blob: 2b7b6dbdab75ca9cdf1cc68120fd95d58b545906 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <math.h>
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_txfm.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
#include "av1/common/scan.h"
#include "av1/common/txb_common.h"
static INLINE void clamp_buf(int32_t *buf, int32_t size, int8_t bit) {
for (int i = 0; i < size; ++i) buf[i] = clamp_value(buf[i], bit);
}
void inv_txfm_dct2_size4_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
int j;
int a[2], b[2];
int add = 1 << (shift - 1);
const int *tx_mat = tx_kernel_dct2_size4[INV_TXFM][0];
const int nz_line = line - skip_line;
for (j = 0; j < nz_line; j++) {
b[0] = tx_mat[1 * 4 + 0] * src[1] + tx_mat[3 * 4 + 0] * src[3];
b[1] = tx_mat[1 * 4 + 1] * src[1] + tx_mat[3 * 4 + 1] * src[3];
a[0] = tx_mat[0 * 4 + 0] * src[0] + tx_mat[2 * 4 + 0] * src[2];
a[1] = tx_mat[0 * 4 + 1] * src[0] + tx_mat[2 * 4 + 1] * src[2];
dst[0 * line] = clamp((a[0] + b[0] + add) >> shift, coef_min, coef_max);
dst[1 * line] = clamp((a[1] + b[1] + add) >> shift, coef_min, coef_max);
dst[2 * line] = clamp((a[1] - b[1] + add) >> shift, coef_min, coef_max);
dst[3 * line] = clamp((a[0] - b[0] + add) >> shift, coef_min, coef_max);
src += 4;
dst++;
}
}
void inv_txfm_dct2_size8_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
int j, k;
int a[4], b[4];
int c[2], d[2];
int add = 1 << (shift - 1);
const int *tx_mat = tx_kernel_dct2_size8[INV_TXFM][0];
const int nz_line = line - skip_line;
for (j = 0; j < nz_line; j++) {
for (k = 0; k < 4; k++) {
b[k] = tx_mat[1 * 8 + k] * src[1] + tx_mat[3 * 8 + k] * src[3] +
tx_mat[5 * 8 + k] * src[5] + tx_mat[7 * 8 + k] * src[7];
}
d[0] = tx_mat[2 * 8 + 0] * src[2] + tx_mat[6 * 8 + 0] * src[6];
d[1] = tx_mat[2 * 8 + 1] * src[2] + tx_mat[6 * 8 + 1] * src[6];
c[0] = tx_mat[0 * 8 + 0] * src[0] + tx_mat[4 * 8 + 0] * src[4];
c[1] = tx_mat[0 * 8 + 1] * src[0] + tx_mat[4 * 8 + 1] * src[4];
a[0] = c[0] + d[0];
a[3] = c[0] - d[0];
a[1] = c[1] + d[1];
a[2] = c[1] - d[1];
for (k = 0; k < 4; k++) {
dst[(k)*line] = clamp((a[k] + b[k] + add) >> shift, coef_min, coef_max);
dst[(k + 4) * line] =
clamp((a[3 - k] - b[3 - k] + add) >> shift, coef_min, coef_max);
}
src += 8;
dst++;
}
}
void inv_txfm_dct2_size16_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
int j, k;
int a[8], b[8];
int c[4], d[4];
int e[2], f[2];
int add = 1 << (shift - 1);
const int *tx_mat = tx_kernel_dct2_size16[INV_TXFM][0];
const int nz_line = line - skip_line;
for (j = 0; j < nz_line; j++) {
for (k = 0; k < 8; k++) {
b[k] = tx_mat[1 * 16 + k] * src[1] + tx_mat[3 * 16 + k] * src[3] +
tx_mat[5 * 16 + k] * src[5] + tx_mat[7 * 16 + k] * src[7] +
tx_mat[9 * 16 + k] * src[9] + tx_mat[11 * 16 + k] * src[11] +
tx_mat[13 * 16 + k] * src[13] + tx_mat[15 * 16 + k] * src[15];
}
for (k = 0; k < 4; k++) {
d[k] = tx_mat[2 * 16 + k] * src[2] + tx_mat[6 * 16 + k] * src[6] +
tx_mat[10 * 16 + k] * src[10] + tx_mat[14 * 16 + k] * src[14];
}
f[0] = tx_mat[4 * 16] * src[4] + tx_mat[12 * 16] * src[12];
e[0] = tx_mat[0] * src[0] + tx_mat[8 * 16] * src[8];
f[1] = tx_mat[4 * 16 + 1] * src[4] + tx_mat[12 * 16 + 1] * src[12];
e[1] = tx_mat[0 * 16 + 1] * src[0] + tx_mat[8 * 16 + 1] * src[8];
for (k = 0; k < 2; k++) {
c[k] = e[k] + f[k];
c[k + 2] = e[1 - k] - f[1 - k];
}
for (k = 0; k < 4; k++) {
a[k] = c[k] + d[k];
a[k + 4] = c[3 - k] - d[3 - k];
}
for (k = 0; k < 8; k++) {
dst[(k)*line] = clamp((a[k] + b[k] + add) >> shift, coef_min, coef_max);
dst[(k + 8) * line] =
clamp((a[7 - k] - b[7 - k] + add) >> shift, coef_min, coef_max);
}
src += 16;
dst++;
}
}
void inv_txfm_dct2_size32_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
int j, k;
int a[16], b[16];
int c[8], d[8];
int e[4], f[4];
int g[2], h[2];
int add = 1 << (shift - 1);
const int *tx_mat = tx_kernel_dct2_size32[INV_TXFM][0];
const int nz_line = line - skip_line;
for (j = 0; j < nz_line; j++) {
for (k = 0; k < 16; k++) {
b[k] = tx_mat[1 * 32 + k] * src[1] + tx_mat[3 * 32 + k] * src[3] +
tx_mat[5 * 32 + k] * src[5] + tx_mat[7 * 32 + k] * src[7] +
tx_mat[9 * 32 + k] * src[9] + tx_mat[11 * 32 + k] * src[11] +
tx_mat[13 * 32 + k] * src[13] + tx_mat[15 * 32 + k] * src[15] +
tx_mat[17 * 32 + k] * src[17] + tx_mat[19 * 32 + k] * src[19] +
tx_mat[21 * 32 + k] * src[21] + tx_mat[23 * 32 + k] * src[23] +
