blob: 4a99931abe94ff61876a8659217e629f049b5bd7 [file] [log] [blame] [edit]
/*
*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "config/aom_config.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
int av1_get_MBs(int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
const int mi_cols = aligned_width >> MI_SIZE_LOG2;
const int mi_rows = aligned_height >> MI_SIZE_LOG2;
const int mb_cols = (mi_cols + 2) >> 2;
const int mb_rows = (mi_rows + 2) >> 2;
return mb_rows * mb_cols;
}
void av1_free_ref_frame_buffers(BufferPool *pool) {
int i;
for (i = 0; i < FRAME_BUFFERS; ++i) {
if (pool->frame_bufs[i].ref_count > 0 &&
pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
pool->frame_bufs[i].raw_frame_buffer.data = NULL;
pool->frame_bufs[i].raw_frame_buffer.size = 0;
pool->frame_bufs[i].raw_frame_buffer.priv = NULL;
pool->frame_bufs[i].ref_count = 0;
}
aom_free(pool->frame_bufs[i].mvs);
pool->frame_bufs[i].mvs = NULL;
aom_free(pool->frame_bufs[i].seg_map);
pool->frame_bufs[i].seg_map = NULL;
aom_free_frame_buffer(&pool->frame_bufs[i].buf);
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
if (pool->frame_bufs[i].ccso_info.sb_filter_control[plane] != NULL) {
aom_free(pool->frame_bufs[i].ccso_info.sb_filter_control[plane]);
pool->frame_bufs[i].ccso_info.sb_filter_control[plane] = NULL;
}
}
for (int p = 0; p < MAX_MB_PLANE; ++p) {
av1_free_restoration_struct(&pool->frame_bufs[i].rst_info[p]);
}
}
}
// Assumes cm->rst_info[p].restoration_unit_size is already initialized
void av1_alloc_restoration_buffers(AV1_COMMON *cm) {
const int num_planes = av1_num_planes(cm);
for (int p = 0; p < num_planes; ++p)
av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);
if (cm->frame_filter_dictionary == NULL) {
allocate_frame_filter_dictionary(cm);
translate_pcwiener_filters_to_wienerns(cm);
}
if (cm->rlbs == NULL) {
CHECK_MEM_ERROR(cm, cm->rlbs, aom_malloc(sizeof(RestorationLineBuffers)));
}
av1_alloc_restoration_boundary_buffers(cm, num_planes);
}
void av1_alloc_restoration_boundary_buffers(struct AV1Common *cm,
int num_planes) {
// For striped loop restoration, we divide each row of tiles into "stripes",
// of height 64 luma pixels but with an offset by RESTORATION_UNIT_OFFSET
// luma pixels to match the output from CDEF. We will need to store 2 *
// RESTORATION_CTX_VERT lines of data for each stripe, and also need to be
// able to quickly answer the question "Where is the <n>'th stripe for tile
// row <m>?" To make that efficient, we generate the rst_last_stripe array.
AV1PixelRect tile_rect;
int num_stripes = 0;
#if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES
if (cm->seq_params.disable_loopfilters_across_tiles) {
TileInfo tile_info;
for (int tr = 0; tr < cm->tiles.rows; ++tr) {
av1_tile_init(&tile_info, cm, tr, 0);
tile_rect = av1_get_tile_rect(&tile_info, cm, 0);
const int tile_h = tile_rect.bottom - tile_rect.top;
num_stripes += av1_lr_count_stripes_in_tile(tile_h, 0);
}
} else {
tile_rect = av1_whole_frame_rect(cm, 0);
const int tile_h = tile_rect.bottom - tile_rect.top;
num_stripes = av1_lr_count_stripes_in_tile(tile_h, 0);
}
#else
tile_rect = av1_whole_frame_rect(cm, 0);
const int tile_h = tile_rect.bottom - tile_rect.top;
num_stripes = av1_lr_count_stripes_in_tile(tile_h, 0);
#endif // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES
// int num_stripes = cm->rst_info[0].vert_stripes_per_frame;
// Now we need to allocate enough space to store the line buffers for the
// stripes
#if CONFIG_F054_PIC_BOUNDARY
const int frame_w = cm->mi_params.mi_cols << MI_SIZE_LOG2;
#else
const int frame_w = cm->width;
#endif // CONFIG_F054_PIC_BOUNDARY
for (int p = 0; p < num_planes; ++p) {
const int is_uv = p > 0;
const int ss_x = is_uv && cm->seq_params.subsampling_x;
const int plane_w =
((frame_w + ss_x) >> ss_x) + 2 * RESTORATION_BORDER_HORZ;
const int stride = ALIGN_POWER_OF_TWO(plane_w, 5);
const int buf_size = num_stripes * stride * RESTORATION_CTX_VERT << 1;
RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
boundaries->num_stripes = num_stripes;
if (buf_size != boundaries->stripe_boundary_size ||
boundaries->stripe_boundary_above == NULL ||
boundaries->stripe_boundary_below == NULL) {
aom_free(boundaries->stripe_boundary_above);
aom_free(boundaries->stripe_boundary_below);
CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_above,
aom_memalign(32, buf_size));
CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_below,
aom_memalign(32, buf_size));
boundaries->stripe_boundary_size = buf_size;
}
boundaries->stripe_boundary_stride = stride;
}
}
void av1_free_restoration_buffers(AV1_COMMON *cm) {
int p;
for (p = 0; p < MAX_MB_PLANE; ++p)
av1_free_restoration_struct(&cm->rst_info[p]);
aom_free(cm->rlbs);
cm->rlbs = NULL;
for (p = 0; p < MAX_MB_PLANE; ++p) {
RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
aom_free(boundaries->stripe_boundary_above);
aom_free(boundaries->stripe_boundary_below);
boundaries->stripe_boundary_above = NULL;
boundaries->stripe_boundary_below = NULL;
}
free_frame_filter_dictionary(cm);
aom_free_frame_buffer(&cm->rst_frame);
}
void av1_free_above_context_buffers(CommonContexts *above_contexts) {
int i;
const int num_planes = above_contexts->num_planes;
for (int tile_row = 0; tile_row < above_contexts->num_tile_rows; tile_row++) {
for (i = 0; i < num_planes; i++) {
aom_free(above_contexts->entropy[i][tile_row]);
above_contexts->entropy[i][tile_row] = NULL;
aom_free(above_contexts->partition[i][tile_row]);
above_contexts->partition[i][tile_row] = NULL;
}
}
for (i = 0; i < num_planes; i++) {
aom_free(above_contexts->entropy[i]);
above_contexts->entropy[i] = NULL;
aom_free(above_contexts->partition[i]);
above_contexts->partition[i] = NULL;
}
above_contexts->num_tile_rows = 0;
above_contexts->num_mi_cols = 0;
above_contexts->num_planes = 0;
}
static void free_sbi(CommonSBInfoParams *sbi_params) {
for (int i = 0; i < sbi_params->sbi_alloc_size; ++i) {
av1_free_ptree_recursive(sbi_params->sbi_grid_base[i].ptree_root[0]);
av1_free_ptree_recursive(sbi_params->sbi_grid_base[i].ptree_root[1]);
}
aom_free(sbi_params->sbi_grid_base);
sbi_params->sbi_grid_base = NULL;
sbi_params->sbi_alloc_size = 0;
}
void av1_free_context_buffers(AV1_COMMON *cm) {
cm->mi_params.free_mi(&cm->mi_params);
free_sbi(&cm->sbi_params);
av1_free_above_context_buffers(&cm->above_contexts);
}
int av1_alloc_above_context_buffers(CommonContexts *above_contexts,
int num_tile_rows, int num_mi_cols,
int num_planes) {
const int aligned_mi_cols =
ALIGN_POWER_OF_TWO(num_mi_cols, MAX_MIB_SIZE_LOG2);
// Allocate above context buffers
above_contexts->num_tile_rows = num_tile_rows;
above_contexts->num_mi_cols = aligned_mi_cols;
above_contexts->num_planes = num_planes;
for (int plane_idx = 0; plane_idx < num_planes; plane_idx++) {
above_contexts->entropy[plane_idx] = (ENTROPY_CONTEXT **)aom_calloc(
num_tile_rows, sizeof(above_contexts->entropy[0]));
if (!above_contexts->entropy[plane_idx]) return 1;
above_contexts->partition[plane_idx] = (PARTITION_CONTEXT **)aom_calloc(
num_tile_rows, sizeof(above_contexts->partition[plane_idx]));
if (!above_contexts->partition[plane_idx]) return 1;
}
for (int tile_row = 0; tile_row < num_tile_rows; tile_row++) {
for (int plane_idx = 0; plane_idx < num_planes; plane_idx++) {
above_contexts->entropy[plane_idx][tile_row] =
(ENTROPY_CONTEXT *)aom_calloc(
aligned_mi_cols, sizeof(*above_contexts->entropy[0][tile_row]));
if (!above_contexts->entropy[plane_idx][tile_row]) return 1;
above_contexts->partition[plane_idx][tile_row] =
(PARTITION_CONTEXT *)aom_calloc(
aligned_mi_cols,
sizeof(*above_contexts->partition[plane_idx][tile_row]));
if (!above_contexts->partition[plane_idx][tile_row]) return 1;
}
}
return 0;
}
// Allocate the dynamically allocated arrays in 'mi_params' assuming
// 'mi_params->set_mb_mi()' was already called earlier to initialize the rest of
// the struct members.
