blob: 925b4818d2ba02a0e80f00bd17ba650ee1de98f7 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <limits.h>
#include "av1/common/enums.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/cfl.h"
#include "av1/common/mvref_common.h"
#include "av1/common/mv.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/tip.h"
// This function will determine whether or not to create a warped
// prediction.
int av1_allow_warp(const MB_MODE_INFO *const mbmi,
const WarpTypesAllowed *const warp_types,
const WarpedMotionParams *const gm_params, int ref,
const struct scale_factors *const sf,
WarpedMotionParams *final_warp_params) {
// Note: As per the spec, we must test the fixed point scales here, which are
// at a higher precision (1 << 14) than the xs and ys in subpel_params (that
// have 1 << 10 precision).
#if CONFIG_ACROSS_SCALE_WARP
(void)sf;
#else
if (av1_is_scaled(sf)) return 0;
#endif // CONFIG_ACROSS_SCALE_WARP
if (final_warp_params != NULL) *final_warp_params = default_warp_params;
if (warp_types->local_warp_allowed && !mbmi->wm_params[ref].invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, &mbmi->wm_params[ref],
sizeof(*final_warp_params));
return 1;
} else if (warp_types->global_warp_allowed && !gm_params->invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
return 0;
}
void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width,
int block_height, int pix_row, int pix_col,
int subsampling_x, int subsampling_y, int bit_depth,
int is_intrabc, const struct scale_factors *sf,
const struct buf_2d *ref_buf,
InterpFilter interp_filter) {
inter_pred_params->block_width = block_width;
inter_pred_params->block_height = block_height;
inter_pred_params->orig_block_width = block_width;
inter_pred_params->orig_block_height = block_height;
inter_pred_params->original_pu_width = block_width;
inter_pred_params->original_pu_height = block_height;
inter_pred_params->pix_row = pix_row;
inter_pred_params->pix_col = pix_col;
inter_pred_params->subsampling_x = subsampling_x;
inter_pred_params->subsampling_y = subsampling_y;
inter_pred_params->bit_depth = bit_depth;
inter_pred_params->is_intrabc = is_intrabc;
inter_pred_params->scale_factors = sf;
inter_pred_params->ref_frame_buf = *ref_buf;
inter_pred_params->mode = TRANSLATION_PRED;
inter_pred_params->comp_mode = UNIFORM_SINGLE;
inter_pred_params->use_ref_padding = 0;
inter_pred_params->ref_area = NULL;
inter_pred_params->use_warp_bd_box = 0;
inter_pred_params->warp_bd_box = NULL;
inter_pred_params->border_data.enable_bacp = 0;
inter_pred_params->border_data.bacp_block_data = NULL;
if (is_intrabc) {
inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params;
inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params;
} else {
inter_pred_params->interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(interp_filter,
block_width);
inter_pred_params->interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(interp_filter,
block_height);
}
}
void av1_init_comp_mode(InterPredParams *inter_pred_params) {
inter_pred_params->comp_mode = UNIFORM_COMP;
}
void av1_init_warp_params(InterPredParams *inter_pred_params,
const WarpTypesAllowed *warp_types, int ref,
const MACROBLOCKD *xd, const MB_MODE_INFO *mi) {
if (is_tip_ref_frame(mi->ref_frame[0])) return;
// We do not do refineMV for warp blocks
// We may need to return from here.
if (mi->refinemv_flag) return;
if (xd->cur_frame_force_integer_mv) return;
if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]],
ref, inter_pred_params->scale_factors,
&inter_pred_params->warp_params))
inter_pred_params->mode = WARP_PRED;
}
void av1_make_inter_predictor(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params) {
assert(IMPLIES(inter_pred_params->conv_params.is_compound,
inter_pred_params->conv_params.dst != NULL));
#if CONFIG_ACROSS_SCALE_REF_OPT
assert(IMPLIES(av1_is_scaled(inter_pred_params->scale_factors),
av1_is_valid_scale(inter_pred_params->scale_factors)));
#endif // CONFIG_ACROSS_SCALE_REF_OPT
// TODO(jingning): av1_warp_plane() can be further cleaned up.
if (inter_pred_params->mode == WARP_PRED) {
av1_warp_plane(
&inter_pred_params->warp_params, inter_pred_params->bit_depth,
inter_pred_params->ref_frame_buf.buf0,
inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height,
inter_pred_params->ref_frame_buf.stride, dst,
inter_pred_params->pix_col, inter_pred_params->pix_row,
inter_pred_params->block_width, inter_pred_params->block_height,
dst_stride, inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y, &inter_pred_params->conv_params
#if CONFIG_ACROSS_SCALE_WARP
,
inter_pred_params->scale_factors
#endif // CONFIG_ACROSS_SCALE_WARP
,
inter_pred_params->use_warp_bd_box, inter_pred_params->warp_bd_box);
} else if (inter_pred_params->mode == TRANSLATION_PRED) {
highbd_inter_predictor(
src, src_stride, dst, dst_stride, subpel_params,
inter_pred_params->block_width, inter_pred_params->block_height,
&inter_pred_params->conv_params,
inter_pred_params->interp_filter_params, inter_pred_params->bit_depth,
inter_pred_params->is_intrabc);
}
}
/* clang-format off */
#if WEDGE_BLD_SIG
#if CONFIG_ADAPTIVE_WEDGE_BOUNDARY
// rounded cosine and sine look-up tables given by round(32*cos(i)) and round(16*cos(i)) for two wedge boundaries
static const int8_t wedge_cos_lut_all[MAX_WEDGE_BOUNDARY_TYPES][WEDGE_ANGLES] = {
{
// 0, 1, 2, 4, 6
32, 32, 32, 16, 16,
// 8, 10, 12, 14, 15
0,-16,-16,-32,-32,
// 16, 17, 18, 20, 22
-32,-32,-32,-16,-16,
// 24, 26, 28, 30, 31
0, 16, 16, 32, 32
},
{
// 0, 1, 2, 4, 6,
16, 16, 16, 8, 8,
// 8, 10, 12, 14, 15
0, -8, -8,-16,-16,
// 16, 17, 18, 20, 22
-16,-16,-16, -8, -8,
// 24, 26, 28, 30, 31
0, 8, 8, 16, 16
}
};
static const int8_t wedge_sin_lut_all[MAX_WEDGE_BOUNDARY_TYPES][WEDGE_ANGLES] = {
{
// 0, 1, 2, 4, 6,
0, -8,-16,-16,-32,
// 8, 10, 12, 14, 15
-32,-32,-16,-16, -8,
// 16, 17, 18, 20, 22
0, 8, 16, 16, 32,
// 24, 26, 28, 30, 31
32, 32, 16, 16, 8
},
{
// 0, 1, 2, 4, 6,
0, -4, -8, -8,-16,
// 8, 10, 12, 14, 15
-16,-16, -8, -8, -4,
// 16, 17, 18, 20, 22
0, 4, 8, 8, 16,
// 24, 26, 28, 30, 31
16, 16, 8, 8, 4
}
};
#else
// rounded cosine and sine look-up tables given by round(32*cos(i))
static const int8_t wedge_cos_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
32, 32, 32, 16, 16,
// 8, 10, 12, 14, 15,
0,-16,-16,-32,-32,
// 16, 17, 18, 20, 22,
-32,-32,-32,-16,-16,
// 24, 26, 28, 30, 31
0, 16, 16, 32, 32
};
static const int8_t wedge_sin_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
0, -8,-16,-16,-32,
// 8, 10, 12, 14, 15,
-32,-32,-16,-16, -8,
// 16, 17, 18, 20, 22,
0, 8, 16, 16, 32,
// 24, 26, 28, 30, 31
32, 32, 16, 16, 8
};
#endif //CONFIG_ADAPTIVE_WEDGE_BOUNDARY
// rounded sigmoid function look-up talbe given by round(1/(1+exp(-x)))
static const int8_t pos_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE] = {
8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,
10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
};
static const int8_t neg_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE] = {
8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#else
static const int8_t wedge_cos_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
8, 8, 8, 4, 4,
// 8, 10, 12, 14, 15,
0, -4, -4, -8, -8,
// 16, 17, 18, 20, 22,
-8, -8, -8, -4, -4,
// 24, 26, 28, 30, 31
0, 4, 4, 8, 8
};
static const int8_t wedge_sin_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
0, -2, -4, -4, -8,
// 8, 10, 12, 14, 15,
-8, -8, -4, -4, -2,
// 16, 17, 18, 20, 22,
0, 2, 4, 4, 8,
// 24, 26, 28, 30, 31
8, 8, 4, 4, 2
};
#endif
/* clang-format on */
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
DECLARE_ALIGNED(16, static uint8_t,
wedge_allmaster_mask[2][WEDGE_ANGLES][MAX_WEDGE_BOUNDARY_TYPES]
[MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
#else
// [negative][direction]
DECLARE_ALIGNED(
16, static uint8_t,
wedge_master_mask[2][WEDGE_ANGLES][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
#endif // WEDGE_BLD_SIG &&CONFIG_ADAPTIVE_WEDGE_BOUNDARY
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
DECLARE_ALIGNED(16, static uint8_t,
all_wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES *
MAX_WEDGE_SQUARE]);
#else
// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
DECLARE_ALIGNED(
16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]);
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
DECLARE_ALIGNED(
16, static uint8_t,
wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * MAX_WEDGE_BOUNDARY_TYPES *
H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]);
#else
DECLARE_ALIGNED(16, static uint8_t,
wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES *
MAX_WEDGE_SQUARE]);
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
DECLARE_ALIGNED(16, static uint8_t,
smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL]
[MAX_WEDGE_SQUARE]);
DECLARE_ALIGNED(16, static int8_t, cwp_mask[2][MAX_CWP_NUM][MAX_SB_SQUARE]);
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
static all_wedge_masks_type all_wedge_masks[BLOCK_SIZES_ALL][2];
#else
static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
static wedge_decisions_type wedge_tmvp_decisions[BLOCK_SIZES_ALL][2];
static const wedge_code_type wedge_codebook_16[MAX_WEDGE_TYPES] = {
{ WEDGE_0, 5, 4 }, { WEDGE_0, 6, 4 }, { WEDGE_0, 7, 4 },
{ WEDGE_14, 4, 4 }, { WEDGE_14, 5, 4 }, { WEDGE_14, 6, 4 },
{ WEDGE_14, 7, 4 }, { WEDGE_27, 4, 4 }, { WEDGE_27, 5, 4 },
{ WEDGE_27, 6, 4 }, { WEDGE_27, 7, 4 }, { WEDGE_45, 4, 4 },
{ WEDGE_45, 5, 4 }, { WEDGE_45, 6, 4 }, { WEDGE_45, 7, 4 },
{ WEDGE_63, 4, 4 }, { WEDGE_63, 4, 3 }, { WEDGE_63, 4, 2 },
{ WEDGE_63, 4, 1 }, { WEDGE_90, 4, 3 }, { WEDGE_90, 4, 2 },
{ WEDGE_90, 4, 1 }, { WEDGE_117, 4, 4 }, { WEDGE_117, 4, 3 },
{ WEDGE_117, 4, 2 }, { WEDGE_117, 4, 1 }, { WEDGE_135, 4, 4 },
{ WEDGE_135, 3, 4 }, { WEDGE_135, 2, 4 }, { WEDGE_135, 1, 4 },
{ WEDGE_153, 4, 4 }, { WEDGE_153, 3, 4 }, { WEDGE_153, 2, 4 },
{ WEDGE_153, 1, 4 }, { WEDGE_166, 4, 4 }, { WEDGE_166, 3, 4 },
{ WEDGE_166, 2, 4 }, { WEDGE_166, 1, 4 }, { WEDGE_180, 3, 4 },
{ WEDGE_180, 2, 4 }, { WEDGE_180, 1, 4 }, { WEDGE_194, 3, 4 },
{ WEDGE_194, 2, 4 }, { WEDGE_194, 1, 4 }, { WEDGE_207, 3, 4 },
{ WEDGE_207, 2, 4 }, { WEDGE_207, 1, 4 }, { WEDGE_225, 3, 4 },
{ WEDGE_225, 2, 4 }, { WEDGE_225, 1, 4 }, { WEDGE_243, 4, 5 },
{ WEDGE_243, 4, 6 }, { WEDGE_243, 4, 7 }, { WEDGE_270, 4, 5 },
{ WEDGE_270, 4, 6 }, { WEDGE_270, 4, 7 }, { WEDGE_297, 4, 5 },
{ WEDGE_297, 4, 6 }, { WEDGE_297, 4, 7 }, { WEDGE_315, 5, 4 },
{ WEDGE_315, 6, 4 }, { WEDGE_315, 7, 4 }, { WEDGE_333, 5, 4 },
{ WEDGE_333, 6, 4 }, { WEDGE_333, 7, 4 }, { WEDGE_346, 5, 4 },
{ WEDGE_346, 6, 4 }, { WEDGE_346, 7, 4 },
};
// Look up table of params for wedge mode for different block sizes.
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X8],
wedge_tmvp_decisions[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X16],
wedge_tmvp_decisions[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X8],
wedge_tmvp_decisions[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X16],
wedge_tmvp_decisions[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X32],
wedge_tmvp_decisions[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X16],
wedge_tmvp_decisions[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X32],
wedge_tmvp_decisions[BLOCK_32X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X64],
wedge_tmvp_decisions[BLOCK_32X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X32],
wedge_tmvp_decisions[BLOCK_64X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X64],
wedge_tmvp_decisions[BLOCK_64X64] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X32],
wedge_tmvp_decisions[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X8],
wedge_tmvp_decisions[BLOCK_32X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X64],
wedge_tmvp_decisions[BLOCK_16X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X16],
wedge_tmvp_decisions[BLOCK_64X16] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X64],
wedge_tmvp_decisions[BLOCK_8X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X8],
wedge_tmvp_decisions[BLOCK_64X8] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
};
#else
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8],
wedge_tmvp_decisions[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16],
wedge_tmvp_decisions[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8],
wedge_tmvp_decisions[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16],
wedge_tmvp_decisions[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32],
wedge_tmvp_decisions[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16],
wedge_tmvp_decisions[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32],
wedge_tmvp_decisions[BLOCK_32X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64],
wedge_tmvp_decisions[BLOCK_32X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32],
wedge_tmvp_decisions[BLOCK_64X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64],
wedge_tmvp_decisions[BLOCK_64X64] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32],
wedge_tmvp_decisions[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8],
wedge_tmvp_decisions[BLOCK_32X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64],
wedge_tmvp_decisions[BLOCK_16X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16],
wedge_tmvp_decisions[BLOCK_64X16] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64],
wedge_tmvp_decisions[BLOCK_8X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8],
wedge_tmvp_decisions[BLOCK_64X8] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
};
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
// Init the cwp masks, called by init_cwp_masks
static AOM_INLINE void build_cwp_mask(int8_t *mask, int stride,
BLOCK_SIZE plane_bsize, int8_t w) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) mask[j] = w;
mask += stride;
}
}
// Init the cwp masks
void init_cwp_masks() {
const int bs = BLOCK_128X128;
const int bw = block_size_wide[bs];
for (int list_idx = 0; list_idx < 2; ++list_idx) {
for (int idx = 0; idx < MAX_CWP_NUM; ++idx) {
int8_t weight = cwp_weighting_factor[list_idx][idx] * 4;
build_cwp_mask(cwp_mask[list_idx][idx], bw, bs, weight);
}
}
}
// Return the associated cwp mask
const int8_t *av1_get_cwp_mask(int list_idx, int idx) {
return cwp_mask[list_idx][idx];
}
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
// get wedge masks for both boundaries
static const uint8_t *get_wedge_allmask_inplace(int wedge_index,
int boundary_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
av1_wedge_params_lookup[sb_type].codebook + wedge_index;
int woff, hoff;
assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
master = wedge_allmaster_mask[neg][a->direction][boundary_index] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
return master;
}
#else
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
av1_wedge_params_lookup[sb_type].codebook + wedge_index;
int woff, hoff;
assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
master = wedge_master_mask[neg][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
return master;
}
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
// For each 8x8 block, decide (if using wedge mode), whether it should store
// both MVs as the TMVP MVs, or just 1 of them (and in this case which one to
// store).