tx_mat[25 * 32 + k] * src[25] + tx_mat[27 * 32 + k] * src[27] +
tx_mat[29 * 32 + k] * src[29] + tx_mat[31 * 32 + k] * src[31];
}
for (k = 0; k < 8; k++) {
d[k] = tx_mat[2 * 32 + k] * src[2] + tx_mat[6 * 32 + k] * src[6] +
tx_mat[10 * 32 + k] * src[10] + tx_mat[14 * 32 + k] * src[14] +
tx_mat[18 * 32 + k] * src[18] + tx_mat[22 * 32 + k] * src[22] +
tx_mat[26 * 32 + k] * src[26] + tx_mat[30 * 32 + k] * src[30];
}
for (k = 0; k < 4; k++) {
f[k] = tx_mat[4 * 32 + k] * src[4] + tx_mat[12 * 32 + k] * src[12] +
tx_mat[20 * 32 + k] * src[20] + tx_mat[28 * 32 + k] * src[28];
}
h[0] = tx_mat[8 * 32 + 0] * src[8] + tx_mat[24 * 32 + 0] * src[24];
h[1] = tx_mat[8 * 32 + 1] * src[8] + tx_mat[24 * 32 + 1] * src[24];
g[0] = tx_mat[0 * 32 + 0] * src[0] + tx_mat[16 * 32 + 0] * src[16];
g[1] = tx_mat[0 * 32 + 1] * src[0] + tx_mat[16 * 32 + 1] * src[16];
e[0] = g[0] + h[0];
e[3] = g[0] - h[0];
e[1] = g[1] + h[1];
e[2] = g[1] - h[1];
for (k = 0; k < 4; k++) {
c[k] = e[k] + f[k];
c[k + 4] = e[3 - k] - f[3 - k];
}
for (k = 0; k < 8; k++) {
a[k] = c[k] + d[k];
a[k + 8] = c[7 - k] - d[7 - k];
}
for (k = 0; k < 16; k++) {
dst[(k)*line] = clamp((a[k] + b[k] + add) >> shift, coef_min, coef_max);
dst[(k + 16) * line] =
clamp((a[15 - k] - b[15 - k] + add) >> shift, coef_min, coef_max);
}
src += 32;
dst++;
}
}
#if !CONFIG_TX64 || CONFIG_TX64_SEQ_FLAG
void inv_txfm_dct2_size64_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
int offset = 1 << (shift - 1);
const int tx1d_size = 64;
const int *tx_mat = tx_kernel_dct2_size64[INV_TXFM][0];
int j, k;
int a[32], b[32];
int c[16], d[16];
int e[8], f[8];
int g[4], h[4];
int i[2], u[2];
for (j = 0; j < line - skip_line; j++) {
for (k = 0; k < 32; k++) {
b[k] = tx_mat[1 * 64 + k] * src[1] + tx_mat[3 * 64 + k] * src[3] +
tx_mat[5 * 64 + k] * src[5] + tx_mat[7 * 64 + k] * src[7] +
tx_mat[9 * 64 + k] * src[9] + tx_mat[11 * 64 + k] * src[11] +
tx_mat[13 * 64 + k] * src[13] + tx_mat[15 * 64 + k] * src[15] +
tx_mat[17 * 64 + k] * src[17] + tx_mat[19 * 64 + k] * src[19] +
tx_mat[21 * 64 + k] * src[21] + tx_mat[23 * 64 + k] * src[23] +
tx_mat[25 * 64 + k] * src[25] + tx_mat[27 * 64 + k] * src[27] +
tx_mat[29 * 64 + k] * src[29] + tx_mat[31 * 64 + k] * src[31];
}
for (k = 0; k < 16; k++) {
d[k] = tx_mat[2 * 64 + k] * src[2] + tx_mat[6 * 64 + k] * src[6] +
tx_mat[10 * 64 + k] * src[10] + tx_mat[14 * 64 + k] * src[14] +
tx_mat[18 * 64 + k] * src[18] + tx_mat[22 * 64 + k] * src[22] +
tx_mat[26 * 64 + k] * src[26] + tx_mat[30 * 64 + k] * src[30];
}
for (k = 0; k < 8; k++) {
f[k] = tx_mat[4 * 64 + k] * src[4] + tx_mat[12 * 64 + k] * src[12] +
tx_mat[20 * 64 + k] * src[20] + tx_mat[28 * 64 + k] * src[28];
}
for (k = 0; k < 4; k++) {
h[k] = tx_mat[8 * 64 + k] * src[8] + tx_mat[24 * 64 + k] * src[24];
}
u[0] = tx_mat[16 * 64 + 0] * src[16];
u[1] = tx_mat[16 * 64 + 1] * src[16];
i[0] = tx_mat[0 * 64 + 0] * src[0];
i[1] = tx_mat[0 * 64 + 1] * src[0];
for (k = 0; k < 2; k++) {
g[k] = i[k] + u[k];
g[k + 2] = i[1 - k] - u[1 - k];
}
for (k = 0; k < 4; k++) {
e[k] = g[k] + h[k];
e[k + 4] = g[3 - k] - h[3 - k];
}
for (k = 0; k < 8; k++) {
c[k] = e[k] + f[k];
c[k + 8] = e[7 - k] - f[7 - k];
}
for (k = 0; k < 16; k++) {
a[k] = c[k] + d[k];
a[k + 16] = c[15 - k] - d[15 - k];
}
for (k = 0; k < 32; k++) {
dst[(k)*line] =
clamp((a[k] + b[k] + offset) >> shift, coef_min, coef_max);
dst[(k + 32) * line] =
clamp((a[31 - k] - b[31 - k] + offset) >> shift, coef_min, coef_max);
}
src += tx1d_size;
dst++;
}
}
#endif // !CONFIG_TX64 || CONFIG_TX64_SEQ_FLAG
// ********************************** IDTX **********************************
void inv_txfm_idtx_size4_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 4;
const int scale = 128;
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
dst[j * line + i] =
clamp((int)(src[i * tx1d_size + j] * scale + offset) >> shift,
coef_min, coef_max);
}
}
}
void inv_txfm_idtx_size8_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 8;
const int scale = 181;
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
dst[j * line + i] =
clamp((int)(src[i * tx1d_size + j] * scale + offset) >> shift,
coef_min, coef_max);
}
}
}
void inv_txfm_idtx_size16_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 16;
const int scale = 256;
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
