
|  | cpi, kf_raw_err, &zero_motion_accumulator, &sr_accumulator, 1); | 
|  | reset_fpf_position(twopass, start_position); | 
|  | rc->kf_boost += (int)boost_score; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special case for static / slide show content but don't apply | 
|  | // if the kf group is very short. | 
|  | if ((zero_motion_accumulator > STATIC_KF_GROUP_FLOAT_THRESH) && | 
|  | (rc->frames_to_key > 8)) { | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, MIN_STATIC_KF_BOOST); | 
|  | } else { | 
|  | // Apply various clamps for min and max boost | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3)); | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST); | 
|  | #ifdef STRICT_RC | 
|  | rc->kf_boost = AOMMIN(rc->kf_boost, MAX_KF_BOOST); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Work out how many bits to allocate for the key frame itself. | 
|  | // In case of LAP enabled for VBR, if the frames_to_key value is | 
|  | // very high, we calculate the bits based on a clipped value of | 
|  | // frames_to_key. | 
|  | kf_bits = calculate_boost_bits( | 
|  | AOMMIN(rc->frames_to_key, frames_to_key_clipped) - 1, rc->kf_boost, | 
|  | AOMMIN(twopass->kf_group_bits, kf_group_bits_clipped)); | 
|  | // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost, | 
|  | //        kf_bits, twopass->kf_zeromotion_pct); | 
|  | kf_bits = adjust_boost_bits_for_target_level(cpi, rc, kf_bits, | 
|  | twopass->kf_group_bits, 0); | 
|  |  | 
|  | twopass->kf_group_bits -= kf_bits; | 
|  |  | 
|  | // Save the bits to spend on the key frame. | 
|  | gf_group->bit_allocation[0] = kf_bits; | 
|  | gf_group->update_type[0] = KF_UPDATE; | 
|  |  | 
|  | // Note the total error score of the kf group minus the key frame itself. | 
|  | if (cpi->lap_enabled) | 
|  | // As we don't have enough stats to know the actual error of the group, | 
|  | // we assume the complexity of each frame to be equal to 1, and set the | 
|  | // error as the number of frames in the group(minus the keyframe). | 
|  | twopass->kf_group_error_left = (int)(rc->frames_to_key - 1); | 
|  | else | 
|  | twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); | 
|  |  | 
|  | // Adjust the count of total modified error left. | 
|  | // The count of bits left is adjusted elsewhere based on real coded frame | 
|  | // sizes. | 
|  | twopass->modified_error_left -= kf_group_err; | 
|  | } | 
|  |  | 
|  | static int is_skippable_frame(const AV1_COMP *cpi) { | 
|  | if (has_no_stats_stage(cpi)) return 0; | 
|  | // If the current frame does not have non-zero motion vector detected in the | 
|  | // first  pass, and so do its previous and forward frames, then this frame | 
|  | // can be skipped for partition check, and the partition size is assigned | 
|  | // according to the variance | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | return (!frame_is_intra_only(&cpi->common) && | 
|  | twopass->stats_in - 2 > twopass->stats_buf_ctx->stats_in_start && | 
|  | twopass->stats_in < twopass->stats_buf_ctx->stats_in_end && | 
|  | (twopass->stats_in - 1)->pcnt_inter - | 
|  | (twopass->stats_in - 1)->pcnt_motion == | 
|  | 1 && | 
|  | (twopass->stats_in - 2)->pcnt_inter - | 
|  | (twopass->stats_in - 2)->pcnt_motion == | 
|  | 1 && | 
|  | twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); | 
|  | } | 
|  |  | 
|  | #define ARF_STATS_OUTPUT 0 | 
|  | #if ARF_STATS_OUTPUT | 
|  | unsigned int arf_count = 0; | 
|  | #endif | 
|  | #define DEFAULT_GRP_WEIGHT 1.0 | 
|  |  | 
|  | static int get_section_target_bandwidth(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | CurrentFrame *const current_frame = &cm->current_frame; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | int section_target_bandwidth; | 
