blob: be2f91309b8eab3969a6ae0e625b772ec161eb05 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "av1/common/av1_common_int.h"
#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"
#include "config/av1_rtcd.h"
#include "av1/common/reconinter.h"
#include "av1/common/warped_motion.h"
#define LOCAL_FIXED_MULT(x, y, round, bits) (((x) * (y) + round) >> bits)
void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) {
assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3));
memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3));
memset(&cfl->mhccp_ref_buf_q3, 0, sizeof(cfl->mhccp_ref_buf_q3));
cfl->subsampling_x = seq_params->subsampling_x;
cfl->subsampling_y = seq_params->subsampling_y;
cfl->are_parameters_computed = 0;
cfl->store_y = 0;
// The DC_PRED cache is disabled by default and is only enabled in
// cfl_rd_pick_alpha
cfl->use_dc_pred_cache = 0;
cfl->dc_pred_is_cached[CFL_PRED_U] = 0;
cfl->dc_pred_is_cached[CFL_PRED_V] = 0;
}
void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint16_t *input,
CFL_PRED_TYPE pred_plane, int width) {
assert(pred_plane < CFL_PRED_PLANES);
assert(width <= CFL_BUF_LINE);
memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width * sizeof(*input));
return;
}
static void cfl_load_dc_pred_hbd(const uint16_t *dc_pred_cache, uint16_t *dst,
int dst_stride, int width, int height) {
const size_t num_bytes = width * sizeof(*dst);
for (int j = 0; j < height; j++) {
memcpy(dst, dc_pred_cache, num_bytes);
dst += dst_stride;
}
}
void cfl_load_dc_pred(MACROBLOCKD *const xd, uint16_t *dst, int dst_stride,
TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) {
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
assert(pred_plane < CFL_PRED_PLANES);
assert(width <= CFL_BUF_LINE);
assert(height <= CFL_BUF_LINE);
cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride,
width, height);
}
// Due to frame boundary issues, it is possible that the total area covered by
// chroma exceeds that of luma. When this happens, we fill the missing pixels by
// repeating the last columns and/or rows.
static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) {
const int diff_width = width - cfl->buf_width;
const int diff_height = height - cfl->buf_height;
uint16_t last_pixel;
if (diff_width > 0) {
const int min_height = height - diff_height;
uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width);
for (int j = 0; j < min_height; j++) {
last_pixel = recon_buf_q3[-1];
assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
for (int i = 0; i < diff_width; i++) {
recon_buf_q3[i] = last_pixel;
}
recon_buf_q3 += CFL_BUF_LINE;
}
cfl->buf_width = width;
}
if (diff_height > 0) {
uint16_t *recon_buf_q3 =
cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE);
for (int j = 0; j < diff_height; j++) {
const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE;
assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
for (int i = 0; i < width; i++) {
recon_buf_q3[i] = last_row_q3[i];
}
recon_buf_q3 += CFL_BUF_LINE;
}
cfl->buf_height = height;
}
}
static void subtract_average_c(const uint16_t *src, int16_t *dst, int width,
int height, int round_offset, int num_pel_log2) {
int sum = round_offset;
const uint16_t *recon = src;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
sum += recon[i];
}
recon += CFL_BUF_LINE;
}
const int avg = sum >> num_pel_log2;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
dst[i] = src[i] - avg;
}
src += CFL_BUF_LINE;
dst += CFL_BUF_LINE;
}
}
CFL_SUB_AVG_FN(c)
static INLINE int cfl_idx_to_alpha(uint8_t alpha_idx, int8_t joint_sign,
CFL_PRED_TYPE pred_type) {
const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign)
: CFL_SIGN_V(joint_sign);
if (alpha_sign == CFL_SIGN_ZERO) return 0;
const int abs_alpha_q3 =
(pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx);
return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1;
}
void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride,
int alpha_q3, int bit_depth, int width, int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
dst[i] = clip_pixel_highbd(
get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth);
}
dst += dst_stride;
ac_buf_q3 += CFL_BUF_LINE;
}
}
CFL_PREDICT_FN(c, hbd)
// Subtract the average from neighoring pixels
static void subtract_average_neighbor(const uint16_t *src, int16_t *dst,
int width, int height, int avg) {
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
dst[i] = src[i] - avg;
}
src += CFL_BUF_LINE;
dst += CFL_BUF_LINE;
}
}
// Calculate luma AC values with neighbor DC
static void cfl_compute_parameters_alt(CFL_CTX *const cfl, TX_SIZE tx_size) {
cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]);
subtract_average_neighbor(cfl->recon_buf_q3, cfl->ac_buf_q3,
tx_size_wide[tx_size], tx_size_high[tx_size],
cfl->avg_l);
cfl->are_parameters_computed = 1;
}
static void get_top_bottom_offsets(int is_top_sb_boundary, int *top_offset,
int *bottom_offset) {
// If this is the above super block boundary, use only the above line and
// repeated it. This can be done by changing the offset.