static void get_wedge_tmvp_decision(const uint8_t *mask, int mask_stride,
int bw, int bh, uint8_t *decision,
int decision_stride) {
for (int h_start = 0; h_start < bh; h_start += 8) {
for (int w_start = 0; w_start < bw; w_start += 8) {
const uint8_t *mask_start = mask + h_start * mask_stride + w_start;
uint8_t *decision_start = decision + h_start * decision_stride + w_start;
int ref0_count = 0;
int ref1_count = 0;
for (int h = 0; h < 8; h++) {
for (int w = 0; w < 8; w++) {
if (mask_start[h * mask_stride + w] > 60) {
ref0_count++;
} else if (mask_start[h * mask_stride + w] < 4) {
ref1_count++;
}
}
}
int this_decision = 2;
if (ref0_count >= 60) {
this_decision = 0;
} else if (ref1_count >= 60) {
this_decision = 1;
}
for (int h = 0; h < 8; h++) {
for (int w = 0; w < 8; w++) {
decision_start[h * decision_stride + w] = this_decision;
}
}
}
}
}
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
(void)sb_type;
switch (comp_data->type) {
case COMPOUND_WEDGE:
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
return av1_get_all_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type,
comp_data->wedge_boundary_index);
#else
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type);
#endif // WEDGE_BLD_SIG &&CONFIG_ADAPTIVE_WEDGE_BOUNDARY
case COMPOUND_AVERAGE:
case COMPOUND_DIFFWTD: return comp_data->seg_mask;
default: assert(0); return NULL;
}
}
static AOM_INLINE void diffwtd_mask_d16(
uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
int round =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
int i, j, m, diff;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
diff = ROUND_POWER_OF_TWO(diff, round);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void av1_build_compound_diffwtd_mask_d16_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
default: assert(0);
}
}
static AOM_FORCE_INLINE void diffwtd_mask_highbd(
uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
const unsigned int bd) {
assert(bd >= 8);
if (bd == 8) {
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
} else {
const unsigned int bd_shift = bd - 8;
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
}
}
void av1_build_compound_diffwtd_mask_highbd_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_highbd(mask, 0, 38, src0, src0_stride, src1, src1_stride, h,
w, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_highbd(mask, 1, 38, src0, src0_stride, src1, src1_stride, h,
w, bd);
break;
default: assert(0);
}
}
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
// initiate master wedge masks for both boundaries for extended wedges
static AOM_INLINE void init_wedge_master_all_masks() {
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
for (int k = 0; k < MAX_WEDGE_BOUNDARY_TYPES; k++) {
for (int angle = 0; angle < WEDGE_ANGLES; angle++) {
int idx = 0;
for (int n = 0; n < h; n++) {
int y = ((n << 1) - h + 1) * wedge_sin_lut_all[k][angle];
for (int m = 0; m < w; m++, idx++) {
int d = ((m << 1) - w + 1) * wedge_cos_lut_all[k][angle] + y;
const int clamp_d = clamp(d, -127, 127);
wedge_allmaster_mask[0][angle][k][idx] =
clamp_d >= 0 ? (pos_dist_2_bld_weight[clamp_d] << (7 - 5))
: (neg_dist_2_bld_weight[-clamp_d] << (7 - 5));
wedge_allmaster_mask[1][angle][k][idx] =
64 - wedge_allmaster_mask[0][angle][k][idx];
}
}
}
}
}
#else
static AOM_INLINE void init_wedge_master_masks() {
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
for (int angle = 0; angle < WEDGE_ANGLES; angle++) {
int idx = 0;
// printf("angle: %d\n", angle);
for (int n = 0; n < h; n++) {
int y = ((n << 1) - h + 1) * wedge_sin_lut[angle];
for (int m = 0; m < w; m++, idx++) {
int d = ((m << 1) - w + 1) * wedge_cos_lut[angle] + y;
#if WEDGE_BLD_SIG
const int clamp_d = clamp(d, -127, 127);
wedge_master_mask[0][angle][idx] =
clamp_d >= 0 ? (pos_dist_2_bld_weight[clamp_d] << (7 - 5))
: (neg_dist_2_bld_weight[-clamp_d] << (7 - 5));
#else
wedge_master_mask[0][angle][idx] = clamp((d + 32), 0, 64);
#endif
wedge_master_mask[1][angle][idx] =
64 - wedge_master_mask[0][angle][idx];
}
}
}
}
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
static AOM_INLINE void init_wedge_masks() {
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
uint8_t *dst_all = all_wedge_mask_buf;
#else
uint8_t *dst = wedge_mask_buf;
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
BLOCK_SIZE bsize;
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
memset(all_wedge_masks, 0, sizeof(all_wedge_masks));
#else
memset(wedge_masks, 0, sizeof(wedge_masks));
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
uint8_t *dst_tmvp_decision = wedge_tmvp_decision_buf;
memset(wedge_tmvp_decisions, 0, sizeof(wedge_tmvp_decisions));
for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize];
const int wtypes = wedge_params->wedge_types;
if (wtypes == 0) continue;
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
const uint8_t *all_mask;
#else
const uint8_t *mask;
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
int w;
for (w = 0; w < wtypes; ++w) {
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
for (int k = 0; k < MAX_WEDGE_BOUNDARY_TYPES; k++) {
all_mask = get_wedge_allmask_inplace(w, k, 0, bsize);
aom_convolve_copy(all_mask, MASK_MASTER_STRIDE, dst_all,
bw /* dst_stride */, bw, bh);
wedge_params->all_masks[0][w][k] = dst_all;
get_wedge_tmvp_decision(dst_all, bw, bw, bh, dst_tmvp_decision, bw);
wedge_params->tmvp_mv_decisions[0][w][k] = dst_tmvp_decision;
dst_tmvp_decision += bw * bh;
dst_all += bw * bh;
all_mask = get_wedge_allmask_inplace(w, k, 1, bsize);
aom_convolve_copy(all_mask, MASK_MASTER_STRIDE, dst_all,
bw /* dst_stride */, bw, bh);
wedge_params->all_masks[1][w][k] = dst_all;
get_wedge_tmvp_decision(dst_all, bw, bw, bh, dst_tmvp_decision, bw);
wedge_params->tmvp_mv_decisions[1][w][k] = dst_tmvp_decision;
dst_tmvp_decision += bw * bh;
dst_all += bw * bh;
}
#else
mask = get_wedge_mask_inplace(w, 0, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[0][w] = dst;
get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw);
wedge_params->tmvp_mv_decisions[0][w] = dst_tmvp_decision;
dst_tmvp_decision += bw * bh;
dst += bw * bh;
mask = get_wedge_mask_inplace(w, 1, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[1][w] = dst;
wedge_params->tmvp_mv_decisions[1][w] = dst_tmvp_decision;
get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw);
dst_tmvp_decision += bw * bh;
dst += bw * bh;
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
}
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
assert(sizeof(all_wedge_mask_buf) >=
(size_t)(dst_all - all_wedge_mask_buf));
#else
assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
}
}
/* clang-format off */
static const uint8_t ii_weights1d[MAX_SB_SIZE] = {
60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8,
8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4,
4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = {
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
0, 0, 0, // unused
8, 8, 4, 4, 2, 2,
4, 4, 2, 2, 2, 2,
};
/* clang-format on */
static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride,
BLOCK_SIZE plane_bsize,
INTERINTRA_MODE mode) {
int i, j;
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0]));
mask += stride;
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale];
mask += stride;
}
break;
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j)
mask[j] = ii_weights1d[(i < j ? i : j) * size_scale];
mask += stride;
}
break;
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
memset(mask, 32, bw * sizeof(mask[0]));
mask += stride;
}
break;
}
}
static AOM_INLINE void init_smooth_interintra_masks() {
for (int m = 0; m < INTERINTRA_MODES; ++m) {
for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) {
const int bw = block_size_wide[bs];
const int bh = block_size_high[bs];
if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue;
build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs,
m);
}
}
}
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad8x8_ds)
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad16x8_ds)
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad8x16_ds)
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad16x16_ds)
#if CONFIG_SUBBLK_REF_EXT
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad12x12_ds)
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad20x12_ds)
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad12x20_ds)
MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad20x20_ds)
#endif // CONFIG_SUBBLK_REF_EXT
unsigned int get_highbd_sad_ds(const uint16_t *src_ptr, int source_stride,
const uint16_t *ref_ptr, int ref_stride, int bd,
int bw, int bh) {
if (bd == 8) {
if (bw == 16 && bh == 8)
return aom_highbd_sad16x8_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 16 && bh == 16)
return aom_highbd_sad16x16_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 8 && bh == 8)
return aom_highbd_sad8x8_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 8 && bh == 16)
return aom_highbd_sad8x16_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
#if CONFIG_SUBBLK_REF_EXT
else if (bw == 12 && bh == 12)
return aom_highbd_sad12x12_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 12)
return aom_highbd_sad20x12_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 12 && bh == 20)
return aom_highbd_sad12x20_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 20)
return aom_highbd_sad20x20_ds_8(src_ptr, source_stride, ref_ptr,
ref_stride);
#endif // CONFIG_SUBBLK_REF_EXT
else {
assert(0);
return 0;
}
} else if (bd == 10) {
if (bw == 16 && bh == 8)
return aom_highbd_sad16x8_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 16 && bh == 16)
return aom_highbd_sad16x16_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 8 && bh == 8)
return aom_highbd_sad8x8_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 8 && bh == 16)
return aom_highbd_sad8x16_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
#if CONFIG_SUBBLK_REF_EXT
else if (bw == 12 && bh == 12)
return aom_highbd_sad12x12_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 12)
return aom_highbd_sad20x12_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 12 && bh == 20)
return aom_highbd_sad12x20_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 20)
return aom_highbd_sad20x20_ds_10(src_ptr, source_stride, ref_ptr,
ref_stride);
#endif // CONFIG_SUBBLK_REF_EXT
else {
assert(0);
return 0;
}
} else if (bd == 12) {
if (bw == 16 && bh == 8)
return aom_highbd_sad16x8_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 16 && bh == 16)
return aom_highbd_sad16x16_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 8 && bh == 8)
return aom_highbd_sad8x8_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 8 && bh == 16)
return aom_highbd_sad8x16_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
#if CONFIG_SUBBLK_REF_EXT
else if (bw == 12 && bh == 12)
return aom_highbd_sad12x12_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 12)
return aom_highbd_sad20x12_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 12 && bh == 20)
return aom_highbd_sad12x20_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 20)
return aom_highbd_sad20x20_ds_12(src_ptr, source_stride, ref_ptr,
ref_stride);
#endif // CONFIG_SUBBLK_REF_EXT
else {
assert(0);
return 0;
}
} else {
assert(0);
return 0;
}
}
// Compute the SAD values for refineMV modes
int get_refinemv_sad(uint16_t *src1, uint16_t *src2, int stride, int width,
int height, int bd) {
return get_highbd_sad_ds(src1, stride, src2, stride, bd, width, height);
}
int64_t stable_mult_shift(const int64_t a, const int64_t b, const int shift,
const int msb_a, const int msb_b, const int max_bd,
int *rem_shift) {
assert(shift >= 0);
// Remaining bit shifts (may be used in the next stage of multiplcation)
int rem = AOMMAX(0, msb_a + msb_b - shift + 1 - max_bd);
if (rem_shift) *rem_shift += rem;
if (msb_a + msb_b + 2 < max_bd)
return ROUND_POWER_OF_TWO_SIGNED_64(a * b, shift);
// To determine s1/s2/s3 in ((a>>s1)*(b>>s2))>>s3, consider the equation
// (1+msb_a-s1)+(1+msb_b-s2)+1 <= max_bd+rem,
// where better numerical stability is obtained when
// msb_a-s1 ~= msb_b-s2.
// This leads to the following solution
int msb_diff = abs(msb_a - msb_b);
// Total required shifts (s1 + s2)
int s = msb_a + msb_b - max_bd - rem + 4;
int diff = AOMMIN(s, msb_diff);
int s1 = (s - diff) >> 1;
int s2 = s1;
if (msb_a >= msb_b)
s1 = s - s2;
else
s2 = s - s1;
assert(s1 >= 0);
assert(s2 >= 0);
if (shift - s1 - s2 < 0) {
// bit depth not large enough to hold the result
return ((a > 0) ^ (b > 0)) ? -((1LL << (max_bd - 1)) - 1)
: ((1LL << (max_bd - 1)) - 1);
}
return ROUND_POWER_OF_TWO_SIGNED_64(
ROUND_POWER_OF_TWO_SIGNED_64(a, s1) * ROUND_POWER_OF_TWO_SIGNED_64(b, s2),
shift - s1 - s2);
}
// Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity
// in hardware.
#define OPFL_CLAMP_MV_DELTA 1
#define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS)
void reduce_temporal_dist(int *d0, int *d1) {
if (*d0 == 0 || *d1 == 0) return;
int sign0 = *d0 < 0;
int sign1 = *d1 < 0;
int mag0 = sign0 ? -(*d0) : (*d0);
int mag1 = sign1 ? -(*d1) : (*d1);
// Only do simple checks for the case |d0|=|d1| and for factor 2
if (mag0 == mag1) {
mag0 = mag1 = 1;
} else if (mag0 > mag1) {
mag0 = 2;
mag1 = 1;
} else {
mag0 = 1;
mag1 = 2;
}
*d0 = sign0 ? -mag0 : mag0;
*d1 = sign1 ? -mag1 : mag1;
}
void av1_opfl_build_inter_predictor(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
InterPredParams *inter_pred_params,
CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst,
const MV *const src_mv, int pu_width, int pu_height) {
#if !CONFIG_CWG_F243_REMOVE_ENABLE_ORDER_HINT
assert(cm->seq_params.order_hint_info.enable_order_hint);
#endif // !CONFIG_CWG_F243_REMOVE_ENABLE_ORDER_HINT
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
// Do references one at a time
const int is_compound = 0;
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype),
is_warp_mode(mi->motion_mode) };
const struct scale_factors *const sf =
is_tip
? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]);
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const int row_start = (bw == 4) && ss_y ? -1 : 0;
const int col_start = (bh == 4) && ss_x ? -1 : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, BILINEAR);
inter_pred_params->original_pu_width = pu_width;
inter_pred_params->original_pu_height = pu_height;
inter_pred_params->conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi);
if (inter_pred_params->mode == WARP_PRED) return;
assert(mi->interinter_comp.type == COMPOUND_AVERAGE);
const MV mv_1_16th_pel = convert_mv_to_1_16th_pel(src_mv);
av1_build_one_inter_predictor(pred_dst, bw, &mv_1_16th_pel, inter_pred_params,
xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src,
int16_t *x_grad, int16_t *y_grad,
const int stride, const int bw,
const int bh) {
#if OPFL_BICUBIC_GRAD
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
int id_prev, id_prev2, id_next, id_next2, is_boundary;
int32_t temp = 0;
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_prev = AOMMAX(j - 1, 0);
id_prev2 = AOMMAX(j - 2, 0);
id_next = AOMMIN(j + 1, bw - 1);
id_next2 = AOMMIN(j + 2, bw - 1);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[i * stride + id_next] -
pred_src[i * stride + id_prev]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[i * stride + id_next2] -
pred_src[i * stride + id_prev2]);
x_grad[i * stride + j] =
clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
-OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_prev = AOMMAX(i - 1, 0);
id_prev2 = AOMMAX(i - 2, 0);
id_next = AOMMIN(i + 1, bh - 1);
id_next2 = AOMMIN(i + 2, bh - 1);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[id_next * stride + j] -
pred_src[id_prev * stride + j]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[id_next2 * stride + j] -
pred_src[id_prev2 * stride + j]);
y_grad[i * stride + j] =
clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
-OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL);
}
}
#else
(void)pred_src;
(void)x_grad;
(void)y_grad;
(void)bw;
(void)bh;
#endif // OPFL_BICUBIC_GRAD
}
#if OPFL_BILINEAR_GRAD
void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad,
int16_t *y_grad, const int bw,
const int bh) {
int id_next, id_prev, is_boundary;
int32_t temp = 0;
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_next = AOMMIN(j + 1, bw - 1);
id_prev = AOMMAX(j - 1, 0);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]);
x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
-OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_next = AOMMIN(i + 1, bh - 1);
id_prev = AOMMAX(i - 1, 0);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]);
y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
-OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL);
}
}
}
#endif // OPFL_BILINEAR_GRAD
void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh,
int *grad_prec_bits, int16_t *x_grad,
int16_t *y_grad) {
#if OPFL_BILINEAR_GRAD
(void)is_hbd;
av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh);
#else
int sub_bw = AOMMIN(OPFL_GRAD_UNIT, bw);
int sub_bh = AOMMIN(OPFL_GRAD_UNIT, bh);
for (int i = 0; i < bh; i += sub_bh) {
for (int j = 0; j < bw; j += sub_bw) {
// Reuse pixels in pred_dst to compute gradients
// SIMD code does not support bw=4 or bh=4
if (bw < 8 || bh < 8)
av1_bicubic_grad_interpolation_highbd_c(
pred_dst + i * bw + j, x_grad + i * bw + j, y_grad + i * bw + j, bw,
sub_bw, sub_bh);
else
av1_bicubic_grad_interpolation_highbd(
pred_dst + i * bw + j, x_grad + i * bw + j, y_grad + i * bw + j, bw,
sub_bw, sub_bh);
}
}
#endif // OPFL_BILINEAR_GRAD
*grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2;
}
// Apply average pooling to reduce the sizes of pred difference and gradients
// arrays. It reduces the complexity of the parameter solving routine
void av1_avg_pooling_pdiff_gradients_c(int16_t *pdiff, const int pstride,
int16_t *gx, int16_t *gy,
const int gstride, const int bw,
const int bh, const int n) {
const int bh_low = AOMMIN(bh, n);
const int bw_low = AOMMIN(bw, n);
if (bh == bh_low && bw == bw_low) return;
const int step_h = bh / bh_low;
const int step_w = bw / bw_low;
int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w);
for (int i = 0; i < bh_low; i++) {
for (int j = 0; j < bw_low; j++) {
int32_t tmp_gx = 0, tmp_gy = 0, tmp_pdiff = 0;
for (int k = 0; k < step_h; k++) {
for (int l = 0; l < step_w; l++) {
tmp_gx += gx[(i * step_h + k) * gstride + (j * step_w + l)];
tmp_gy += gy[(i * step_h + k) * gstride + (j * step_w + l)];
tmp_pdiff += pdiff[(i * step_h + k) * pstride + (j * step_w + l)];
}
}
gx[i * gstride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gx, avg_bits);
gy[i * gstride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gy, avg_bits);
pdiff[i * pstride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_pdiff, avg_bits);
}
}
}
void calc_mv_process(int32_t su2, int32_t sv2, int32_t suv, int32_t suw,
int32_t svw, const int d0, const int d1, const int bits,
const int rls_alpha, int *vx0, int *vy0, int *vx1,
int *vy1) {
#if OPFL_REGULARIZED_LS
su2 += rls_alpha;
sv2 += rls_alpha;
#else
(void)rls_alpha;
#endif
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
int shifts[2] = { bits, bits };
int msb_su2 = 1 + get_msb_signed(su2);
int msb_sv2 = 1 + get_msb_signed(sv2);
int msb_suv = 1 + get_msb_signed(suv);
int msb_suw = 1 + get_msb_signed(suw);
int msb_svw = 1 + get_msb_signed(svw);
// Make sure the max bit depth of det, sol[0], and sol[1] are within
// MAX_LS_BITS
int max_mult_msb = AOMMAX(
msb_su2 + msb_sv2, AOMMAX(AOMMAX(msb_sv2 + msb_suw, msb_suv + msb_svw),
AOMMAX(msb_su2 + msb_svw, msb_suv + msb_suw)));
int redbit = AOMMAX(0, max_mult_msb - MAX_LS_BITS + 3) >> 1;
su2 = ROUND_POWER_OF_TWO_SIGNED(su2, redbit);
sv2 = ROUND_POWER_OF_TWO_SIGNED(sv2, redbit);
suv = ROUND_POWER_OF_TWO_SIGNED(suv, redbit);
suw = ROUND_POWER_OF_TWO_SIGNED(suw, redbit);
svw = ROUND_POWER_OF_TWO_SIGNED(svw, redbit);
const int32_t det = su2 * sv2 - suv * suv;
if (det <= 0) {
*vx0 = 0;
*vy0 = 0;
*vx1 = 0;
*vy1 = 0;
return;
}
int32_t sol[2] = { sv2 * suw - suv * svw, su2 * svw - suv * suw };
divide_and_round_array(sol, det, 2, shifts);
const int tmp_vx0 = -sol[0];
const int tmp_vy0 = -sol[1];
*vx0 = tmp_vx0 * d0;
*vy0 = tmp_vy0 * d0;
*vx1 = tmp_vx0 * d1;
*vy1 = tmp_vy0 * d1;
}
// Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of
// d0 * P0 - d1 * P1.
void av1_opfl_mv_refinement(const int16_t *pdiff, int pstride,
const int16_t *gx, const int16_t *gy, int gstride,
int bw, int bh, int d0, int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0, int *vx1,
int *vy1) {
int32_t su2 = 0;
int32_t suv = 0;
int32_t sv2 = 0;
int32_t suw = 0;
int32_t svw = 0;
// TODO(kslu) clean up all grad_bits if later it is still not needed
int grad_bits = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
const int u = gx[i * gstride + j];
const int v = gy[i * gstride + j];
const int w = pdiff[i * pstride + j];
su2 += ROUND_POWER_OF_TWO_SIGNED(u * u, grad_bits);
suv += ROUND_POWER_OF_TWO_SIGNED(u * v, grad_bits);
sv2 += ROUND_POWER_OF_TWO_SIGNED(v * v, grad_bits);
suw += ROUND_POWER_OF_TWO_SIGNED(u * w, grad_bits);
svw += ROUND_POWER_OF_TWO_SIGNED(v * w, grad_bits);
}
#if !CONFIG_F107_GRADIENT_SIMPLIFY
// For every 8 pixels, do a range check and add a downshift if range is
// getting close to the max allowed bit depth
if (bw >= 8 || i % 2 == 1) {
// Do a range check and add a downshift if range is getting close to the
// bit depth cap
int32_t max_autocorr = AOMMAX(su2, sv2);
int32_t max_xcorr = AOMMAX(abs(suw), abs(svw));
if (get_msb_signed(AOMMAX(max_autocorr, max_xcorr)) >=
MAX_OPFL_AUTOCORR_BITS - 2) {
su2 = ROUND_POWER_OF_TWO_SIGNED(su2, 1);
suv = ROUND_POWER_OF_TWO_SIGNED(suv, 1);
sv2 = ROUND_POWER_OF_TWO_SIGNED(sv2, 1);
suw = ROUND_POWER_OF_TWO_SIGNED(suw, 1);
svw = ROUND_POWER_OF_TWO_SIGNED(svw, 1);
grad_bits++;
}
}
#endif // !CONFIG_F107_GRADIENT_SIMPLIFY
}
const int bits = mv_prec_bits + grad_prec_bits;
const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM;
calc_mv_process(su2, sv2, suv, suw, svw, d0, d1, bits, rls_alpha, vx0, vy0,
vx1, vy1);
}
int av1_opfl_mv_refinement_nxn_c(const int16_t *pdiff, int pstride,
const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int n, int d0,
int d1, int grad_prec_bits, int mv_prec_bits,
int mi_x, int mi_y, int mi_cols, int mi_rows,
int build_for_decode, int *vx0, int *vy0,
int *vx1, int *vy1) {
assert(bw % n == 0 && bh % n == 0);
int n_blocks = 0;
for (int i = 0; i < bh; i += n) {
for (int j = 0; j < bw; j += n) {
if (is_subblock_outside(mi_x + j, mi_y + i, mi_cols, mi_rows,
build_for_decode)) {
n_blocks++;
continue;
}
av1_opfl_mv_refinement(pdiff + (i * pstride + j), pstride,
gx + (i * gstride + j), gy + (i * gstride + j),
gstride, n, n, d0, d1, grad_prec_bits,
mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks,
vx1 + n_blocks, vy1 + n_blocks);
n_blocks++;
}
}
return n_blocks;
}
static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd(
const uint16_t *src1, const uint16_t *src2, int src_stride, int16_t *dst1,
int16_t *dst2, int bw, int bh, int d0, int d1, int bd, int centered) {
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
// To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1.