dst[j * line + i] =
clamp((int)(src[i * tx1d_size + j] * scale + offset) >> shift,
coef_min, coef_max);
}
}
}
void inv_txfm_idtx_size32_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 32;
const int scale = 362;
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
dst[j * line + i] =
clamp((int)(src[i * tx1d_size + j] * scale + offset) >> shift,
coef_min, coef_max);
}
}
}
void inv_txfm_adst_size4_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 4;
const int *tx_mat = tx_kernel_adst_size4[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_fdst_size4_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 4;
const int *tx_mat = tx_kernel_fdst_size4[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_adst_size8_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 8;
const int *tx_mat = tx_kernel_adst_size8[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_fdst_size8_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 8;
const int *tx_mat = tx_kernel_fdst_size8[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_adst_size16_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 16;
const int *tx_mat = tx_kernel_adst_size16[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_fdst_size16_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 16;
const int *tx_mat = tx_kernel_fdst_size16[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_ddtx_size4_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 4;
const int *tx_mat = tx_kernel_ddtx_size4[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_ddtx_size8_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 8;
const int *tx_mat = tx_kernel_ddtx_size8[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_ddtx_size16_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 16;
const int *tx_mat = tx_kernel_ddtx_size16[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] * tx_mat[k * tx1d_size + j];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_fddt_size4_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 4;
const int *tx_mat = tx_kernel_ddtx_size4[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] *
tx_mat[k * tx1d_size + (tx1d_size - 1 - j)];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_fddt_size8_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 8;
const int *tx_mat = tx_kernel_ddtx_size8[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] *
tx_mat[k * tx1d_size + (tx1d_size - 1 - j)];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_txfm_fddt_size16_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max) {
(void)zero_line;
const int offset = 1 << (shift - 1);
const int nz_line = line - skip_line;
const int tx1d_size = 16;
const int *tx_mat = tx_kernel_ddtx_size16[INV_TXFM][0];
for (int i = 0; i < nz_line; i++) {
for (int j = 0; j < tx1d_size; j++) {
int sum = 0;
for (int k = 0; k < tx1d_size; k++) {
sum += src[i * tx1d_size + k] *
tx_mat[k * tx1d_size + (tx1d_size - 1 - j)];
}
dst[j * line + i] =
clamp((int)(sum + offset) >> shift, coef_min, coef_max);
}
}
}
void inv_transform_1d_c(const int *src, int *dst, int shift, int line,
int skip_line, int zero_line, const int coef_min,
const int coef_max, const int tx_type_index,
const int size_index) {
switch (size_index) {
case 0:
switch (tx_type_index) {
case 0:
inv_txfm_dct2_size4_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 1:
inv_txfm_idtx_size4_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 2:
inv_txfm_adst_size4_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 3:
inv_txfm_fdst_size4_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 4:
inv_txfm_ddtx_size4_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 5:
inv_txfm_fddt_size4_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
default: assert(0); break;
}
break;
case 1:
switch (tx_type_index) {
case 0:
inv_txfm_dct2_size8_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 1:
inv_txfm_idtx_size8_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 2:
inv_txfm_adst_size8_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 3:
inv_txfm_fdst_size8_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 4:
inv_txfm_ddtx_size8_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 5:
inv_txfm_fddt_size8_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
default: assert(0); break;
}
break;
case 2:
switch (tx_type_index) {
case 0:
inv_txfm_dct2_size16_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 1:
inv_txfm_idtx_size16_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 2:
inv_txfm_adst_size16_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 3:
inv_txfm_fdst_size16_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 4:
inv_txfm_ddtx_size16_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 5:
inv_txfm_fddt_size16_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
default: assert(0); break;
}
break;
case 3:
switch (tx_type_index) {
case 0:
inv_txfm_dct2_size32_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
case 1:
inv_txfm_idtx_size32_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
default: assert(0); break;
}
break;
#if !CONFIG_TX64 || CONFIG_TX64_SEQ_FLAG
case 4:
switch (tx_type_index) {
case 0:
inv_txfm_dct2_size64_c(src, dst, shift, line, skip_line, zero_line,
coef_min, coef_max);
break;
default: assert(0); break;
}
break;
#endif // !CONFIG_TX64 || CONFIG_TX64_SEQ_FLAG
default: assert(0); break;
}
}
void inv_txfm_c(const tran_low_t *input, uint16_t *dest, int stride,
const TxfmParam *txfm_param) {
const TX_SIZE tx_size = txfm_param->tx_size;
TX_TYPE tx_type = txfm_param->tx_type;
#if CONFIG_CHROMA_LARGE_TX
#if CONFIG_TX64
#if CONFIG_TX64_SEQ_FLAG
const int use_resample =
(txfm_param->plane_type == PLANE_TYPE_UV || txfm_param->t64resample) ? 1
: 0;
int width = AOMMIN(MAX_TX_SIZE >> use_resample, tx_size_wide[tx_size]);
int height = AOMMIN(MAX_TX_SIZE >> use_resample, tx_size_high[tx_size]);
const uint32_t tx_wide_index =
AOMMIN(MAX_TX_SIZE_LOG2 - use_resample, tx_size_wide_log2[tx_size]) - 2;
const uint32_t tx_high_index =
AOMMIN(MAX_TX_SIZE_LOG2 - use_resample, tx_size_high_log2[tx_size]) - 2;
#else
int width = AOMMIN(MAX_TX_SIZE >> 1, tx_size_wide[tx_size]);
int height = AOMMIN(MAX_TX_SIZE >> 1, tx_size_high[tx_size]);
const uint32_t tx_wide_index =
AOMMIN(MAX_TX_SIZE_LOG2 - 1, tx_size_wide_log2[tx_size]) - 2;
const uint32_t tx_high_index =
AOMMIN(MAX_TX_SIZE_LOG2 - 1, tx_size_high_log2[tx_size]) - 2;
#endif // CONFIG_TX64_SEQ_FLAG
#else
const int is_chroma = (txfm_param->plane_type == PLANE_TYPE_UV) ? 1 : 0;
int width = AOMMIN(MAX_TX_SIZE >> is_chroma, tx_size_wide[tx_size]);
int height = AOMMIN(MAX_TX_SIZE >> is_chroma, tx_size_high[tx_size]);
const uint32_t tx_wide_index =
AOMMIN(MAX_TX_SIZE_LOG2 - is_chroma, tx_size_wide_log2[tx_size]) - 2;
const uint32_t tx_high_index =
AOMMIN(MAX_TX_SIZE_LOG2 - is_chroma, tx_size_high_log2[tx_size]) - 2;
#endif // CONFIG_TX64
#else
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const uint32_t tx_wide_index = tx_size_wide_log2[tx_size] - 2;
const uint32_t tx_high_index = tx_size_high_log2[tx_size] - 2;
#endif // CONFIG_CHROMA_LARGE_TX || CONFIG_TX64
const int intermediate_bitdepth = txfm_param->bd + 8;
const int rng_min = -(1 << (intermediate_bitdepth - 1));
const int rng_max = (1 << (intermediate_bitdepth - 1)) - 1;
#if CONFIG_CHROMA_LARGE_TX
const int col_rng_min = -(1 << txfm_param->bd);
const int col_rng_max = (1 << txfm_param->bd) - 1;
#endif // CONFIG_CHROMA_LARGE_TX
if (txfm_param->lossless) {
assert(tx_type == DCT_DCT);
av1_highbd_iwht4x4_add(input, dest, stride, txfm_param->eob,
txfm_param->bd);
return;
}
int tx_type_row = g_hor_tx_type[tx_type];
int tx_type_col = g_ver_tx_type[tx_type];
if (txfm_param->use_ddt) {
const int use_ddt_row = (width == 4 && REPLACE_ADST4) ||
(width == 8 && REPLACE_ADST8) ||
(width == 16 && REPLACE_ADST16);
if (use_ddt_row && (tx_type_row == DST7 || tx_type_row == DCT8)) {
tx_type_row = (tx_type_row == DST7) ? DDTX : FDDT;
}
const int use_ddt_col = (height == 4 && REPLACE_ADST4) ||
(height == 8 && REPLACE_ADST8) ||
(height == 16 && REPLACE_ADST16);
if (use_ddt_col && (tx_type_col == DST7 || tx_type_col == DCT8)) {
tx_type_col = (tx_type_col == DST7) ? DDTX : FDDT;
}
}
int skipWidth = width > 32 ? width - 32 : 0;
int skipHeight = height > 32 ? height - 32 : 0;
int block[MAX_TX_SQUARE];
int tmp[MAX_TX_SQUARE];
const int log2width = tx_size_wide_log2[tx_size];
const int log2height = tx_size_high_log2[tx_size];
const int sqrt2 = ((log2width + log2height) & 1) ? 1 : 0;
// This assert is required to silence the static analyzer warnings.