*top_offset = 2 - is_top_sb_boundary;
*bottom_offset = 1 - is_top_sb_boundary;
}
void cfl_implicit_fetch_neighbor_luma(const AV1_COMMON *cm,
MACROBLOCKD *const xd, int row, int col,
int is_top_sb_boundary,
#if CONFIG_CHROMA_LARGE_TX
int width, int height
#else
TX_SIZE tx_size
#endif // CONFIG_CHROMA_LARGE_TX
) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
int input_stride = pd->dst.stride;
const int row_dst =
row + xd->mi[0]->chroma_ref_info.mi_row_chroma_base - xd->mi_row;
const int col_dst =
col + xd->mi[0]->chroma_ref_info.mi_col_chroma_base - xd->mi_col;
uint16_t *dst =
&pd->dst.buf[-((-row_dst * pd->dst.stride - col_dst) << MI_SIZE_LOG2)];
#if !CONFIG_CHROMA_LARGE_TX
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
#endif // !CONFIG_CHROMA_LARGE_TX
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int row_start =
((xd->mi[0]->chroma_ref_info.mi_row_chroma_base + row) << MI_SIZE_LOG2);
const int col_start =
((xd->mi[0]->chroma_ref_info.mi_col_chroma_base + col) << MI_SIZE_LOG2);
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, AOM_PLANE_U);
memset(cfl->recon_yuv_buf_above[0], 0, sizeof(cfl->recon_yuv_buf_above[0]));
memset(cfl->recon_yuv_buf_left[0], 0, sizeof(cfl->recon_yuv_buf_left[0]));
// top boundary
uint16_t *output_q3 = cfl->recon_yuv_buf_above[0];
if (have_top) {
// If this is the above super block boundary, use only the above line and
// repeated it.
int top_offset = 0; // In the case filter_type is 2, top_offset points to
// the middle reference line
int bottom_offset = 0;
get_top_bottom_offsets(is_top_sb_boundary, &top_offset, &bottom_offset);
if (sub_x && sub_y) {
uint16_t *input = dst - top_offset * input_stride;
for (int i = 0; i < width; i += 2) {
const int bot = i + bottom_offset * input_stride;
const int filter_type = cm->seq_params.cfl_ds_filter_index;
if (filter_type == 1) {
output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 2 * input[i] +
input[i + 1] + input[bot + AOMMAX(-1, -i)] +
2 * input[bot] + input[bot + 1];
} else if (filter_type == 2) {
const int top =
i - (is_top_sb_boundary ? 0 : 1) *
input_stride; // If this is the top sb boundary, the top
// index points to the current sample
output_q3[i >> 1] = input[AOMMAX(0, i - 1)] + 4 * input[i] +
input[i + 1] + input[top] + input[bot];
} else {
output_q3[i >> 1] =
(input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
}
}
} else if (sub_x) {
uint16_t *input = dst - input_stride;
for (int i = 0; i < width; i += 2) {
const int filter_type = cm->seq_params.cfl_ds_filter_index;
if (filter_type == 1) {
output_q3[i >> 1] =
(input[AOMMAX(0, i - 1)] + 2 * input[i] + input[i + 1]) << 1;
} else if (filter_type == 2) {
output_q3[i >> 1] = input[i] << 3;
} else {
output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
}
}
} else if (sub_y) {
uint16_t *input = dst - top_offset * input_stride;
for (int i = 0; i < width; ++i) {
const int bot = i + bottom_offset * input_stride;
output_q3[i] = (input[i] + input[bot]) << 2;
}
} else {
uint16_t *input = dst - input_stride;
for (int i = 0; i < width; ++i) output_q3[i] = input[i] << 3;
}
#if CONFIG_F054_PIC_BOUNDARY
if (col_start >= pd->dst.width) {
#else
if (col_start >= cm->width) {
#endif // CONFIG_F054_PIC_BOUNDARY
const uint16_t mid = (1 << xd->bd) >> 1;
for (int j = 0; j < width >> sub_x; ++j) {
output_q3[j] = mid;
}
#if CONFIG_F054_PIC_BOUNDARY
} else if ((col_start + width) > pd->dst.width) {
int temp = width - ((col_start + width) - pd->dst.width);
#else
} else if ((col_start + width) > cm->width) {
int temp = width - ((col_start + width) - cm->width);
#endif // CONFIG_F054_PIC_BOUNDARY
assert(temp > 0 && temp < width);
for (int i = temp >> sub_x; i < width >> sub_x; ++i) {
output_q3[i] = output_q3[i - 1];
}
}
}
// left boundary
output_q3 = cfl->recon_yuv_buf_left[0];
if (have_left) {
if (sub_x && sub_y) {
uint16_t *input = dst - 2;
for (int j = 0; j < height; j += 2) {
const int bot = input_stride;
const int filter_type = cm->seq_params.cfl_ds_filter_index;
if (filter_type == 1) {
output_q3[j >> 1] = input[-1] + 2 * input[0] + input[1] +
input[bot - 1] + 2 * input[bot] + input[bot + 1];
} else if (filter_type == 2) {
const int top = (j == 0) ? 0 : (0 - input_stride);
output_q3[j >> 1] =
input[-1] + 4 * input[0] + input[1] + input[top] + input[bot];
} else {
output_q3[j >> 1] =
(input[0] + input[1] + input[bot] + input[bot + 1]) << 1;
}
input += input_stride * 2;
}
} else if (sub_x) {
uint16_t *input = dst - 2;
for (int j = 0; j < height; ++j) {
const int filter_type = cm->seq_params.cfl_ds_filter_index;
if (filter_type == 1) {
output_q3[j] = (input[-1] + 2 * input[0] + input[1]) << 1;
} else if (filter_type == 2) {
output_q3[j] = input[0] << 3;
} else {
output_q3[j] = (input[0] + input[1]) << 2;
}
input += input_stride;
}