|  | const int frames_left = (int)(twopass->stats_buf_ctx->total_stats->count - | 
|  | current_frame->frame_number); | 
|  | if (cpi->lap_enabled) | 
|  | section_target_bandwidth = (int)rc->avg_frame_bandwidth; | 
|  | else | 
|  | section_target_bandwidth = (int)(twopass->bits_left / frames_left); | 
|  | return section_target_bandwidth; | 
|  | } | 
|  |  | 
|  | static void process_first_pass_stats(AV1_COMP *cpi, | 
|  | FIRSTPASS_STATS *this_frame) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | CurrentFrame *const current_frame = &cm->current_frame; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | if (cpi->oxcf.rc_cfg.mode != AOM_Q && current_frame->frame_number == 0 && | 
|  | cpi->twopass.stats_buf_ctx->total_stats && | 
|  | cpi->twopass.stats_buf_ctx->total_left_stats) { | 
|  | if (cpi->lap_enabled) { | 
|  | /* | 
|  | * Accumulate total_stats using available limited number of stats, | 
|  | * and assign it to total_left_stats. | 
|  | */ | 
|  | *cpi->twopass.stats_buf_ctx->total_left_stats = | 
|  | *cpi->twopass.stats_buf_ctx->total_stats; | 
|  | } | 
|  | // Special case code for first frame. | 
|  | const int section_target_bandwidth = get_section_target_bandwidth(cpi); | 
|  | const double section_length = | 
|  | twopass->stats_buf_ctx->total_left_stats->count; | 
|  | const double section_error = | 
|  | twopass->stats_buf_ctx->total_left_stats->coded_error / section_length; | 
|  | const double section_intra_skip = | 
|  | twopass->stats_buf_ctx->total_left_stats->intra_skip_pct / | 
|  | section_length; | 
|  | const double section_inactive_zone = | 
|  | (twopass->stats_buf_ctx->total_left_stats->inactive_zone_rows * 2) / | 
|  | ((double)cm->mi_params.mb_rows * section_length); | 
|  | const int tmp_q = get_twopass_worst_quality( | 
|  | cpi, section_error, section_intra_skip + section_inactive_zone, | 
|  | section_target_bandwidth, DEFAULT_GRP_WEIGHT); | 
|  |  | 
|  | rc->active_worst_quality = tmp_q; | 
|  | rc->ni_av_qi = tmp_q; | 
|  | rc->last_q[INTER_FRAME] = tmp_q; | 
|  | rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth); | 
|  | rc->avg_frame_qindex[INTER_FRAME] = tmp_q; | 
|  | rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.rc_cfg.best_allowed_q) / 2; | 
|  | rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; | 
|  | } | 
|  |  | 
|  | int err = 0; | 
|  | if (cpi->lap_enabled) { | 
|  | err = input_stats_lap(twopass, this_frame); | 
|  | } else { | 
|  | err = input_stats(twopass, this_frame); | 
|  | } | 
|  | if (err == EOF) return; | 
|  |  | 
|  | { | 
|  | const int num_mbs = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cm->mi_params.MBs; | 
|  | // The multiplication by 256 reverses a scaling factor of (>> 8) | 
|  | // applied when combining MB error values for the frame. | 
|  | twopass->mb_av_energy = log((this_frame->intra_error / num_mbs) + 1.0); | 
|  | twopass->frame_avg_haar_energy = | 
|  | log((this_frame->frame_avg_wavelet_energy / num_mbs) + 1.0); | 
|  | } | 
|  |  | 
|  | // Update the total stats remaining structure. | 
|  | if (twopass->stats_buf_ctx->total_left_stats) | 
|  | subtract_stats(twopass->stats_buf_ctx->total_left_stats, this_frame); | 
|  |  | 
|  | // Set the frame content type flag. | 
|  | twopass->fr_content_type = FC_HIGHMOTION; | 
|  | if (!(cpi->oxcf.rc_cfg.mode == AOM_Q && cpi->oxcf.q_cfg.use_fixed_qp_offsets)) | 
|  | if (this_frame->intra_skip_pct < FC_HIGHMOTION_THRESH) | 
|  | twopass->fr_content_type = FC_NORMAL; | 
|  | // Note for typical sequences FC_HIGHMOTION is chosen a majority of the time | 
|  | } | 
|  |  | 
|  | static void setup_target_rate(AV1_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  |  | 
|  | int target_rate = gf_group->bit_allocation[gf_group->index]; | 
|  |  | 