int32_t tmp_dst = d0 * (int32_t)src1[i * src_stride + j] -
d1 * (int32_t)src2[i * src_stride + j];
if (centered) tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, 1);
tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, bd - 8);
dst1[i * bw + j] = clamp(tmp_dst, -OPFL_PRED_MAX, OPFL_PRED_MAX);
if (dst2) {
tmp_dst = (int32_t)src1[i * src_stride + j] -
(int32_t)src2[i * src_stride + j];
tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, bd - 8);
dst2[i * bw + j] = clamp(tmp_dst, -OPFL_PRED_MAX, OPFL_PRED_MAX);
}
}
}
}
void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2,
int src_stride, int16_t *dst1, int16_t *dst2,
int bw, int bh, int d0, int d1, int bd,
int centered) {
compute_pred_using_interp_grad_highbd(src1, src2, src_stride, dst1, dst2, bw,
bh, d0, d1, bd, centered);
}
void av1_get_optflow_based_mv(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
const MB_MODE_INFO *mbmi, int_mv *mv_refined,
int bw, int bh, int mi_x, int mi_y,
int build_for_decode, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func,
int16_t *gx0, int16_t *gy0, int16_t *gx1,
int16_t *gy1, int *vx0, int *vy0, int *vx1,
int *vy1, uint16_t *dst0, uint16_t *dst1,
int dst_stride, int do_pred, int use_4x4,
MV *best_mv_ref, int pu_width, int pu_height) {
const int target_prec = MV_REFINE_PREC_BITS;
const int n = opfl_get_subblock_size(bw, bh, plane, use_4x4);
int n_blocks = (bw / n) * (bh / n);
// Convert output MV to 1/16th pel
assert(MV_REFINE_PREC_BITS >= 3);
const int mv_mult = 1 << (MV_REFINE_PREC_BITS - 3);
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined[mvi * 2].as_mv.row =
clamp(mv_refined[mvi * 2].as_mv.row * mv_mult, MV_1_16TH_PEL_MIN,
MV_1_16TH_PEL_MAX);
mv_refined[mvi * 2].as_mv.col =
clamp(mv_refined[mvi * 2].as_mv.col * mv_mult, MV_1_16TH_PEL_MIN,
MV_1_16TH_PEL_MAX);
mv_refined[mvi * 2 + 1].as_mv.row =
clamp(mv_refined[mvi * 2 + 1].as_mv.row * mv_mult, MV_1_16TH_PEL_MIN,
MV_1_16TH_PEL_MAX);
mv_refined[mvi * 2 + 1].as_mv.col =
clamp(mv_refined[mvi * 2 + 1].as_mv.col * mv_mult, MV_1_16TH_PEL_MIN,
MV_1_16TH_PEL_MAX);
}
// Obtain d0 and d1
int d0, d1;
if (mbmi->ref_frame[0] == TIP_FRAME) {
d0 = cm->tip_ref.ref_offset[0];
d1 = cm->tip_ref.ref_offset[1];
} else {
const RefCntBuffer *const r0_buf =
get_ref_frame_buf(cm, mbmi->ref_frame[0]);
const RefCntBuffer *const r1_buf =
get_ref_frame_buf(cm, mbmi->ref_frame[1]);
d0 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->display_order_hint,
r0_buf->display_order_hint);
d1 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->display_order_hint,
r1_buf->display_order_hint);
}
if (d0 == 0 || d1 == 0) {
// Though OPFL is disabled when the
// distance from either of the reference
// frames is zero, the MV offset buffers
// are still used to update the mv_delta
// buffer. Hence, memset the MV offset
// buffers vx and vy to zero.
av1_zero_array(vx0, n_blocks);
av1_zero_array(vx1, n_blocks);
av1_zero_array(vy0, n_blocks);
av1_zero_array(vy1, n_blocks);
return;
}
reduce_temporal_dist(&d0, &d1);
if (do_pred) {
// Obrain P0 and P1
InterPredParams params0, params1;
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params0, calc_subpel_params_func, 0,
dst0, &best_mv_ref[0], pu_width, pu_height);
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params1, calc_subpel_params_func, 1,
dst1, &best_mv_ref[1], pu_width, pu_height);
}
int grad_prec_bits;
// Compute gradients of P0 and P1 with
// interpolation
(void)gx1;
(void)gy1;
// Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1
DECLARE_ALIGNED(32, int16_t, tmp0[MAX_SB_SIZE * MAX_SB_SIZE]);
DECLARE_ALIGNED(32, int16_t, tmp1[MAX_SB_SIZE * MAX_SB_SIZE]);
av1_copy_pred_array_highbd(dst0, dst1, dst_stride, tmp0, tmp1, bw, bh, d0, d1,
xd->bd, 0);
// Buffers gx0 and gy0 are used to store the
// gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0);
n_blocks = av1_opfl_mv_refinement_nxn(
tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec,
mi_x, mi_y, cm->mi_params.mi_cols, cm->mi_params.mi_rows,
build_for_decode, vx0, vy0, vx1, vy1);
for (int i = 0; i < n_blocks; i++) {
vy0[i] = clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vx0[i] = clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vy1[i] = clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vx1[i] = clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
mv_refined[i * 2].as_mv.row = clamp(mv_refined[i * 2].as_mv.row + vy0[i],
MV_1_16TH_PEL_MIN, MV_1_16TH_PEL_MAX);
mv_refined[i * 2].as_mv.col = clamp(mv_refined[i * 2].as_mv.col + vx0[i],
MV_1_16TH_PEL_MIN, MV_1_16TH_PEL_MAX);
mv_refined[i * 2 + 1].as_mv.row =
clamp(mv_refined[i * 2 + 1].as_mv.row + vy1[i], MV_1_16TH_PEL_MIN,
MV_1_16TH_PEL_MAX);
mv_refined[i * 2 + 1].as_mv.col =
clamp(mv_refined[i * 2 + 1].as_mv.col + vx1[i], MV_1_16TH_PEL_MIN,
MV_1_16TH_PEL_MAX);
}
}
int is_out_of_frame_block(const InterPredParams *inter_pred_params,
int frame_width, int frame_height, int sub_block_id) {
for (int ref = 0; ref < 2; ref++) {
const BacpBlockData *const b_data =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref];
if (b_data->x0 < 0 || b_data->x0 > frame_width - 1 || b_data->x1 < 0 ||
b_data->x1 > frame_width
|| b_data->y0 < 0 || b_data->y0 > frame_height - 1 || b_data->y1 < 0 ||
b_data->y1 > frame_height) {
return 1;
}
}
return 0;
}
// Equation of line: f(x, y) = a[0]*(x -
// a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
void av1_init_wedge_masks() {
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
init_wedge_master_all_masks();
#else
init_wedge_master_masks();
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
init_wedge_masks();
init_smooth_interintra_masks();
}
static AOM_INLINE void build_masked_compound_no_round(
uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride,
const CONV_BUF_TYPE *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, InterPredParams *inter_pred_params) {
const int ssy = (inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_AVERAGE)
? 0
: inter_pred_params->subsampling_y;
const int ssx = (inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_AVERAGE)
? 0
: inter_pred_params->subsampling_x;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
const int mask_stride = block_size_wide[sb_type];
aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
src1_stride, mask, mask_stride, w, h, ssx, ssy,
&inter_pred_params->conv_params,
inter_pred_params->bit_depth);
}
static void handle_edge_cases(uint8_t *mask, int mask_stride, int block_width,
int block_height, int frame_width,
int frame_height, const BacpBlockData *b_data_0,
const BacpBlockData *b_data_1,
const INTERINTER_COMPOUND_DATA *comp_data) {
// Edge case, just handle with naive masking method.
for (int i = 0; i < block_height; ++i) {
for (int j = 0; j < block_width; ++j) {
int x = b_data_0->x0 + j;
int y = b_data_0->y0 + i;
int p0_available =
(x >= 0 && x < frame_width && y >= 0 && y < frame_height);
x = b_data_1->x0 + j;
y = b_data_1->y0 + i;
int p1_available =
(x >= 0 && x < frame_width && y >= 0 && y < frame_height);
if (p0_available && !p1_available) {
mask[j] = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT;
} else if (!p0_available && p1_available) {
mask[j] = DEFAULT_IMP_MSK_WT;
} else if (comp_data->type == COMPOUND_AVERAGE) {
mask[j] = AOM_BLEND_A64_MAX_ALPHA >> 1;
}
}
mask += mask_stride;
}
}
static void handle_general_cases(uint8_t *mask, int mask_stride,
int block_width, int block_height,
int frame_width, int frame_height,
const BacpBlockData *b_data_0,
const BacpBlockData *b_data_1) {
int p0_x_start = b_data_0->x0 < 0 ? 0 : frame_width - b_data_0->x0;
p0_x_start = AOMMIN(p0_x_start, block_width);
p0_x_start = AOMMAX(p0_x_start, 0);
int p0_x_end = b_data_0->x1 > frame_width ? block_width : -b_data_0->x0;
p0_x_end = AOMMAX(p0_x_end, 0);
p0_x_end = AOMMIN(p0_x_end, block_width);
int p0_y_start = b_data_0->y0 < 0 ? 0 : frame_height - b_data_0->y0;
p0_y_start = AOMMIN(p0_y_start, block_height);
p0_y_start = AOMMAX(p0_y_start, 0);
int p0_y_end = b_data_0->y1 > frame_height ? block_height : -b_data_0->y0;
p0_y_end = AOMMAX(p0_y_end, 0);
p0_y_end = AOMMIN(p0_y_end, block_height);
int p1_x_start = b_data_1->x0 < 0 ? 0 : frame_width - b_data_1->x0;
p1_x_start = AOMMIN(p1_x_start, block_width);
p1_x_start = AOMMAX(p1_x_start, 0);
int p1_x_end = b_data_1->x1 > frame_width ? block_width : -b_data_1->x0;
p1_x_end = AOMMAX(p1_x_end, 0);
p1_x_end = AOMMIN(p1_x_end, block_width);
int p1_y_start = b_data_1->y0 < 0 ? 0 : frame_height - b_data_1->y0;
p1_y_start = AOMMIN(p1_y_start, block_height);
p1_y_start = AOMMAX(p1_y_start, 0);
int p1_y_end = b_data_1->y1 > frame_height ? block_height : -b_data_1->y0;
p1_y_end = AOMMAX(p1_y_end, 0);
p1_y_end = AOMMIN(p1_y_end, block_height);
// Initialize the mask block
for (int idy = 0; idy < block_height; ++idy)
memset(mask + mask_stride * idy, AOM_BLEND_A64_MAX_ALPHA >> 1, block_width);
int line_start = (p1_x_start == 0) ? p1_x_end : 0;
int line_end = (p1_x_start == 0) ? block_width : p1_x_start;
int mem_width = line_end - line_start;
int row_start = (p1_y_start == 0) ? AOMMAX(p0_y_start, p1_y_end) : p0_y_start;
int row_end = (p1_y_start == 0) ? p0_y_end : AOMMIN(p0_y_end, p1_y_start);
if (mem_width > 0) {
for (int idy = row_start; idy < row_end; ++idy) {
memset(mask + mask_stride * idy + line_start, DEFAULT_IMP_MSK_WT,
mem_width);
}
}
line_start = (p0_x_start == 0) ? p0_x_end : 0;
line_end = (p0_x_start == 0) ? block_width : p0_x_start;
mem_width = line_end - line_start;
row_start = (p0_y_start == 0) ? AOMMAX(p1_y_start, p0_y_end) : p1_y_start;
row_end = (p0_y_start == 0) ? p1_y_end : AOMMIN(p1_y_end, p0_y_start);
if (mem_width > 0) {
for (int idy = row_start; idy < row_end; ++idy) {
memset(mask + mask_stride * idy + line_start,
AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT, mem_width);
}
}
int start_idx = (p1_x_start == 0) ? AOMMAX(p0_x_start, p1_x_end) : p0_x_start;
int end_idx = (p1_x_start == 0) ? p0_x_end : AOMMIN(p0_x_end, p1_x_start);
int len = end_idx - start_idx;
if (len > 0) {
for (int idy = 0; idy < block_height; ++idy) {
int value = DEFAULT_IMP_MSK_WT;
if (idy >= p1_y_start && idy < p1_y_end)
value = AOM_BLEND_A64_MAX_ALPHA >> 1;
memset(mask + mask_stride * idy + start_idx, value, len);
}
}
start_idx = (p0_x_start == 0) ? AOMMAX(p1_x_start, p0_x_end) : p1_x_start;
end_idx = (p0_x_start == 0) ? p1_x_end : AOMMIN(p1_x_end, p0_x_start);
len = end_idx - start_idx;
if (len > 0) {
for (int idy = 0; idy < block_height; ++idy) {
int value = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT;
if (idy >= p0_y_start && idy < p0_y_end)
value = AOM_BLEND_A64_MAX_ALPHA >> 1;
memset(mask + mask_stride * idy + start_idx, value, len);
}
}
}
void make_masked_inter_predictor(const uint16_t *pre, int pre_stride,
uint16_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params,
int use_bacp, int sub_block_id) {
const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp;
BLOCK_SIZE sb_type = inter_pred_params->sb_type;
// We're going to call
// av1_make_inter_predictor to generate a
// prediction into a temporary buffer, then
// will blend that temporary buffer with
// that from the other reference.
DECLARE_ALIGNED(32, uint16_t, tmp_buf[MAX_SB_SQUARE]);
const int tmp_buf_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst;
int org_dst_stride = inter_pred_params->conv_params.dst_stride;
CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf;
inter_pred_params->conv_params.dst = tmp_buf16;
inter_pred_params->conv_params.dst_stride = tmp_buf_stride;
assert(inter_pred_params->conv_params.do_average == 0);
// This will generate a prediction in
// tmp_buf for the second reference
av1_make_inter_predictor(pre, pre_stride, tmp_buf, MAX_SB_SIZE,
inter_pred_params, subpel_params);
if (!inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_DIFFWTD) {
av1_build_compound_diffwtd_mask_d16(
comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride,
tmp_buf16, tmp_buf_stride, inter_pred_params->block_height,
inter_pred_params->block_width, &inter_pred_params->conv_params,
inter_pred_params->bit_depth);
}
// Mask is generated from luma and reuse for
// chroma
const int generate_mask_for_this_plane =
(!inter_pred_params->conv_params.plane ||
comp_data->type == COMPOUND_AVERAGE);
if (use_bacp && generate_mask_for_this_plane) {
uint8_t *mask = comp_data->seg_mask;
int mask_stride = block_size_wide[sb_type];
BacpBlockData *b_data_0 =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 0];
BacpBlockData *b_data_1 =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 1];
// Take out this area in p0
int frame_width = inter_pred_params->ref_frame_buf.width;
int frame_height = inter_pred_params->ref_frame_buf.height;
int block_width = inter_pred_params->block_width;
int block_height = inter_pred_params->block_height;
if ((b_data_0->x0 < 0 && b_data_0->x1 > frame_width) ||
(b_data_1->x0 < 0 && b_data_1->x1 > frame_width) ||
(b_data_0->y0 < 0 && b_data_0->y1 > frame_height) ||
(b_data_1->y0 < 0 && b_data_1->y1 > frame_height)) {
handle_edge_cases(mask, mask_stride, block_width, block_height,
frame_width, frame_height, b_data_0, b_data_1,
comp_data);
} else {
handle_general_cases(mask, mask_stride, block_width, block_height,
frame_width, frame_height, b_data_0, b_data_1);
}
}
build_masked_compound_no_round(
dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride,
comp_data, sb_type, inter_pred_params->block_height,
inter_pred_params->block_width, inter_pred_params);
// restore to previous state
inter_pred_params->conv_params.dst = org_dst;
inter_pred_params->conv_params.dst_stride = org_dst_stride;
}
// Makes the interpredictor for the region by
// dividing it up into nxn blocks and running
// the interpredictor code on each one.
void make_inter_pred_of_nxn(
uint16_t *dst, int dst_stride, int_mv *const mv_refined,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
int build_for_decode, const AV1_COMMON *cm, int pu_width, int plane,
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func,
int use_4x4, SubpelParams *subpel_params, MB_MODE_INFO *mi, int pu_height,
const MV mi_mv[2], int use_sub_pad) {
int opfl_sub_bw = OF_BSIZE;
int opfl_sub_bh = OF_BSIZE;
opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh);
int n_blocks = 0;
int bw = inter_pred_params->orig_block_width;
int bh = inter_pred_params->orig_block_height;
int sub_bw = opfl_sub_bw;
int sub_bh = opfl_sub_bh;
assert(bw % sub_bw == 0);
assert(bh % sub_bh == 0);
CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst;
inter_pred_params->block_width = sub_bw;
inter_pred_params->block_height = sub_bh;
MV *subblock_mv;
uint16_t *pre;
int src_stride = 0;
MV avg_mv;
// Process whole nxn blocks.
for (int j = 0; j < bh; j += sub_bh) {
for (int i = 0; i < bw; i += sub_bw) {
int delta_idx = (j / sub_bh) * (pu_width / sub_bw) + (i / sub_bw);
ReferenceArea ref_area_opfl;
if (sub_bh >= 8 && sub_bw >= 8 && use_sub_pad) {
av1_get_reference_area_with_padding_single(
cm, xd, plane, mi, mi_mv[ref], sub_bw, sub_bh, mi_x + i, mi_y + j,
&ref_area_opfl, pu_width, pu_height, ref);
inter_pred_params->use_ref_padding = 1;
inter_pred_params->ref_area = &ref_area_opfl;
}
const int x = mi_x + i * (1 << inter_pred_params->subsampling_x);
const int y = mi_y + j * (1 << inter_pred_params->subsampling_y);
if (is_subblock_outside(x, y, cm->mi_params.mi_cols,
cm->mi_params.mi_rows, build_for_decode)) {
n_blocks++;
dst += sub_bw;
inter_pred_params->conv_params.dst += sub_bw;
inter_pred_params->pix_col += sub_bw;
continue;
}
if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) {
avg_mv.row =
ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.row +
mv_refined[1 * 2 + ref].as_mv.row +
mv_refined[2 * 2 + ref].as_mv.row +
mv_refined[3 * 2 + ref].as_mv.row,
2);
avg_mv.col =
ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.col +
mv_refined[1 * 2 + ref].as_mv.col +
mv_refined[2 * 2 + ref].as_mv.col +
mv_refined[3 * 2 + ref].as_mv.col,
2);
subblock_mv = &avg_mv;
} else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4) {
const int sub_idx = delta_idx * 2;
avg_mv.row = ROUND_POWER_OF_TWO_SIGNED(
mv_refined[sub_idx * 2 + ref].as_mv.row +
mv_refined[(sub_idx + 1) * 2 + ref].as_mv.row,
1);
avg_mv.col = ROUND_POWER_OF_TWO_SIGNED(
mv_refined[sub_idx * 2 + ref].as_mv.col +
mv_refined[(sub_idx + 1) * 2 + ref].as_mv.col,
1);
subblock_mv = &avg_mv;
} else {
subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv);
}
const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2);
const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2);
inter_pred_params->dist_to_top_edge = -GET_MV_SUBPEL(mi_y + j);
inter_pred_params->dist_to_bottom_edge =
GET_MV_SUBPEL(height - bh - mi_y - j);
inter_pred_params->dist_to_left_edge = -GET_MV_SUBPEL(mi_x + i);
inter_pred_params->dist_to_right_edge =
GET_MV_SUBPEL(width - bw - mi_x - i);
calc_subpel_params_func(subblock_mv, inter_pred_params, xd, mi_x + i,
mi_y + j, ref, 1, mc_buf, &pre, subpel_params,
&src_stride);
int use_bacp = 0;
assert(inter_pred_params->mask_comp.type == COMPOUND_AVERAGE);
assert(inter_pred_params->comp_mode == UNIFORM_COMP);
int stored_do_average = inter_pred_params->conv_params.do_average;
InterCompMode stored_comp_mode = inter_pred_params->comp_mode;
uint8_t *stored_seg_mask = inter_pred_params->mask_comp.seg_mask;
if (inter_pred_params->border_data.enable_bacp) {
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x0 =
subpel_params->x0;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x1 =
subpel_params->x1;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y0 =
subpel_params->y0;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y1 =
subpel_params->y1;
if (ref == 1) {
use_bacp = is_out_of_frame_block(
inter_pred_params, inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height, n_blocks);
if (use_bacp &&
inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = 0;
inter_pred_params->comp_mode = MASK_COMP;
inter_pred_params->mask_comp.seg_mask = xd->seg_mask;
}
}
}
assert(IMPLIES(ref == 0, !use_bacp));
if (use_bacp) {
assert(inter_pred_params->comp_mode == MASK_COMP);
make_masked_inter_predictor(pre, src_stride, dst, dst_stride,
inter_pred_params, subpel_params, use_bacp,
n_blocks);
} else {
av1_make_inter_predictor(pre, src_stride, dst, dst_stride,
inter_pred_params, subpel_params);
}
// Restored to original
// inter_pred_params
if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = stored_do_average;
inter_pred_params->comp_mode = stored_comp_mode;
inter_pred_params->mask_comp.seg_mask = stored_seg_mask;
}
n_blocks++;
dst += sub_bw;
inter_pred_params->conv_params.dst += sub_bw;
inter_pred_params->pix_col += sub_bw;
}
dst -= bw;
inter_pred_params->conv_params.dst -= bw;
inter_pred_params->pix_col -= bw;
dst += sub_bh * dst_stride;
inter_pred_params->conv_params.dst +=
sub_bh * inter_pred_params->conv_params.dst_stride;
inter_pred_params->pix_row += sub_bh;
}
inter_pred_params->conv_params.dst = orig_conv_dst;
}
// Use a second pass of motion compensation to
// rebuild inter predictor
void av1_opfl_rebuild_inter_predictor(
uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
int build_for_decode, const AV1_COMMON *cm, int pu_width, int ref,
uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func,
int use_4x4, MB_MODE_INFO *mi, int pu_height, const MV mi_mv[2],
int use_sub_pad) {
SubpelParams subpel_params;
make_inter_pred_of_nxn(dst, dst_stride, mv_refined, inter_pred_params, xd,
mi_x, mi_y, build_for_decode, cm, pu_width, plane, ref,
mc_buf, calc_subpel_params_func, use_4x4,
&subpel_params, mi, pu_height, mi_mv, use_sub_pad);
}
void av1_build_one_inter_predictor(
uint16_t *dst, int dst_stride, const MV *const src_mv,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref,
1 /* is_mv_1_16th_pel */, mc_buf, &src,
&subpel_params, &src_stride);
int use_bacp = 0;
int sub_block_id = 0;
if (inter_pred_params->border_data.enable_bacp) {
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x0 =
subpel_params.x0;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x1 =
subpel_params.x1;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y0 =
subpel_params.y0;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y1 =
subpel_params.y1;
if (ref == 1) {
use_bacp = is_out_of_frame_block(
inter_pred_params, inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height, sub_block_id);
if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = 0;
inter_pred_params->comp_mode = MASK_COMP;
inter_pred_params->mask_comp.seg_mask = xd->seg_mask;
}
}
}
assert(IMPLIES(ref == 0, !use_bacp));
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP) {
av1_make_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
assert(IMPLIES(use_bacp, ref == 0));
assert(use_bacp == 0);
} else {
make_masked_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params, use_bacp, 0);
assert(IMPLIES(inter_pred_params->border_data.enable_bacp, ref == 1));
}
}
// The bellow arrays are used to map the
// number of BAWP reference samples to a 2^N
// number for each side (left or above).