} else if (sub_y) {
uint16_t *input = dst - 1;
for (int j = 0; j < height; ++j) {
output_q3[j] = (input[0] + input[input_stride]) << 2;
input += input_stride * 2;
}
} else {
uint16_t *input = dst - 1;
for (int j = 0; j < height; ++j)
output_q3[j] = input[j * input_stride] << 3;
}
#if CONFIG_F054_PIC_BOUNDARY
if (row_start >= pd->dst.height) {
#else
if (row_start >= cm->height) {
#endif // CONFIG_F054_PIC_BOUNDARY
const uint16_t mid = (1 << xd->bd) >> 1;
for (int j = 0; j < height >> sub_y; ++j) {
output_q3[j] = mid;
}
#if CONFIG_F054_PIC_BOUNDARY
} else if ((row_start + height) > pd->dst.height) {
int temp = height - ((row_start + height) - pd->dst.height);
#else
} else if ((row_start + height) > cm->height) {
int temp = height - ((row_start + height) - cm->height);
#endif // CONFIG_F054_PIC_BOUNDARY
assert(temp > 0 && temp < height);
for (int j = temp >> sub_y; j < height >> sub_y; ++j) {
output_q3[j] = output_q3[j - 1];
}
}
}
}
void cfl_calc_luma_dc(MACROBLOCKD *const xd, int row, int col,
TX_SIZE tx_size) {
CFL_CTX *const cfl = &xd->cfl;
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
#if CONFIG_CHROMA_LARGE_TX
const int ss_hor = width > 32 ? 2 : 1;
const int ss_ver = height > 32 ? 2 : 1;
#endif // CONFIG_CHROMA_LARGE_TX
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, AOM_PLANE_U);
int count = 0;
int sum_x = 0;
uint16_t *l;
if (have_top) {
l = cfl->recon_yuv_buf_above[0];
#if CONFIG_CHROMA_LARGE_TX
for (int i = 0; i < width; i += ss_hor) {
sum_x += l[i];
count++;
}
#else
for (int i = 0; i < width; ++i) {
sum_x += l[i];
}
count += width;
#endif // CONFIG_CHROMA_LARGE_TX
}
if (have_left) {
l = cfl->recon_yuv_buf_left[0];
#if CONFIG_CHROMA_LARGE_TX
for (int i = 0; i < height; i += ss_ver) {
sum_x += l[i];
count++;
}
#else
for (int i = 0; i < height; ++i) {
sum_x += l[i];
}
count += height;
#endif // CONFIG_CHROMA_LARGE_TX
}
if (count > 0) {
cfl->avg_l = (sum_x + count / 2) / count;
} else {
cfl->avg_l = 8 << (xd->bd - 1);
}
}
void cfl_implicit_fetch_neighbor_chroma(const AV1_COMMON *cm,
MACROBLOCKD *const xd, int plane,
int row, int col, TX_SIZE tx_size) {
#if CONFIG_F054_PIC_BOUNDARY
(void)cm;
#endif // CONFIG_F054_PIC_BOUNDARY
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[plane];
int input_stride = pd->dst.stride;
uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
#if CONFIG_F054_PIC_BOUNDARY
int pic_width_c = pd->dst.width;
int pic_height_c = pd->dst.height;
#else
int pic_width_c = cm->width >> sub_x;
int pic_height_c = cm->height >> sub_y;
#endif // CONFIG_F054_PIC_BOUNDARY
const int row_start =
(((xd->mi[0]->chroma_ref_info.mi_row_chroma_base >> sub_y) + row)
<< MI_SIZE_LOG2);
const int col_start =
(((xd->mi[0]->chroma_ref_info.mi_col_chroma_base >> sub_x) + col)
<< MI_SIZE_LOG2);
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, plane);
memset(cfl->recon_yuv_buf_above[plane], 0,
sizeof(cfl->recon_yuv_buf_above[plane]));
memset(cfl->recon_yuv_buf_left[plane], 0,
sizeof(cfl->recon_yuv_buf_left[plane]));
// top boundary
uint16_t *output_q3 = cfl->recon_yuv_buf_above[plane];
if (have_top) {
uint16_t *input = dst - input_stride;
for (int i = 0; i < width; ++i) {
output_q3[i] = input[i];
}
if (col_start >= pic_width_c) {
const uint16_t mid = (1 << xd->bd) >> 1;
for (int i = 0; i < width; ++i) {
output_q3[i] = mid;
}
} else if ((col_start + width) > pic_width_c) {
int temp = width - ((col_start + width) - pic_width_c);
assert(temp > 0 && temp < width);
for (int i = temp; i < width; ++i) {
output_q3[i] = output_q3[i - 1];
}
}
}
// left boundary
output_q3 = cfl->recon_yuv_buf_left[plane];
if (have_left) {
uint16_t *input = dst - 1;
for (int j = 0; j < height; ++j) {
output_q3[j] = input[0];
input += input_stride;
}
if (row_start >= pic_height_c) {
const uint16_t mid = (1 << xd->bd) >> 1;
for (int i = 0; i < height; ++i) {
output_q3[i] = mid;
}
} else if ((row_start + height) > pic_height_c) {
int temp = height - ((row_start + height) - pic_height_c);
assert(temp > 0 && temp < height);
for (int j = temp; j < height; ++j) {
output_q3[j] = output_q3[j - 1];
}
}
}
}
void cfl_derive_implicit_scaling_factor(MACROBLOCKD *const xd, int plane,
int row, int col, TX_SIZE tx_size) {
CFL_CTX *const cfl = &xd->cfl;
MB_MODE_INFO *mbmi = xd->mi[0];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, plane);
// Distribute number of reference samples above and left based on the width,
// height and the availability of the above and left. If only one side is
// available, the number is distributed to the avalable reference side. Else,
// if one side is larger than the other side by more than 2 times, the number
// is distributed to the larger side. Else, the number is distributed equally
// to two side. NUM_REF_SAM_CFL is 8, so the division can be replaced by bit
// right shift by 3.