|  | if (has_no_stats_stage(cpi)) { | 
|  | av1_rc_set_frame_target(cpi, target_rate, cpi->common.width, | 
|  | cpi->common.height); | 
|  | } | 
|  |  | 
|  | rc->base_frame_target = target_rate; | 
|  | } | 
|  |  | 
|  | void av1_get_second_pass_params(AV1_COMP *cpi, | 
|  | EncodeFrameParams *const frame_params) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  |  | 
|  | if (is_stat_consumption_stage(cpi) && !twopass->stats_in) return; | 
|  |  | 
|  | if (gf_group->index < gf_group->size) { | 
|  | assert(gf_group->index < gf_group->size); | 
|  | const int update_type = gf_group->update_type[gf_group->index]; | 
|  |  | 
|  | setup_target_rate(cpi); | 
|  | int src_index = gf_group->arf_src_offset[gf_group->index]; | 
|  | if (src_index == cpi->rc.frames_to_key && src_index != 0 && | 
|  | cpi->oxcf.kf_cfg.fwd_kf_enabled) { | 
|  | cpi->no_show_fwd_kf = 1; | 
|  | } | 
|  | // If this is an arf frame then we dont want to read the stats file or | 
|  | // advance the input pointer as we already have what we need. | 
|  | if (update_type == ARF_UPDATE || update_type == INTNL_ARF_UPDATE || | 
|  | update_type == KFFLT_UPDATE) { | 
|  | if (cpi->no_show_fwd_kf) { | 
|  | assert(update_type == ARF_UPDATE || update_type == KFFLT_UPDATE); | 
|  | frame_params->frame_type = KEY_FRAME; | 
|  | } else { | 
|  | frame_params->frame_type = INTER_FRAME; | 
|  | } | 
|  |  | 
|  | if (frame_params->frame_type != KEY_FRAME) | 
|  | update_subgop_stats(&cpi->gf_group, &cpi->subgop_stats, | 
|  | &cpi->common.seq_params.order_hint_info, | 
|  | cpi->oxcf.kf_cfg.key_freq_max, | 
|  | oxcf->unit_test_cfg.enable_subgop_stats); | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.part_sf.allow_partition_search_skip && oxcf->pass == 2) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | if (oxcf->rc_cfg.mode == AOM_Q) rc->active_worst_quality = oxcf->rc_cfg.qp; | 
|  | FIRSTPASS_STATS this_frame; | 
|  | av1_zero(this_frame); | 
|  | // call above fn | 
|  | if (is_stat_consumption_stage(cpi)) { | 
|  | if (gf_group->index < gf_group->size || rc->frames_to_key == 0) { | 
|  | // Do not read if it is overlay for kf arf, since kf already | 
|  | // advanced the first pass stats pointer | 
|  | if (!av1_check_keyframe_overlay(gf_group->index, gf_group, | 
|  | rc->frames_since_key)) { | 
|  | process_first_pass_stats(cpi, &this_frame); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | rc->active_worst_quality = oxcf->rc_cfg.qp; | 
|  | } | 
|  |  | 
|  | // Keyframe and section processing. | 
|  | if (rc->frames_to_key <= 0) { | 
|  | assert(rc->frames_to_key >= -1); | 
|  | FIRSTPASS_STATS this_frame_copy; | 
|  | this_frame_copy = this_frame; | 
|  | frame_params->frame_type = KEY_FRAME; | 
|  | // Define next KF group and assign bits to it. | 
|  | find_next_key_frame(cpi, &this_frame); | 
|  | this_frame = this_frame_copy; | 
|  | } else { | 
|  | frame_params->frame_type = INTER_FRAME; | 
|  | const int altref_enabled = is_altref_enabled(oxcf->gf_cfg.lag_in_frames, | 
|  | oxcf->gf_cfg.enable_auto_arf); | 
|  | const int sframe_dist = oxcf->kf_cfg.sframe_dist; | 
|  | const int sframe_mode = oxcf->kf_cfg.sframe_mode; | 
|  | const int update_type = gf_group->update_type[gf_group->index]; | 
|  | CurrentFrame *const current_frame = &cpi->common.current_frame; | 
|  | if (sframe_dist != 0) { | 
|  | if (altref_enabled) { | 
|  | if (sframe_mode == 1) { | 
|  | // sframe_mode == 1: insert sframe if it matches altref frame. | 
|  | if (current_frame->frame_number % sframe_dist == 0 && | 
|  | current_frame->frame_number != 0 && | 
|  | (update_type == ARF_UPDATE || update_type == KFFLT_UPDATE)) { | 
|  | frame_params->frame_type = S_FRAME; | 
|  | } | 
|  | } else { | 
|  | // sframe_mode != 1: if sframe will be inserted at the next available | 