assert(width * height > 0);
if (sqrt2) {
for (int i = 0; i < AOMMIN(1024, width * height); i++) {
tmp[i] = round_shift((int64_t)input[i] * NewInvSqrt2, NewSqrt2Bits);
}
} else {
memcpy(tmp, input, AOMMIN(1024, width * height) * sizeof(tran_low_t));
}
memcpy(block, tmp, AOMMIN(1024, width * height) * sizeof(*tmp));
clamp_buf(block, AOMMIN(1024, width * height), txfm_param->bd + 8);
if (skipWidth) {
for (int y = 0; y < height; y++) {
memcpy(block + y * width, tmp + y * 32, 32 * sizeof(*tmp));
}
}
const int shift_1st = inv_tx_shift[tx_size][0];
const int shift_2nd = inv_tx_shift[tx_size][1];
assert(shift_1st >= 0);
assert(shift_2nd >= 0);
inv_transform_1d_c(block, tmp, shift_1st, height, skipHeight, skipWidth,
rng_min, rng_max, tx_type_row, tx_wide_index);
inv_transform_1d_c(tmp, block, shift_2nd, width, 0, skipHeight
#if CONFIG_CHROMA_LARGE_TX
,
col_rng_min, col_rng_max,
#else
,
rng_min, rng_max,
#endif // CONFIG_CHROMA_LARGE_TX
tx_type_col, tx_high_index);
#if CONFIG_CHROMA_LARGE_TX
if (width < tx_size_wide[tx_size]) {
assert(width == 32);
memcpy(tmp, block, width * height * sizeof(*block));
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
block[y * 2 * width + 2 * x] = tmp[y * width + x];
block[y * 2 * width + 2 * x + 1] = tmp[y * width + x];
}
}
width = tx_size_wide[tx_size];
}
if (height < tx_size_high[tx_size]) {
assert(height == 32);
memcpy(tmp, block, width * height * sizeof(*block));
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
block[2 * y * width + x] = tmp[y * width + x];
block[(2 * y + 1) * width + x] = tmp[y * width + x];
}
}
height = tx_size_high[tx_size];
}
#endif // CONFIG_CHROMA_LARGE_TX
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
dest[y * stride + x] = highbd_clip_pixel_add(
dest[y * stride + x], block[(y * width) + x], txfm_param->bd);
}
}
}
int av1_get_tx_scale(const TX_SIZE tx_size) {
const int pels = tx_size_2d[tx_size];
// Largest possible pels is 4096 (64x64).
return (pels > 256) + (pels > 1024);
}
// NOTE: The implementation of all inverses need to be aware of the fact
// that input and output could be the same buffer.
void av1_lossless_inv_idtx_add_c(const tran_low_t *input, uint16_t *dest,
int stride, const TxfmParam *txfm_param) {
const int txw = tx_size_wide[txfm_param->tx_size];
const int txh = tx_size_high[txfm_param->tx_size];
int scale_bits = 3 - av1_get_tx_scale(txfm_param->tx_size);
for (int i = 0; i < txh; i++) {
for (int j = 0; j < txw; j++) {
dest[i * stride + j] = highbd_clip_pixel_add(
dest[i * stride + j], (input[i * txw + j] >> scale_bits),
txfm_param->bd);
}
}
}
void av1_lossless_inv_idtx_add_vert_c(const tran_low_t *input, uint16_t *dest,
int stride, const TxfmParam *txfm_param) {
const int txw = tx_size_wide[txfm_param->tx_size];
const int txh = tx_size_high[txfm_param->tx_size];
int scale_bits = 3 - av1_get_tx_scale(txfm_param->tx_size);
for (int j = 0; j < txw; j++) {
int delay = 0;
for (int i = 0; i < txh; i++) {
tran_low_t current_txcoeff = (input[i * txw + j] >> scale_bits);
dest[i * stride + j] = highbd_clip_pixel_add(
dest[i * stride + j], current_txcoeff + delay, txfm_param->bd);
delay += current_txcoeff;
}
}
}
void av1_lossless_inv_idtx_add_horz_c(const tran_low_t *input, uint16_t *dest,
int stride, const TxfmParam *txfm_param) {
const int txw = tx_size_wide[txfm_param->tx_size];
const int txh = tx_size_high[txfm_param->tx_size];
int scale_bits = 3 - av1_get_tx_scale(txfm_param->tx_size);
for (int i = 0; i < txh; i++) {
int delay = 0;
for (int j = 0; j < txw; j++) {
tran_low_t current_txcoeff = (input[i * txw + j] >> scale_bits);
dest[i * stride + j] = highbd_clip_pixel_add(
dest[i * stride + j], current_txcoeff + delay, txfm_param->bd);
delay += current_txcoeff;
}
}
}
// idct
void av1_highbd_iwht4x4_add(const tran_low_t *input, uint16_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
av1_highbd_iwht4x4_16_add(input, dest, stride, bd);
else
av1_highbd_iwht4x4_1_add(input, dest, stride, bd);
}
// inverse hadamard transform for DPCM lossless vertical mode
void av1_highbd_iwht4x4_vert_add(const tran_low_t *input, uint16_t *dest,
int stride, int eob, int bd) {
if (eob > 1)
av1_highbd_iwht4x4_16_vert_add(input, dest, stride, bd);
else
av1_highbd_iwht4x4_1_vert_add(input, dest, stride, bd);
}
// inverse hadamard transform for DPCM lossless horizontal mode
void av1_highbd_iwht4x4_horz_add(const tran_low_t *input, uint16_t *dest,
int stride, int eob, int bd) {
if (eob > 1)
av1_highbd_iwht4x4_16_horz_add(input, dest, stride, bd);
else
av1_highbd_iwht4x4_1_horz_add(input, dest, stride, bd);
}
// inverse transform for 4x4 dpcm lossless vertical mode
void av1_highbd_inv_txfm_add_4x4_vert_c(const tran_low_t *input, uint16_t *dest,
int stride,
const TxfmParam *txfm_param) {
assert(av1_ext_tx_used[txfm_param->tx_set_type][txfm_param->tx_type]);
int eob = txfm_param->eob;
int bd = txfm_param->bd;
int lossless = txfm_param->lossless;
const TX_TYPE tx_type = txfm_param->tx_type;
if (lossless) {
assert(tx_type == DCT_DCT);
(void)tx_type;
av1_highbd_iwht4x4_vert_add(input, dest, stride, eob, bd);
return;
}
}
// inverse transform for 4x4 dpcm lossless horizontal mode
void av1_highbd_inv_txfm_add_4x4_horz_c(const tran_low_t *input, uint16_t *dest,
int stride,
const TxfmParam *txfm_param) {
assert(av1_ext_tx_used[txfm_param->tx_set_type][txfm_param->tx_type]);
int eob = txfm_param->eob;
int bd = txfm_param->bd;
int lossless = txfm_param->lossless;
const TX_TYPE tx_type = txfm_param->tx_type;
if (lossless) {
assert(tx_type == DCT_DCT);
(void)tx_type;
av1_highbd_iwht4x4_horz_add(input, dest, stride, eob, bd);
return;
}
}
static void init_txfm_param(const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
TX_TYPE tx_type, int eob, int reduced_tx_set,
int use_ddt, TxfmParam *txfm_param
#if CONFIG_TX64_SEQ_FLAG
,
int t64resample
#endif // CONFIG_TX64_SEQ_FLAG
) {
(void)plane;
MB_MODE_INFO *const mbmi = xd->mi[0];
#if CONFIG_CHROMA_LARGE_TX && (!CONFIG_TX64 || CONFIG_TX64_SEQ_FLAG)
txfm_param->plane_type = get_plane_type(plane);
#if CONFIG_TX64_SEQ_FLAG
txfm_param->t64resample = t64resample;
#endif // CONFIG_TX64_SEQ_FLAG
#endif // CONFIG_CHROMA_LARGE_TX && (!CONFIG_TX64 || CONFIG_TX64_SEQ_FLAG)
txfm_param->tx_type = get_primary_tx_type(tx_type);
txfm_param->sec_tx_set = 0;
txfm_param->sec_tx_type = 0;
txfm_param->intra_mode = get_intra_mode(mbmi, plane);
txfm_param->is_inter = is_inter_block(xd->mi[0], xd->tree_type);
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
bool mode_dependent_condition =
(txfm_param->is_inter
? (txfm_param->tx_type == DCT_DCT && width >= 16 && height >= 16)
: txfm_param->intra_mode < PAETH_PRED);
if (mode_dependent_condition && !xd->lossless[mbmi->segment_id]) {
// updated EOB condition
txfm_param->sec_tx_type = get_secondary_tx_type(tx_type);
txfm_param->sec_tx_set = get_secondary_tx_set(tx_type);
}
txfm_param->tx_size = tx_size;
// EOB needs to adjusted after inverse IST
if (txfm_param->sec_tx_type) {
const int st_size_class =
(width == 8 && height == 8 && txfm_param->tx_type == DCT_DCT) ? 1
: (width >= 8 && height >= 8) ? (txfm_param->tx_type == DCT_DCT ? 2 : 3)
: 0;
txfm_param->eob =
(st_size_class == 0) ? IST_4x4_HEIGHT
: (st_size_class == 1)
? IST_8x8_HEIGHT_RED
: ((st_size_class == 3) ? IST_ADST_NZ_CNT : IST_8x8_HEIGHT);
} else {
txfm_param->eob = eob;
}
txfm_param->use_ddt = use_ddt;
txfm_param->lossless = xd->lossless[xd->mi[0]->segment_id];
txfm_param->bd = xd->bd;
txfm_param->tx_set_type = av1_get_ext_tx_set_type(
txfm_param->tx_size, is_inter_block(xd->mi[0], xd->tree_type),
reduced_tx_set);
}
void av1_highbd_inv_txfm_add_c(const tran_low_t *input, uint16_t *dest,
int stride, const TxfmParam *txfm_param) {
assert(av1_ext_tx_used[txfm_param->tx_set_type][txfm_param->tx_type]);
inv_txfm(input, dest, stride, txfm_param);
}
// inverse transform for dpcm lossless horizontal mode
void av1_highbd_inv_txfm_add_horz_c(const tran_low_t *input, uint16_t *dest,
int stride, const TxfmParam *txfm_param) {
assert(av1_ext_tx_used[txfm_param->tx_set_type][txfm_param->tx_type]);
const TX_SIZE tx_size = txfm_param->tx_size;
assert(txfm_param->lossless);
if (txfm_param->tx_type == IDTX) {
av1_lossless_inv_idtx_add_horz(input, dest, stride, txfm_param);
return;
}
switch (tx_size) {
case TX_4X4:
av1_highbd_inv_txfm_add_4x4_horz_c(input, dest, stride, txfm_param);
break;
default: assert(0 && "Invalid transform size for lossless coding"); break;
}
}
// inverse transform for dpcm lossless vertical mode
void av1_highbd_inv_txfm_add_vert_c(const tran_low_t *input, uint16_t *dest,
int stride, const TxfmParam *txfm_param) {
assert(av1_ext_tx_used[txfm_param->tx_set_type][txfm_param->tx_type]);
const TX_SIZE tx_size = txfm_param->tx_size;
assert(txfm_param->lossless);
if (txfm_param->tx_type == IDTX) {
av1_lossless_inv_idtx_add_vert(input, dest, stride, txfm_param);
return;
}
switch (tx_size) {
case TX_4X4:
av1_highbd_inv_txfm_add_4x4_vert_c(input, dest, stride, txfm_param);
break;
default: assert(0 && "Invalid transform size for lossless coding"); break;
}
}
// Apply inverse cross chroma component transform
void av1_inv_cross_chroma_tx_block(tran_low_t *dqcoeff_c1,
tran_low_t *dqcoeff_c2, TX_SIZE tx_size,
CctxType cctx_type, const int bd) {
if (cctx_type == CCTX_NONE) return;
const int ncoeffs = av1_get_max_eob(tx_size);
int32_t *src_c1 = (int32_t *)dqcoeff_c1;
int32_t *src_c2 = (int32_t *)dqcoeff_c2;
int64_t tmp[2] = { 0, 0 };
const int angle_idx = cctx_type - CCTX_START;
for (int i = 0; i < ncoeffs; i++) {
tmp[0] = (int64_t)cctx_mtx[angle_idx][0] * (int64_t)src_c1[i] -
(int64_t)cctx_mtx[angle_idx][1] * (int64_t)src_c2[i];
tmp[1] = (int64_t)cctx_mtx[angle_idx][1] * (int64_t)src_c1[i] +
(int64_t)cctx_mtx[angle_idx][0] * (int64_t)src_c2[i];
src_c1[i] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(tmp[0], CCTX_PREC_BITS);
src_c2[i] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(tmp[1], CCTX_PREC_BITS);
src_c1[i] = clamp_value(src_c1[i], 8 + bd);
src_c2[i] = clamp_value(src_c2[i], 8 + bd);
}
}
static void av1_highbd_inv_txfm_add_master(const tran_low_t *input,
uint16_t *dest, int stride,
const TxfmParam *txfm_param) {
if (txfm_param->lossless) {
if (txfm_param->tx_type == IDTX) {
av1_lossless_inv_idtx_add(input, dest, stride, txfm_param);
return;
}
}
av1_highbd_inv_txfm_add(input, dest, stride, txfm_param);
}
void av1_inverse_transform_block(const MACROBLOCKD *xd,
const tran_low_t *dqcoeff, int plane,
TX_TYPE tx_type, TX_SIZE tx_size,
uint16_t *dst, int stride, int eob,
int use_ddt, int reduced_tx_set
#if CONFIG_TX64_SEQ_FLAG
,
int t64resample
#endif // CONFIG_TX64_SEQ_FLAG
) {
if (!eob) return;
assert(eob <= av1_get_max_eob(tx_size));
TxfmParam txfm_param;
init_txfm_param(xd, plane, tx_size, tx_type, eob, reduced_tx_set, use_ddt,
&txfm_param
#if CONFIG_TX64_SEQ_FLAG
,
t64resample
#endif // CONFIG_TX64_SEQ_FLAG
);
assert(av1_ext_tx_used[txfm_param.tx_set_type][txfm_param.tx_type]);
assert(IMPLIES(txfm_param.sec_tx_type,
block_signals_sec_tx_type(xd, tx_size, txfm_param.tx_type,
txfm_param.eob)));
// Work buffer for secondary transform
DECLARE_ALIGNED(32, tran_low_t, temp_dqcoeff[MAX_TX_SQUARE]);
memcpy(temp_dqcoeff, dqcoeff, sizeof(tran_low_t) * tx_size_2d[tx_size]);
av1_inv_stxfm(temp_dqcoeff, &txfm_param);
MB_MODE_INFO *const mbmi = xd->mi[0];
if (xd->lossless[mbmi->segment_id]) {
PREDICTION_MODE cur_pred_mode =
(plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
int cur_dpcm_flag =
(plane == AOM_PLANE_Y) ? mbmi->use_dpcm_y : mbmi->use_dpcm_uv;
int cur_angle_delta = (plane == AOM_PLANE_Y) ? mbmi->angle_delta[0] : 0;
if (cur_pred_mode == V_PRED && cur_angle_delta == 0 && cur_dpcm_flag > 0) {
av1_highbd_inv_txfm_add_vert(temp_dqcoeff, dst, stride, &txfm_param);
} else if (cur_pred_mode == H_PRED && cur_angle_delta == 0 &&
cur_dpcm_flag > 0) {
av1_highbd_inv_txfm_add_horz(temp_dqcoeff, dst, stride, &txfm_param);
} else {
av1_highbd_inv_txfm_add_master(temp_dqcoeff, dst, stride, &txfm_param);
}
} else {
av1_highbd_inv_txfm_add_master(temp_dqcoeff, dst, stride, &txfm_param);
}
}
// Inverse secondary transform
void inv_stxfm_c(tran_low_t *src, tran_low_t *dst, const PREDICTION_MODE mode,
const uint8_t stx_idx, const int size, const int bd) {
assert(stx_idx < 4);
const int16_t *kernel = (size == 0) ? ist_4x4_kernel[mode][stx_idx][0]
: ist_8x8_kernel[mode][stx_idx][0];
int *out = dst;
const int shift = 7;
int reduced_width, reduced_height;
if (size == 0) {
reduced_height = IST_4x4_HEIGHT;
reduced_width = IST_4x4_WIDTH;
} else {
reduced_height = (size == 1)
? IST_8x8_HEIGHT_RED
: ((size == 3) ? IST_ADST_NZ_CNT : IST_8x8_HEIGHT);
reduced_width = IST_8x8_WIDTH;
}
for (int j = 0; j < reduced_width; j++) {
int32_t resi = 0;
const int16_t *kernel_tmp = kernel;
int *srcPtr = src;
for (int i = 0; i < reduced_height; i++) {
resi += *srcPtr++ * *kernel_tmp;
kernel_tmp += reduced_width;
}
*out++ = clamp_value(ROUND_POWER_OF_TWO_SIGNED(resi, shift), 8 + bd);
kernel++;
}
}
void av1_inv_stxfm(tran_low_t *coeff, TxfmParam *txfm_param) {
const TX_TYPE stx_type = txfm_param->sec_tx_type;
const int width = tx_size_wide[txfm_param->tx_size] <= 32
? tx_size_wide[txfm_param->tx_size]
: 32;
const int height = tx_size_high[txfm_param->tx_size] <= 32
? tx_size_high[txfm_param->tx_size]
: 32;
if ((width >= 4 && height >= 4) && stx_type) {
const PREDICTION_MODE intra_mode =
(txfm_param->is_inter ? DC_PRED : txfm_param->intra_mode);
PREDICTION_MODE mode = 0, mode_t = 0;
const int log2width = tx_size_wide_log2[txfm_param->tx_size];
const int sb_size = (width >= 8 && height >= 8) ? 8 : 4;
const int16_t *scan_order_out;
// Align scan order of IST with primary transform scan order
const SCAN_ORDER *scan_order_in =
get_scan(txfm_param->tx_size, txfm_param->tx_type);
const int16_t *const scan = scan_order_in->scan;
tran_low_t buf0[64] = { 0 }, buf1[64] = { 0 };
tran_low_t *tmp = buf0;
tran_low_t *src = coeff;
int reduced_width = sb_size == 8 ? IST_8x8_WIDTH : IST_4x4_WIDTH;
for (int r = 0; r < reduced_width; r++) {
// Align scan order of IST with primary transform scan order
*tmp = src[scan[r]];
tmp++;
}
int8_t transpose = 0;
mode = AOMMIN(intra_mode, SMOOTH_H_PRED);
if ((mode == H_PRED) || (mode == D157_PRED) || (mode == D67_PRED) ||
(mode == SMOOTH_H_PRED))
transpose = 1;
#if STX_COEFF_DEBUG
fprintf(stderr,
"[inv stx] inter %d ptx %d txs %dx%d tp %d stx_set %d stx_type %d\n"
"(stx coeff)\n",
txfm_param->is_inter, get_primary_tx_type(txfm_param->tx_type),
width, height, transpose, txfm_param->sec_tx_set, stx_type);
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
fprintf(stderr, "%d,", coeff[i * width + j]);
}
fprintf(stderr, "\n");
}
#endif // STX_COEFF_DEBUG
mode_t = txfm_param->sec_tx_set;
assert(mode_t < IST_SET_SIZE);
if (transpose) {
scan_order_out = (sb_size == 4)
? stx_scan_orders_transpose_4x4[log2width - 2]
: stx_scan_orders_transpose_8x8[log2width - 2];
} else {
scan_order_out = (sb_size == 4) ? stx_scan_orders_4x4[log2width - 2]
: stx_scan_orders_8x8[log2width - 2];
}
const int st_size_class =
(width == 8 && height == 8 && txfm_param->tx_type == DCT_DCT) ? 1
: (width >= 8 && height >= 8) ? (txfm_param->tx_type == DCT_DCT ? 2 : 3)
: 0;
inv_stxfm(buf0, buf1, mode_t, stx_type - 1, st_size_class, txfm_param->bd);
tmp = buf1;
src = coeff;
memset(src, 0, width * height * sizeof(tran_low_t));
const int16_t *sup_reg_mapping =
&coeff8x8_mapping[txfm_param->sec_tx_set * 3 + stx_type - 1][0];
for (int r = 0; r < reduced_width; r++) {
if (sb_size == 8)
src[scan_order_out[sup_reg_mapping[r]]] = *tmp;
else
src[scan_order_out[r]] = *tmp;
tmp++;
}
#if STX_COEFF_DEBUG
fprintf(stderr, "(ptx coeff)\n");
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
fprintf(stderr, "%d,", coeff[i * width + j]);
}
fprintf(stderr, "\n");
}
#endif // STX_COEFF_DEBUG
}
}