int numb_up = 0;
int numb_left = 0;
if (have_top && have_left) {
if (width > (height * 2)) {
numb_left = 0;
numb_up = NUM_REF_SAM_CFL;
} else if (height > (width * 2)) {
numb_up = 0;
numb_left = NUM_REF_SAM_CFL;
} else {
numb_up = NUM_REF_SAM_CFL >> 1;
numb_left = NUM_REF_SAM_CFL >> 1;
}
} else {
numb_up = have_top ? NUM_REF_SAM_CFL : 0;
numb_left = have_left ? NUM_REF_SAM_CFL : 0;
}
numb_up = (numb_up > width) ? width : numb_up;
numb_left = (numb_left > height) ? height : numb_left;
int count = 0;
int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0;
uint16_t *l, *c;
if (numb_up > 0) {
l = cfl->recon_yuv_buf_above[0];
c = cfl->recon_yuv_buf_above[plane];
const int step_up = AOMMAX((int)width / numb_up, 1);
const int start_up = (step_up == 1) ? 0 : (step_up >> 1);
for (int i = start_up; i < width; i += step_up) {
sum_x += l[i] >> 3;
sum_y += c[i];
sum_xy += (l[i] >> 3) * c[i];
sum_xx += (l[i] >> 3) * (l[i] >> 3);
++count;
}
}
if (numb_left > 0) {
l = cfl->recon_yuv_buf_left[0];
c = cfl->recon_yuv_buf_left[plane];
const int step_left = AOMMAX((int)height / numb_left, 1);
const int start_left = (step_left == 1) ? 0 : (step_left >> 1);
for (int i = start_left; i < height; i += step_left) {
sum_x += l[i] >> 3;
sum_y += c[i];
sum_xy += (l[i] >> 3) * c[i];
sum_xx += (l[i] >> 3) * (l[i] >> 3);
++count;
}
}
const int shift = 3 + CFL_ADD_BITS_ALPHA;
mbmi->cfl_implicit_alpha[plane - 1] = derive_linear_parameters_alpha(
sum_x, sum_y, sum_xx, sum_xy, count, shift);
}
void cfl_derive_block_implicit_scaling_factor(uint16_t *l, const uint16_t *c,
const int width, const int height,
const int stride,
const int chroma_stride,
int *alpha) {
int count = 0;
int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
sum_x += l[i + j * stride] >> 3;
sum_y += c[i + j * chroma_stride];
sum_xy += (l[i + j * stride] >> 3) * c[i + j * chroma_stride];
sum_xx += (l[i + j * stride] >> 3) * (l[i + j * stride] >> 3);
}
count += width;
}
const int shift = 3 + CFL_ADD_BITS_ALPHA;
*alpha = derive_linear_parameters_alpha(sum_x, sum_y, sum_xx, sum_xy, count,
shift);
}
void cfl_predict_block(
#if CONFIG_CWG_F307_CFL_SEQ_FLAG
bool seq_enable_cfl_intra,
#endif // CONFIG_CWG_F307_CFL_SEQ_FLAG
MACROBLOCKD *const xd, uint16_t *dst, int dst_stride, TX_SIZE tx_size,
int plane, bool have_top, bool have_left, int above_lines, int left_lines) {
CFL_CTX *const cfl = &xd->cfl;
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_CWG_F307_CFL_SEQ_FLAG
if (!seq_enable_cfl_intra) return;
#endif // CONFIG_CWG_F307_CFL_SEQ_FLAG
#if CONFIG_CWG_F307_CFL_SEQ_FLAG
assert(is_cfl_allowed(seq_enable_cfl_intra, xd));
#else
assert(is_cfl_allowed(xd));
#endif // CONFIG_CWG_F307_CFL_SEQ_FLAG
cfl_compute_parameters_alt(cfl, tx_size);
int alpha_q3;
#if MHCCP_RUNTIME_FLAG
if (mbmi->cfl_idx == CFL_MULTI_PARAM) {
#else
if (mbmi->cfl_idx == CFL_MULTI_PARAM_V) {
#endif
mhccp_predict_hv_hbd(cfl->mhccp_ref_buf_q3[0] + (uint16_t)left_lines +
(uint16_t)above_lines * CFL_BUF_LINE * 2,
dst, have_top, have_left, dst_stride,
mbmi->mhccp_implicit_param[plane - 1], xd->bd,
tx_size_wide[tx_size], tx_size_high[tx_size],
mbmi->mh_dir);
return;
} else if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) {
alpha_q3 = mbmi->cfl_implicit_alpha[plane - 1];
} else {
alpha_q3 =
cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1);
alpha_q3 *= (1 << CFL_ADD_BITS_ALPHA);
}
assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <=
CFL_BUF_SQUARE);
#if CONFIG_CHROMA_LARGE_TX
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
if (AOMMAX(width, height) > 32) {
cfl_predict_hbd_c(cfl->ac_buf_q3, dst, dst_stride, alpha_q3, xd->bd, width,
height);
} else
#endif // CONFIG_CHROMA_LARGE_TX
cfl_get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3,
xd->bd);
}
static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j += 2) {
for (int i = 0; i < width; i += 2) {
const int bot = i + input_stride;
output_q3[i >> 1] =
(input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
void cfl_luma_subsampling_420_hbd_colocated(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j += 2) {
for (int i = 0; i < width; i += 2) {
#if CONFIG_CHROMA_LARGE_TX