|  | // altref frame | 
|  | if (current_frame->frame_number % sframe_dist == 0 && | 
|  | current_frame->frame_number != 0) { | 
|  | rc->sframe_due = 1; | 
|  | } | 
|  | if (rc->sframe_due && | 
|  | (update_type == ARF_UPDATE || update_type == KFFLT_UPDATE)) { | 
|  | frame_params->frame_type = S_FRAME; | 
|  | rc->sframe_due = 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (current_frame->frame_number % sframe_dist == 0 && | 
|  | current_frame->frame_number != 0) { | 
|  | frame_params->frame_type = S_FRAME; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Define a new GF/ARF group. (Should always enter here for key frames). | 
|  | if (gf_group->index == gf_group->size) { | 
|  | assert(cpi->common.current_frame.frame_number == 0 || | 
|  | gf_group->index == gf_group->size); | 
|  | const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
|  |  | 
|  | if (cpi->lap_enabled && cpi->rc.enable_scenecut_detection) { | 
|  | int num_frames_to_detect_scenecut, frames_to_key; | 
|  | num_frames_to_detect_scenecut = MAX_GF_LENGTH_LAP + 1; | 
|  | frames_to_key = define_kf_interval(cpi, &this_frame, NULL, | 
|  | num_frames_to_detect_scenecut); | 
|  | if (frames_to_key != -1) | 
|  | rc->frames_to_key = AOMMIN(rc->frames_to_key, frames_to_key); | 
|  | } | 
|  |  | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | const KeyFrameCfg *const kf_cfg = &cpi->oxcf.kf_cfg; | 
|  | int max_gop_length = (kf_cfg->key_freq_max > 1) | 
|  | ? AOMMIN(MAX_GF_LENGTH_LAP, cpi->rc.frames_to_key) | 
|  | : 1; | 
|  | if (rc->intervals_till_gf_calculate_due == 0 || 1) { | 
|  | calculate_gf_length(cpi, max_gop_length, MAX_NUM_GF_INTERVALS, | 
|  | frame_params->frame_type); | 
|  | } | 
|  |  | 
|  | define_gf_group(cpi, &this_frame, frame_params, max_gop_length); | 
|  |  | 
|  | /* | 
|  | * If last frame is OVERLAY_UDPATE then it is good quality frame. | 
|  | * This flag is an indicator to not set another good quality frame | 
|  | * consecutively in next gop. | 
|  | */ | 
|  | cpi->gf_state.arf_gf_boost_lst = | 
|  | gf_group->update_type[gf_group->size - 1] == OVERLAY_UPDATE; | 
|  |  | 
|  | cpi->no_show_fwd_kf = 0; | 
|  | int src_index = gf_group->arf_src_offset[gf_group->index]; | 
|  | if (src_index == cpi->rc.frames_to_key && src_index != 0 && | 
|  | cpi->oxcf.kf_cfg.fwd_kf_enabled) { | 
|  | cpi->no_show_fwd_kf = 1; | 
|  | } | 
|  | const int update_type = gf_group->update_type[gf_group->index]; | 
|  |  | 
|  | frame_params->show_frame = | 
|  | !(gf_group->update_type[gf_group->index] == ARF_UPDATE || | 
|  | gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE); | 
|  |  | 
|  | if (update_type == ARF_UPDATE) { | 
|  | if (cpi->no_show_fwd_kf) { | 
|  | assert(update_type == ARF_UPDATE || update_type == KFFLT_UPDATE); | 
|  | frame_params->frame_type = KEY_FRAME; | 
|  | } else { | 
|  | frame_params->frame_type = | 
|  | rc->frames_since_key == 0 ? KEY_FRAME : INTER_FRAME; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (gf_group->update_type[gf_group->index] != ARF_UPDATE && | 
|  | rc->frames_since_key > 0) | 
|  | process_first_pass_stats(cpi, &this_frame); | 
|  |  | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  | assert(gf_group->index == 0); | 
|  |  | 
|  | #if ARF_STATS_OUTPUT | 
|  | { | 
|  | FILE *fpfile; | 
|  | fpfile = fopen("arf.stt", "a"); | 
|  | ++arf_count; | 
|  | fprintf(fpfile, "%10d %10d %10d %10d %10d\n", | 
|  | cpi->common.current_frame.frame_number, | 
|  | rc->frames_till_gf_update_due, rc->kf_boost, arf_count, | 
|  | rc->gfu_boost); | 
|  |  | 
|  | fclose(fpfile); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | assert(gf_group->index < gf_group->size); | 
|  | if (frame_params->frame_type != KEY_FRAME) | 
|  | update_subgop_stats(&cpi->gf_group, &cpi->subgop_stats, | 