static const uint8_t blk_size_log2_bawp[BAWP_MAX_REF_NUMB + 1] = {
0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4
};
static const uint8_t log_to_blk_size[5] = { 0, 2, 4, 8, 16 };
// The below function is used to allocate the
// number of reference samples for the left
// and above based on the availablity of the
// left and above and the total number of
// available samples. The final number should
// be 0, 4, 8, 16 or 32 in total.
static void derive_number_ref_samples_bawp(bool above_valid, bool left_valid,
int width, int height, int *numb_up,
int *numb_left) {
// If the number of adjusted number of
// samples is zero, set the availability to
// be false
const bool above_available = width ? above_valid : false;
const bool left_available = height ? left_valid : false;
// If both left and above references are
// availalbe, the numbers of reference
// samples in each side are calculated based
// on the clamped width and clamped height.
// Else, only the reference samples in the
// available side is used.
*numb_up = -1;
*numb_left = -1;
if (above_available && left_available) {
if (width == 16 && height == 16) {
*numb_up = 16;
*numb_left = 16; // Using 32 samples in
// total for 16x16
} else if (width > 4 && height > 4) {
*numb_up = 8;
*numb_left = 8; // (16) 8x8, 8x16, 16x8
} else if (width < 16 && height < 16) {
*numb_up = 4;
*numb_left = 4; // (8) 4x8, 8x4
} else if (width == 16) {
*numb_up = 16;
*numb_left = 0; // (16) 16x4
} else {
*numb_up = 0;
*numb_left = 16; // (16) 4x16
}
} else if (above_available) {
*numb_up = width;
*numb_left = 0;
} else if (left_available) {
*numb_up = 0;
*numb_left = height;
} else {
*numb_up = 0;
*numb_left = 0;
}
}
// Derive the scaling factor and offset of
// block adaptive weighted prediction mode.
// One row from the top boundary and one
// column from the left boundary are used in
// the less square error process.
static void derive_bawp_parameters(MACROBLOCKD *xd, uint16_t *recon_top,
uint16_t *recon_left, int rec_stride,
uint16_t *ref_top, uint16_t *ref_left,
int ref_stride, int ref, int plane, int bw,
int bh) {
MB_MODE_INFO *mbmi = xd->mi[0];
if (!mbmi->morph_pred) assert(mbmi->bawp_flag[0] >= 1);
// only integer position of reference, may
// need to consider fractional position of
// ref samples
int count = 0;
int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0;
const int max_numb_each_size =
plane ? (BAWP_MAX_REF_NUMB >> 1) : BAWP_MAX_REF_NUMB;
// Clamp the bw and bh to use up to 16
// samples in the left and above
bw = AOMMIN(bw, max_numb_each_size);
bh = AOMMIN(bh, max_numb_each_size);
// Make the number of samples in each side
// to 4, 8, or 16 by padding. If the number
// of sample in a side is smaller than 3,
// dont use the reference in this side (set
// the corresponding elements in
// blk_size_log2_bawp to zero).
const int log2_width = blk_size_log2_bawp[bw];
const int width = log_to_blk_size[log2_width];
const int log2_height = blk_size_log2_bawp[bh];
const int height = log_to_blk_size[log2_height];
int numb_up = 0, numb_left = 0;
derive_number_ref_samples_bawp(xd->up_available, xd->left_available, width,
height, &numb_up, &numb_left);
uint16_t ref_pad[BAWP_MAX_REF_NUMB] = { 0 };
uint16_t recon_pad[BAWP_MAX_REF_NUMB] = { 0 };
if (numb_up) {
const int step = (int)width / numb_up;
const int start = step == 1 ? 0 : step >> 1;
const int delta_w = width - bw;
for (int i = 0; i < bw; ++i) {
ref_pad[i] = ref_top[i];
recon_pad[i] = recon_top[i];
}
// Padding
if (delta_w > 0) {
for (int i = 0; i < delta_w; i++) {
ref_pad[i + bw] = ref_pad[i];
recon_pad[i + bw] = recon_pad[i];
}
}
for (int i = start; i < width; i = i + step) {
sum_x += ref_pad[i];
sum_y += recon_pad[i];
sum_xy += ref_pad[i] * recon_pad[i];
sum_xx += ref_pad[i] * ref_pad[i];
}
count += numb_up;
}
if (numb_left) {
const int step_left = (int)height / numb_left;
const int start_left = step_left == 1 ? 0 : step_left >> 1;
const int delta = height - bh;
for (int i = 0; i < bh; ++i) {
ref_pad[i] = ref_left[0];
recon_pad[i] = recon_left[0];
recon_left += rec_stride;
ref_left += ref_stride;
}
// Padding
if (delta > 0) {
for (int i = 0; i < delta; i++) {
ref_pad[i + bh] = ref_pad[i];
recon_pad[i + bh] = recon_pad[i];
}
}
for (int i = start_left; i < height; i = i + step_left) {
sum_x += ref_pad[i];
sum_y += recon_pad[i];
sum_xy += ref_pad[i] * recon_pad[i];
sum_xx += ref_pad[i] * ref_pad[i];
}
count += numb_left;
}
const int16_t shift = 8; // maybe a smaller value can be used
if (mbmi->bawp_flag[0] > 1 && plane == 0) {
if (count > 0) {
const int beta = derive_linear_parameters_beta(
sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]);
mbmi->bawp_beta[plane][ref] = beta;
} else {
mbmi->bawp_beta[plane][ref] = -(1 << shift);
}
} else {
if (count > 0) {
if (plane == 0) {
const int16_t alpha = derive_linear_parameters_alpha(
sum_x, sum_y, sum_xx, sum_xy, count, shift);
mbmi->bawp_alpha[plane][ref] = (alpha == 0) ? (1 << shift) : alpha;
} else {
mbmi->bawp_alpha[plane][ref] = mbmi->bawp_alpha[0][ref];
}
const int beta = derive_linear_parameters_beta(
sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]);
mbmi->bawp_beta[plane][ref] = beta;
} else {
mbmi->bawp_alpha[plane][ref] = 1 << shift;
mbmi->bawp_beta[plane][ref] = -(1 << shift);
}
}
}
// Generate weighted prediction of the block.
void av1_make_bawp_block_c(uint16_t *dst, int dst_stride, int16_t alpha,
int32_t beta, int shift, int bw, int bh, int bd) {
for (int j = 0; j < bh; ++j) {
for (int i = 0; i < bw; ++i) {
dst[j * dst_stride + i] = clip_pixel_highbd(
(dst[j * dst_stride + i] * alpha + beta) >> shift, bd);
}
}
}
// generate inter prediction of a block coded
// in bwap mode enabled
void av1_build_one_bawp_inter_predictor(
uint16_t *dst, int dst_stride, const MV *const src_mv,
InterPredParams *inter_pred_params, const AV1_COMMON *cm, MACROBLOCKD *xd,
const BUFFER_SET *dst_orig, int bw, int bh, int mi_x, int mi_y, int ref,
int plane, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, 0,
mc_buf, &src, &subpel_params, &src_stride);
assert(inter_pred_params->comp_mode == UNIFORM_SINGLE);
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP) {
av1_make_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
} else {
make_masked_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params, 0, 0);
}
const int shift = 8;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int x_off = GET_MV_RAWPEL(mbmi->mv[ref].as_mv.col);
const int y_off = GET_MV_RAWPEL(mbmi->mv[ref].as_mv.row);
const int x_off_p = x_off >> inter_pred_params->subsampling_x;
const int y_off_p = y_off >> inter_pred_params->subsampling_y;
const int mi_x_p = mi_x >> inter_pred_params->subsampling_x;
const int mi_y_p = mi_y >> inter_pred_params->subsampling_y;
#if CONFIG_F054_PIC_BOUNDARY
const int width_p = pd->dst.width;
const int height_p = pd->dst.height;
#else
const int width_p = cm->width >> inter_pred_params->subsampling_x;
const int height_p = cm->height >> inter_pred_params->subsampling_y;
#endif // CONFIG_F054_PIC_BOUNDARY
int ref_w = bw;
if ((mi_x_p + bw) >= width_p) ref_w = width_p - mi_x_p;
int ref_h = bh;
if ((mi_y_p + bh) >= height_p) ref_h = height_p - mi_y_p;
if ((mi_x_p + x_off_p - BAWP_REF_LINES) < 0 ||
(mi_y_p + y_off_p - BAWP_REF_LINES) < 0 || ref_w <= 0 || ref_h <= 0 ||
(mi_x_p + ref_w + x_off_p) >= width_p ||
(mi_y_p + ref_h + y_off_p) >= height_p) {
mbmi->bawp_alpha[plane][ref] = 1 << shift;
mbmi->bawp_beta[plane][ref] = -(1 << shift);
return;
} else {
uint16_t *recon_buf = xd->plane[plane].dst.buf;
int recon_stride = xd->plane[plane].dst.stride;
if (dst_orig != NULL) {
recon_buf = dst_orig->plane[plane];
recon_stride = dst_orig->stride[plane];
}
uint16_t *recon_top = recon_buf - BAWP_REF_LINES * recon_stride;
uint16_t *recon_left = recon_buf - BAWP_REF_LINES;
// the picture boundary limitation to be
// checked.
const int ref_stride = pd->pre[ref].stride;
uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p;
uint16_t *ref_top = ref_buf - BAWP_REF_LINES * ref_stride;
uint16_t *ref_left = ref_buf - BAWP_REF_LINES;
if (mbmi->bawp_flag[0] > 1 && plane == 0) {
const int first_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[0]];
const int bawp_scale_table[3][EXPLICIT_BAWP_SCALE_CNT] = { { -1, 1 },
{ -2, 2 },
{ -3, 3 } };
const int list_index =
(mbmi->mode == NEARMV)
? 0
: ((mbmi->mode == NEWMV && mbmi->use_amvd) ? 1 : 2);
int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag[0] - 2];
const int delta_sign = delta_scales > 0 ? 1 : -1;
const int delta_magtitude = delta_sign * delta_scales;
if (first_ref_dist > 4) delta_scales = delta_sign * (delta_magtitude + 1);
mbmi->bawp_alpha[plane][ref] = 256 + (delta_scales * 16);
}
derive_bawp_parameters(xd, recon_top, recon_left, recon_stride, ref_top,
ref_left, ref_stride, ref, plane, ref_w, ref_h);
}
int16_t alpha = mbmi->bawp_alpha[plane][ref];
int32_t beta = mbmi->bawp_beta[plane][ref];
av1_make_bawp_block(dst, dst_stride, alpha, beta, shift, bw, bh, xd->bd);
}
// True if the following hold:
// 1. Not intrabc
// 2. At least one dimension is size 4 with
// subsampling
// 3. If sub-sampled, none of the previous
// blocks around the sub-sample
// are intrabc or inter-blocks
static bool is_sub8x8_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const MB_MODE_INFO *mi, int plane, int is_intrabc) {
#if CONFIG_CHROMA_MERGE_LATENCY_FIX
(void)xd;
#endif // CONFIG_CHROMA_MERGE_LATENCY_FIX
if (is_intrabc
#if CONFIG_CHROMA_MERGE_LATENCY_FIX
&& frame_is_intra_only(cm)
#endif // CONFIG_CHROMA_MERGE_LATENCY_FIX
) {
return false;
}
if (!(plane &&
(mi->sb_type[PLANE_TYPE_UV] != mi->chroma_ref_info.bsize_base)))
return false;
#if CONFIG_CHROMA_MERGE_LATENCY_FIX
assert(!frame_is_intra_only(cm));
#else
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_row, mi_col) may not be the correct coordinates
// for the top-left corner of the prediction source. So, we need to find the
// correct top-left corner (row_start, col_start).
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int row_start =
plane ? mi->chroma_ref_info.mi_row_chroma_base - mi_row : 0;
const int col_start =
plane ? mi->chroma_ref_info.mi_col_chroma_base - mi_col : 0;
const BLOCK_SIZE plane_bsize =
plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y];
const int plane_mi_height = mi_size_high[plane_bsize];
const int plane_mi_width = mi_size_wide[plane_bsize];
const int mi_rows = cm->mi_params.mi_rows;
const int mi_cols = cm->mi_params.mi_cols;
// Scan through all the blocks in the current chroma unit
for (int row = 0; row < plane_mi_height; ++row) {
const int row_coord = row_start + row;
if (mi_row + row_coord >= mi_rows) break;
for (int col = 0; col < plane_mi_width; ++col) {
const int col_coord = col_start + col;
if (mi_col + col_coord >= mi_cols) break;
// For the blocks at the lower right of the final chroma block, the mis
// are not set up correctly yet, so we do not check them.
if ((row_coord >= 0 && col_coord > 0) ||
(col_coord >= 0 && row_coord > 0)) {
break;
}
const MB_MODE_INFO *this_mbmi =
xd->mi[row_coord * xd->mi_stride + col_coord];
assert(this_mbmi != NULL);
if (!is_inter_block(this_mbmi, xd->tree_type)) return false;
if (is_intrabc_block(this_mbmi, xd->tree_type)) return false;
}
}
#endif // CONFIG_CHROMA_MERGE_LATENCY_FIX
return true;
}
static void build_inter_predictors_sub8x8(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const bool ss_x = pd->subsampling_x;
const bool ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize =
plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y];
const int plane_mi_height = mi_size_high[plane_bsize];
const int plane_mi_width = mi_size_wide[plane_bsize];
assert(!is_intrabc_block(mi, xd->tree_type));
// For sub8x8 chroma blocks, we may be
// covering more than one luma block's worth
// of pixels. Thus (mi_x, mi_y) may not be
// the correct coordinates for the top-left
// corner of the prediction source - the
// correct top-left corner is at (pre_x,
// pre_y).
const int row_start =
plane ? (mi->chroma_ref_info.mi_row_chroma_base - xd->mi_row) : 0;
const int col_start =
plane ? (mi->chroma_ref_info.mi_col_chroma_base - xd->mi_col) : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
const int mi_stride = xd->mi_stride;
const int mi_rows = cm->mi_params.mi_rows;
const int mi_cols = cm->mi_params.mi_cols;
const int mb_to_top_edge_start = xd->mb_to_top_edge;
const int mb_to_left_edge_start = xd->mb_to_left_edge;
const int mb_to_bottom_edge_start = xd->mb_to_bottom_edge;
const int mb_to_right_edge_start = xd->mb_to_right_edge;
// Row progress keeps track of which mi
// block in the row has been set.
SUB_8_BITMASK_T row_progress[MAX_MI_LUMA_SIZE_FOR_SUB_8] = { 0 };
assert(plane_mi_height <= MAX_MI_LUMA_SIZE_FOR_SUB_8);
assert(plane_mi_width <= MAX_MI_LUMA_SIZE_FOR_SUB_8);
assert(MAX_MI_LUMA_SIZE_FOR_SUB_8 == SUB_8_BITMASK_SIZE);
for (int mi_row = 0; mi_row < plane_mi_height; mi_row++) {
if (xd->mi_row + row_start + mi_row >= mi_rows) break;
for (int mi_col = 0; mi_col < plane_mi_width; mi_col++) {
if (xd->mi_col + col_start + mi_col >= mi_cols) break;
const SUB_8_BITMASK_T check_flag = 1 << (SUB_8_BITMASK_SIZE - 1 - mi_col);
if (row_progress[mi_row] & check_flag) {
continue;
}
const MB_MODE_INFO *this_mbmi =
xd->mi[(row_start + mi_row) * mi_stride + (col_start + mi_col)];
assert(this_mbmi != NULL);
const BLOCK_SIZE bsize = this_mbmi->sb_type[PLANE_TYPE_Y];
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int row = row_start + mi_row + xd->mi_row;
int col = col_start + mi_col + xd->mi_col;
xd->mb_to_top_edge = -GET_MV_SUBPEL(row * MI_SIZE);
xd->mb_to_bottom_edge =
GET_MV_SUBPEL((cm->mi_params.mi_rows - mi_height - row) * MI_SIZE);
xd->mb_to_left_edge = -GET_MV_SUBPEL((col * MI_SIZE));
xd->mb_to_right_edge =
GET_MV_SUBPEL((cm->mi_params.mi_cols - mi_width - col) * MI_SIZE);
// The flag here is a block of mi_width
// many 1s offset by the mi_col. For
// example, if the current mi_col is 2,
// and the mi_width is 2, then the flag
// will be 00110000. We or this with
// row_progress to update the blocks
// that have been coded. Note that
// because we are always coding in a
// causal order, we could technically
// simplify the bitwise operation, and
// use the flag 11110000 in the above
// example instead. However, we are not
// taking this approach here to keep the
// logic simpler.
