| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #include "aom_dsp/bitwriter_buffer.h" | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <stdlib.h> | 
 |  | 
 | #include "config/aom_config.h" | 
 |  | 
 | #include "aom_dsp/recenter.h" | 
 | #include "aom_ports/bitops.h" | 
 |  | 
 | int aom_wb_is_byte_aligned(const struct aom_write_bit_buffer *wb) { | 
 |   return (wb->bit_offset % CHAR_BIT == 0); | 
 | } | 
 |  | 
 | uint32_t aom_wb_bytes_written(const struct aom_write_bit_buffer *wb) { | 
 |   return wb->bit_offset / CHAR_BIT + (wb->bit_offset % CHAR_BIT > 0); | 
 | } | 
 |  | 
 | void aom_wb_write_bit(struct aom_write_bit_buffer *wb, int bit) { | 
 |   const int off = (int)wb->bit_offset; | 
 |   const int p = off / CHAR_BIT; | 
 |   const int q = CHAR_BIT - 1 - off % CHAR_BIT; | 
 |   if (q == CHAR_BIT - 1) { | 
 |     // Zero next char and write bit | 
 |     wb->bit_buffer[p] = bit << q; | 
 |   } else { | 
 |     wb->bit_buffer[p] &= ~(1 << q); | 
 |     wb->bit_buffer[p] |= bit << q; | 
 |   } | 
 |   wb->bit_offset = off + 1; | 
 | } | 
 |  | 
 | void aom_wb_overwrite_bit(struct aom_write_bit_buffer *wb, int bit) { | 
 |   // Do not zero bytes but overwrite exisiting values | 
 |   const int off = (int)wb->bit_offset; | 
 |   const int p = off / CHAR_BIT; | 
 |   const int q = CHAR_BIT - 1 - off % CHAR_BIT; | 
 |   wb->bit_buffer[p] &= ~(1 << q); | 
 |   wb->bit_buffer[p] |= bit << q; | 
 |   wb->bit_offset = off + 1; | 
 | } | 
 |  | 
 | void aom_wb_write_literal(struct aom_write_bit_buffer *wb, int data, int bits) { | 
 |   assert(bits <= 31); | 
 |   int bit; | 
 |   for (bit = bits - 1; bit >= 0; bit--) aom_wb_write_bit(wb, (data >> bit) & 1); | 
 | } | 
 |  | 
 | void aom_wb_write_unsigned_literal(struct aom_write_bit_buffer *wb, | 
 |                                    uint32_t data, int bits) { | 
 |   assert(bits <= 32); | 
 |   int bit; | 
 |   for (bit = bits - 1; bit >= 0; bit--) aom_wb_write_bit(wb, (data >> bit) & 1); | 
 | } | 
 |  | 
 | void aom_wb_overwrite_literal(struct aom_write_bit_buffer *wb, int data, | 
 |                               int bits) { | 
 |   int bit; | 
 |   for (bit = bits - 1; bit >= 0; bit--) | 
 |     aom_wb_overwrite_bit(wb, (data >> bit) & 1); | 
 | } | 
 |  | 
 | void aom_wb_write_inv_signed_literal(struct aom_write_bit_buffer *wb, int data, | 
 |                                      int bits) { | 
 |   aom_wb_write_literal(wb, data, bits + 1); | 
 | } | 
 |  | 
 | void aom_wb_write_uvlc(struct aom_write_bit_buffer *wb, uint32_t v) { | 
 |   assert(v != UINT32_MAX); | 
 |   ++v; | 
 |   const int leading_zeroes = get_msb(v); | 
 |   aom_wb_write_literal(wb, 0, leading_zeroes); | 
 |   aom_wb_write_unsigned_literal(wb, v, leading_zeroes + 1); | 
 | } | 
 |  | 
 | void aom_wb_write_svlc(struct aom_write_bit_buffer *wb, int32_t v) { | 
 |   assert(v != INT32_MIN); | 
 |   if (v <= 0) { | 
 |     const uint32_t abs_val = (uint32_t)(-v); | 
 |     aom_wb_write_uvlc(wb, 2 * abs_val); | 
 |   } else { | 
 |     const uint32_t abs_val = (uint32_t)v; | 
 |     aom_wb_write_uvlc(wb, 2 * abs_val - 1); | 
 |   } | 
 | } | 
 |  | 
 | void aom_wb_write_primitive_quniform(struct aom_write_bit_buffer *wb, | 
 |                                      uint16_t n, uint16_t v) { | 
 |   if (n <= 1) return; | 
 |   assert(v < n); | 
 |   // Split the valid range into two. | 
 |   // The encoded value is in the range [0, n), but in order to map a range | 
 |   // which may not be a power of 2 onto a binary code, we split into the | 
 |   // sub-ranges [0, m) and [m, n), where m is an intermediate point. | 
 |   // Values in the range [0, m) then use one fewer bit than values in | 
 |   // the range [m, n). | 
 |   const int l = get_msb(n) + 1; | 
 |   const int m = (1 << l) - n; | 
 |   if (v < m) { | 
 |     aom_wb_write_literal(wb, v, l - 1); | 
 |   } else { | 
 |     aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); | 
 |     aom_wb_write_bit(wb, (v - m) & 1); | 
 |   } | 
 | } | 
 |  | 
 | void aom_wb_write_primitive_ref_quniform(struct aom_write_bit_buffer *wb, | 
 |                                          uint16_t n, uint16_t r, uint16_t v) { | 