static int alloc_mi(CommonModeInfoParams *mi_params, AV1_COMMON *cm,
int height) {
const int aligned_mi_rows = calc_mi_size(mi_params->mi_rows);
const int mi_grid_size = mi_params->mi_stride * aligned_mi_rows;
const int alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
const int alloc_mi_size =
mi_params->mi_alloc_stride * (aligned_mi_rows / alloc_size_1d);
if (mi_params->mi_alloc_size < alloc_mi_size ||
mi_params->mi_grid_size < mi_grid_size) {
mi_params->free_mi(mi_params);
mi_params->mi_alloc =
aom_calloc(alloc_mi_size, sizeof(*mi_params->mi_alloc));
if (!mi_params->mi_alloc) return 1;
mi_params->mi_alloc_size = alloc_mi_size;
mi_params->mi_grid_base = (MB_MODE_INFO **)aom_calloc(
mi_grid_size, sizeof(*mi_params->mi_grid_base));
if (!mi_params->mi_grid_base) return 1;
mi_params->mi_grid_size = mi_grid_size;
av1_alloc_txk_skip_array(mi_params, cm);
av1_alloc_class_id_array(mi_params, cm, height);
mi_params->mi_alloc_sub =
aom_calloc(alloc_mi_size, sizeof(*mi_params->mi_alloc_sub));
if (!mi_params->mi_alloc_sub) return 1;
mi_params->submi_grid_base = (SUBMB_INFO **)aom_calloc(
mi_grid_size, sizeof(*mi_params->submi_grid_base));
if (!mi_params->submi_grid_base) return 1;
mi_params->tx_type_map =
aom_calloc(mi_grid_size, sizeof(*mi_params->tx_type_map));
if (!mi_params->tx_type_map) return 1;
mi_params->cctx_type_map =
aom_calloc(mi_grid_size, sizeof(*mi_params->cctx_type_map));
if (!mi_params->cctx_type_map) return 1;
} else {
// Set only the strides corresponding to the current frame dims
av1_set_txk_skip_array_stride(mi_params, cm);
av1_set_class_id_array_stride(mi_params, cm, height);
}
return 0;
}
static void set_sb_si(AV1_COMMON *cm) {
CommonSBInfoParams *const sbi_params = &cm->sbi_params;
const int mib_size_log2 = cm->mib_size_log2;
sbi_params->sb_cols =
ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, mib_size_log2) >> mib_size_log2;
sbi_params->sb_rows =
ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, mib_size_log2) >> mib_size_log2;
sbi_params->sbi_stride = cm->mi_params.mi_stride >> mib_size_log2;
}
static int alloc_sbi(CommonSBInfoParams *sbi_params) {
const int sbi_size = sbi_params->sbi_stride * sbi_params->sb_rows;
if (sbi_params->sbi_alloc_size < sbi_size) {
free_sbi(sbi_params);
sbi_params->sbi_grid_base =
aom_calloc(sbi_size, sizeof(*sbi_params->sbi_grid_base));
if (!sbi_params->sbi_grid_base) return 1;
sbi_params->sbi_alloc_size = sbi_size;
for (int i = 0; i < sbi_size; ++i) {
sbi_params->sbi_grid_base[i].ptree_root[0] = NULL;
sbi_params->sbi_grid_base[i].ptree_root[1] = NULL;
#if CONFIG_BRU
sbi_params->sbi_grid_base[i].sb_active_mode = BRU_ACTIVE_SB;
#endif
}
}
return 0;
}
int av1_alloc_superblock_info_buffers(AV1_COMMON *cm) {
CommonSBInfoParams *const sbi_params = &cm->sbi_params;
set_sb_si(cm);
return alloc_sbi(sbi_params);
}
int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) {
CommonModeInfoParams *const mi_params = &cm->mi_params;
mi_params->set_mb_mi(mi_params, width, height);
if (alloc_mi(mi_params, cm, height)) goto fail;
if (av1_alloc_superblock_info_buffers(cm)) goto fail;
return 0;
fail:
// clear the mi_* values to force a realloc on resync
mi_params->set_mb_mi(mi_params, 0, 0);
av1_free_context_buffers(cm);
return 1;
}
void av1_remove_common(AV1_COMMON *cm) {
av1_free_context_buffers(cm);
aom_free(cm->fc);
cm->fc = NULL;
aom_free(cm->default_frame_context);
cm->default_frame_context = NULL;
}
void av1_init_mi_buffers(CommonModeInfoParams *mi_params) {
mi_params->setup_mi(mi_params);
}