const SUB_8_BITMASK_T set_flag =
((SUB_8_BITMASK_ON << (SUB_8_BITMASK_SIZE - mi_width)) &
SUB_8_BITMASK_ON) >>
mi_col;
for (int mi_row_offset = 0; mi_row_offset < mi_height; mi_row_offset++) {
row_progress[mi_row + mi_row_offset] |= set_flag;
}
assert(is_inter_block(this_mbmi, xd->tree_type));
const int chroma_width = block_size_wide[bsize] >> ss_x;
const int chroma_height = block_size_high[bsize] >> ss_y;
const int pixel_row = (MI_SIZE * mi_row >> ss_y);
const int pixel_col = (MI_SIZE * mi_col >> ss_x);
// TODO(yuec): enabling compound
// prediction in none sub8x8 mbs in the
// group
bool is_compound = 0;
struct buf_2d *const dst_buf = &pd->dst;
uint16_t *dst = dst_buf->buf + dst_buf->stride * pixel_row + pixel_col;
int ref = 0;
const RefCntBuffer *ref_buf =
get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *ref_scale_factors =
get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *const sf = ref_scale_factors;
#if CONFIG_F054_PIC_BOUNDARY
const struct buf_2d pre_buf = {
NULL,
(plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
ref_buf->buf.uv_width,
ref_buf->buf.uv_height,
ref_buf->buf.uv_crop_width,
ref_buf->buf.uv_crop_height,
ref_buf->buf.uv_stride,
};
#else
const struct buf_2d pre_buf = {
NULL,
(plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
ref_buf->buf.uv_crop_width,
ref_buf->buf.uv_crop_height,
ref_buf->buf.uv_crop_width,
ref_buf->buf.uv_crop_height,
ref_buf->buf.uv_stride,
};
#endif // CONFIG_F054_PIC_BOUNDARY
const MV mv = this_mbmi->mv[ref].as_mv;
InterPredParams inter_pred_params;
av1_init_inter_params(
&inter_pred_params, chroma_width, chroma_height, pre_y + pixel_row,
pre_x + pixel_col, pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, &pre_buf, this_mbmi->interp_fltr);
inter_pred_params.conv_params =
get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd);
if (is_thin_4xn_nx4_block(bsize) && has_second_ref(this_mbmi)) {
assert(this_mbmi->interinter_comp.type != COMPOUND_DIFFWTD);
}
const MV mv_1_16th_pel = convert_mv_to_1_16th_pel(&mv);
av1_build_one_inter_predictor(dst, dst_buf->stride, &mv_1_16th_pel,
&inter_pred_params, xd, mi_x + pixel_col,
mi_y + pixel_row, ref, mc_buf,
calc_subpel_params_func);
}
}
xd->mb_to_top_edge = mb_to_top_edge_start;
xd->mb_to_bottom_edge = mb_to_bottom_edge_start;
xd->mb_to_left_edge = mb_to_left_edge_start;
xd->mb_to_right_edge = mb_to_right_edge_start;
}
// TODO(any): make a simd function for this.
static inline void aom_memset16_optimized(uint16_t *dst, uint16_t value,
int count) {
while (count >= 8) {
dst[0] = value;
dst[1] = value;
dst[2] = value;
dst[3] = value;
dst[4] = value;
dst[5] = value;
dst[6] = value;
dst[7] = value;
dst += 8;
count -= 8;
}
while (count >= 4) {
dst[0] = value;
dst[1] = value;
dst[2] = value;
dst[3] = value;
dst += 4;
count -= 4;
}
while (count > 0) {
*dst++ = value;
count--;
}
}
AOM_INLINE void highbd_build_mc_border(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int x,
int y, int b_w, int b_h, int w, int h) {
// Get a pointer to the start of the real
// data for this row.
const uint16_t *ref_row = src - x - y * src_stride;
if (y >= h)
ref_row += (h - 1) * src_stride;
else if (y > 0)
ref_row += y * src_stride;
do {
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > b_w) left = b_w;
if (x + b_w > w) right = x + b_w - w;
if (right > b_w) right = b_w;
copy = b_w - left - right;
if (left) aom_memset16_optimized(dst, ref_row[0], left);
if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
if (right) aom_memset16_optimized(dst + left + copy, ref_row[w - 1], right);
dst += dst_stride;
++y;
if (y > 0 && y < h) ref_row += src_stride;
} while (--b_h);
}
/* Extend MC border for support SB in BRU
* optimized decoder */
void bru_extend_mc_border(const AV1_COMMON *const cm, int mi_row, int mi_col,
BLOCK_SIZE bsize, YV12_BUFFER_CONFIG *src) {
const int org_bw = mi_size_wide[bsize];
const int org_bh = mi_size_high[bsize];
const int ss_x = src->uv_width < src->y_width;
const int ss_y = src->uv_height < src->y_height;
uint16_t *src_data;
uint16_t *dst_data;
for (int plane = 0; plane < av1_num_planes(cm); plane++) {
const int is_uv = plane > 0;
const int s_x = is_uv ? ss_x : 0;
const int s_y = is_uv ? ss_y : 0;
PadBlock block;
PadBlock block_cur;
#if CONFIG_F054_PIC_BOUNDARY
const int frame_H = is_uv ? src->uv_height : src->y_height;
const int frame_W = is_uv ? src->uv_width : src->y_width;
#else
const int frame_H = is_uv ? src->uv_crop_height : src->y_crop_height;
const int frame_W = is_uv ? src->uv_crop_width : src->y_crop_width;
#endif // CONFIG_F054_PIC_BOUNDARY
block.x0 = mi_col << (MI_SIZE_LOG2 - s_x);
block.y0 = mi_row << (MI_SIZE_LOG2 - s_y);
block.x1 = block.x0 + (org_bw << (MI_SIZE_LOG2 - s_x));
block.y1 = block.y0 + (org_bh << (MI_SIZE_LOG2 - s_y));
block_cur = block;
if (block.x1 > frame_W) block.x1 = frame_W;
if (block.y1 > frame_H) block.y1 = frame_H;
block.x0 -= AOM_INTERP_EXTEND - 1;
block.x1 += AOM_INTERP_EXTEND;
block.y0 -= AOM_INTERP_EXTEND - 1;
block.y1 += AOM_INTERP_EXTEND;
if (block.x0 < 0 || block.x1 > frame_W - 1 || block.y0 < 0 ||
block.y1 > frame_H - 1) {
// BRU extend border should not touch
// any pixel in the frame , but only in
// the extend region if block -
// AOM_INTERP_EXTEND >= 0, means this is
// not on the top/left border, then
// reset to current block
if (block.x0 >= 0) block.x0 = block_cur.x0;
if (block.y0 >= 0) block.y0 = block_cur.y0;
// if block + AOM_INTERP_EXTEND <= W/H,
// means this is not on the bottom/right
// border, then reset to current block
if (block.x1 <= frame_W) block.x1 = block_cur.x1;
if (block.y1 <= frame_H) block.y1 = block_cur.y1;
int b_w = block.x1 - block.x0;
int b_h = block.y1 - block.y0;
int stride = src->strides[is_uv];
// Get reference block pointer.
src_data = src->buffers[plane] +
scaled_buffer_offset(block.x0, block.y0, stride, NULL);
dst_data = src->buffers[plane] +
scaled_buffer_offset(block.x0, block.y0, stride, NULL);
highbd_build_mc_border(src_data, stride, dst_data, stride, block.x0,
block.y0, b_w, b_h, frame_W, frame_H);
}
}
}
void refinemv_highbd_pad_mc_border(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int x0,
int y0, int b_w, int b_h,
const ReferenceArea *ref_area) {
const int ref_x0 = ref_area->pad_block.x0;
const int ref_y0 = ref_area->pad_block.y0;
const int ref_x1 = ref_area->pad_block.x1;
const int ref_y1 = ref_area->pad_block.y1;
// Get a pointer to the start of the real
// data for this row.
const uint16_t *ref_row = src - x0 - y0 * src_stride;
if (y0 >= ref_area->pad_block.y1)
ref_row += (ref_area->pad_block.y1 - 1) * src_stride;
else if (y0 >= ref_area->pad_block.y0)
ref_row += y0 * src_stride;
else
ref_row += ref_area->pad_block.y0 * src_stride;
int left = x0 < ref_x0 ? ref_x0 - x0 : 0;
if (left > b_w) left = b_w;
int right = (x0 + b_w > ref_x1) ? (x0 + b_w - ref_x1) : 0;
if (right > b_w) right = b_w;
const int copy = b_w - left - right;
do {
if (left)
aom_memset16_optimized(dst, ref_row[ref_area->pad_block.x0], left);
if (copy) memcpy(dst + left, ref_row + x0 + left, copy * sizeof(uint16_t));
if (right)
aom_memset16_optimized(dst + left + copy,
ref_row[ref_area->pad_block.x1 - 1], right);
dst += dst_stride;
++y0;
if (y0 > ref_y0 && y0 < ref_y1) ref_row += src_stride;
} while (--b_h);
}
// check if padding is required during motion
// compensation return 1 means reference pixel
// is outside of the reference range and
// padding is required return 0 means no
// padding.
int update_extend_mc_border_params(const struct scale_factors *const sf,
struct buf_2d *const pre_buf, MV32 scaled_mv,
PadBlock *block, int subpel_x_mv,
int subpel_y_mv, int do_warp, int is_intrabc,
int *x_pad, int *y_pad,
const ReferenceArea *ref_area) {
// Get reference width and height.
int frame_width = pre_buf->width;
int frame_height = pre_buf->height;
// Do border extension if there is motion or
// width/height is not a multiple of 8
// pixels. Extension is needed in optical
// flow refinement to obtain MV offsets
(void)scaled_mv;
if (!is_intrabc && !do_warp) {
if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
block->x0 -= AOM_INTERP_EXTEND - 1;
block->x1 += AOM_INTERP_EXTEND;
*x_pad = 1;
}
if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
block->y0 -= AOM_INTERP_EXTEND - 1;
block->y1 += AOM_INTERP_EXTEND;
*y_pad = 1;
}
// Skip border extension if block is
// inside the frame.
if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
block->y1 > frame_height - 1) {
return 1;
}
if (ref_area) {
// Skip border extension if block is in
// the reference area.
if (block->x0 < ref_area->pad_block.x0 ||
block->x1 > ref_area->pad_block.x1 ||
block->y0 < ref_area->pad_block.y0 ||
block->y1 > ref_area->pad_block.y1) {
return 1;
}
}
}
return 0;
};
// perform padding of the motion compensated
// block if requires. Padding is performed if
// the motion compensated block is partially
// out of the reference area.
static void refinemv_extend_mc_border(
const struct scale_factors *const sf, struct buf_2d *const pre_buf,
MV32 scaled_mv, PadBlock block, int subpel_x_mv, int subpel_y_mv,
int do_warp, int is_intrabc, uint16_t *paded_ref_buf,
int paded_ref_buf_stride, uint16_t **pre, int *src_stride,
const ReferenceArea *ref_area) {
int x_pad = 0, y_pad = 0;
if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
subpel_x_mv, subpel_y_mv, do_warp,
is_intrabc, &x_pad, &y_pad, ref_area)) {
// Get reference block pointer.
const uint16_t *const buf_ptr =
pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
int buf_stride = pre_buf->stride;
const int b_w = block.x1 - block.x0;
const int b_h = block.y1 - block.y0;
refinemv_highbd_pad_mc_border(buf_ptr, buf_stride, paded_ref_buf,
paded_ref_buf_stride, block.x0, block.y0, b_w,
b_h, ref_area);
*src_stride = paded_ref_buf_stride;
*pre = paded_ref_buf +
y_pad * (AOM_INTERP_EXTEND - 1) * paded_ref_buf_stride +
x_pad * (AOM_INTERP_EXTEND - 1);
}
}
void dec_calc_subpel_params(const MV *const src_mv,
InterPredParams *const inter_pred_params,
const MACROBLOCKD *const xd, int mi_x, int mi_y,
uint16_t **pre, SubpelParams *subpel_params,
int *src_stride, PadBlock *block,
int use_optflow_refinement, MV32 *scaled_mv,
int *subpel_x_mv, int *subpel_y_mv) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
const int bw = inter_pred_params->original_pu_width;
const int bh = inter_pred_params->original_pu_height;
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int ssx = inter_pred_params->subsampling_x;
int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
if (use_optflow_refinement) {
orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssy);
orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssx);
} else {
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
}
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
// Get reference block top left
// coordinate.
block->x0 = pos_x >> SCALE_SUBPEL_BITS;
block->y0 = pos_y >> SCALE_SUBPEL_BITS;
// Get reference block bottom right
// coordinate.
block->x1 =
((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >>
SCALE_SUBPEL_BITS) +
1;
block->y1 =
((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >>
SCALE_SUBPEL_BITS) +
1;
MV temp_mv;
temp_mv = clamp_mv_to_umv_border_sb(
xd, src_mv, bw, bh, use_optflow_refinement,
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
*scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
scaled_mv->row += SCALE_EXTRA_OFF;
scaled_mv->col += SCALE_EXTRA_OFF;
*subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
} else {
// Get block position in current frame.
int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, src_mv, bw, bh, use_optflow_refinement,
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
// Get reference block top left
// coordinate.
pos_x += mv_q4.col;
pos_y += mv_q4.row;
block->x0 = pos_x >> SUBPEL_BITS;
block->y0 = pos_y >> SUBPEL_BITS;
// Get reference block bottom right
// coordinate.
block->x1 =
(pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1;
block->y1 =
(pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1;
scaled_mv->row = mv_q4.row;
scaled_mv->col = mv_q4.col;
*subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
}
*pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
*src_stride = pre_buf->stride;
if (inter_pred_params->border_data.enable_bacp) {
subpel_params->x0 = block->x0;
subpel_params->x1 = block->x1;
subpel_params->y0 = block->y0;
subpel_params->y1 = block->y1;
}
}
void common_calc_subpel_params_and_extend(
const MV *const src_mv, InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y, int ref,
int use_optflow_refinement, uint16_t **mc_buf, uint16_t **pre,
SubpelParams *subpel_params, int *src_stride) {
(void)ref;
(void)mc_buf;
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
assert(inter_pred_params->use_ref_padding);
dec_calc_subpel_params(
src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride,
&block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv);
// printf(" Use ref padding \n");
const int paded_ref_buf_stride =
inter_pred_params->ref_area->paded_ref_buf_stride;
refinemv_extend_mc_border(
inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
scaled_mv, block, subpel_x_mv, subpel_y_mv,
inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
&inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre,
src_stride, inter_pred_params->ref_area);
}
static void get_ref_area_info(const MV *const src_mv,
InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y,
int use_optflow_refinement, uint16_t **pre,
SubpelParams *subpel_params, int *src_stride,
ReferenceArea *ref_area) {
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
dec_calc_subpel_params(
src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride,
&block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv);
struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf;
int frame_height = pre_buf->height;
int frame_width = pre_buf->width;
block.x0 -= REF_LEFT_BORDER;
block.x1 += REF_RIGHT_BORDER;
block.y0 -= REF_TOP_BORDER;
block.y1 += REF_BOTTOM_BORDER;
ref_area->pad_block.x0 = CLIP(block.x0, 0, frame_width - 1);
ref_area->pad_block.y0 = CLIP(block.y0, 0, frame_height - 1);
ref_area->pad_block.x1 = CLIP(block.x1, 1, frame_width);
ref_area->pad_block.y1 = CLIP(block.y1, 1, frame_height);
}
void av1_get_reference_area_with_padding_single(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
const MV mv, int bw, int bh, int mi_x, int mi_y, ReferenceArea *ref_area,
int pu_width, int pu_height, int ref) {
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
struct macroblockd_plane *const pd = &xd->plane[plane];
int row_start = 0;
int col_start = 0;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x);
const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y);
const struct scale_factors *const sf = is_tip
? cm->tip_ref.ref_scale_factor[ref]
: xd->block_ref_scale_factors[ref];
const struct buf_2d *const pre_buf = &pd->pre[ref];
// initialize the reference buffer
ref_area->pad_block.x0 = 0;
ref_area->pad_block.y0 = 0;
ref_area->pad_block.x1 = cm->width;
ref_area->pad_block.y1 = cm->height;
ref_area->paded_ref_buf_stride = REF_BUFFER_WIDTH;
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
const MV *src_mv = &mv;
get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src,
&subpel_params, &src_stride, ref_area);
}
static void get_ref_area_info_warp(const MV *const src_mv,
InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y,
int use_optflow_refinement, uint16_t **pre,
SubpelParams *subpel_params, int *src_stride,
WarpBoundaryBox *ref_area) {
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
dec_calc_subpel_params(
src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride,
&block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv);
struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf;
int frame_height = pre_buf->height;
int frame_width = pre_buf->width;
block.x0 -= REF_LEFT_BORDER_WARP;
block.x1 += REF_RIGHT_BORDER_WARP;
block.y0 -= REF_TOP_BORDER_WARP;
block.y1 += REF_BOTTOM_BORDER_WARP;
ref_area->x0 = CLIP(block.x0, 0, frame_width - 1);
ref_area->y0 = CLIP(block.y0, 0, frame_height - 1);
ref_area->x1 = CLIP(block.x1, 1, frame_width);
ref_area->y1 = CLIP(block.y1, 1, frame_height);
}
void av1_get_reference_area_with_padding_single_warp(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
const MV mv, int bw, int bh, int mi_x, int mi_y, WarpBoundaryBox *ref_area,
int pu_width, int pu_height, int ref) {
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
struct macroblockd_plane *const pd = &xd->plane[plane];
int row_start = 0;
int col_start = 0;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x);
const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y);
const struct scale_factors *const sf = is_tip
? cm->tip_ref.ref_scale_factor[ref]
: xd->block_ref_scale_factors[ref];
const struct buf_2d *const pre_buf = &pd->pre[ref];
// initialize the reference buffer
ref_area->x0 = 0;
ref_area->y0 = 0;
ref_area->x1 = cm->width;
ref_area->y1 = cm->height;
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
const MV *src_mv = &mv;
get_ref_area_info_warp(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src,
&subpel_params, &src_stride, ref_area);
}
void av1_get_reference_area_with_padding(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, MB_MODE_INFO *mi,
const MV mv[2], int bw, int bh,
int mi_x, int mi_y,
ReferenceArea ref_area[2],
int pu_width, int pu_height) {
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
assert(IMPLIES(!is_tip, has_second_ref(mi)));
assert(!is_intrabc_block(mi, xd->tree_type));
struct macroblockd_plane *const pd = &xd->plane[plane];
if (is_tip && bw < 8 && bh < 8) return;
int row_start = 0;
int col_start = 0;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x);
const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y);
for (int ref = 0; ref < 2; ++ref) {
const struct scale_factors *const sf =
is_tip ? cm->tip_ref.ref_scale_factor[ref]
: xd->block_ref_scale_factors[ref];
const struct buf_2d *const pre_buf = &pd->pre[ref];
// initialize the reference buffer
ref_area[ref].pad_block.x0 = 0;
ref_area[ref].pad_block.y0 = 0;
ref_area[ref].pad_block.x1 = cm->width;
ref_area[ref].pad_block.y1 = cm->height;
ref_area[ref].paded_ref_buf_stride = REF_BUFFER_WIDTH;
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
assert(!inter_pred_params.use_ref_padding);
const MV *src_mv = ref == 0 ? &mv[0] : &mv[1];
get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src,
&subpel_params, &src_stride, &ref_area[ref]);
}
}
void av1_refinemv_build_predictors(MACROBLOCKD *xd, int mi_x, int mi_y,
uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func,
uint16_t *dst_ref0, uint16_t *dst_ref1,
int dst_stride, MV mv0, MV mv1,
InterPredParams *inter_pred_params) {
for (int ref = 0; ref < 2; ref++) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
uint16_t *dst_ref = ref == 0 ? dst_ref0 : dst_ref1;
MV *src_mv = ref == 0 ? &mv0 : &mv1;
#if CONFIG_SUBBLK_REF_EXT
src_mv->row -= 8 * SUBBLK_REF_EXT_LINES;
src_mv->col -= 8 * SUBBLK_REF_EXT_LINES;
#endif // CONFIG_SUBBLK_REF_EXT
calc_subpel_params_func(src_mv, &inter_pred_params[ref], xd, mi_x, mi_y,
ref, 0, mc_buf, &src, &subpel_params, &src_stride);
assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE ||
inter_pred_params[ref].comp_mode == UNIFORM_COMP);
av1_make_inter_predictor(src, src_stride, dst_ref, dst_stride,
&inter_pred_params[ref], &subpel_params);
}
}
void apply_mv_refinement(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y,
uint16_t **mc_buf, const MV mv[2],
CalcSubpelParamsFunc calc_subpel_params_func,
int pre_x, int pre_y, uint16_t *dst_ref0,
uint16_t *dst_ref1, uint16_t **dst_ref0_ptr,
uint16_t **dst_ref1_ptr, MV *best_mv_ref, int pu_width,
int pu_height, ReferenceArea ref_area[2]) {
// initialize basemv as best MV
best_mv_ref[0] = mv[0];
best_mv_ref[1] = mv[1];
// Check if any component of the MV exceed
// maximum value If any of the MV components
// exceed the maximum value, do not refine
// mv
const int max_sr = 2; // Maximum search range at unit of
// 1-pel
for (int k = 0; k < 2; k++) {
for (int comp = 0; comp < 2; comp++) {
int val = comp == 0 ? mv[k].row : mv[k].col;
int min_mv_comp = val - max_sr * 8;
int max_mv_comp = val + max_sr * 8;
#if CONFIG_SUBBLK_REF_EXT
min_mv_comp -= 8 * SUBBLK_REF_EXT_LINES;
#endif // CONFIG_SUBBLK_REF_EXT
if (min_mv_comp < (MV_LOW + 1) || min_mv_comp > (MV_UPP - 1) ||
max_mv_comp < (MV_LOW + 1) || max_mv_comp > (MV_UPP - 1))
return;
}
}
#if CONFIG_SUBBLK_REF_EXT
bw += 2 * SUBBLK_REF_EXT_LINES;
bh += 2 * SUBBLK_REF_EXT_LINES;
#endif // CONFIG_SUBBLK_REF_EXT
const int dsts_offset = (REFINEMV_SUBBLOCK_WIDTH +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) *
(REFINEMV_SUBBLOCK_HEIGHT +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES));
uint16_t *dsts0[2] = { dst_ref0, dst_ref0 + dsts_offset };
uint16_t *dsts1[2] = { dst_ref1, dst_ref1 + dsts_offset };
int dsts_cur = 0;
const MV center_mvs[2] = { best_mv_ref[0], best_mv_ref[1] };
assert(mi->refinemv_flag < REFINEMV_NUM_MODES);
assert(cm->seq_params.enable_refinemv);
#if CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG
assert(IMPLIES(is_tip_ref_frame(mi->ref_frame[0]),
cm->seq_params.enable_tip_refinemv));
#endif // CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG
// Generate MV independent inter_pred_params
// for both references
InterPredParams inter_pred_params[2];
for (int ref = 0; ref < 2; ref++) {
const int is_compound = 0;
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
assert(is_intrabc == 0);
assert(plane == 0);
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const struct scale_factors *const sf =
is_tip ? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity
: xd->block_ref_scale_factors[ref]);
const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
av1_init_inter_params(&inter_pred_params[ref], bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, BILINEAR);
inter_pred_params[ref].original_pu_width = pu_width;
inter_pred_params[ref].original_pu_height = pu_height;
inter_pred_params[ref].conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
assert(inter_pred_params[ref].mode == TRANSLATION_PRED);
assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE);
assert(inter_pred_params[ref].conv_params.is_compound == 0);
assert(inter_pred_params[ref].conv_params.do_average == 0);
assert(mi->interinter_comp.type == COMPOUND_AVERAGE);
}
int switchable_refinemv_flags =
(mi->ref_frame[0] != TIP_FRAME) && switchable_refinemv_flag(cm, mi);
// If we signal the refinemv_flags we do not
// select sad0 Set sad0 a large value so
// that it does not be selected
#if CONFIG_SUBBLK_REF_EXT
const int dst_stride = REFINEMV_SUBBLOCK_WIDTH +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES);
#else
const int dst_stride = REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES;
#endif // CONFIG_SUBBLK_REF_EXT
int sad0 = INT32_MAX >> 1;
if (!switchable_refinemv_flags) {
av1_refinemv_build_predictors(
xd, mi_x, mi_y, mc_buf, calc_subpel_params_func, dst_ref0, dst_ref1,
dst_stride, center_mvs[0], center_mvs[1], inter_pred_params);
sad0 = get_refinemv_sad(dst_ref0, dst_ref1, dst_stride, bw, bh, xd->bd);
*dst_ref0_ptr =
dst_ref0 + SUBBLK_REF_EXT_LINES * dst_stride + SUBBLK_REF_EXT_LINES;
*dst_ref1_ptr =
dst_ref1 + SUBBLK_REF_EXT_LINES * dst_stride + SUBBLK_REF_EXT_LINES;
dsts_cur = !dsts_cur;
dst_ref0 = dsts0[dsts_cur];
dst_ref1 = dsts1[dsts_cur];
}
#if !CONFIG_SUBBLK_REF_EXT
assert(IMPLIES(mi->ref_frame[0] == TIP_FRAME, bw == 8 && bh == 8));
#endif // !CONFIG_SUBBLK_REF_EXT
if (mi->ref_frame[0] == TIP_FRAME) {
const int tip_sad_thres = bw * bh;
if (!switchable_refinemv_flags && sad0 < tip_sad_thres) return;
}
if (!switchable_refinemv_flags) {
int shift = 3;
int th = (bw * bh) << 1;
sad0 -= (sad0 >> shift);
assert(sad0 >= 0);
if (sad0 < th) return;
}
int min_sad = sad0;
MV refined_mv[2];
refined_mv[0] = center_mvs[0];
refined_mv[1] = center_mvs[1];
static const MV neighbors[DMVR_SEARCH_NUM_NEIGHBORS] = {
{ -2, -2 }, { -2, -1 }, { -2, 0 }, { -2, 1 }, { -2, 2 }, { -1, -2 },
{ -1, -1 }, { -1, 0 }, { -1, 1 }, { -1, 2 }, { 0, -2 }, { 0, -1 },
{ 0, 1 }, { 0, 2 }, { 1, -2 }, { 1, -1 }, { 1, 0 }, { 1, 1 },
{ 1, 2 }, { 2, -2 }, { 2, -1 }, { 2, 0 }, { 2, 1 }, { 2, 2 }
};
MV best_offset = { 0, 0 };
// Prediction is generated at once for
// (bw+4) x (bh+4) block, by extending 2
// samples (search range of the refinement
// stage) on each side. Later, the
// prediction buffers are appropriately
// offset for SAD calculation.