const int top = ((j & 63) == 0) ? i : (i - input_stride);
#else
const int top = (j == 0) ? i : (i - input_stride);
#endif // CONFIG_CHROMA_LARGE_TX
const int bot = i + input_stride;
output_q3[i >> 1] =
#if CONFIG_CHROMA_LARGE_TX
input[AOMMAX(i & (-64), i - 1)]
#else
input[AOMMAX(0, i - 1)]
#endif // CONFIG_CHROMA_LARGE_TX
+ 4 * input[i] + input[i + 1] + input[top] + input[bot];
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
void cfl_luma_subsampling_420_hbd_121_c(const uint16_t *input, int input_stride,
uint16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j += 2) {
#if CONFIG_CHROMA_LARGE_TX
for (int i = 0; i < width; i += 2) {
const int left = AOMMAX(i & (-64), i - 1);
output_q3[i >> 1] = input[left] + 2 * input[i] + input[i + 1] +
input[left + input_stride] +
2 * input[i + input_stride] +
input[i + input_stride + 1];
}
#else
output_q3[0] = 3 * input[0] + input[1] + 3 * input[input_stride] +
input[input_stride + 1];
for (int i = 2; i < width; i += 2) {
const int bot = i + input_stride;
output_q3[i >> 1] = input[i - 1] + 2 * input[i] + input[i + 1] +
input[bot - 1] + 2 * input[bot] + input[bot + 1];
}
#endif // CONFIG_CHROMA_LARGE_TX
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height) {
assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i += 2) {
output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
}
input += input_stride;
output_q3 += CFL_BUF_LINE;
}
}
void cfl_adaptive_luma_subsampling_422_hbd_c(const uint16_t *input,
int input_stride,
uint16_t *output_q3, int width,
int height, int filter_type) {
assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i += 2) {
if (filter_type == 1) {
output_q3[i >> 1] =
#if CONFIG_CHROMA_LARGE_TX
(input[AOMMAX(i & (-64), i - 1)]
#else
(input[AOMMAX(0, i - 1)]
#endif // CONFIG_CHROMA_LARGE_TX
+ 2 * input[i] + input[i + 1])
<< 1;
} else if (filter_type == 2) {
output_q3[i >> 1] = (input[i]) << 3;
} else {
output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
}
}
input += input_stride;
output_q3 += CFL_BUF_LINE;
}
}
#if !CONFIG_CHROMA_LARGE_TX
static
#endif // !CONFIG_CHROMA_LARGE_TX
void
cfl_luma_subsampling_444_hbd_c(const uint16_t *input, int input_stride,
uint16_t *output_q3, int width, int height) {
assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
output_q3[i] = input[i] << 3;
}
input += input_stride;
output_q3 += CFL_BUF_LINE;
}
}
CFL_GET_SUBSAMPLE_FUNCTION(c)
static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size,
int sub_x, int sub_y) {
if (sub_x == 1) {
if (sub_y == 1) {
return cfl_get_luma_subsampling_420_hbd(tx_size);
}
return cfl_get_luma_subsampling_422_hbd(tx_size);
}
return cfl_get_luma_subsampling_444_hbd(tx_size);
}
void cfl_store(MACROBLOCKD *const xd, CFL_CTX *cfl, const uint16_t *input,
int input_stride, int row, int col,
#if CONFIG_CHROMA_LARGE_TX
int width, int height,
#else
TX_SIZE tx_size,
#endif // CONFIG_CHROMA_LARGE_TX
int filter_type) {
#if CONFIG_CHROMA_LARGE_TX
const TX_SIZE tx_size = get_tx_size(width, height);
#else
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
#endif // CONFIG_CHROMA_LARGE_TX
const int tx_off_log2 = MI_SIZE_LOG2;
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int store_row = row << (tx_off_log2 - sub_y);
const int store_col = col << (tx_off_log2 - sub_x);
const int store_height = height >> sub_y;
const int store_width = width >> sub_x;
// Invalidate current parameters
cfl->are_parameters_computed = 0;
// Store the surface of the pixel buffer that was written to, this way we
// can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
// frame boundary)
if (col == 0 && row == 0) {
cfl->buf_width = store_width;
cfl->buf_height = store_height;
} else {
cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width);
cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height);
}
if (xd->tree_type == CHROMA_PART) {
const struct macroblockd_plane *const pd = &xd->plane[PLANE_TYPE_UV];
if (xd->mb_to_right_edge < 0)
cfl->buf_width += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
if (xd->mb_to_bottom_edge < 0)
cfl->buf_height += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
}
// Check that we will remain inside the pixel buffer.
assert(store_row + store_height <= CFL_BUF_LINE);
assert(store_col + store_width <= CFL_BUF_LINE);
// Store the input into the CfL pixel buffer
uint16_t *recon_buf_q3 =
cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col);
if (sub_x == 1 && sub_y == 0) {
cfl_adaptive_luma_subsampling_422_hbd_c(input, input_stride, recon_buf_q3,
width, height, filter_type);
#if CONFIG_CHROMA_LARGE_TX
} else if (sub_x == 0 && sub_y == 0) {
if (AOMMAX(width, height) > 32) {
cfl_luma_subsampling_444_hbd_c(input, input_stride, recon_buf_q3, width,
height);
} else
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride,
recon_buf_q3);
#endif // CONFIG_CHROMA_LARGE_TX
} else if (filter_type == 1) {
if (sub_x && sub_y)
cfl_luma_subsampling_420_hbd_121_c(input, input_stride, recon_buf_q3,
width, height);
else {
if (AOMMAX(width, height) > 32)
cfl_luma_subsampling_420_hbd_c(input, input_stride, recon_buf_q3, width,
height);
else
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride,
recon_buf_q3);
}
} else if (filter_type == 2) {
if (sub_x && sub_y)
cfl_luma_subsampling_420_hbd_colocated(input, input_stride, recon_buf_q3,
width, height);
else {
if (AOMMAX(width, height) > 32)
cfl_luma_subsampling_420_hbd_c(input, input_stride, recon_buf_q3, width,
height);
else
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride,
recon_buf_q3);
}
} else {
{
if (AOMMAX(width, height) > 32)
cfl_luma_subsampling_420_hbd_c(input, input_stride, recon_buf_q3, width,
height);
else
cfl_subsampling_hbd(tx_size, sub_x, sub_y)(input, input_stride,
recon_buf_q3);
}
}
}
void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size,
int filter_type) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
// Always store full block, even if partially outside frame boundary.
const int width = block_size_wide[bsize];
const int height = block_size_high[bsize];
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
const int row_offset = mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base;
const int col_offset = mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base;
#if CONFIG_CHROMA_LARGE_TX
(void)tx_size;
#else
tx_size = get_tx_size(width, height);
assert(tx_size != TX_INVALID);
#endif // !CONFIG_CHROMA_LARGE_TX
cfl_store(xd, cfl, pd->dst.buf, pd->dst.stride, row_offset, col_offset,
#if CONFIG_CHROMA_LARGE_TX
width, height,
#else
tx_size,
#endif // CONFIG_CHROMA_LARGE_TX
filter_type);
}
#define NON_LINEAR(V, M, BD) ((V * V + M) >> BD)
void mhccp_derive_multi_param_hv(MACROBLOCKD *const xd, int plane,
int above_lines, int left_lines, int ref_width,
int ref_height, int dir,
int is_top_sb_boundary) {
CFL_CTX *const cfl = &xd->cfl;
MB_MODE_INFO *mbmi = xd->mi[0];
int count = 0;
// Collect reference data to input matrix A and target vector Y
int16_t A[MHCCP_NUM_PARAMS][MHCCP_MAX_REF_SAMPLES];
uint16_t YCb[MHCCP_MAX_REF_SAMPLES];
const int16_t mid = (1 << (xd->bd - 1));
if (above_lines || left_lines) {
uint16_t *l = cfl->mhccp_ref_buf_q3[0];
uint16_t *c = cfl->mhccp_ref_buf_q3[plane];
int ref_stride = CFL_BUF_LINE * 2;
for (int j = 1; j < ref_height - 1; ++j) {
for (int i = 1; i < ref_width - 1; ++i) {
if ((i >= left_lines && j >= above_lines)) continue;
int ref_h_offset = 0;
if (is_top_sb_boundary && above_lines == (LINE_NUM + 1)) {
if (j < above_lines) {
ref_h_offset = above_lines - 1 - j;
}
}
// 3-tap cross
assert(dir >= 0 && dir <= 2);
if (dir == 0) {
A[0][count] = (l[i + (j + ref_h_offset) * ref_stride] >> 3); // C
A[1][count] = NON_LINEAR(
(l[i + (j + ref_h_offset) * ref_stride] >> 3), mid, xd->bd);
} else if (dir == 1) {
A[0][count] = (l[i + (j + ref_h_offset - 1) * ref_stride] >> 3); // T
A[1][count] = NON_LINEAR(
(l[i + (j + ref_h_offset) * ref_stride] >> 3), mid, xd->bd);
} else if (dir == 2) {
A[0][count] =
(l[(i - 1) + (j + ref_h_offset) * ref_stride] >> 3); // L
A[1][count] = NON_LINEAR(
(l[i + (j + ref_h_offset) * ref_stride] >> 3), mid, xd->bd);
}
A[2][count] = mid;
YCb[count] = c[i + (j + ref_h_offset) * ref_stride];
++count;
}
}
}
if (count > 0) {
int64_t ATA[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS];
// One more column is added to store the derived parameters
int64_t C[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS + 1];
int64_t Ty[MHCCP_NUM_PARAMS];
memset(ATA, 0x00,
sizeof(int64_t) * (MHCCP_NUM_PARAMS) * (MHCCP_NUM_PARAMS));
memset(Ty, 0x00, sizeof(int64_t) * (MHCCP_NUM_PARAMS));
memset(C, 0x00, sizeof(C));
for (int coli0 = 0; coli0 < (MHCCP_NUM_PARAMS); ++coli0) {
for (int coli1 = coli0; coli1 < (MHCCP_NUM_PARAMS); ++coli1) {
int16_t *col0 = A[coli0];
int16_t *col1 = A[coli1];
for (int rowi = 0; rowi < count; ++rowi) {
ATA[coli0][coli1] += col0[rowi] * col1[rowi];
}
}
}
for (int coli = 0; coli < (MHCCP_NUM_PARAMS); ++coli) {
int16_t *col = A[coli];
for (int rowi = 0; rowi < count; ++rowi) {
Ty[coli] += col[rowi] * YCb[rowi];
}
}
// Scale the matrix and vector to selected dynamic range
int matrixShift =
(MHCCP_DECIM_BITS + 6) - 2 * xd->bd - (int)ceil(log2(count));
if (matrixShift > 0) {
for (int coli0 = 0; coli0 < MHCCP_NUM_PARAMS; coli0++)
for (int coli1 = coli0; coli1 < MHCCP_NUM_PARAMS; coli1++)
ATA[coli0][coli1] <<= matrixShift;
for (int coli = 0; coli < MHCCP_NUM_PARAMS; coli++)
Ty[coli] <<= matrixShift;
} else if (matrixShift < 0) {
matrixShift = -matrixShift;
for (int coli0 = 0; coli0 < MHCCP_NUM_PARAMS; coli0++)
for (int coli1 = coli0; coli1 < MHCCP_NUM_PARAMS; coli1++)
ATA[coli0][coli1] >>= matrixShift;
for (int coli = 0; coli < MHCCP_NUM_PARAMS; coli++)
Ty[coli] >>= matrixShift;
}
gauss_elimination_mhccp(ATA, C, Ty, mbmi->mhccp_implicit_param[plane - 1],
MHCCP_NUM_PARAMS, xd->bd);
} else {
for (int i = 0; i < MHCCP_NUM_PARAMS - 1; ++i) {
mbmi->mhccp_implicit_param[plane - 1][i] = 0;
}
mbmi->mhccp_implicit_param[plane - 1][MHCCP_NUM_PARAMS - 1] =
1 << MHCCP_DECIM_BITS;
}
}
#define DIV_PREC_BITS 14
#define DIV_PREC_BITS_POW2 8
#define DIV_SLOT_BITS 3
#define DIV_INTR_BITS (DIV_PREC_BITS - DIV_SLOT_BITS)
#define DIV_INTR_ROUND (1 << DIV_INTR_BITS >> 1)
// Return the number of shifted bits for the denominator
static inline int floorLog2Uint64(uint64_t x) {
if (x == 0) {
return 0;
}
int result = 0;
if (x & 0xffffffff00000000) {
x >>= 32;
result += 32;
}
if (x & 0xffff0000) {
x >>= 16;
result += 16;
}
if (x & 0xff00) {
x >>= 8;
result += 8;
}
if (x & 0xf0) {
x >>= 4;
result += 4;
}
if (x & 0xc) {
x >>= 2;
result += 2;
}
if (x & 0x2) {
result += 1;
}
return result;
}
void get_division_scale_shift(uint64_t denom, int *scale, int64_t *round,
int *shift) {
#if MHCCP_DIVISION_TAYLOR
// This array stores the coefficients for the quadratic
// (squared) term in the polynomial for each of the 8 regions.
static const int pow2W[DIV_PREC_BITS_POW2] = { 214, 153, 113, 86,
67, 53, 43, 35 };
static const int pow2Q[DIV_PREC_BITS_POW2] = { 227, 181, 148, 124,
104, 89, 77, 68 };
// This array contains the offset values used to adjust
// the normalized denominator for each region.
static const int pow2O[DIV_PREC_BITS_POW2] = { 1024, 3072, 5120, 7168,
9216, 11264, 13312, 15360 };
// This array holds the constant bias term for each region's polynomial.
static const int pow2B[DIV_PREC_BITS_POW2] = { 15420, 13797, 12483, 11397,
10485, 9709, 9039, 8456 };
#else
// This array stores the coefficients for the quadratic
// (squared) term in the polynomial for each of the 8 regions.
static const int pow2W[DIV_PREC_BITS_POW2] = { 214, 153, 113, 86,
67, 53, 43, 35 };
// This array contains the offset values used to adjust
// the normalized denominator for each region.
static const int pow2O[DIV_PREC_BITS_POW2] = { 4822, 5952, 6624, 6792,
6408, 5424, 3792, 1466 };
// This array holds the constant bias term for each region's polynomial.
static const int pow2B[DIV_PREC_BITS_POW2] = { 12784, 12054, 11670, 11583,
11764, 12195, 12870, 13782 };
#endif
*shift = floorLog2Uint64(denom);
if (*shift == 0)
*round = 0;
else
*round = (int64_t)(1ULL << (*shift) >> 1);
// Consider the division approximation: y = (x + D/2) / D,
// where x is the numerator and D is the denominator.
// We want to approximate it as: y ≈ (x / d) >> s,
// where d is in the range [1, 2) and s = floor(log2(D)).
//
// Step 1: Normalize D into fixed-point format with DIV_PREC_BITS fractional
// bits.
// The expression below computes a scaled version of D:
// normDiff_tmp = ((D << DIV_PREC_BITS) + round) >> shift
// This ensures fixed-point precision and rounding.
const int normDiff_tmp =
(int)(((denom << DIV_PREC_BITS) + *round) >> (*shift));
// Step 2: Clip the scaled value to make sure it's within the valid range.
// The valid range is [1, 2), represented as:
// [1 << (DIV_PREC_BITS), (1 << (DIV_PREC_BITS + 1)) - 1].
// The rounding in Step 1 may push the value out of range, so clipping
// is needed.
const int normDiff_clip =
CLIP(normDiff_tmp, 1, (1 << (DIV_PREC_BITS + 1)) - 1);
// Step 3: Extract the fractional part of the normalized denominator `d`.
// This is done by masking out the lower DIV_PREC_BITS bits.
int normDiff = normDiff_clip & ((1 << DIV_PREC_BITS) - 1);
// The vale of index is ranging from 0 to 7
int index = normDiff >> DIV_INTR_BITS;
int normDiff2 = normDiff - pow2O[index];
#if MHCCP_DIVISION_TAYLOR
*scale = ((pow2W[index] * ((normDiff2 * normDiff2) >> DIV_PREC_BITS)) >>
DIV_PREC_BITS_POW2) -
((pow2Q[index] * normDiff2) >> DIV_PREC_BITS_POW2) + pow2B[index];
#else
*scale = ((pow2W[index] * ((normDiff2 * normDiff2) >> DIV_PREC_BITS)) >>
DIV_PREC_BITS_POW2) -
(normDiff2 >> 1) + pow2B[index];
#endif
*scale <<= MHCCP_DECIM_BITS - DIV_PREC_BITS;
}
void gauss_back_substitute(int64_t *x,
int64_t C[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS + 1],
int numEq, int col, int round, int bits) {
x[numEq - 1] = C[numEq - 1][col];
for (int i = numEq - 2; i >= 0; i--) {
x[i] = C[i][col];
for (int j = i + 1; j < numEq; j++) {
x[i] -= LOCAL_FIXED_MULT(C[i][j], x[j], round, bits);
}
}
}
void gauss_elimination_mhccp(int64_t A[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS],
int64_t C[MHCCP_NUM_PARAMS][MHCCP_NUM_PARAMS + 1],
int64_t *y0, int64_t *x0, int numEq, int bd) {
int colChr0 = numEq;
int reg = 2 << (bd - 8);
const int decimBits = MHCCP_DECIM_BITS;
const int decimRound = (1 << (decimBits - 1));
// Create an [M][M+2] matrix system (could have been done already when
// calculating auto/cross-correlations)
for (int i = 0; i < numEq; i++) {
for (int j = 0; j < numEq; j++) {
C[i][j] = j >= i ? A[i][j] : A[j][i];
}
C[i][i] += reg; // Regularization
C[i][colChr0] = y0[i];
}
for (int i = 0; i < numEq; i++) {
int64_t *src = C[i];
uint64_t diag = llabs(src[i]) < 1 ? 1 : llabs(src[i]);
int64_t round;
int scale, shift;
get_division_scale_shift(diag, &scale, &round, &shift);
for (int j = i + 1; j < numEq + 1; j++) {
src[j] = (src[j] * scale + round) >> shift;
}
for (int j = i + 1; j < numEq; j++) {
int64_t *dst = C[j];
int64_t scale_factor = dst[i];
// On row j all elements with k < i+1 are now zero (not zeroing those here
// as backsubstitution does not need them)
for (int k = i + 1; k < numEq + 1; k++) {
dst[k] -= LOCAL_FIXED_MULT(scale_factor, src[k], decimRound, decimBits);
}
}
}
// Solve with backsubstitution
gauss_back_substitute(x0, C, numEq, colChr0, decimRound, decimBits);
}
static int16_t convolve(int64_t *params, uint16_t *vector, int16_t numParams) {
int64_t sum = 0;
const int decimBits = MHCCP_DECIM_BITS;
const int decimRound = (1 << (decimBits - 1));
for (int i = 0; i < numParams; i++) {
sum += LOCAL_FIXED_MULT(params[i], vector[i], decimRound, decimBits);
}
return (int16_t)clamp64(sum, INT16_MIN, INT16_MAX);
}
void mhccp_predict_hv_hbd_c(const uint16_t *input, uint16_t *dst, bool have_top,
bool have_left, int dst_stride, int64_t *alpha_q3,
int bit_depth, int width, int height, int dir) {
const uint16_t mid = (1 << (bit_depth - 1));
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
uint16_t vector[MHCCP_NUM_PARAMS];
vector[0] = input[i] >> 3; // C
uint16_t a =
(j - 1 < 0 && !have_top ? input[i] : input[i - CFL_BUF_LINE * 2]) >>
3; // above
uint16_t c =
(i - 1 < 0 && !have_left ? input[i] : input[i - 1]) >> 3; // left
if (dir == 1) {
vector[0] = a; // T
} else if (dir == 2) {
vector[0] = c; // L
}
vector[1] = NON_LINEAR((input[i] >> 3), mid, bit_depth);
vector[2] = mid;
dst[i] = clip_pixel_highbd(convolve(alpha_q3, vector, MHCCP_NUM_PARAMS),
bit_depth);
}
dst += dst_stride;
input += CFL_BUF_LINE * 2;
}
}
#undef NON_LINEAR