|  | &cpi->common.seq_params.order_hint_info, | 
|  | cpi->oxcf.kf_cfg.key_freq_max, | 
|  | oxcf->unit_test_cfg.enable_subgop_stats); | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.part_sf.allow_partition_search_skip && oxcf->pass == 2) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | setup_target_rate(cpi); | 
|  | } | 
|  |  | 
|  | void av1_init_single_pass_lap(AV1_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | if (!twopass->stats_buf_ctx->stats_in_end) return; | 
|  |  | 
|  | // This variable monitors how far behind the second ref update is lagging. | 
|  | twopass->sr_update_lag = 1; | 
|  |  | 
|  | twopass->bits_left = 0; | 
|  | twopass->modified_error_min = 0.0; | 
|  | twopass->modified_error_max = 0.0; | 
|  | twopass->modified_error_left = 0.0; | 
|  |  | 
|  | // Reset the vbr bits off target counters | 
|  | cpi->rc.vbr_bits_off_target = 0; | 
|  | cpi->rc.vbr_bits_off_target_fast = 0; | 
|  |  | 
|  | cpi->rc.rate_error_estimate = 0; | 
|  |  | 
|  | // Static sequence monitor variables. | 
|  | twopass->kf_zeromotion_pct = 100; | 
|  | twopass->last_kfgroup_zeromotion_pct = 100; | 
|  |  | 
|  | // Initialize bits per macro_block estimate correction factor. | 
|  | twopass->bpm_factor = 1.0; | 
|  | // Initialize actual and target bits counters for ARF groups so that | 
|  | // at the start we have a neutral bpm adjustment. | 
|  | twopass->rolling_arf_group_target_bits = 1; | 
|  | twopass->rolling_arf_group_actual_bits = 1; | 
|  | } | 
|  |  | 
|  | #define MINQ_ADJ_LIMIT 48 | 
|  | #define MINQ_ADJ_LIMIT_CQ 20 | 
|  | #define HIGH_UNDERSHOOT_RATIO 2 | 
|  | void av1_twopass_postencode_update(AV1_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const int bits_used = rc->base_frame_target; | 
|  | const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; | 
|  |  | 
|  | // VBR correction is done through rc->vbr_bits_off_target. Based on the | 
|  | // sign of this value, a limited % adjustment is made to the target rate | 
|  | // of subsequent frames, to try and push it back towards 0. This method | 
|  | // is designed to prevent extreme behaviour at the end of a clip | 
|  | // or group of frames. | 
|  | rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; | 
|  | twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0); | 
|  |  | 
|  | // Target vs actual bits for this arf group. | 
|  | twopass->rolling_arf_group_target_bits += rc->this_frame_target; | 
|  | twopass->rolling_arf_group_actual_bits += rc->projected_frame_size; | 
|  |  | 
|  | // Calculate the pct rc error. | 
|  | if (rc->total_actual_bits) { | 
|  | rc->rate_error_estimate = | 
|  | (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); | 
|  | rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); | 
|  | } else { | 
|  | rc->rate_error_estimate = 0; | 
|  | } | 
|  |  | 
|  | // Update the active best quality pyramid. | 
|  | if (!rc->is_src_frame_alt_ref) { | 
|  | const int pyramid_level = cpi->gf_group.layer_depth[cpi->gf_group.index]; | 
|  | int i; | 
|  | for (i = pyramid_level; i <= MAX_ARF_LAYERS; ++i) { | 
|  | rc->active_best_quality[i] = cpi->common.quant_params.base_qindex; | 
|  | #if CONFIG_TUNE_VMAF | 
|  | if (cpi->vmaf_info.original_qindex != -1 && | 
|  | (cpi->oxcf.tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && | 
|  | cpi->oxcf.tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) { | 
|  | rc->active_best_quality[i] = cpi->vmaf_info.original_qindex; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // if (pyramid_level >= 2) { | 
|  | //   rc->active_best_quality[pyramid_level] = | 
|  | //     AOMMAX(rc->active_best_quality[pyramid_level], | 
|  | //            cpi->common.base_qindex); | 