const int ext_bw = bw + 4;
const int ext_bh = bh + 4;
for (int ref = 0; ref < 2; ref++) {
inter_pred_params[ref].use_ref_padding = 1;
inter_pred_params[ref].ref_area = &ref_area[ref];
inter_pred_params[ref].block_width = ext_bw;
inter_pred_params[ref].block_height = ext_bh;
inter_pred_params[ref].original_pu_width = pu_width + 4;
inter_pred_params[ref].original_pu_height = pu_height + 4;
refined_mv[ref].row -= 8 * DMVR_SEARCH_EXT_LINES;
refined_mv[ref].col -= 8 * DMVR_SEARCH_EXT_LINES;
}
av1_refinemv_build_predictors(xd, mi_x, mi_y, mc_buf, calc_subpel_params_func,
dst_ref0, dst_ref1, dst_stride, refined_mv[0],
refined_mv[1], inter_pred_params);
for (int idx = 0; idx < DMVR_SEARCH_NUM_NEIGHBORS; ++idx) {
const MV offset = { neighbors[idx].row, neighbors[idx].col };
uint16_t *dst_ref0_offset =
dst_ref0 + (2 + offset.row) * dst_stride + 2 + offset.col;
uint16_t *dst_ref1_offset =
dst_ref1 + (2 - offset.row) * dst_stride + 2 - offset.col;
const int this_sad = get_refinemv_sad(dst_ref0_offset, dst_ref1_offset,
dst_stride, bw, bh, xd->bd);
if (this_sad < min_sad) {
min_sad = this_sad;
best_offset = offset;
if (dst_ref0_ptr != NULL && dst_ref1_ptr != NULL) {
*dst_ref0_ptr = dst_ref0_offset + SUBBLK_REF_EXT_LINES * dst_stride +
SUBBLK_REF_EXT_LINES;
*dst_ref1_ptr = dst_ref1_offset + SUBBLK_REF_EXT_LINES * dst_stride +
SUBBLK_REF_EXT_LINES;
}
}
}
best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row;
best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col;
best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row;
best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col;
assert(min_sad <= sad0);
assert(IMPLIES(switchable_refinemv_flags,
!(best_mv_ref[0].row == center_mvs[0].row &&
best_mv_ref[0].col == center_mvs[0].col &&
best_mv_ref[1].row == center_mvs[1].row &&
best_mv_ref[1].col == center_mvs[1].col)));
}
// This function consolidates the refinemv
// enabling check for both TIP ref mode blocks
// and non-TIP ref mode blocks.
static AOM_INLINE int is_sub_block_refinemv_enabled(const AV1_COMMON *cm,
const MB_MODE_INFO *mi,
int tip_ref_frame) {
if (!cm->seq_params.enable_refinemv) return 0;
if (tip_ref_frame) {
#if CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG
if (!cm->seq_params.enable_tip_refinemv) return 0;
#endif // CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG
#if CONFIG_TIP_ENHANCEMENT
const int tip_wtd_index = cm->tip_global_wtd_index;
const int8_t tip_weight = tip_weighting_factors[tip_wtd_index];
return (cm->has_both_sides_refs && tip_weight == TIP_EQUAL_WTD);
#else
#if CONFIG_TIP_LD
return (cm->has_both_sides_refs);
#else
return 1;
#endif // CONFIG_TIP_LD
#endif // CONFIG_TIP_ENHANCEMENT
} else {
int apply_sub_block_refinemv =
mi->refinemv_flag && !is_tip_ref_frame(mi->ref_frame[0]);
if (apply_sub_block_refinemv && default_refinemv_modes(mi))
apply_sub_block_refinemv &=
(mi->comp_group_idx == 0 &&
mi->interinter_comp.type == COMPOUND_AVERAGE);
return apply_sub_block_refinemv;
}
}
// check if the refinemv mode is allowed for a
// given block
static INLINE int is_mv_refine_allowed(const AV1_COMMON *cm,
const MB_MODE_INFO *mbmi, int plane) {
if (plane != 0) return 0;
if (is_tip_ref_frame(mbmi->ref_frame[0]))
return is_refinemv_allowed_tip_blocks(cm, mbmi);
return 1;
}
// Calculate the SAD of 2 compound prediction
// blocks and use it to decide whether or not
// to skip the optical flow MV refinement for
// the TIP block.
static AOM_INLINE int skip_opfl_refine_with_tip(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, int bw, int bh,
int pu_width, int pu_height, int mi_x, int mi_y, uint16_t **mc_buf,
MV best_mv_ref[2], CalcSubpelParamsFunc calc_subpel_params_func,
uint16_t *dst0, uint16_t *dst1, int dst_stride, int do_pred) {
if (do_pred) {
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
mbmi.mv[0].as_mv = best_mv_ref[0];
mbmi.mv[1].as_mv = best_mv_ref[1];
mbmi.ref_frame[0] = TIP_FRAME;
mbmi.ref_frame[1] = NONE_FRAME;
mbmi.interp_fltr = cm->tip_interp_filter;
mbmi.use_intrabc[xd->tree_type == CHROMA_PART] = 0;
mbmi.use_intrabc[0] = 0;
mbmi.mode = NEWMV;
mbmi.motion_mode = SIMPLE_TRANSLATION;
mbmi.sb_type[PLANE_TYPE_Y] = BLOCK_8X8;
mbmi.interinter_comp.type = COMPOUND_AVERAGE;
mbmi.max_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL;
mbmi.pb_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL;
mbmi.morph_pred = 0;
assert(dst_stride == bw);
InterPredParams params0, params1;
av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params0, calc_subpel_params_func, 0,
dst0, &best_mv_ref[0], pu_width, pu_height);
av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params1, calc_subpel_params_func, 1,
dst1, &best_mv_ref[1], pu_width, pu_height);
}
const int bd = cm->seq_params.bit_depth;
const unsigned int sad_thres =
cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT ? 15 : 6;
const unsigned int sad =
get_highbd_sad(dst0, dst_stride, dst1, dst_stride, bd, 8, 8);
return (sad < sad_thres);
}
static void build_inter_predictors_8x8_and_bigger_refinemv(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
int build_for_decode, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
MV mi_mv[2], CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst,
int dst_stride, int subblk_start_x, int subblk_start_y, int pu_width,
int pu_height, uint16_t *dst0_16_refinemv, uint16_t *dst1_16_refinemv,
int row_start, int col_start, MV *sb_refined_mv, MV *chroma_refined_mv,
int build_for_refine_mv_only, ReferenceArea ref_area[2], int_mv *mv_refined,
int *opfl_vxy_bufs) {
const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]);
const int is_compound = has_second_ref(mi) || tip_ref_frame;
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
assert(!is_intrabc_block(mi, xd->tree_type));
assert(is_compound);
assert(!mi->bawp_flag[0]);
assert(!is_masked_compound_type(mi->interinter_comp.type));
assert(mi->cwp_idx == CWP_EQUAL);
int is_global[2] = { 0, 0 };
if (!tip_ref_frame) {
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
}
assert(!is_global[0] && !is_global[1]);
const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y;
uint16_t *refinemv_ref0 = NULL;
uint16_t *refinemv_ref1 = NULL;
int apply_refinemv = is_mv_refine_allowed(cm, mi, plane);
MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] };
if (apply_refinemv) {
uint16_t *dst_ref0 = NULL, *dst_ref1 = NULL;
dst_ref0 = &dst0_16_refinemv[0];
dst_ref1 = &dst1_16_refinemv[0];
apply_mv_refinement(cm, xd, plane, mi, bw, bh, mi_x, mi_y, mc_buf, mi_mv,
calc_subpel_params_func, pre_x, pre_y, dst_ref0,
dst_ref1, &refinemv_ref0, &refinemv_ref1, best_mv_ref,
pu_width, pu_height, ref_area);
if (sb_refined_mv) {
// store the DMVR refined MV so that
// chroma can use it
sb_refined_mv[0] = best_mv_ref[0];
sb_refined_mv[1] = best_mv_ref[1];
}
assert(IMPLIES(plane, !build_for_refine_mv_only));
// if build_for_refine_mv_only is
// non-zero, we build only to get the
// refinemv values The actual prediction
// values are not necessary
if (build_for_refine_mv_only) {
return;
}
} else if (!tip_ref_frame) {
best_mv_ref[0] = chroma_refined_mv[0];
best_mv_ref[1] = chroma_refined_mv[1];
}
if (tip_ref_frame && plane == 0) {
mv_refined[0].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[0]);
mv_refined[1].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[1]);
}
int use_optflow_refinement =
is_optflow_refinement_enabled(cm, xd, mi, plane, tip_ref_frame);
assert(IMPLIES(use_optflow_refinement,
cm->features.opfl_refine_type != REFINE_NONE));
// Optical flow refinement with masked comp
// types or with non-sharp interpolation
// filter should only exist in REFINE_ALL.
assert(IMPLIES(
use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE,
cm->features.opfl_refine_type == REFINE_ALL));
assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0));
int use_4x4 = tip_ref_frame ? 0 : 1;
int n = opfl_get_subblock_size(bw, bh, plane, use_4x4);
const int n_blocks = (bw / n) * (bh / n);
// optical flow refined MVs in a subblock
// (16x16) unit
int_mv mv_refined_sb[4 * 2];
memset(mv_refined_sb, 0, 4 * 2 * sizeof(int_mv));
const int opfl_mv_stride = pu_width / n;
const int opfl_sb_idx =
(subblk_start_y / n) * opfl_mv_stride + subblk_start_x / n;
const int sb_rows = bh / n;
const int sb_cols = bw / n;
if (use_optflow_refinement && plane == 0) {
// Pointers to hold optical flow MV
// offsets in a subblock unit.
int vx0_sb[4] = { 0 };
int vx1_sb[4] = { 0 };
int vy0_sb[4] = { 0 };
int vy1_sb[4] = { 0 };
// Pointers to hold gradient and dst
// buffers.
int16_t *gx0 = xd->opfl_gxy_bufs;
int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1);
int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2);
int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3);
// Initialize refined mv
const MV mv0 = best_mv_ref[0];
const MV mv1 = best_mv_ref[1];
// Refine MV using optical flow. The final
// output MV will be in 1/16 precision.
uint16_t *dst0 = xd->opfl_dst_bufs;
uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE;
int do_pred = 1;
int opfl_dst_stride = bw;
if (refinemv_ref0 != NULL && refinemv_ref1 != NULL) {
dst0 = refinemv_ref0;
dst1 = refinemv_ref1;
#if CONFIG_SUBBLK_REF_EXT
opfl_dst_stride = REFINEMV_SUBBLOCK_WIDTH +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES);
#else
opfl_dst_stride = REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES;
#endif // CONFIG_SUBBLK_REF_EXT
do_pred = 0;
}
if (tip_ref_frame) {
use_optflow_refinement = !skip_opfl_refine_with_tip(
cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf,
best_mv_ref, calc_subpel_params_func, dst0, dst1, opfl_dst_stride,
do_pred);
do_pred = 0;
}
if (use_optflow_refinement) {
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined_sb[mvi * 2].as_mv = mv0;
mv_refined_sb[mvi * 2 + 1].as_mv = mv1;
}
av1_get_optflow_based_mv(
cm, xd, plane, mi, mv_refined_sb, bw, bh, mi_x, mi_y,
build_for_decode, mc_buf, calc_subpel_params_func, gx0, gy0, gx1, gy1,
vx0_sb, vy0_sb, vx1_sb, vy1_sb, dst0, dst1, opfl_dst_stride, do_pred,
use_4x4, best_mv_ref, pu_width, pu_height);
for (int i = 0; i < sb_rows; i++) {
for (int j = 0; j < sb_cols; j++) {
int mvidx = opfl_sb_idx + i * opfl_mv_stride + j;
int mvidx_sb = i * sb_cols + j;
mv_refined[2 * mvidx].as_mv = mv_refined_sb[2 * mvidx_sb].as_mv;
mv_refined[2 * mvidx + 1].as_mv =
mv_refined_sb[2 * mvidx_sb + 1].as_mv;
// Store subblock MV delta at the
// prediction block level
opfl_vxy_bufs[mvidx] = vx0_sb[mvidx_sb];
opfl_vxy_bufs[N_OF_OFFSETS * 1 + mvidx] = vx1_sb[mvidx_sb];
opfl_vxy_bufs[N_OF_OFFSETS * 2 + mvidx] = vy0_sb[mvidx_sb];
opfl_vxy_bufs[N_OF_OFFSETS * 3 + mvidx] = vy1_sb[mvidx_sb];
}
}
}
}
BacpBlockData bacp_block_data[2 * N_OF_OFFSETS];
uint8_t use_bacp =
tip_ref_frame
? cm->features.enable_imp_msk_bld &&
!av1_is_scaled(cm->tip_ref.ref_scale_factor[0]) &&
!av1_is_scaled(cm->tip_ref.ref_scale_factor[1])
: use_border_aware_compound(cm, xd, mi) && mi->cwp_idx == CWP_EQUAL &&
cm->features.enable_imp_msk_bld;
int opfl_sub_bw = OF_BSIZE;
int opfl_sub_bh = OF_BSIZE;
opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh);
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref]
: xd->block_ref_scale_factors[ref];
struct buf_2d *const pre_buf = &pd->pre[ref];
MV mv = best_mv_ref[ref];
const WarpTypesAllowed warp_types = { is_global[ref],
is_warp_mode(mi->motion_mode) };
InterPredParams inter_pred_params;
const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw;
const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh;
av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
const int refinemv_is_allowed_y =
is_mv_refine_allowed(cm, mi, 0) ||
is_optflow_refinement_enabled(cm, xd, mi, 0, tip_ref_frame);
const int use_ref_padding =
tip_ref_frame
? ((apply_refinemv || use_optflow_refinement) ||
(plane && (comp_bw > 4 || comp_bh > 4) && refinemv_is_allowed_y))
: 1;
if (use_ref_padding) {
inter_pred_params.use_ref_padding = 1;
inter_pred_params.ref_area = &ref_area[ref];
}
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
if (is_compound) av1_init_comp_mode(&inter_pred_params);
inter_pred_params.border_data.enable_bacp = use_bacp;
inter_pred_params.border_data.bacp_block_data =
&bacp_block_data[0]; // Always point
// to the first
// ref
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
assert(inter_pred_params.mode != WARP_PRED);
if (is_compound) {
inter_pred_params.sb_type = tip_ref_frame ?
#if CONFIG_FLEX_TIP_BLK_SIZE
get_tip_bsize_from_bw_bh(bw, bh)
#else
BLOCK_8X8
#endif // CONFIG_FLEX_TIP_BLK_SIZE
: mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
}
if (use_optflow_refinement && plane == 0) {
inter_pred_params.interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bw);
inter_pred_params.interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bh);
av1_opfl_rebuild_inter_predictor(
dst, dst_stride, plane, mv_refined_sb, &inter_pred_params, xd, mi_x,
mi_y, build_for_decode, cm, pu_width, ref, mc_buf,
calc_subpel_params_func, use_4x4, mi, pu_height, mi_mv, 0);
continue;
}
const MV mv_1_16th_pel = (tip_ref_frame && plane)
? mv_refined[ref].as_mv
: convert_mv_to_1_16th_pel(&mv);
av1_build_one_inter_predictor(dst, dst_stride, &mv_1_16th_pel,
&inter_pred_params, xd, mi_x, mi_y, ref,
mc_buf, calc_subpel_params_func);
}
}
static void build_inter_predictors_8x8_and_bigger(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
const BUFFER_SET *dst_orig, int build_for_decode, int bw, int bh, int mi_x,
int mi_y, uint16_t **mc_buf, MV mi_mv[2],
CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst, int dst_stride,
int pu_width, int pu_height, int build_for_refine_mv_only,
bool *ext_warp_used, int_mv *mv_refined,
REFINEMV_SUBMB_INFO *block_refinemv_subinfo, int *opfl_vxy_bufs) {
// In case of chroma, even for 4xN and Nx4
// blocks, single prediction is used.
int singleref_for_compound =
plane && has_second_ref(mi) &&
is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]);
#if CONFIG_TIP_ENHANCEMENT
const int tip_wtd_index = cm->tip_global_wtd_index;
const int8_t tip_weight = tip_weighting_factors[tip_wtd_index];
#endif // CONFIG_TIP_ENHANCEMENT
const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]);
const int is_compound = (!singleref_for_compound && has_second_ref(mi)) ||
#if CONFIG_TIP_ENHANCEMENT
(tip_ref_frame && tip_weight != TIP_SINGLE_WTD)
#else
tip_ref_frame
#endif // CONFIG_TIP_ENHANCEMENT
;
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
assert(IMPLIES(is_intrabc, !is_compound));
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
assert(IMPLIES(mi->refinemv_flag, !is_intrabc));
assert(IMPLIES(mi->refinemv_flag, is_compound));
assert(IMPLIES(mi->refinemv_flag && switchable_refinemv_flag(cm, mi),
mi->interinter_comp.type == COMPOUND_AVERAGE));
assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag[0] == 0));
assert(IMPLIES(mi->refinemv_flag, mi->interp_fltr == MULTITAP_SHARP));
assert(IMPLIES(tip_ref_frame,
mi->use_intrabc[0] == 0 && mi->use_intrabc[1] == 0));
assert(IMPLIES(tip_ref_frame, mi->motion_mode == SIMPLE_TRANSLATION));
assert(IMPLIES(tip_ref_frame, mi->interinter_comp.type == COMPOUND_AVERAGE));
assert(IMPLIES(
mi->refinemv_flag,
!is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART])));
if (is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]) &&
has_second_ref(mi)) {
assert(mi->interinter_comp.type != COMPOUND_DIFFWTD);
}
if (is_sub_block_refinemv_enabled(cm, mi, tip_ref_frame)) {
assert(IMPLIES(mi->refinemv_flag, mi->cwp_idx == CWP_EQUAL));
#if CONFIG_FLEX_TIP_BLK_SIZE
const int sub_block_width = !tip_ref_frame
? (REFINEMV_SUBBLOCK_WIDTH >> ss_x)
: REFINEMV_SUBBLOCK_WIDTH;
const int sub_block_height = !tip_ref_frame
? (REFINEMV_SUBBLOCK_HEIGHT >> ss_y)
: REFINEMV_SUBBLOCK_HEIGHT;
const int refinemv_sb_size_width = AOMMIN(sub_block_width, bw);
const int refinemv_sb_size_height = AOMMIN(sub_block_height, bh);
#else
int refinemv_sb_size_width =
AOMMIN((REFINEMV_SUBBLOCK_WIDTH >> pd->subsampling_x), bw);
int refinemv_sb_size_height =
AOMMIN(REFINEMV_SUBBLOCK_HEIGHT >> pd->subsampling_y, bh);
#endif // CONFIG_FLEX_TIP_BLK_SIZE
#if CONFIG_SUBBLK_REF_EXT
uint16_t
dst0_16_refinemv[2 *
(REFINEMV_SUBBLOCK_WIDTH +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) *
(REFINEMV_SUBBLOCK_HEIGHT +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES))];
uint16_t
dst1_16_refinemv[2 *
(REFINEMV_SUBBLOCK_WIDTH +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) *
(REFINEMV_SUBBLOCK_HEIGHT +
2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES))];
#else
uint16_t dst0_16_refinemv
[2 * (REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES) *
(REFINEMV_SUBBLOCK_HEIGHT + 2 * DMVR_SEARCH_EXT_LINES)];
uint16_t dst1_16_refinemv
[2 * (REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES) *
(REFINEMV_SUBBLOCK_HEIGHT + 2 * DMVR_SEARCH_EXT_LINES)];
#endif // CONFIG_SUBBLK_REF_EXT
ReferenceArea ref_area[2];
#if !CONFIG_SUBBLK_PAD
av1_get_reference_area_with_padding(cm, xd, plane, mi, mi_mv, bw, bh, mi_x,
mi_y, ref_area, pu_width, pu_height);
#endif //! CONFIG_SUBBLK_PAD
CONV_BUF_TYPE *tmp_conv_dst = xd->tmp_conv_dst;
assert(bw % refinemv_sb_size_width == 0);
assert(bh % refinemv_sb_size_height == 0);
for (int h = 0; h < bh; h += refinemv_sb_size_height) {
for (int w = 0; w < bw; w += refinemv_sb_size_width) {
const int x = mi_x + w * (1 << pd->subsampling_x);
const int y = mi_y + h * (1 << pd->subsampling_y);
if (is_subblock_outside(x, y, cm->mi_params.mi_cols,
cm->mi_params.mi_rows, build_for_decode)) {
continue;
}
uint16_t *dst_buf = dst + h * dst_stride + w;
xd->tmp_conv_dst = tmp_conv_dst + h * MAX_SB_SIZE + w;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
int row_start =
plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
int col_start =
plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
MV luma_refined_mv[2] = { { mi_mv[0].row, mi_mv[0].col },
{ mi_mv[1].row, mi_mv[1].col } };
MV chroma_refined_mv[2] = {
{ mi->mv[0].as_mv.row, mi->mv[0].as_mv.col },
{ mi->mv[1].as_mv.row, mi->mv[1].as_mv.col }
};
if (plane != 0) {
int luma_h = (h << pd->subsampling_y);
int luma_w = (w << pd->subsampling_x);
REFINEMV_SUBMB_INFO
*refinemv_subinfo =
&block_refinemv_subinfo[(luma_h >> MI_SIZE_LOG2) * MAX_MIB_SIZE +
(luma_w >> MI_SIZE_LOG2)];
chroma_refined_mv[0] = refinemv_subinfo->refinemv[0].as_mv;
chroma_refined_mv[1] = refinemv_subinfo->refinemv[1].as_mv;
}
#if CONFIG_SUBBLK_PAD
// sub_mi_x, and sub_mi_y are the
// top-left position of the luma
// samples of the sub-block
const int sub_mi_x = mi_x + w * (1 << pd->subsampling_x);
const int sub_mi_y = mi_y + h * (1 << pd->subsampling_y);
const int comp_bw = tip_ref_frame ? (refinemv_sb_size_width >> ss_x)
: refinemv_sb_size_width;
const int comp_bh = tip_ref_frame ? (refinemv_sb_size_height >> ss_y)
: refinemv_sb_size_height;
av1_get_reference_area_with_padding(cm, xd, plane, mi, mi_mv, comp_bw,
comp_bh, sub_mi_x, sub_mi_y,
ref_area, pu_width, pu_height);
#endif // CONFIG_SUBBLK_PAD
// mi_x, and mi_y are the top-left position of the luma samples of the
// sub-block
build_inter_predictors_8x8_and_bigger_refinemv(
cm, xd, plane, mi, build_for_decode, refinemv_sb_size_width,
refinemv_sb_size_height, mi_x + w * (1 << pd->subsampling_x),
mi_y + h * (1 << pd->subsampling_y), mc_buf, mi_mv,
calc_subpel_params_func, dst_buf, dst_stride, w, h, pu_width,
pu_height, dst0_16_refinemv, dst1_16_refinemv, row_start, col_start,
plane == 0 ? luma_refined_mv : NULL, chroma_refined_mv,
build_for_refine_mv_only, ref_area, mv_refined, opfl_vxy_bufs);
if (plane == 0) {
REFINEMV_SUBMB_INFO
*refinemv_subinfo =
&block_refinemv_subinfo[(h >> MI_SIZE_LOG2) * MAX_MIB_SIZE +
(w >> MI_SIZE_LOG2)];
fill_subblock_refine_mv(refinemv_subinfo, refinemv_sb_size_width,
refinemv_sb_size_height, luma_refined_mv[0],
luma_refined_mv[1]);
}
}
}
xd->tmp_conv_dst = tmp_conv_dst;
return;
}
int is_global[2] = { 0, 0 };
if (!tip_ref_frame) {
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
}
int row_start = 0;
int col_start = 0;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y;
MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] };
if (tip_ref_frame && plane == 0) {
mv_refined[0].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[0]);
mv_refined[1].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[1]);
}
int use_optflow_refinement =
is_optflow_refinement_enabled(cm, xd, mi, plane, tip_ref_frame);
int use_4x4 = tip_ref_frame ? 0 : 1;
assert(IMPLIES(use_optflow_refinement,
cm->features.opfl_refine_type != REFINE_NONE));
// Optical flow refinement with masked comp
// types or with non-sharp interpolation
// filter should only exist in REFINE_ALL.
assert(IMPLIES(
use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE,
cm->features.opfl_refine_type == REFINE_ALL));
assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0));
// In REFINE_ALL mode, refinement should be
// used whenever applicable
assert(IMPLIES(cm->features.opfl_refine_type == REFINE_ALL &&
!tip_ref_frame && opfl_allowed_cur_pred_mode(cm, xd, mi),
use_optflow_refinement));
assert(IMPLIES(
use_optflow_refinement,
!is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART])));
// Pointers to gradient and dst buffers
if (use_optflow_refinement && plane == 0) {
// Pointers to hold optical flow MV
// offsets.
int *vx0 = opfl_vxy_bufs;
int *vx1 = opfl_vxy_bufs + (N_OF_OFFSETS * 1);
int *vy0 = opfl_vxy_bufs + (N_OF_OFFSETS * 2);
int *vy1 = opfl_vxy_bufs + (N_OF_OFFSETS * 3);
// Allocate gradient and dst buffers
const int n = opfl_get_subblock_size(bw, bh, plane, use_4x4);
const int n_blocks = (bw / n) * (bh / n);
int16_t *gx0 = xd->opfl_gxy_bufs;
int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1);
int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2);
int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3);
// Initialize refined mv
const MV mv0 = best_mv_ref[0];
const MV mv1 = best_mv_ref[1];
// Refine MV using optical flow. The final
// output MV will be in 1/16 precision.
uint16_t *dst0 = xd->opfl_dst_bufs;
uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE;
if (tip_ref_frame) {
use_optflow_refinement = !skip_opfl_refine_with_tip(
cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf,
best_mv_ref, calc_subpel_params_func, dst0, dst1, bw,
/*do_pred=*/1);
}
if (use_optflow_refinement) {
int do_pred = tip_ref_frame ? 0 : 1;
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined[mvi * 2].as_mv = mv0;
mv_refined[mvi * 2 + 1].as_mv = mv1;
}
av1_get_optflow_based_mv(cm, xd, plane, mi, mv_refined, bw, bh, mi_x,
mi_y, build_for_decode, mc_buf,
calc_subpel_params_func, gx0, gy0, gx1, gy1, vx0,
vy0, vx1, vy1, dst0, dst1, bw, do_pred, use_4x4,
best_mv_ref, pu_width, pu_height);
}
}
int opfl_sub_bw = OF_BSIZE;
int opfl_sub_bh = OF_BSIZE;
opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh);
BacpBlockData bacp_block_data[2 * N_OF_OFFSETS];
uint8_t use_bacp = tip_ref_frame
?
#if CONFIG_TIP_ENHANCEMENT
is_compound && tip_weight == TIP_EQUAL_WTD &&
#endif // CONFIG_TIP_ENHANCEMENT
cm->features.enable_imp_msk_bld &&
!av1_is_scaled(cm->tip_ref.ref_scale_factor[0]) &&
!av1_is_scaled(cm->tip_ref.ref_scale_factor[1])
: use_border_aware_compound(cm, xd, mi) &&
mi->cwp_idx == CWP_EQUAL &&
cm->features.enable_imp_msk_bld;
WarpBoundaryBox warp_bd_box_mem[MAX_WARP_BD_SQ];
assert(IMPLIES(singleref_for_compound, !is_compound));
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity
: xd->block_ref_scale_factors[ref]);
struct buf_2d *const pre_buf = is_intrabc ? &pd->dst : &pd->pre[ref];
MV mv = mi_mv[ref];
const WarpTypesAllowed warp_types = { is_global[ref],
is_warp_mode(mi->motion_mode) };
InterPredParams inter_pred_params;
const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw;
const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh;
av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
if (is_compound) av1_init_comp_mode(&inter_pred_params);
inter_pred_params.border_data.enable_bacp = use_bacp;
inter_pred_params.border_data.bacp_block_data =
&bacp_block_data[0]; // Always point
// to the first
// ref
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
#if CONFIG_ACROSS_SCALE_WARP
assert(IMPLIES(inter_pred_params.mode == WARP_PRED &&
av1_is_scaled(inter_pred_params.scale_factors),
!inter_pred_params.warp_params.use_affine_filter));
#endif // CONFIG_ACROSS_SCALE_WARP
if (inter_pred_params.mode == WARP_PRED &&
(!inter_pred_params.warp_params.use_affine_filter ||
#if CONFIG_ACROSS_SCALE_WARP
av1_is_scaled(inter_pred_params.scale_factors) ||
#endif // CONFIG_ACROSS_SCALE_WARP
(comp_bw < 8 || comp_bh < 8))) {
*ext_warp_used = true;
inter_pred_params.use_warp_bd_box = 1;
inter_pred_params.warp_bd_box = &warp_bd_box_mem[0];
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
const int_mv warp_mv = get_int_warp_mv_for_fb(
xd, &inter_pred_params.warp_params, bsize, (mi_x >> MI_SIZE_LOG2),
(mi_y >> MI_SIZE_LOG2));
// printf("warpmv (%d, %d), loc (%d,
// %d)\n", warp_mv.as_mv.col,
// warp_mv.as_mv.row, mi_x,
// mi_y);
// printf("precision %d\n",
// mi->pb_mv_precision);
int warp_bd_box_mem_stride = MAX_WARP_BD_SIZE;
for (int sub_mi_y = pre_y; sub_mi_y < pre_y + pu_height; sub_mi_y += 4) {
for (int sub_mi_x = pre_x; sub_mi_x < pre_x + pu_width; sub_mi_x += 4) {
int x_loc = sub_mi_x - pre_x;
int y_loc = sub_mi_y - pre_y;
int block_width = AOMMIN(8, comp_bw);
int block_height = AOMMIN(8, comp_bh);
if ((x_loc & 7) == 0 && (y_loc & 7) == 0) {
av1_get_reference_area_with_padding_single_warp(
cm, xd, plane, mi, warp_mv.as_mv, block_width, block_height,
(sub_mi_x << pd->subsampling_x),
(sub_mi_y << pd->subsampling_y),
&inter_pred_params
.warp_bd_box[(x_loc >> 3) +
(y_loc >> 3) * warp_bd_box_mem_stride],
pu_width, pu_height, ref);
} else {
continue;
}
}
}
}
if (is_compound) {
inter_pred_params.sb_type = tip_ref_frame ?
#if CONFIG_FLEX_TIP_BLK_SIZE
get_tip_bsize_from_bw_bh(bw, bh)
#else
BLOCK_8X8
#endif // CONFIG_FLEX_TIP_BLK_SIZE
: mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
}
if (is_masked_compound_type(mi->interinter_comp.type)) {
if (ref == 1) {
inter_pred_params.conv_params.do_average = 0;
inter_pred_params.comp_mode = MASK_COMP;
}
// Assign physical buffer.
inter_pred_params.mask_comp.seg_mask = xd->seg_mask;
}
if (ref == 1 && inter_pred_params.conv_params.do_average == 1) {
if (get_cwp_idx(mi) != CWP_EQUAL) {
int8_t weight = get_cwp_idx(mi);
assert(mi->cwp_idx >= CWP_MIN && mi->cwp_idx <= CWP_MAX);
inter_pred_params.conv_params.fwd_offset = weight;
inter_pred_params.conv_params.bck_offset =
(1 << CWP_WEIGHT_BITS) - weight;
}
}
if (use_optflow_refinement && plane == 0) {
inter_pred_params.interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bw);
inter_pred_params.interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bh);
av1_opfl_rebuild_inter_predictor(
dst, dst_stride, plane, mv_refined, &inter_pred_params, xd, mi_x,
mi_y, build_for_decode, cm, pu_width, ref, mc_buf,
calc_subpel_params_func, use_4x4, mi, pu_height, mi_mv, 1);
continue;
}
if (mi->bawp_flag[0] > 0 && (plane == 0 || mi->bawp_flag[1])) {
av1_build_one_bawp_inter_predictor(
dst, dst_stride, &mv, &inter_pred_params, cm, xd, dst_orig, bw, bh,
mi_x, mi_y, ref, plane, mc_buf, calc_subpel_params_func);
continue;
}
#if CONFIG_TIP_ENHANCEMENT
if (tip_ref_frame) {
set_tip_interp_weight_factor(cm, ref, &inter_pred_params);
}
#endif // CONFIG_TIP_ENHANCEMENT
const MV mv_1_16th_pel = (tip_ref_frame && plane)
? mv_refined[ref].as_mv
: convert_mv_to_1_16th_pel(&mv);
av1_build_one_inter_predictor(dst, dst_stride, &mv_1_16th_pel,
&inter_pred_params, xd, mi_x, mi_y, ref,
mc_buf, calc_subpel_params_func);
}
}
// This function consolidates the prediction
// process of the TIP ref mode block and the
// non-TIP ref mode block.
static void build_inter_predictors_8x8_and_bigger_facade(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
const BUFFER_SET *dst_orig, int build_for_decode, int bw, int bh, int mi_x,
int mi_y, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func,
int build_for_refine_mv_only) {
const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]);
bool ext_warp_used = false;
struct macroblockd_plane *pd = &xd->plane[plane];
struct buf_2d *dst_buf = &pd->dst;
const int dst_stride = dst_buf->stride;
uint16_t *const dst = dst_buf->buf;
if (tip_ref_frame) {
#if CONFIG_FLEX_TIP_BLK_SIZE
const int width = xd->width << MI_SIZE_LOG2;
const int height = xd->height << MI_SIZE_LOG2;
const BLOCK_SIZE unit_bsize =
get_unit_bsize_for_tip_ref(TIP_FRAME_AS_REF, width, height
#if CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG
,
cm->seq_params.enable_tip_refinemv
#endif // CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG
);
const int unit_blk_size = block_size_wide[unit_bsize];
const int end_pixel_row = mi_y + height;
const int end_pixel_col = mi_x + width;
#else
// TMVP_MI_SIZE_UV is the block size in
// luma unit for Chroma TIP interpolation,
// will convert to the step size in TMVP
// 8x8 unit
const int unit_blk_size = (plane == 0) ? TMVP_MI_SIZE : TMVP_MI_SIZE_UV;
const int end_pixel_row = mi_y + (xd->height << MI_SIZE_LOG2);
const int end_pixel_col = mi_x + (xd->width << MI_SIZE_LOG2);
#endif // CONFIG_FLEX_TIP_BLK_SIZE
for (int pixel_row = mi_y; pixel_row < end_pixel_row;
pixel_row += unit_blk_size) {
for (int pixel_col = mi_x; pixel_col < end_pixel_col;
pixel_col += unit_blk_size) {
const int tpl_row = pixel_row >> TMVP_MI_SZ_LOG2;
const int tpl_col = pixel_col >> TMVP_MI_SZ_LOG2;
const int row_offset = (pixel_row - mi_y) >> TMVP_MI_SZ_LOG2;
const int col_offset = (pixel_col - mi_x) >> TMVP_MI_SZ_LOG2;
const int tip_mv_offset = (row_offset * TIP_MV_STRIDE + col_offset)
<< 1;
const int refinemv_offset =
((pixel_row - mi_y) >> MI_SIZE_LOG2) * MAX_MIB_SIZE +
((pixel_col - mi_x) >> MI_SIZE_LOG2);
const int opfl_vxy_offset =
((pixel_row - mi_y) >> OF_BSIZE_LOG2) *
(xd->width >> (OF_BSIZE_LOG2 - MI_SIZE_LOG2)) +
((pixel_col - mi_x) >> OF_BSIZE_LOG2);
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
MV tip_mv[2];
int_mv tip_mv_tmp[2];
if (is_subblock_outside(pixel_col, pixel_row, cm->mi_params.mi_cols,
cm->mi_params.mi_rows, build_for_decode)) {
continue;
}
get_tip_mv(cm, &mi->mv[0].as_mv, tpl_col, tpl_row, tip_mv_tmp);
tip_mv[0] = tip_mv_tmp[0].as_mv;
tip_mv[1] = tip_mv_tmp[1].as_mv;
if (plane == 0) {
REFINEMV_SUBMB_INFO
*refinemv_subinfo = &xd->refinemv_subinfo[refinemv_offset];
fill_subblock_refine_mv(refinemv_subinfo, unit_blk_size,
unit_blk_size, tip_mv[0], tip_mv[1]);
xd->opfl_vxy_bufs[opfl_vxy_offset] = 0;
xd->opfl_vxy_bufs[N_OF_OFFSETS * 1 + opfl_vxy_offset] = 0;
xd->opfl_vxy_bufs[N_OF_OFFSETS * 2 + opfl_vxy_offset] = 0;
xd->opfl_vxy_bufs[N_OF_OFFSETS * 3 + opfl_vxy_offset] = 0;
}
dst_buf->buf = dst +
((row_offset << TMVP_MI_SZ_LOG2) >> ss_y) * dst_stride +
((col_offset << TMVP_MI_SZ_LOG2) >> ss_x);
build_inter_predictors_8x8_and_bigger(
cm, xd, plane, mi, dst_orig, build_for_decode, unit_blk_size,
unit_blk_size, pixel_col, pixel_row, mc_buf, tip_mv,
calc_subpel_params_func, dst_buf->buf, dst_stride, bw, bh,
build_for_refine_mv_only, &ext_warp_used,
&xd->mv_refined[tip_mv_offset],
&xd->refinemv_subinfo[refinemv_offset],
&xd->opfl_vxy_bufs[opfl_vxy_offset]);
}
}
dst_buf->buf = dst;
} else {
MV mv[2] = { mi->mv[0].as_mv, mi->mv[1].as_mv };
build_inter_predictors_8x8_and_bigger(
cm, xd, plane, mi, dst_orig, build_for_decode, bw, bh, mi_x, mi_y,
mc_buf, mv, calc_subpel_params_func, dst, dst_stride, bw, bh,
build_for_refine_mv_only, &ext_warp_used, xd->mv_refined,
xd->refinemv_subinfo, xd->opfl_vxy_bufs);
}
}
void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, MB_MODE_INFO *mi,
const BUFFER_SET *dst_orig,
int build_for_refine_mv_only,
int build_for_decode, int bw, int bh, int mi_x,
int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
if (plane == AOM_PLANE_Y)
memset(xd->mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv));
// just for debugging purpose
// Can be removed later on
if (mi->mode == WARPMV) {
assert(mi->ref_mv_idx[0] == 0);
assert(mi->ref_mv_idx[1] == 0);
assert(mi->motion_mode == WARP_DELTA || mi->motion_mode == WARP_CAUSAL);
}
if (is_sub8x8_inter(cm, xd, mi, plane, is_intrabc_block(mi, xd->tree_type))) {
build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf,
calc_subpel_params_func);
} else {
build_inter_predictors_8x8_and_bigger_facade(
cm, xd, plane, mi, dst_orig, build_for_decode, bw, bh, mi_x, mi_y,
mc_buf, calc_subpel_params_func, build_for_refine_mv_only);
}
}
void av1_setup_dst_planes(struct macroblockd_plane *planes,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const int plane_start, const int plane_end,
const CHROMA_REF_INFO *chroma_ref_info) {
// We use AOMMIN(num_planes, MAX_MB_PLANE)
// instead of num_planes to quiet the static
// analysis warnings.
for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &planes[i];
const int is_uv = i > 0;
#if CONFIG_F054_PIC_BOUNDARY
setup_pred_plane(&pd->dst, src->buffers[i], src->widths[is_uv],
src->heights[is_uv], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, NULL, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
#else
setup_pred_plane(&pd->dst, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, NULL, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
#endif // CONFIG_F054_PIC_BOUNDARY
}
}
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf, const int num_planes,
const CHROMA_REF_INFO *chroma_ref_info) {
if (src != NULL) {
// We use AOMMIN(num_planes, MAX_MB_PLANE)
// instead of num_planes to quiet the
// static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
const int is_uv = i > 0;
#if CONFIG_F054_PIC_BOUNDARY
setup_pred_plane(&pd->pre[idx], src->buffers[i], src->widths[is_uv],
src->heights[is_uv], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, sf, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
#else
setup_pred_plane(&pd->pre[idx], src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, sf, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
#endif // CONFIG_F054_PIC_BOUNDARY
}
}
}
static AOM_INLINE void combine_interintra_highbd(
INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
int8_t boundary_index,
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint16_t *comppred8, int compstride, const uint16_t *interpred8,
int interstride, const uint16_t *intrapred8, int intrastride, int bd) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (use_wedge_interintra) {
if (av1_is_wedge_used(bsize)) {
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
const uint8_t *mask = av1_get_all_contiguous_soft_mask(
wedge_index, wedge_sign, bsize, boundary_index);
#else
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
const int subh = 2 * mi_size_high[bsize] == bh;
const int subw = 2 * mi_size_wide[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask,
block_size_wide[bsize], bw, bh, subw, subh, bd);
}
return;
}
uint8_t mask[MAX_SB_SQUARE];
build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask, bw, bw, bh, 0, 0,
bd);
}
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd, int plane,
const BUFFER_SET *ctx,
uint16_t *dst, int dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy);
PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode];
assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0);
assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0);
assert(xd->mi[0]->use_intrabc[PLANE_TYPE_Y] == 0);
xd->mi[0]->txb_idx = 0;
av1_predict_intra_block(cm, xd, pd->width, pd->height,
max_txsize_rect_lookup[plane_bsize], mode, 0, 0,
ctx->plane[plane], ctx->stride[plane], dst,
dst_stride, 0, 0, plane);
}
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint16_t *inter_pred, int inter_stride,
const uint16_t *intra_pred, int intra_stride) {
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy);
combine_interintra_highbd(
xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
xd->mi[0]->interintra_wedge_index,
#if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
xd->mi[0]->wedge_boundary_index,
#endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY
INTERINTRA_WEDGE_SIGN, bsize, plane_bsize, xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred,
intra_stride, xd->bd);
}
// build interintra_predictors for one plane
void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint16_t *pred, int stride,
const BUFFER_SET *ctx, int plane,
BLOCK_SIZE bsize) {
assert(bsize < BLOCK_SIZES_ALL);
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(cm, xd, plane, ctx, intrapredictor,
MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor,
MAX_SB_SIZE);
}
int av1_get_mpp_flag_context(const AV1_COMMON *cm, const MACROBLOCKD *xd) {
(void)cm;
#if CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION
int ctx = 0;
for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) {
const MB_MODE_INFO *const neighbor = xd->neighbors[i];
if (neighbor && is_inter_block(neighbor, SHARED_PART) &&
!is_intrabc_block(neighbor, SHARED_PART)) {
ctx += (neighbor->most_probable_pb_mv_precision ==
neighbor->pb_mv_precision);
}
}
return ctx;
#else
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
const int above_mpp_flag =
(above_mi && is_inter_block(above_mi, SHARED_PART) &&
!is_intrabc_block(above_mi, SHARED_PART))
? (above_mi->most_probable_pb_mv_precision ==
above_mi->pb_mv_precision)
: 0;
const int left_mpp_flag =
(left_mi && is_inter_block(left_mi, SHARED_PART) &&
!is_intrabc_block(left_mi, SHARED_PART))
? (left_mi->most_probable_pb_mv_precision == left_mi->pb_mv_precision)
: 0;
return (above_mpp_flag + left_mpp_flag);
#endif // CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION
}
// Derive the context index for refinemv flag
int av1_get_refinemv_context(const AV1_COMMON *cm, const MACROBLOCKD *xd,
BLOCK_SIZE bsize) {
(void)cm;
(void)bsize;
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (mbmi->skip_mode) return 0;
return (1 + (mbmi->mode - NEAR_NEARMV));
}
int av1_get_pb_mv_precision_down_context(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
(void)cm;
#if CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION
int ctx = 0;
for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) {
const MB_MODE_INFO *const neighbor = xd->neighbors[i];
if (neighbor && is_inter_block(neighbor, SHARED_PART) &&
!is_intrabc_block(neighbor, SHARED_PART)) {
ctx += (neighbor->max_mv_precision - neighbor->pb_mv_precision);
}
}
return ctx > 0;
#else
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
const int above_down =
(above_mi && is_inter_block(above_mi, SHARED_PART) &&
!is_intrabc_block(above_mi, SHARED_PART))
? above_mi->max_mv_precision - above_mi->pb_mv_precision
: 0;
const int left_down =
(left_mi && is_inter_block(left_mi, SHARED_PART) &&
!is_intrabc_block(left_mi, SHARED_PART)) // && !left_mi->skip_mode)
? left_mi->max_mv_precision - left_mi->pb_mv_precision
: 0;
assert(above_down >= 0);
assert(left_down >= 0);
return (above_down + left_down > 0);
#endif // CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION
}
int av1_get_mv_class_context(const MvSubpelPrecision pb_mv_precision) {
return pb_mv_precision;
}
void set_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) {
mbmi->pb_mv_precision = precision;
}
// Function to check if precision need to be
// signaled or not
int is_intraBC_bv_precision_active(const AV1_COMMON *const cm,
const int intrabc_mode) {
assert(IMPLIES(!cm->features.allow_screen_content_tools,
!cm->features.cur_frame_force_integer_mv));
assert(IMPLIES(cm->features.cur_frame_force_integer_mv,
cm->features.allow_screen_content_tools));
return (!cm->features.cur_frame_force_integer_mv && intrabc_mode == 0);
}
// Set max value as default precision
void set_default_intraBC_bv_precision(const AV1_COMMON *const cm,
MB_MODE_INFO *mbmi) {
assert(IMPLIES(!cm->features.allow_screen_content_tools,
!cm->features.cur_frame_force_integer_mv));
assert(IMPLIES(cm->features.cur_frame_force_integer_mv,
cm->features.allow_screen_content_tools));
mbmi->pb_mv_precision =
cm->features.cur_frame_force_integer_mv
? MV_PRECISION_ONE_PEL
: av1_intraBc_precision_sets
.precision[av1_intraBc_precision_sets.num_precisions - 1];
}
// set the mv precision for amvd applied mode
void set_amvd_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) {
mbmi->pb_mv_precision =
precision <= MV_PRECISION_QTR_PEL ? precision : MV_PRECISION_QTR_PEL;
}
int av1_get_pb_mv_precision_index(const MB_MODE_INFO *mbmi) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int coded_precision_idx = -1;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) {
coded_precision_idx++;
if (pb_mv_precision == mbmi->pb_mv_precision) return coded_precision_idx;
}
}
assert(0);
return coded_precision_idx;
}
MvSubpelPrecision av1_get_precision_from_index(MB_MODE_INFO *mbmi,
int precision_idx_coded_value) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int coded_precision_idx = -1;
MvSubpelPrecision pb_mv_precision = NUM_MV_PRECISIONS;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) {
coded_precision_idx++;
if (coded_precision_idx == precision_idx_coded_value)
return pb_mv_precision;
}
}
assert(0);
return pb_mv_precision;
}
void set_most_probable_mv_precision(const AV1_COMMON *const cm,
MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
(void)cm;
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
mbmi->most_probable_pb_mv_precision =
precision_def->precision[precision_def->num_precisions - 1];
#if CONFIG_DEBUG
int mpp_found = 0;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision == mbmi->most_probable_pb_mv_precision) {
mpp_found = 1;
break;
}
}
(void)mpp_found;
assert(mpp_found);
#endif
}
void set_precision_set(const AV1_COMMON *const cm, MACROBLOCKD *const xd,
MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize,
int *ref_mv_idx) {
(void)bsize;
(void)cm;
(void)xd;
(void)ref_mv_idx;
#if CONFIG_FRAME_HALF_PRECISION
mbmi->mb_precision_set =
(mbmi->max_mv_precision < MV_PRECISION_HALF_PEL)
? 0
: MV_PRECISION_ONE_EIGHTH_PEL - mbmi->max_mv_precision;
#else
int set_idx = 0;
int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL)
? NUMBER_OF_PRECISION_SETS
: 0;
mbmi->mb_precision_set = set_idx + offset_idx;
#endif // CONFIG_FRAME_HALF_PRECISION
}
void set_default_precision_set(const AV1_COMMON *const cm, MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
(void)cm;
#if CONFIG_FRAME_HALF_PRECISION
mbmi->mb_precision_set =
(mbmi->max_mv_precision < MV_PRECISION_HALF_PEL)
? 0
: MV_PRECISION_ONE_EIGHTH_PEL - mbmi->max_mv_precision;
#else
int set_idx = 0;
int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL)
? NUMBER_OF_PRECISION_SETS
: 0;
mbmi->mb_precision_set = set_idx + offset_idx;
#endif // CONFIG_FRAME_HALF_PRECISION
}
void set_default_max_mv_precision(MB_MODE_INFO *mbmi,
MvSubpelPrecision precision) {
mbmi->max_mv_precision = precision;
}
MvSubpelPrecision av1_get_mbmi_max_mv_precision(const AV1_COMMON *const cm,
const SB_INFO *sbi,
const MB_MODE_INFO *mbmi) {
(void)mbmi;
(void)sbi;
return cm->features.fr_mv_precision;
}
int is_pb_mv_precision_active(const AV1_COMMON *const cm,
const MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
if (enable_adaptive_mvd_resolution(cm, mbmi)) return 0;
return cm->seq_params.enable_flex_mvres &&
(mbmi->max_mv_precision >= MV_PRECISION_HALF_PEL) &&
cm->features.use_pb_mv_precision &&
have_newmv_in_inter_mode(mbmi->mode);
}
// Copy mv0 and mv1 to the sub-blocks
// submi is the top-left corner of the
// sub-block need to fill bw is the block
// width in the unit of pixel bh is the block
// height in unit of pixel
void fill_subblock_refine_mv(REFINEMV_SUBMB_INFO *refinemv_subinfo, int bw,
int bh, MV mv0, MV mv1) {
const int stride = MAX_MIB_SIZE;
for (int y = 0; y < (bh >> MI_SIZE_LOG2); y++) {
for (int x = 0; x < (bw >> MI_SIZE_LOG2); x++) {
refinemv_subinfo[x].refinemv[0].as_mv = mv0;
refinemv_subinfo[x].refinemv[1].as_mv = mv1;
}
refinemv_subinfo += stride;
}
}
bool av1_build_morph_pred(const AV1_COMMON *const cm, MACROBLOCKD *const xd,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col) {
#if CONFIG_F054_PIC_BOUNDARY
(void)cm;
#endif // CONFIG_F054_PIC_BOUNDARY
// Predictor, i.e., the reconstructed block
// found from intrabc.
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
uint16_t *const dst = pd->dst.buf;
const int dst_stride = pd->dst.stride;
MB_MODE_INFO *mbmi = xd->mi[0];
FULLPEL_MV dv = get_fullmv_from_mv(&mbmi->mv[0].as_mv);
const int cur_x = mi_col * MI_SIZE;
const int cur_y = mi_row * MI_SIZE;
#if CONFIG_F054_PIC_BOUNDARY
if (cur_x >= pd->dst.width || cur_y >= pd->dst.height) return false;
#else
if (cur_x >= cm->width || cur_y >= cm->height) return false;
#endif // CONFIG_F054_PIC_BOUNDARY
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
int ref_w = bw;
int ref_h = bh;
#if CONFIG_F054_PIC_BOUNDARY
if (cur_x + bw >= pd->dst.width) ref_w = pd->dst.width - cur_x;
if (cur_y + bh >= pd->dst.height) ref_h = pd->dst.height - cur_y;
#else
if (cur_x + bw >= cm->width) ref_w = cm->width - cur_x;
if (cur_y + bh >= cm->height) ref_h = cm->height - cur_y;
#endif // CONFIG_F054_PIC_BOUNDARY
const int cur_tmplt_x = cur_x - BAWP_REF_LINES;
const int cur_tmplt_y = cur_y - BAWP_REF_LINES;
const int ref_x = cur_x + dv.col;
const int ref_y = cur_y + dv.row;
const int ref_tmplt_x = ref_x - BAWP_REF_LINES;
const int ref_tmplt_y = ref_y - BAWP_REF_LINES;
#if CONFIG_F054_PIC_BOUNDARY
assert(cur_tmplt_x + ref_w < pd->dst.width);
assert(cur_tmplt_y + ref_h < pd->dst.height);
if (ref_tmplt_x < 0 || ref_tmplt_y < 0 || ref_x + ref_w >= pd->dst.width ||
ref_y + ref_h >= pd->dst.height) {
#else
assert(cur_tmplt_x + ref_w < cm->width);
assert(cur_tmplt_y + ref_h < cm->height);
if (ref_tmplt_x < 0 || ref_tmplt_y < 0 || ref_x + ref_w >= cm->width ||
ref_y + ref_h >= cm->height) {
#endif // CONFIG_F054_PIC_BOUNDARY
return false;
}
#if !CONFIG_LOCAL_INTRABC_BAWP
// Restriction: the reference block's
// template can't be outside the local 64x64
// block for local intra block copy. If
// local intra block copy extends to
// 128x128, one has to change the
// restrictions here to make it match.
const int is_same_unit_x = (cur_x >> 6) == (ref_x >> 6);
const int is_same_unit_y = (cur_y >> 6) == (ref_y >> 6);
if (is_same_unit_x && is_same_unit_y) {
if (ref_x > 0 && (ref_x % 64 == 0)) return false;
if (ref_y > 0 && (ref_y % 64 == 0)) return false;
}
#endif // !CONFIG_LOCAL_INTRABC_BAWP
// Restriction: the reference block's
// template can't be outside the current
// tile.
const TileInfo *const tile = &xd->tile;
// Is the source top-left inside the current
// tile?
const int tile_top_edge = tile->mi_row_start * MI_SIZE;
if (ref_tmplt_y < tile_top_edge) return false;
const int tile_left_edge = tile->mi_col_start * MI_SIZE;
if (ref_tmplt_x < tile_left_edge) return false;
// Is the bottom right inside the current
// tile?
const int ref_bottom_edge = ref_y + bh;
const int tile_bottom_edge = tile->mi_row_end * MI_SIZE;
if (ref_bottom_edge > tile_bottom_edge) return false;
const int ref_right_edge = ref_x + bw;
const int tile_right_edge = tile->mi_col_end * MI_SIZE;
if (ref_right_edge > tile_right_edge) return false;
// The current block's template can't be
// outside the current tile too.
if (cur_tmplt_y < tile_top_edge) return false;
if (cur_tmplt_x < tile_left_edge) return false;
uint16_t *recon_buf = xd->plane[0].dst.buf;
uint16_t *recon_top = dst - BAWP_REF_LINES * dst_stride;
uint16_t *recon_left = dst - BAWP_REF_LINES;
uint16_t *ref_buf = recon_buf + dv.row * dst_stride + dv.col;
uint16_t *ref_top = ref_buf - BAWP_REF_LINES * dst_stride;
uint16_t *ref_left = ref_buf - BAWP_REF_LINES;
derive_bawp_parameters(xd, recon_top, recon_left, dst_stride, ref_top,
ref_left, dst_stride, /*ref=*/0, /*plane=*/0, ref_w,
ref_h);
int16_t alpha = mbmi->bawp_alpha[0][0];
int32_t beta = mbmi->bawp_beta[0][0];
const int shift = 8;
for (int j = 0; j < bh; ++j) {
for (int i = 0; i < bw; ++i) {
dst[j * dst_stride + i] = clip_pixel_highbd(
(dst[j * dst_stride + i] * alpha + beta) >> shift, xd->bd);
}
}
return true;
}