 |   // Signal a single bit to indicate if the value is unequal to the reference r | 
 |   // If unequal signal a (n - 1)-ary quasi-uniform code where v values | 
 |   // higher than r are reduced by 1. | 
 |   const int unequal = (v != r); | 
 |   aom_wb_write_bit(wb, unequal); | 
 |   if (unequal) { | 
 |     v -= (v > r); | 
 |     aom_wb_write_primitive_quniform(wb, n - 1, v); | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
 | static int wb_count_primitive_quniform(uint16_t n, uint16_t v) { | 
 |   int bits = 0; | 
 |   if (n <= 1) return 0; | 
 |   assert(v < n); | 
 |   const int l = get_msb(n) + 1; | 
 |   const int m = (1 << l) - n; | 
 |   if (v < m) { | 
 |     bits += l - 1; | 
 |   } else { | 
 |     bits += l; | 
 |   } | 
 |   return bits; | 
 | } | 
 | #endif  // CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
 |  | 
 | static void wb_write_primitive_subexpfin(struct aom_write_bit_buffer *wb, | 
 |                                          uint16_t n, uint16_t k, uint16_t v) { | 
 |   int i = 0; | 
 |   int mk = 0; | 
 |   while (1) { | 
 |     int b = (i ? k + i - 1 : k); | 
 |     int a = (1 << b); | 
 |     if (n <= mk + 3 * a) { | 
 |       aom_wb_write_primitive_quniform(wb, n - mk, v - mk); | 
 |       break; | 
 |     } else { | 
 |       int t = (v >= mk + a); | 
 |       aom_wb_write_bit(wb, t); | 
 |       if (t) { | 
 |         i = i + 1; | 
 |         mk += a; | 
 |       } else { | 
 |         aom_wb_write_literal(wb, v - mk, b); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
 | static int wb_count_primitive_subexpfin(uint16_t n, uint16_t k, uint16_t v) { | 
 |   int bits = 0; | 
 |   int i = 0; | 
 |   int mk = 0; | 
 |   while (1) { | 
 |     int b = (i ? k + i - 1 : k); | 
 |     int a = (1 << b); | 
 |     if (n <= mk + 3 * a) { | 
 |       bits += wb_count_primitive_quniform(n - mk, v - mk); | 
 |       break; | 
 |     } else { | 
 |       int t = (v >= mk + a); | 
 |       bits++; | 
 |       if (t) { | 
 |         i = i + 1; | 
 |         mk += a; | 
 |       } else { | 
 |         bits += b; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |   return bits; | 
 | } | 
 | #endif  // CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
 |  | 
 | void aom_wb_write_primitive_refsubexpfin(struct aom_write_bit_buffer *wb, | 
 |                                          uint16_t n, uint16_t k, uint16_t ref, | 
 |                                          uint16_t v) { | 
 |   assert(ref < n); | 
 |   assert(v < n); | 
 |   wb_write_primitive_subexpfin(wb, n, k, recenter_finite_nonneg(n, ref, v)); | 
 | } | 
 |  | 
 | void aom_wb_write_signed_primitive_refsubexpfin(struct aom_write_bit_buffer *wb, | 
 |                                                 uint16_t n, uint16_t k, | 
 |                                                 int16_t ref, int16_t v) { | 
 |   assert(n > 0); | 
 |   const uint16_t offset = n - 1; | 
 |   const uint16_t scaled_n = (n << 1) - 1; | 
 |   aom_wb_write_primitive_refsubexpfin(wb, scaled_n, k, ref + offset, | 
 |                                       v + offset); | 
 | } | 
 |  | 
 | #if CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
 | int aom_wb_count_primitive_refsubexpfin(uint16_t n, uint16_t k, int16_t ref, | 
 |                                         int16_t v) { | 
 |   assert(ref < n); | 
 |   assert(v < n); | 
 |   return wb_count_primitive_subexpfin(n, k, recenter_finite_nonneg(n, ref, v)); | 
 | } | 
 | #endif  // CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
 |  | 
 | #if CONFIG_MULTILAYER_HLS | 
 | // implementation of leb128() signaling in the specification using | 
 | // aom_write_bit_buffer | 
 | void aom_wb_write_uleb(struct aom_write_bit_buffer *wb, uint32_t value) { | 
 |   uint32_t enc_val = value; | 
 |   const size_t leb_size = aom_uleb_size_in_bytes(enc_val); | 
 |   for (size_t i = 0; i < leb_size; ++i) { | 
 |     uint8_t encoded_byte = enc_val & 0x7f; | 
 |     enc_val >>= 7; | 
 |     if (enc_val != 0) encoded_byte |= 0x80;  // Signal that more bytes follow. | 
 |     aom_wb_write_literal(wb, encoded_byte, 8); | 
 |   } | 
 | } | 
 | #endif  // CONFIG_MULTILAYER_HLS |