|  | // } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | FILE *fpfile; | 
|  | fpfile = fopen("details.stt", "a"); | 
|  | fprintf(fpfile, | 
|  | "%10d %10d %10d %10" PRId64 " %10" PRId64 | 
|  | " %10d %10d %10d %10.4lf %10.4lf %10.4lf %10.4lf\n", | 
|  | cm->current_frame.frame_number, rc->base_frame_target, | 
|  | rc->projected_frame_size, rc->total_actual_bits, | 
|  | rc->vbr_bits_off_target, rc->rate_error_estimate, | 
|  | twopass->rolling_arf_group_target_bits, | 
|  | twopass->rolling_arf_group_actual_bits, | 
|  | (double)twopass->rolling_arf_group_actual_bits / | 
|  | (double)twopass->rolling_arf_group_target_bits, | 
|  | twopass->bpm_factor, | 
|  | av1_convert_qindex_to_q(cpi->common.quant_params.base_qindex, | 
|  | cm->seq_params.bit_depth), | 
|  | av1_convert_qindex_to_q(rc->active_worst_quality, | 
|  | cm->seq_params.bit_depth)); | 
|  | fclose(fpfile); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type != KEY_FRAME) { | 
|  | twopass->kf_group_bits -= bits_used; | 
|  | twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; | 
|  | } | 
|  | twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0); | 
|  |  | 
|  | // If the rate control is drifting consider adjustment to min or maxq. | 
|  | if ((rc_cfg->mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref) { | 
|  | const int maxq_adj_limit = rc->worst_quality - rc->active_worst_quality; | 
|  | const int minq_adj_limit = | 
|  | (rc_cfg->mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); | 
|  |  | 
|  | // Undershoot. | 
|  | if (rc->rate_error_estimate > rc_cfg->under_shoot_pct) { | 
|  | --twopass->extend_maxq; | 
|  | if (rc->rolling_target_bits >= rc->rolling_actual_bits) | 
|  | ++twopass->extend_minq; | 
|  | // Overshoot. | 
|  | } else if (rc->rate_error_estimate < -rc_cfg->over_shoot_pct) { | 
|  | --twopass->extend_minq; | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | ++twopass->extend_maxq; | 
|  | } else { | 
|  | // Adjustment for extreme local overshoot. | 
|  | if (rc->projected_frame_size > (2 * rc->base_frame_target) && | 
|  | rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) | 
|  | ++twopass->extend_maxq; | 
|  |  | 
|  | // Unwind undershoot or overshoot adjustment. | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | --twopass->extend_minq; | 
|  | else if (rc->rolling_target_bits > rc->rolling_actual_bits) | 
|  | --twopass->extend_maxq; | 
|  | } | 
|  |  | 
|  | twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit); | 
|  | twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); | 
|  |  | 
|  | // If there is a big and undexpected undershoot then feed the extra | 
|  | // bits back in quickly. One situation where this may happen is if a | 
|  | // frame is unexpectedly almost perfectly predicted by the ARF or GF | 
|  | // but not very well predcited by the previous frame. | 
|  | if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { | 
|  | int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; | 
|  | if (rc->projected_frame_size < fast_extra_thresh) { | 
|  | rc->vbr_bits_off_target_fast += | 
|  | fast_extra_thresh - rc->projected_frame_size; | 
|  | rc->vbr_bits_off_target_fast = | 
|  | AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); | 
|  |  | 
|  | // Fast adaptation of minQ if necessary to use up the extra bits. | 
|  | if (rc->avg_frame_bandwidth) { | 
|  | twopass->extend_minq_fast = | 
|  | (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); | 
|  | } | 
|  | twopass->extend_minq_fast = AOMMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else if (rc->vbr_bits_off_target_fast) { | 
|  | twopass->extend_minq_fast = AOMMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else { | 
|  | twopass->extend_minq_fast = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } |