| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "av1/common/enums.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/blend.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/cfl.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/tip.h" |
| |
| // This function will determine whether or not to create a warped |
| // prediction. |
| int av1_allow_warp(const MB_MODE_INFO *const mbmi, |
| const WarpTypesAllowed *const warp_types, |
| const WarpedMotionParams *const gm_params, int ref, |
| const struct scale_factors *const sf, |
| WarpedMotionParams *final_warp_params) { |
| // Note: As per the spec, we must test the fixed point scales here, which are |
| // at a higher precision (1 << 14) than the xs and ys in subpel_params (that |
| // have 1 << 10 precision). |
| #if CONFIG_ACROSS_SCALE_WARP |
| (void)sf; |
| #else |
| if (av1_is_scaled(sf)) return 0; |
| #endif // CONFIG_ACROSS_SCALE_WARP |
| |
| if (final_warp_params != NULL) *final_warp_params = default_warp_params; |
| |
| if (warp_types->local_warp_allowed && !mbmi->wm_params[ref].invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, &mbmi->wm_params[ref], |
| sizeof(*final_warp_params)); |
| return 1; |
| } else if (warp_types->global_warp_allowed && !gm_params->invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width, |
| int block_height, int pix_row, int pix_col, |
| int subsampling_x, int subsampling_y, int bit_depth, |
| int is_intrabc, const struct scale_factors *sf, |
| const struct buf_2d *ref_buf, |
| InterpFilter interp_filter) { |
| inter_pred_params->block_width = block_width; |
| inter_pred_params->block_height = block_height; |
| inter_pred_params->orig_block_width = block_width; |
| inter_pred_params->orig_block_height = block_height; |
| inter_pred_params->original_pu_width = block_width; |
| inter_pred_params->original_pu_height = block_height; |
| |
| inter_pred_params->pix_row = pix_row; |
| inter_pred_params->pix_col = pix_col; |
| inter_pred_params->subsampling_x = subsampling_x; |
| inter_pred_params->subsampling_y = subsampling_y; |
| inter_pred_params->bit_depth = bit_depth; |
| inter_pred_params->is_intrabc = is_intrabc; |
| inter_pred_params->scale_factors = sf; |
| inter_pred_params->ref_frame_buf = *ref_buf; |
| inter_pred_params->mode = TRANSLATION_PRED; |
| inter_pred_params->comp_mode = UNIFORM_SINGLE; |
| |
| inter_pred_params->use_ref_padding = 0; |
| inter_pred_params->ref_area = NULL; |
| |
| inter_pred_params->use_warp_bd_box = 0; |
| inter_pred_params->warp_bd_box = NULL; |
| |
| inter_pred_params->border_data.enable_bacp = 0; |
| inter_pred_params->border_data.bacp_block_data = NULL; |
| |
| if (is_intrabc) { |
| inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params; |
| inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params; |
| } else { |
| inter_pred_params->interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(interp_filter, |
| block_width); |
| inter_pred_params->interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(interp_filter, |
| block_height); |
| } |
| } |
| |
| void av1_init_comp_mode(InterPredParams *inter_pred_params) { |
| inter_pred_params->comp_mode = UNIFORM_COMP; |
| } |
| |
| void av1_init_warp_params(InterPredParams *inter_pred_params, |
| const WarpTypesAllowed *warp_types, int ref, |
| const MACROBLOCKD *xd, const MB_MODE_INFO *mi) { |
| if (is_tip_ref_frame(mi->ref_frame[0])) return; |
| |
| // We do not do refineMV for warp blocks |
| // We may need to return from here. |
| if (mi->refinemv_flag) return; |
| |
| if (xd->cur_frame_force_integer_mv) return; |
| |
| if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], |
| ref, inter_pred_params->scale_factors, |
| &inter_pred_params->warp_params)) |
| inter_pred_params->mode = WARP_PRED; |
| } |
| |
| void av1_make_inter_predictor(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params) { |
| assert(IMPLIES(inter_pred_params->conv_params.is_compound, |
| inter_pred_params->conv_params.dst != NULL)); |
| #if CONFIG_ACROSS_SCALE_REF_OPT |
| assert(IMPLIES(av1_is_scaled(inter_pred_params->scale_factors), |
| av1_is_valid_scale(inter_pred_params->scale_factors))); |
| #endif // CONFIG_ACROSS_SCALE_REF_OPT |
| // TODO(jingning): av1_warp_plane() can be further cleaned up. |
| if (inter_pred_params->mode == WARP_PRED) { |
| av1_warp_plane( |
| &inter_pred_params->warp_params, inter_pred_params->bit_depth, |
| inter_pred_params->ref_frame_buf.buf0, |
| inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, |
| inter_pred_params->ref_frame_buf.stride, dst, |
| inter_pred_params->pix_col, inter_pred_params->pix_row, |
| inter_pred_params->block_width, inter_pred_params->block_height, |
| dst_stride, inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y, &inter_pred_params->conv_params |
| #if CONFIG_ACROSS_SCALE_WARP |
| , |
| inter_pred_params->scale_factors |
| #endif // CONFIG_ACROSS_SCALE_WARP |
| , |
| inter_pred_params->use_warp_bd_box, inter_pred_params->warp_bd_box); |
| } else if (inter_pred_params->mode == TRANSLATION_PRED) { |
| highbd_inter_predictor( |
| src, src_stride, dst, dst_stride, subpel_params, |
| inter_pred_params->block_width, inter_pred_params->block_height, |
| &inter_pred_params->conv_params, |
| inter_pred_params->interp_filter_params, inter_pred_params->bit_depth, |
| inter_pred_params->is_intrabc); |
| } |
| } |
| |
| /* clang-format off */ |
| #if WEDGE_BLD_SIG |
| #if CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| // rounded cosine and sine look-up tables given by round(32*cos(i)) and round(16*cos(i)) for two wedge boundaries |
| static const int8_t wedge_cos_lut_all[MAX_WEDGE_BOUNDARY_TYPES][WEDGE_ANGLES] = { |
| { |
| // 0, 1, 2, 4, 6 |
| 32, 32, 32, 16, 16, |
| // 8, 10, 12, 14, 15 |
| 0,-16,-16,-32,-32, |
| // 16, 17, 18, 20, 22 |
| -32,-32,-32,-16,-16, |
| // 24, 26, 28, 30, 31 |
| 0, 16, 16, 32, 32 |
| }, |
| { |
| // 0, 1, 2, 4, 6, |
| 16, 16, 16, 8, 8, |
| // 8, 10, 12, 14, 15 |
| 0, -8, -8,-16,-16, |
| // 16, 17, 18, 20, 22 |
| -16,-16,-16, -8, -8, |
| // 24, 26, 28, 30, 31 |
| 0, 8, 8, 16, 16 |
| } |
| }; |
| static const int8_t wedge_sin_lut_all[MAX_WEDGE_BOUNDARY_TYPES][WEDGE_ANGLES] = { |
| { |
| // 0, 1, 2, 4, 6, |
| 0, -8,-16,-16,-32, |
| // 8, 10, 12, 14, 15 |
| -32,-32,-16,-16, -8, |
| // 16, 17, 18, 20, 22 |
| 0, 8, 16, 16, 32, |
| // 24, 26, 28, 30, 31 |
| 32, 32, 16, 16, 8 |
| }, |
| { |
| // 0, 1, 2, 4, 6, |
| 0, -4, -8, -8,-16, |
| // 8, 10, 12, 14, 15 |
| -16,-16, -8, -8, -4, |
| // 16, 17, 18, 20, 22 |
| 0, 4, 8, 8, 16, |
| // 24, 26, 28, 30, 31 |
| 16, 16, 8, 8, 4 |
| } |
| }; |
| #else |
| // rounded cosine and sine look-up tables given by round(32*cos(i)) |
| static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 32, 32, 32, 16, 16, |
| // 8, 10, 12, 14, 15, |
| 0,-16,-16,-32,-32, |
| // 16, 17, 18, 20, 22, |
| -32,-32,-32,-16,-16, |
| // 24, 26, 28, 30, 31 |
| 0, 16, 16, 32, 32 |
| }; |
| static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 0, -8,-16,-16,-32, |
| // 8, 10, 12, 14, 15, |
| -32,-32,-16,-16, -8, |
| // 16, 17, 18, 20, 22, |
| 0, 8, 16, 16, 32, |
| // 24, 26, 28, 30, 31 |
| 32, 32, 16, 16, 8 |
| }; |
| #endif //CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| // rounded sigmoid function look-up talbe given by round(1/(1+exp(-x))) |
| static const int8_t pos_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE] = { |
| 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, |
| 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, |
| 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, |
| 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, |
| 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
| 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, |
| 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 |
| }; |
| |
| static const int8_t neg_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE] = { |
| 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| #else |
| static const int8_t wedge_cos_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 8, 8, 8, 4, 4, |
| // 8, 10, 12, 14, 15, |
| 0, -4, -4, -8, -8, |
| // 16, 17, 18, 20, 22, |
| -8, -8, -8, -4, -4, |
| // 24, 26, 28, 30, 31 |
| 0, 4, 4, 8, 8 |
| }; |
| static const int8_t wedge_sin_lut[WEDGE_ANGLES] = { |
| // 0, 1, 2, 4, 6, |
| 0, -2, -4, -4, -8, |
| // 8, 10, 12, 14, 15, |
| -8, -8, -4, -4, -2, |
| // 16, 17, 18, 20, 22, |
| 0, 2, 4, 4, 8, |
| // 24, 26, 28, 30, 31 |
| 8, 8, 4, 4, 2 |
| }; |
| #endif |
| /* clang-format on */ |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_allmaster_mask[2][WEDGE_ANGLES][MAX_WEDGE_BOUNDARY_TYPES] |
| [MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| #else |
| // [negative][direction] |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_master_mask[2][WEDGE_ANGLES][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| #endif // WEDGE_BLD_SIG &&CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| DECLARE_ALIGNED(16, static uint8_t, |
| all_wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * |
| MAX_WEDGE_SQUARE]); |
| #else |
| // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound |
| // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]); |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * MAX_WEDGE_BOUNDARY_TYPES * |
| H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]); |
| #else |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * |
| MAX_WEDGE_SQUARE]); |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| DECLARE_ALIGNED(16, static uint8_t, |
| smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL] |
| [MAX_WEDGE_SQUARE]); |
| |
| DECLARE_ALIGNED(16, static int8_t, cwp_mask[2][MAX_CWP_NUM][MAX_SB_SQUARE]); |
| |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| static all_wedge_masks_type all_wedge_masks[BLOCK_SIZES_ALL][2]; |
| #else |
| static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| static wedge_decisions_type wedge_tmvp_decisions[BLOCK_SIZES_ALL][2]; |
| |
| static const wedge_code_type wedge_codebook_16[MAX_WEDGE_TYPES] = { |
| { WEDGE_0, 5, 4 }, { WEDGE_0, 6, 4 }, { WEDGE_0, 7, 4 }, |
| { WEDGE_14, 4, 4 }, { WEDGE_14, 5, 4 }, { WEDGE_14, 6, 4 }, |
| { WEDGE_14, 7, 4 }, { WEDGE_27, 4, 4 }, { WEDGE_27, 5, 4 }, |
| { WEDGE_27, 6, 4 }, { WEDGE_27, 7, 4 }, { WEDGE_45, 4, 4 }, |
| { WEDGE_45, 5, 4 }, { WEDGE_45, 6, 4 }, { WEDGE_45, 7, 4 }, |
| { WEDGE_63, 4, 4 }, { WEDGE_63, 4, 3 }, { WEDGE_63, 4, 2 }, |
| { WEDGE_63, 4, 1 }, { WEDGE_90, 4, 3 }, { WEDGE_90, 4, 2 }, |
| { WEDGE_90, 4, 1 }, { WEDGE_117, 4, 4 }, { WEDGE_117, 4, 3 }, |
| { WEDGE_117, 4, 2 }, { WEDGE_117, 4, 1 }, { WEDGE_135, 4, 4 }, |
| { WEDGE_135, 3, 4 }, { WEDGE_135, 2, 4 }, { WEDGE_135, 1, 4 }, |
| { WEDGE_153, 4, 4 }, { WEDGE_153, 3, 4 }, { WEDGE_153, 2, 4 }, |
| { WEDGE_153, 1, 4 }, { WEDGE_166, 4, 4 }, { WEDGE_166, 3, 4 }, |
| { WEDGE_166, 2, 4 }, { WEDGE_166, 1, 4 }, { WEDGE_180, 3, 4 }, |
| { WEDGE_180, 2, 4 }, { WEDGE_180, 1, 4 }, { WEDGE_194, 3, 4 }, |
| { WEDGE_194, 2, 4 }, { WEDGE_194, 1, 4 }, { WEDGE_207, 3, 4 }, |
| { WEDGE_207, 2, 4 }, { WEDGE_207, 1, 4 }, { WEDGE_225, 3, 4 }, |
| { WEDGE_225, 2, 4 }, { WEDGE_225, 1, 4 }, { WEDGE_243, 4, 5 }, |
| { WEDGE_243, 4, 6 }, { WEDGE_243, 4, 7 }, { WEDGE_270, 4, 5 }, |
| { WEDGE_270, 4, 6 }, { WEDGE_270, 4, 7 }, { WEDGE_297, 4, 5 }, |
| { WEDGE_297, 4, 6 }, { WEDGE_297, 4, 7 }, { WEDGE_315, 5, 4 }, |
| { WEDGE_315, 6, 4 }, { WEDGE_315, 7, 4 }, { WEDGE_333, 5, 4 }, |
| { WEDGE_333, 6, 4 }, { WEDGE_333, 7, 4 }, { WEDGE_346, 5, 4 }, |
| { WEDGE_346, 6, 4 }, { WEDGE_346, 7, 4 }, |
| }; |
| |
| // Look up table of params for wedge mode for different block sizes. |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X8], |
| wedge_tmvp_decisions[BLOCK_8X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X16], |
| wedge_tmvp_decisions[BLOCK_8X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X8], |
| wedge_tmvp_decisions[BLOCK_16X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X16], |
| wedge_tmvp_decisions[BLOCK_16X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X32], |
| wedge_tmvp_decisions[BLOCK_16X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X16], |
| wedge_tmvp_decisions[BLOCK_32X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X32], |
| wedge_tmvp_decisions[BLOCK_32X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X64], |
| wedge_tmvp_decisions[BLOCK_32X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X32], |
| wedge_tmvp_decisions[BLOCK_64X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X64], |
| wedge_tmvp_decisions[BLOCK_64X64] }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X32], |
| wedge_tmvp_decisions[BLOCK_8X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_32X8], |
| wedge_tmvp_decisions[BLOCK_32X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_16X64], |
| wedge_tmvp_decisions[BLOCK_16X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X16], |
| wedge_tmvp_decisions[BLOCK_64X16] }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_8X64], |
| wedge_tmvp_decisions[BLOCK_8X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, all_wedge_masks[BLOCK_64X8], |
| wedge_tmvp_decisions[BLOCK_64X8] }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| }; |
| #else |
| const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8], |
| wedge_tmvp_decisions[BLOCK_8X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16], |
| wedge_tmvp_decisions[BLOCK_8X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8], |
| wedge_tmvp_decisions[BLOCK_16X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16], |
| wedge_tmvp_decisions[BLOCK_16X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32], |
| wedge_tmvp_decisions[BLOCK_16X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16], |
| wedge_tmvp_decisions[BLOCK_32X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32], |
| wedge_tmvp_decisions[BLOCK_32X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64], |
| wedge_tmvp_decisions[BLOCK_32X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32], |
| wedge_tmvp_decisions[BLOCK_64X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64], |
| wedge_tmvp_decisions[BLOCK_64X64] }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32], |
| wedge_tmvp_decisions[BLOCK_8X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8], |
| wedge_tmvp_decisions[BLOCK_32X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64], |
| wedge_tmvp_decisions[BLOCK_16X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16], |
| wedge_tmvp_decisions[BLOCK_64X16] }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64], |
| wedge_tmvp_decisions[BLOCK_8X64] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8], |
| wedge_tmvp_decisions[BLOCK_64X8] }, |
| { 0, NULL, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL, NULL }, |
| }; |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| // Init the cwp masks, called by init_cwp_masks |
| static AOM_INLINE void build_cwp_mask(int8_t *mask, int stride, |
| BLOCK_SIZE plane_bsize, int8_t w) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) mask[j] = w; |
| mask += stride; |
| } |
| } |
| // Init the cwp masks |
| void init_cwp_masks() { |
| const int bs = BLOCK_128X128; |
| const int bw = block_size_wide[bs]; |
| for (int list_idx = 0; list_idx < 2; ++list_idx) { |
| for (int idx = 0; idx < MAX_CWP_NUM; ++idx) { |
| int8_t weight = cwp_weighting_factor[list_idx][idx] * 4; |
| build_cwp_mask(cwp_mask[list_idx][idx], bw, bs, weight); |
| } |
| } |
| } |
| // Return the associated cwp mask |
| const int8_t *av1_get_cwp_mask(int list_idx, int idx) { |
| return cwp_mask[list_idx][idx]; |
| } |
| |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| // get wedge masks for both boundaries |
| static const uint8_t *get_wedge_allmask_inplace(int wedge_index, |
| int boundary_index, int neg, |
| BLOCK_SIZE sb_type) { |
| const uint8_t *master; |
| const int bh = block_size_high[sb_type]; |
| const int bw = block_size_wide[sb_type]; |
| const wedge_code_type *a = |
| av1_wedge_params_lookup[sb_type].codebook + wedge_index; |
| int woff, hoff; |
| assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type)); |
| woff = (a->x_offset * bw) >> 3; |
| hoff = (a->y_offset * bh) >> 3; |
| master = wedge_allmaster_mask[neg][a->direction][boundary_index] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| return master; |
| } |
| #else |
| static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, |
| BLOCK_SIZE sb_type) { |
| const uint8_t *master; |
| const int bh = block_size_high[sb_type]; |
| const int bw = block_size_wide[sb_type]; |
| const wedge_code_type *a = |
| av1_wedge_params_lookup[sb_type].codebook + wedge_index; |
| int woff, hoff; |
| |
| assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type)); |
| woff = (a->x_offset * bw) >> 3; |
| hoff = (a->y_offset * bh) >> 3; |
| master = wedge_master_mask[neg][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| return master; |
| } |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| // For each 8x8 block, decide (if using wedge mode), whether it should store |
| // both MVs as the TMVP MVs, or just 1 of them (and in this case which one to |
| // store). |
| static void get_wedge_tmvp_decision(const uint8_t *mask, int mask_stride, |
| int bw, int bh, uint8_t *decision, |
| int decision_stride) { |
| for (int h_start = 0; h_start < bh; h_start += 8) { |
| for (int w_start = 0; w_start < bw; w_start += 8) { |
| const uint8_t *mask_start = mask + h_start * mask_stride + w_start; |
| uint8_t *decision_start = decision + h_start * decision_stride + w_start; |
| int ref0_count = 0; |
| int ref1_count = 0; |
| for (int h = 0; h < 8; h++) { |
| for (int w = 0; w < 8; w++) { |
| if (mask_start[h * mask_stride + w] > 60) { |
| ref0_count++; |
| } else if (mask_start[h * mask_stride + w] < 4) { |
| ref1_count++; |
| } |
| } |
| } |
| int this_decision = 2; |
| if (ref0_count >= 60) { |
| this_decision = 0; |
| } else if (ref1_count >= 60) { |
| this_decision = 1; |
| } |
| for (int h = 0; h < 8; h++) { |
| for (int w = 0; w < 8; w++) { |
| decision_start[h * decision_stride + w] = this_decision; |
| } |
| } |
| } |
| } |
| } |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { |
| (void)sb_type; |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| return av1_get_all_contiguous_soft_mask(comp_data->wedge_index, |
| comp_data->wedge_sign, sb_type, |
| comp_data->wedge_boundary_index); |
| #else |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| comp_data->wedge_sign, sb_type); |
| #endif // WEDGE_BLD_SIG &&CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| case COMPOUND_AVERAGE: |
| case COMPOUND_DIFFWTD: return comp_data->seg_mask; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static AOM_INLINE void diffwtd_mask_d16( |
| uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| int round = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); |
| int i, j, m, diff; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); |
| diff = ROUND_POWER_OF_TWO(diff, round); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_d16_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void diffwtd_mask_highbd( |
| uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| const unsigned int bd) { |
| assert(bd >= 8); |
| if (bd == 8) { |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } else { |
| const unsigned int bd_shift = bd - 8; |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_highbd_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_highbd(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, |
| w, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_highbd(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, |
| w, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| // initiate master wedge masks for both boundaries for extended wedges |
| static AOM_INLINE void init_wedge_master_all_masks() { |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| for (int k = 0; k < MAX_WEDGE_BOUNDARY_TYPES; k++) { |
| for (int angle = 0; angle < WEDGE_ANGLES; angle++) { |
| int idx = 0; |
| for (int n = 0; n < h; n++) { |
| int y = ((n << 1) - h + 1) * wedge_sin_lut_all[k][angle]; |
| for (int m = 0; m < w; m++, idx++) { |
| int d = ((m << 1) - w + 1) * wedge_cos_lut_all[k][angle] + y; |
| const int clamp_d = clamp(d, -127, 127); |
| wedge_allmaster_mask[0][angle][k][idx] = |
| clamp_d >= 0 ? (pos_dist_2_bld_weight[clamp_d] << (7 - 5)) |
| : (neg_dist_2_bld_weight[-clamp_d] << (7 - 5)); |
| wedge_allmaster_mask[1][angle][k][idx] = |
| 64 - wedge_allmaster_mask[0][angle][k][idx]; |
| } |
| } |
| } |
| } |
| } |
| #else |
| static AOM_INLINE void init_wedge_master_masks() { |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| for (int angle = 0; angle < WEDGE_ANGLES; angle++) { |
| int idx = 0; |
| // printf("angle: %d\n", angle); |
| for (int n = 0; n < h; n++) { |
| int y = ((n << 1) - h + 1) * wedge_sin_lut[angle]; |
| for (int m = 0; m < w; m++, idx++) { |
| int d = ((m << 1) - w + 1) * wedge_cos_lut[angle] + y; |
| #if WEDGE_BLD_SIG |
| const int clamp_d = clamp(d, -127, 127); |
| wedge_master_mask[0][angle][idx] = |
| clamp_d >= 0 ? (pos_dist_2_bld_weight[clamp_d] << (7 - 5)) |
| : (neg_dist_2_bld_weight[-clamp_d] << (7 - 5)); |
| #else |
| wedge_master_mask[0][angle][idx] = clamp((d + 32), 0, 64); |
| #endif |
| wedge_master_mask[1][angle][idx] = |
| 64 - wedge_master_mask[0][angle][idx]; |
| } |
| } |
| } |
| } |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| static AOM_INLINE void init_wedge_masks() { |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| uint8_t *dst_all = all_wedge_mask_buf; |
| #else |
| uint8_t *dst = wedge_mask_buf; |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| BLOCK_SIZE bsize; |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| memset(all_wedge_masks, 0, sizeof(all_wedge_masks)); |
| #else |
| memset(wedge_masks, 0, sizeof(wedge_masks)); |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| uint8_t *dst_tmvp_decision = wedge_tmvp_decision_buf; |
| memset(wedge_tmvp_decisions, 0, sizeof(wedge_tmvp_decisions)); |
| for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize]; |
| const int wtypes = wedge_params->wedge_types; |
| if (wtypes == 0) continue; |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| const uint8_t *all_mask; |
| #else |
| const uint8_t *mask; |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| int w; |
| for (w = 0; w < wtypes; ++w) { |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| for (int k = 0; k < MAX_WEDGE_BOUNDARY_TYPES; k++) { |
| all_mask = get_wedge_allmask_inplace(w, k, 0, bsize); |
| aom_convolve_copy(all_mask, MASK_MASTER_STRIDE, dst_all, |
| bw /* dst_stride */, bw, bh); |
| wedge_params->all_masks[0][w][k] = dst_all; |
| get_wedge_tmvp_decision(dst_all, bw, bw, bh, dst_tmvp_decision, bw); |
| wedge_params->tmvp_mv_decisions[0][w][k] = dst_tmvp_decision; |
| dst_tmvp_decision += bw * bh; |
| dst_all += bw * bh; |
| |
| all_mask = get_wedge_allmask_inplace(w, k, 1, bsize); |
| aom_convolve_copy(all_mask, MASK_MASTER_STRIDE, dst_all, |
| bw /* dst_stride */, bw, bh); |
| wedge_params->all_masks[1][w][k] = dst_all; |
| get_wedge_tmvp_decision(dst_all, bw, bw, bh, dst_tmvp_decision, bw); |
| wedge_params->tmvp_mv_decisions[1][w][k] = dst_tmvp_decision; |
| dst_tmvp_decision += bw * bh; |
| dst_all += bw * bh; |
| } |
| #else |
| mask = get_wedge_mask_inplace(w, 0, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[0][w] = dst; |
| get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw); |
| wedge_params->tmvp_mv_decisions[0][w] = dst_tmvp_decision; |
| dst_tmvp_decision += bw * bh; |
| dst += bw * bh; |
| |
| mask = get_wedge_mask_inplace(w, 1, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[1][w] = dst; |
| wedge_params->tmvp_mv_decisions[1][w] = dst_tmvp_decision; |
| get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw); |
| dst_tmvp_decision += bw * bh; |
| dst += bw * bh; |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| } |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| assert(sizeof(all_wedge_mask_buf) >= |
| (size_t)(dst_all - all_wedge_mask_buf)); |
| #else |
| assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| } |
| } |
| |
| /* clang-format off */ |
| static const uint8_t ii_weights1d[MAX_SB_SIZE] = { |
| 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, |
| 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, |
| 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, |
| 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, |
| 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
| }; |
| static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { |
| 32, 16, 16, 16, 8, 8, 8, 4, |
| 4, 4, 2, 2, 2, 1, 1, 1, |
| 0, 0, 0, // unused |
| 8, 8, 4, 4, 2, 2, |
| 4, 4, 2, 2, 2, 2, |
| }; |
| /* clang-format on */ |
| |
| static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride, |
| BLOCK_SIZE plane_bsize, |
| INTERINTRA_MODE mode) { |
| int i, j; |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const int size_scale = ii_size_scales[plane_bsize]; |
| |
| switch (mode) { |
| case II_V_PRED: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| |
| case II_H_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_SMOOTH_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) |
| mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_DC_PRED: |
| default: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, 32, bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| } |
| } |
| |
| static AOM_INLINE void init_smooth_interintra_masks() { |
| for (int m = 0; m < INTERINTRA_MODES; ++m) { |
| for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) { |
| const int bw = block_size_wide[bs]; |
| const int bh = block_size_high[bs]; |
| if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue; |
| build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs, |
| m); |
| } |
| } |
| } |
| |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad8x8_ds) |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad16x8_ds) |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad8x16_ds) |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad16x16_ds) |
| #if CONFIG_SUBBLK_REF_EXT |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad12x12_ds) |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad20x12_ds) |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad12x20_ds) |
| MAKE_BFP_SAD_WRAPPER_COMMON(aom_highbd_sad20x20_ds) |
| #endif // CONFIG_SUBBLK_REF_EXT |
| |
| unsigned int get_highbd_sad_ds(const uint16_t *src_ptr, int source_stride, |
| const uint16_t *ref_ptr, int ref_stride, int bd, |
| int bw, int bh) { |
| if (bd == 8) { |
| if (bw == 16 && bh == 8) |
| return aom_highbd_sad16x8_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 16 && bh == 16) |
| return aom_highbd_sad16x16_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 8 && bh == 8) |
| return aom_highbd_sad8x8_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 8 && bh == 16) |
| return aom_highbd_sad8x16_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| #if CONFIG_SUBBLK_REF_EXT |
| else if (bw == 12 && bh == 12) |
| return aom_highbd_sad12x12_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 20 && bh == 12) |
| return aom_highbd_sad20x12_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 12 && bh == 20) |
| return aom_highbd_sad12x20_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 20 && bh == 20) |
| return aom_highbd_sad20x20_ds_8(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| #endif // CONFIG_SUBBLK_REF_EXT |
| else { |
| assert(0); |
| return 0; |
| } |
| } else if (bd == 10) { |
| if (bw == 16 && bh == 8) |
| return aom_highbd_sad16x8_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 16 && bh == 16) |
| return aom_highbd_sad16x16_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 8 && bh == 8) |
| return aom_highbd_sad8x8_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 8 && bh == 16) |
| return aom_highbd_sad8x16_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| #if CONFIG_SUBBLK_REF_EXT |
| else if (bw == 12 && bh == 12) |
| return aom_highbd_sad12x12_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 20 && bh == 12) |
| return aom_highbd_sad20x12_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 12 && bh == 20) |
| return aom_highbd_sad12x20_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 20 && bh == 20) |
| return aom_highbd_sad20x20_ds_10(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| #endif // CONFIG_SUBBLK_REF_EXT |
| else { |
| assert(0); |
| return 0; |
| } |
| } else if (bd == 12) { |
| if (bw == 16 && bh == 8) |
| return aom_highbd_sad16x8_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 16 && bh == 16) |
| return aom_highbd_sad16x16_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 8 && bh == 8) |
| return aom_highbd_sad8x8_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 8 && bh == 16) |
| return aom_highbd_sad8x16_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| #if CONFIG_SUBBLK_REF_EXT |
| else if (bw == 12 && bh == 12) |
| return aom_highbd_sad12x12_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 20 && bh == 12) |
| return aom_highbd_sad20x12_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 12 && bh == 20) |
| return aom_highbd_sad12x20_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| else if (bw == 20 && bh == 20) |
| return aom_highbd_sad20x20_ds_12(src_ptr, source_stride, ref_ptr, |
| ref_stride); |
| #endif // CONFIG_SUBBLK_REF_EXT |
| else { |
| assert(0); |
| return 0; |
| } |
| } else { |
| assert(0); |
| return 0; |
| } |
| } |
| |
| // Compute the SAD values for refineMV modes |
| int get_refinemv_sad(uint16_t *src1, uint16_t *src2, int stride, int width, |
| int height, int bd) { |
| return get_highbd_sad_ds(src1, stride, src2, stride, bd, width, height); |
| } |
| |
| int64_t stable_mult_shift(const int64_t a, const int64_t b, const int shift, |
| const int msb_a, const int msb_b, const int max_bd, |
| int *rem_shift) { |
| assert(shift >= 0); |
| |
| // Remaining bit shifts (may be used in the next stage of multiplcation) |
| int rem = AOMMAX(0, msb_a + msb_b - shift + 1 - max_bd); |
| if (rem_shift) *rem_shift += rem; |
| if (msb_a + msb_b + 2 < max_bd) |
| return ROUND_POWER_OF_TWO_SIGNED_64(a * b, shift); |
| |
| // To determine s1/s2/s3 in ((a>>s1)*(b>>s2))>>s3, consider the equation |
| // (1+msb_a-s1)+(1+msb_b-s2)+1 <= max_bd+rem, |
| // where better numerical stability is obtained when |
| // msb_a-s1 ~= msb_b-s2. |
| // This leads to the following solution |
| int msb_diff = abs(msb_a - msb_b); |
| // Total required shifts (s1 + s2) |
| int s = msb_a + msb_b - max_bd - rem + 4; |
| int diff = AOMMIN(s, msb_diff); |
| int s1 = (s - diff) >> 1; |
| int s2 = s1; |
| if (msb_a >= msb_b) |
| s1 = s - s2; |
| else |
| s2 = s - s1; |
| |
| assert(s1 >= 0); |
| assert(s2 >= 0); |
| if (shift - s1 - s2 < 0) { |
| // bit depth not large enough to hold the result |
| return ((a > 0) ^ (b > 0)) ? -((1LL << (max_bd - 1)) - 1) |
| : ((1LL << (max_bd - 1)) - 1); |
| } |
| return ROUND_POWER_OF_TWO_SIGNED_64( |
| ROUND_POWER_OF_TWO_SIGNED_64(a, s1) * ROUND_POWER_OF_TWO_SIGNED_64(b, s2), |
| shift - s1 - s2); |
| } |
| |
| // Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity |
| // in hardware. |
| #define OPFL_CLAMP_MV_DELTA 1 |
| #define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS) |
| |
| void reduce_temporal_dist(int *d0, int *d1) { |
| if (*d0 == 0 || *d1 == 0) return; |
| int sign0 = *d0 < 0; |
| int sign1 = *d1 < 0; |
| int mag0 = sign0 ? -(*d0) : (*d0); |
| int mag1 = sign1 ? -(*d1) : (*d1); |
| // Only do simple checks for the case |d0|=|d1| and for factor 2 |
| if (mag0 == mag1) { |
| mag0 = mag1 = 1; |
| } else if (mag0 > mag1) { |
| mag0 = 2; |
| mag1 = 1; |
| } else { |
| mag0 = 1; |
| mag1 = 2; |
| } |
| *d0 = sign0 ? -mag0 : mag0; |
| *d1 = sign1 ? -mag1 : mag1; |
| } |
| |
| void av1_opfl_build_inter_predictor( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| InterPredParams *inter_pred_params, |
| CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst, |
| const MV *const src_mv, int pu_width, int pu_height) { |
| #if !CONFIG_CWG_F243_REMOVE_ENABLE_ORDER_HINT |
| assert(cm->seq_params.order_hint_info.enable_order_hint); |
| #endif // !CONFIG_CWG_F243_REMOVE_ENABLE_ORDER_HINT |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| |
| // Do references one at a time |
| const int is_compound = 0; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| |
| const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; |
| const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype), |
| is_warp_mode(mi->motion_mode) }; |
| const struct scale_factors *const sf = |
| is_tip |
| ? cm->tip_ref.ref_scale_factor[ref] |
| : (is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]); |
| |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const int row_start = (bw == 4) && ss_y ? -1 : 0; |
| const int col_start = (bh == 4) && ss_x ? -1 : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| |
| const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| |
| av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, BILINEAR); |
| inter_pred_params->original_pu_width = pu_width; |
| inter_pred_params->original_pu_height = pu_height; |
| |
| inter_pred_params->conv_params = get_conv_params_no_round( |
| 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi); |
| if (inter_pred_params->mode == WARP_PRED) return; |
| |
| assert(mi->interinter_comp.type == COMPOUND_AVERAGE); |
| const MV mv_1_16th_pel = convert_mv_to_1_16th_pel(src_mv); |
| av1_build_one_inter_predictor(pred_dst, bw, &mv_1_16th_pel, inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| |
| void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src, |
| int16_t *x_grad, int16_t *y_grad, |
| const int stride, const int bw, |
| const int bh) { |
| #if OPFL_BICUBIC_GRAD |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| int id_prev, id_prev2, id_next, id_next2, is_boundary; |
| int32_t temp = 0; |
| // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) |
| id_prev = AOMMAX(j - 1, 0); |
| id_prev2 = AOMMAX(j - 2, 0); |
| id_next = AOMMIN(j + 1, bw - 1); |
| id_next2 = AOMMIN(j + 2, bw - 1); |
| is_boundary = (j + 1 > bw - 1 || j - 1 < 0); |
| temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * |
| (int32_t)(pred_src[i * stride + id_next] - |
| pred_src[i * stride + id_prev]) + |
| coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * |
| (int32_t)(pred_src[i * stride + id_next2] - |
| pred_src[i * stride + id_prev2]); |
| x_grad[i * stride + j] = |
| clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), |
| -OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL); |
| |
| // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) |
| id_prev = AOMMAX(i - 1, 0); |
| id_prev2 = AOMMAX(i - 2, 0); |
| id_next = AOMMIN(i + 1, bh - 1); |
| id_next2 = AOMMIN(i + 2, bh - 1); |
| is_boundary = (i + 1 > bh - 1 || i - 1 < 0); |
| temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] * |
| (int32_t)(pred_src[id_next * stride + j] - |
| pred_src[id_prev * stride + j]) + |
| coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] * |
| (int32_t)(pred_src[id_next2 * stride + j] - |
| pred_src[id_prev2 * stride + j]); |
| y_grad[i * stride + j] = |
| clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits), |
| -OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL); |
| } |
| } |
| #else |
| (void)pred_src; |
| (void)x_grad; |
| (void)y_grad; |
| (void)bw; |
| (void)bh; |
| #endif // OPFL_BICUBIC_GRAD |
| } |
| |
| #if OPFL_BILINEAR_GRAD |
| void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad, |
| int16_t *y_grad, const int bw, |
| const int bh) { |
| int id_next, id_prev, is_boundary; |
| int32_t temp = 0; |
| for (int i = 0; i < bh; i++) { |
| for (int j = 0; j < bw; j++) { |
| // Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta) |
| id_next = AOMMIN(j + 1, bw - 1); |
| id_prev = AOMMAX(j - 1, 0); |
| is_boundary = (j + 1 > bw - 1 || j - 1 < 0); |
| temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * |
| (int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]); |
| x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), |
| -OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL); |
| // Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j) |
| id_next = AOMMIN(i + 1, bh - 1); |
| id_prev = AOMMAX(i - 1, 0); |
| is_boundary = (i + 1 > bh - 1 || i - 1 < 0); |
| temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] * |
| (int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]); |
| y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits), |
| -OPFL_GRAD_CLAMP_VAL, OPFL_GRAD_CLAMP_VAL); |
| } |
| } |
| } |
| #endif // OPFL_BILINEAR_GRAD |
| |
| void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh, |
| int *grad_prec_bits, int16_t *x_grad, |
| int16_t *y_grad) { |
| #if OPFL_BILINEAR_GRAD |
| (void)is_hbd; |
| av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh); |
| #else |
| int sub_bw = AOMMIN(OPFL_GRAD_UNIT, bw); |
| int sub_bh = AOMMIN(OPFL_GRAD_UNIT, bh); |
| for (int i = 0; i < bh; i += sub_bh) { |
| for (int j = 0; j < bw; j += sub_bw) { |
| // Reuse pixels in pred_dst to compute gradients |
| // SIMD code does not support bw=4 or bh=4 |
| if (bw < 8 || bh < 8) |
| av1_bicubic_grad_interpolation_highbd_c( |
| pred_dst + i * bw + j, x_grad + i * bw + j, y_grad + i * bw + j, bw, |
| sub_bw, sub_bh); |
| else |
| av1_bicubic_grad_interpolation_highbd( |
| pred_dst + i * bw + j, x_grad + i * bw + j, y_grad + i * bw + j, bw, |
| sub_bw, sub_bh); |
| } |
| } |
| #endif // OPFL_BILINEAR_GRAD |
| |
| *grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2; |
| } |
| |
| // Apply average pooling to reduce the sizes of pred difference and gradients |
| // arrays. It reduces the complexity of the parameter solving routine |
| void av1_avg_pooling_pdiff_gradients_c(int16_t *pdiff, const int pstride, |
| int16_t *gx, int16_t *gy, |
| const int gstride, const int bw, |
| const int bh, const int n) { |
| const int bh_low = AOMMIN(bh, n); |
| const int bw_low = AOMMIN(bw, n); |
| if (bh == bh_low && bw == bw_low) return; |
| const int step_h = bh / bh_low; |
| const int step_w = bw / bw_low; |
| int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w); |
| for (int i = 0; i < bh_low; i++) { |
| for (int j = 0; j < bw_low; j++) { |
| int32_t tmp_gx = 0, tmp_gy = 0, tmp_pdiff = 0; |
| for (int k = 0; k < step_h; k++) { |
| for (int l = 0; l < step_w; l++) { |
| tmp_gx += gx[(i * step_h + k) * gstride + (j * step_w + l)]; |
| tmp_gy += gy[(i * step_h + k) * gstride + (j * step_w + l)]; |
| tmp_pdiff += pdiff[(i * step_h + k) * pstride + (j * step_w + l)]; |
| } |
| } |
| gx[i * gstride + j] = |
| (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gx, avg_bits); |
| gy[i * gstride + j] = |
| (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gy, avg_bits); |
| pdiff[i * pstride + j] = |
| (int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_pdiff, avg_bits); |
| } |
| } |
| } |
| |
| void calc_mv_process(int32_t su2, int32_t sv2, int32_t suv, int32_t suw, |
| int32_t svw, const int d0, const int d1, const int bits, |
| const int rls_alpha, int *vx0, int *vy0, int *vx1, |
| int *vy1) { |
| #if OPFL_REGULARIZED_LS |
| su2 += rls_alpha; |
| sv2 += rls_alpha; |
| #else |
| (void)rls_alpha; |
| #endif |
| |
| // Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ] |
| // [ suv sv2 ] * [ vy0 ] = [ -svw ] |
| int shifts[2] = { bits, bits }; |
| int msb_su2 = 1 + get_msb_signed(su2); |
| int msb_sv2 = 1 + get_msb_signed(sv2); |
| int msb_suv = 1 + get_msb_signed(suv); |
| int msb_suw = 1 + get_msb_signed(suw); |
| int msb_svw = 1 + get_msb_signed(svw); |
| // Make sure the max bit depth of det, sol[0], and sol[1] are within |
| // MAX_LS_BITS |
| int max_mult_msb = AOMMAX( |
| msb_su2 + msb_sv2, AOMMAX(AOMMAX(msb_sv2 + msb_suw, msb_suv + msb_svw), |
| AOMMAX(msb_su2 + msb_svw, msb_suv + msb_suw))); |
| int redbit = AOMMAX(0, max_mult_msb - MAX_LS_BITS + 3) >> 1; |
| |
| su2 = ROUND_POWER_OF_TWO_SIGNED(su2, redbit); |
| sv2 = ROUND_POWER_OF_TWO_SIGNED(sv2, redbit); |
| suv = ROUND_POWER_OF_TWO_SIGNED(suv, redbit); |
| suw = ROUND_POWER_OF_TWO_SIGNED(suw, redbit); |
| svw = ROUND_POWER_OF_TWO_SIGNED(svw, redbit); |
| const int32_t det = su2 * sv2 - suv * suv; |
| if (det <= 0) { |
| *vx0 = 0; |
| *vy0 = 0; |
| *vx1 = 0; |
| *vy1 = 0; |
| return; |
| } |
| |
| int32_t sol[2] = { sv2 * suw - suv * svw, su2 * svw - suv * suw }; |
| |
| divide_and_round_array(sol, det, 2, shifts); |
| |
| const int tmp_vx0 = -sol[0]; |
| const int tmp_vy0 = -sol[1]; |
| *vx0 = tmp_vx0 * d0; |
| *vy0 = tmp_vy0 * d0; |
| *vx1 = tmp_vx0 * d1; |
| *vy1 = tmp_vy0 * d1; |
| } |
| |
| // Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of |
| // d0 * P0 - d1 * P1. |
| void av1_opfl_mv_refinement(const int16_t *pdiff, int pstride, |
| const int16_t *gx, const int16_t *gy, int gstride, |
| int bw, int bh, int d0, int d1, int grad_prec_bits, |
| int mv_prec_bits, int *vx0, int *vy0, int *vx1, |
| int *vy1) { |
| int32_t su2 = 0; |
| int32_t suv = 0; |
| int32_t sv2 = 0; |
| int32_t suw = 0; |
| int32_t svw = 0; |
| // TODO(kslu) clean up all grad_bits if later it is still not needed |
| int grad_bits = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| const int u = gx[i * gstride + j]; |
| const int v = gy[i * gstride + j]; |
| const int w = pdiff[i * pstride + j]; |
| su2 += ROUND_POWER_OF_TWO_SIGNED(u * u, grad_bits); |
| suv += ROUND_POWER_OF_TWO_SIGNED(u * v, grad_bits); |
| sv2 += ROUND_POWER_OF_TWO_SIGNED(v * v, grad_bits); |
| suw += ROUND_POWER_OF_TWO_SIGNED(u * w, grad_bits); |
| svw += ROUND_POWER_OF_TWO_SIGNED(v * w, grad_bits); |
| } |
| #if !CONFIG_F107_GRADIENT_SIMPLIFY |
| // For every 8 pixels, do a range check and add a downshift if range is |
| // getting close to the max allowed bit depth |
| if (bw >= 8 || i % 2 == 1) { |
| // Do a range check and add a downshift if range is getting close to the |
| // bit depth cap |
| int32_t max_autocorr = AOMMAX(su2, sv2); |
| int32_t max_xcorr = AOMMAX(abs(suw), abs(svw)); |
| if (get_msb_signed(AOMMAX(max_autocorr, max_xcorr)) >= |
| MAX_OPFL_AUTOCORR_BITS - 2) { |
| su2 = ROUND_POWER_OF_TWO_SIGNED(su2, 1); |
| suv = ROUND_POWER_OF_TWO_SIGNED(suv, 1); |
| sv2 = ROUND_POWER_OF_TWO_SIGNED(sv2, 1); |
| suw = ROUND_POWER_OF_TWO_SIGNED(suw, 1); |
| svw = ROUND_POWER_OF_TWO_SIGNED(svw, 1); |
| grad_bits++; |
| } |
| } |
| #endif // !CONFIG_F107_GRADIENT_SIMPLIFY |
| } |
| const int bits = mv_prec_bits + grad_prec_bits; |
| const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM; |
| |
| calc_mv_process(su2, sv2, suv, suw, svw, d0, d1, bits, rls_alpha, vx0, vy0, |
| vx1, vy1); |
| } |
| |
| int av1_opfl_mv_refinement_nxn_c(const int16_t *pdiff, int pstride, |
| const int16_t *gx, const int16_t *gy, |
| int gstride, int bw, int bh, int n, int d0, |
| int d1, int grad_prec_bits, int mv_prec_bits, |
| int mi_x, int mi_y, int mi_cols, int mi_rows, |
| int build_for_decode, int *vx0, int *vy0, |
| int *vx1, int *vy1) { |
| assert(bw % n == 0 && bh % n == 0); |
| int n_blocks = 0; |
| for (int i = 0; i < bh; i += n) { |
| for (int j = 0; j < bw; j += n) { |
| if (is_subblock_outside(mi_x + j, mi_y + i, mi_cols, mi_rows, |
| build_for_decode)) { |
| n_blocks++; |
| continue; |
| } |
| av1_opfl_mv_refinement(pdiff + (i * pstride + j), pstride, |
| gx + (i * gstride + j), gy + (i * gstride + j), |
| gstride, n, n, d0, d1, grad_prec_bits, |
| mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks, |
| vx1 + n_blocks, vy1 + n_blocks); |
| n_blocks++; |
| } |
| } |
| return n_blocks; |
| } |
| |
| static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd( |
| const uint16_t *src1, const uint16_t *src2, int src_stride, int16_t *dst1, |
| int16_t *dst2, int bw, int bh, int d0, int d1, int bd, int centered) { |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| // To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1. |
| int32_t tmp_dst = d0 * (int32_t)src1[i * src_stride + j] - |
| d1 * (int32_t)src2[i * src_stride + j]; |
| if (centered) tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, 1); |
| tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, bd - 8); |
| dst1[i * bw + j] = clamp(tmp_dst, -OPFL_PRED_MAX, OPFL_PRED_MAX); |
| if (dst2) { |
| tmp_dst = (int32_t)src1[i * src_stride + j] - |
| (int32_t)src2[i * src_stride + j]; |
| tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, bd - 8); |
| dst2[i * bw + j] = clamp(tmp_dst, -OPFL_PRED_MAX, OPFL_PRED_MAX); |
| } |
| } |
| } |
| } |
| |
| void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2, |
| int src_stride, int16_t *dst1, int16_t *dst2, |
| int bw, int bh, int d0, int d1, int bd, |
| int centered) { |
| compute_pred_using_interp_grad_highbd(src1, src2, src_stride, dst1, dst2, bw, |
| bh, d0, d1, bd, centered); |
| } |
| |
| void av1_get_optflow_based_mv(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, |
| const MB_MODE_INFO *mbmi, int_mv *mv_refined, |
| int bw, int bh, int mi_x, int mi_y, |
| int build_for_decode, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, |
| int16_t *gx0, int16_t *gy0, int16_t *gx1, |
| int16_t *gy1, int *vx0, int *vy0, int *vx1, |
| int *vy1, uint16_t *dst0, uint16_t *dst1, |
| int dst_stride, int do_pred, int use_4x4, |
| MV *best_mv_ref, int pu_width, int pu_height) { |
| const int target_prec = MV_REFINE_PREC_BITS; |
| const int n = opfl_get_subblock_size(bw, bh, plane, use_4x4); |
| int n_blocks = (bw / n) * (bh / n); |
| // Convert output MV to 1/16th pel |
| assert(MV_REFINE_PREC_BITS >= 3); |
| const int mv_mult = 1 << (MV_REFINE_PREC_BITS - 3); |
| for (int mvi = 0; mvi < n_blocks; mvi++) { |
| mv_refined[mvi * 2].as_mv.row = |
| clamp(mv_refined[mvi * 2].as_mv.row * mv_mult, MV_1_16TH_PEL_MIN, |
| MV_1_16TH_PEL_MAX); |
| mv_refined[mvi * 2].as_mv.col = |
| clamp(mv_refined[mvi * 2].as_mv.col * mv_mult, MV_1_16TH_PEL_MIN, |
| MV_1_16TH_PEL_MAX); |
| mv_refined[mvi * 2 + 1].as_mv.row = |
| clamp(mv_refined[mvi * 2 + 1].as_mv.row * mv_mult, MV_1_16TH_PEL_MIN, |
| MV_1_16TH_PEL_MAX); |
| mv_refined[mvi * 2 + 1].as_mv.col = |
| clamp(mv_refined[mvi * 2 + 1].as_mv.col * mv_mult, MV_1_16TH_PEL_MIN, |
| MV_1_16TH_PEL_MAX); |
| } |
| |
| // Obtain d0 and d1 |
| int d0, d1; |
| if (mbmi->ref_frame[0] == TIP_FRAME) { |
| d0 = cm->tip_ref.ref_offset[0]; |
| d1 = cm->tip_ref.ref_offset[1]; |
| } else { |
| const RefCntBuffer *const r0_buf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const RefCntBuffer *const r1_buf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[1]); |
| |
| d0 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->display_order_hint, |
| r0_buf->display_order_hint); |
| d1 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cm->cur_frame->display_order_hint, |
| r1_buf->display_order_hint); |
| } |
| |
| if (d0 == 0 || d1 == 0) { |
| // Though OPFL is disabled when the |
| // distance from either of the reference |
| // frames is zero, the MV offset buffers |
| // are still used to update the mv_delta |
| // buffer. Hence, memset the MV offset |
| // buffers vx and vy to zero. |
| av1_zero_array(vx0, n_blocks); |
| av1_zero_array(vx1, n_blocks); |
| av1_zero_array(vy0, n_blocks); |
| av1_zero_array(vy1, n_blocks); |
| return; |
| } |
| |
| reduce_temporal_dist(&d0, &d1); |
| |
| if (do_pred) { |
| // Obrain P0 and P1 |
| InterPredParams params0, params1; |
| av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms0, calc_subpel_params_func, 0, |
| dst0, &best_mv_ref[0], pu_width, pu_height); |
| av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms1, calc_subpel_params_func, 1, |
| dst1, &best_mv_ref[1], pu_width, pu_height); |
| } |
| |
| int grad_prec_bits; |
| |
| // Compute gradients of P0 and P1 with |
| // interpolation |
| (void)gx1; |
| (void)gy1; |
| |
| // Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1 |
| DECLARE_ALIGNED(32, int16_t, tmp0[MAX_SB_SIZE * MAX_SB_SIZE]); |
| DECLARE_ALIGNED(32, int16_t, tmp1[MAX_SB_SIZE * MAX_SB_SIZE]); |
| av1_copy_pred_array_highbd(dst0, dst1, dst_stride, tmp0, tmp1, bw, bh, d0, d1, |
| xd->bd, 0); |
| // Buffers gx0 and gy0 are used to store the |
| // gradients of tmp0 |
| av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0); |
| |
| n_blocks = av1_opfl_mv_refinement_nxn( |
| tmp1, bw, gx0, gy0, bw, bw, bh, n, d0, d1, grad_prec_bits, target_prec, |
| mi_x, mi_y, cm->mi_params.mi_cols, cm->mi_params.mi_rows, |
| build_for_decode, vx0, vy0, vx1, vy1); |
| |
| for (int i = 0; i < n_blocks; i++) { |
| vy0[i] = clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| vx0[i] = clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| vy1[i] = clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| vx1[i] = clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT); |
| mv_refined[i * 2].as_mv.row = clamp(mv_refined[i * 2].as_mv.row + vy0[i], |
| MV_1_16TH_PEL_MIN, MV_1_16TH_PEL_MAX); |
| mv_refined[i * 2].as_mv.col = clamp(mv_refined[i * 2].as_mv.col + vx0[i], |
| MV_1_16TH_PEL_MIN, MV_1_16TH_PEL_MAX); |
| mv_refined[i * 2 + 1].as_mv.row = |
| clamp(mv_refined[i * 2 + 1].as_mv.row + vy1[i], MV_1_16TH_PEL_MIN, |
| MV_1_16TH_PEL_MAX); |
| mv_refined[i * 2 + 1].as_mv.col = |
| clamp(mv_refined[i * 2 + 1].as_mv.col + vx1[i], MV_1_16TH_PEL_MIN, |
| MV_1_16TH_PEL_MAX); |
| } |
| } |
| |
| int is_out_of_frame_block(const InterPredParams *inter_pred_params, |
| int frame_width, int frame_height, int sub_block_id) { |
| for (int ref = 0; ref < 2; ref++) { |
| const BacpBlockData *const b_data = |
| &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref]; |
| if (b_data->x0 < 0 || b_data->x0 > frame_width - 1 || b_data->x1 < 0 || |
| b_data->x1 > frame_width |
| |
| || b_data->y0 < 0 || b_data->y0 > frame_height - 1 || b_data->y1 < 0 || |
| b_data->y1 > frame_height) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| // Equation of line: f(x, y) = a[0]*(x - |
| // a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 |
| void av1_init_wedge_masks() { |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| init_wedge_master_all_masks(); |
| #else |
| init_wedge_master_masks(); |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| init_wedge_masks(); |
| init_smooth_interintra_masks(); |
| } |
| |
| static AOM_INLINE void build_masked_compound_no_round( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w, InterPredParams *inter_pred_params) { |
| const int ssy = (inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_AVERAGE) |
| ? 0 |
| : inter_pred_params->subsampling_y; |
| const int ssx = (inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_AVERAGE) |
| ? 0 |
| : inter_pred_params->subsampling_x; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| const int mask_stride = block_size_wide[sb_type]; |
| aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, mask_stride, w, h, ssx, ssy, |
| &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } |
| static void handle_edge_cases(uint8_t *mask, int mask_stride, int block_width, |
| int block_height, int frame_width, |
| int frame_height, const BacpBlockData *b_data_0, |
| const BacpBlockData *b_data_1, |
| const INTERINTER_COMPOUND_DATA *comp_data) { |
| // Edge case, just handle with naive masking method. |
| for (int i = 0; i < block_height; ++i) { |
| for (int j = 0; j < block_width; ++j) { |
| int x = b_data_0->x0 + j; |
| int y = b_data_0->y0 + i; |
| |
| int p0_available = |
| (x >= 0 && x < frame_width && y >= 0 && y < frame_height); |
| |
| x = b_data_1->x0 + j; |
| y = b_data_1->y0 + i; |
| int p1_available = |
| (x >= 0 && x < frame_width && y >= 0 && y < frame_height); |
| |
| if (p0_available && !p1_available) { |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT; |
| } else if (!p0_available && p1_available) { |
| mask[j] = DEFAULT_IMP_MSK_WT; |
| } else if (comp_data->type == COMPOUND_AVERAGE) { |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA >> 1; |
| } |
| } |
| mask += mask_stride; |
| } |
| } |
| |
| static void handle_general_cases(uint8_t *mask, int mask_stride, |
| int block_width, int block_height, |
| int frame_width, int frame_height, |
| const BacpBlockData *b_data_0, |
| const BacpBlockData *b_data_1) { |
| int p0_x_start = b_data_0->x0 < 0 ? 0 : frame_width - b_data_0->x0; |
| p0_x_start = AOMMIN(p0_x_start, block_width); |
| p0_x_start = AOMMAX(p0_x_start, 0); |
| |
| int p0_x_end = b_data_0->x1 > frame_width ? block_width : -b_data_0->x0; |
| p0_x_end = AOMMAX(p0_x_end, 0); |
| p0_x_end = AOMMIN(p0_x_end, block_width); |
| |
| int p0_y_start = b_data_0->y0 < 0 ? 0 : frame_height - b_data_0->y0; |
| p0_y_start = AOMMIN(p0_y_start, block_height); |
| p0_y_start = AOMMAX(p0_y_start, 0); |
| int p0_y_end = b_data_0->y1 > frame_height ? block_height : -b_data_0->y0; |
| p0_y_end = AOMMAX(p0_y_end, 0); |
| p0_y_end = AOMMIN(p0_y_end, block_height); |
| |
| int p1_x_start = b_data_1->x0 < 0 ? 0 : frame_width - b_data_1->x0; |
| p1_x_start = AOMMIN(p1_x_start, block_width); |
| p1_x_start = AOMMAX(p1_x_start, 0); |
| int p1_x_end = b_data_1->x1 > frame_width ? block_width : -b_data_1->x0; |
| p1_x_end = AOMMAX(p1_x_end, 0); |
| p1_x_end = AOMMIN(p1_x_end, block_width); |
| |
| int p1_y_start = b_data_1->y0 < 0 ? 0 : frame_height - b_data_1->y0; |
| p1_y_start = AOMMIN(p1_y_start, block_height); |
| p1_y_start = AOMMAX(p1_y_start, 0); |
| int p1_y_end = b_data_1->y1 > frame_height ? block_height : -b_data_1->y0; |
| p1_y_end = AOMMAX(p1_y_end, 0); |
| p1_y_end = AOMMIN(p1_y_end, block_height); |
| |
| // Initialize the mask block |
| for (int idy = 0; idy < block_height; ++idy) |
| memset(mask + mask_stride * idy, AOM_BLEND_A64_MAX_ALPHA >> 1, block_width); |
| |
| int line_start = (p1_x_start == 0) ? p1_x_end : 0; |
| int line_end = (p1_x_start == 0) ? block_width : p1_x_start; |
| int mem_width = line_end - line_start; |
| int row_start = (p1_y_start == 0) ? AOMMAX(p0_y_start, p1_y_end) : p0_y_start; |
| int row_end = (p1_y_start == 0) ? p0_y_end : AOMMIN(p0_y_end, p1_y_start); |
| |
| if (mem_width > 0) { |
| for (int idy = row_start; idy < row_end; ++idy) { |
| memset(mask + mask_stride * idy + line_start, DEFAULT_IMP_MSK_WT, |
| mem_width); |
| } |
| } |
| |
| line_start = (p0_x_start == 0) ? p0_x_end : 0; |
| line_end = (p0_x_start == 0) ? block_width : p0_x_start; |
| mem_width = line_end - line_start; |
| row_start = (p0_y_start == 0) ? AOMMAX(p1_y_start, p0_y_end) : p1_y_start; |
| row_end = (p0_y_start == 0) ? p1_y_end : AOMMIN(p1_y_end, p0_y_start); |
| |
| if (mem_width > 0) { |
| for (int idy = row_start; idy < row_end; ++idy) { |
| memset(mask + mask_stride * idy + line_start, |
| AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT, mem_width); |
| } |
| } |
| |
| int start_idx = (p1_x_start == 0) ? AOMMAX(p0_x_start, p1_x_end) : p0_x_start; |
| int end_idx = (p1_x_start == 0) ? p0_x_end : AOMMIN(p0_x_end, p1_x_start); |
| int len = end_idx - start_idx; |
| if (len > 0) { |
| for (int idy = 0; idy < block_height; ++idy) { |
| int value = DEFAULT_IMP_MSK_WT; |
| if (idy >= p1_y_start && idy < p1_y_end) |
| value = AOM_BLEND_A64_MAX_ALPHA >> 1; |
| memset(mask + mask_stride * idy + start_idx, value, len); |
| } |
| } |
| |
| start_idx = (p0_x_start == 0) ? AOMMAX(p1_x_start, p0_x_end) : p1_x_start; |
| end_idx = (p0_x_start == 0) ? p1_x_end : AOMMIN(p1_x_end, p0_x_start); |
| len = end_idx - start_idx; |
| if (len > 0) { |
| for (int idy = 0; idy < block_height; ++idy) { |
| int value = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT; |
| if (idy >= p0_y_start && idy < p0_y_end) |
| value = AOM_BLEND_A64_MAX_ALPHA >> 1; |
| memset(mask + mask_stride * idy + start_idx, value, len); |
| } |
| } |
| } |
| |
| void make_masked_inter_predictor(const uint16_t *pre, int pre_stride, |
| uint16_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params, |
| int use_bacp, int sub_block_id) { |
| const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp; |
| BLOCK_SIZE sb_type = inter_pred_params->sb_type; |
| |
| // We're going to call |
| // av1_make_inter_predictor to generate a |
| // prediction into a temporary buffer, then |
| // will blend that temporary buffer with |
| // that from the other reference. |
| DECLARE_ALIGNED(32, uint16_t, tmp_buf[MAX_SB_SQUARE]); |
| |
| const int tmp_buf_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst; |
| int org_dst_stride = inter_pred_params->conv_params.dst_stride; |
| CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; |
| inter_pred_params->conv_params.dst = tmp_buf16; |
| inter_pred_params->conv_params.dst_stride = tmp_buf_stride; |
| assert(inter_pred_params->conv_params.do_average == 0); |
| |
| // This will generate a prediction in |
| // tmp_buf for the second reference |
| av1_make_inter_predictor(pre, pre_stride, tmp_buf, MAX_SB_SIZE, |
| inter_pred_params, subpel_params); |
| |
| if (!inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_DIFFWTD) { |
| av1_build_compound_diffwtd_mask_d16( |
| comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, |
| tmp_buf16, tmp_buf_stride, inter_pred_params->block_height, |
| inter_pred_params->block_width, &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } |
| |
| // Mask is generated from luma and reuse for |
| // chroma |
| const int generate_mask_for_this_plane = |
| (!inter_pred_params->conv_params.plane || |
| comp_data->type == COMPOUND_AVERAGE); |
| if (use_bacp && generate_mask_for_this_plane) { |
| uint8_t *mask = comp_data->seg_mask; |
| int mask_stride = block_size_wide[sb_type]; |
| BacpBlockData *b_data_0 = |
| &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 0]; |
| BacpBlockData *b_data_1 = |
| &inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 1]; |
| |
| // Take out this area in p0 |
| int frame_width = inter_pred_params->ref_frame_buf.width; |
| int frame_height = inter_pred_params->ref_frame_buf.height; |
| int block_width = inter_pred_params->block_width; |
| int block_height = inter_pred_params->block_height; |
| |
| if ((b_data_0->x0 < 0 && b_data_0->x1 > frame_width) || |
| (b_data_1->x0 < 0 && b_data_1->x1 > frame_width) || |
| (b_data_0->y0 < 0 && b_data_0->y1 > frame_height) || |
| (b_data_1->y0 < 0 && b_data_1->y1 > frame_height)) { |
| handle_edge_cases(mask, mask_stride, block_width, block_height, |
| frame_width, frame_height, b_data_0, b_data_1, |
| comp_data); |
| } else { |
| handle_general_cases(mask, mask_stride, block_width, block_height, |
| frame_width, frame_height, b_data_0, b_data_1); |
| } |
| } |
| |
| build_masked_compound_no_round( |
| dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, |
| comp_data, sb_type, inter_pred_params->block_height, |
| inter_pred_params->block_width, inter_pred_params); |
| |
| // restore to previous state |
| inter_pred_params->conv_params.dst = org_dst; |
| inter_pred_params->conv_params.dst_stride = org_dst_stride; |
| } |
| |
| // Makes the interpredictor for the region by |
| // dividing it up into nxn blocks and running |
| // the interpredictor code on each one. |
| void make_inter_pred_of_nxn( |
| uint16_t *dst, int dst_stride, int_mv *const mv_refined, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int build_for_decode, const AV1_COMMON *cm, int pu_width, int plane, |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func, |
| int use_4x4, SubpelParams *subpel_params, MB_MODE_INFO *mi, int pu_height, |
| const MV mi_mv[2], int use_sub_pad) { |
| int opfl_sub_bw = OF_BSIZE; |
| int opfl_sub_bh = OF_BSIZE; |
| opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh); |
| |
| int n_blocks = 0; |
| int bw = inter_pred_params->orig_block_width; |
| int bh = inter_pred_params->orig_block_height; |
| int sub_bw = opfl_sub_bw; |
| int sub_bh = opfl_sub_bh; |
| assert(bw % sub_bw == 0); |
| assert(bh % sub_bh == 0); |
| CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst; |
| inter_pred_params->block_width = sub_bw; |
| inter_pred_params->block_height = sub_bh; |
| |
| MV *subblock_mv; |
| uint16_t *pre; |
| int src_stride = 0; |
| MV avg_mv; |
| |
| // Process whole nxn blocks. |
| for (int j = 0; j < bh; j += sub_bh) { |
| for (int i = 0; i < bw; i += sub_bw) { |
| int delta_idx = (j / sub_bh) * (pu_width / sub_bw) + (i / sub_bw); |
| ReferenceArea ref_area_opfl; |
| if (sub_bh >= 8 && sub_bw >= 8 && use_sub_pad) { |
| av1_get_reference_area_with_padding_single( |
| cm, xd, plane, mi, mi_mv[ref], sub_bw, sub_bh, mi_x + i, mi_y + j, |
| &ref_area_opfl, pu_width, pu_height, ref); |
| inter_pred_params->use_ref_padding = 1; |
| inter_pred_params->ref_area = &ref_area_opfl; |
| } |
| const int x = mi_x + i * (1 << inter_pred_params->subsampling_x); |
| const int y = mi_y + j * (1 << inter_pred_params->subsampling_y); |
| if (is_subblock_outside(x, y, cm->mi_params.mi_cols, |
| cm->mi_params.mi_rows, build_for_decode)) { |
| n_blocks++; |
| dst += sub_bw; |
| inter_pred_params->conv_params.dst += sub_bw; |
| inter_pred_params->pix_col += sub_bw; |
| continue; |
| } |
| if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) { |
| avg_mv.row = |
| ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.row + |
| mv_refined[1 * 2 + ref].as_mv.row + |
| mv_refined[2 * 2 + ref].as_mv.row + |
| mv_refined[3 * 2 + ref].as_mv.row, |
| 2); |
| avg_mv.col = |
| ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.col + |
| mv_refined[1 * 2 + ref].as_mv.col + |
| mv_refined[2 * 2 + ref].as_mv.col + |
| mv_refined[3 * 2 + ref].as_mv.col, |
| 2); |
| subblock_mv = &avg_mv; |
| } else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4) { |
| const int sub_idx = delta_idx * 2; |
| avg_mv.row = ROUND_POWER_OF_TWO_SIGNED( |
| mv_refined[sub_idx * 2 + ref].as_mv.row + |
| mv_refined[(sub_idx + 1) * 2 + ref].as_mv.row, |
| 1); |
| avg_mv.col = ROUND_POWER_OF_TWO_SIGNED( |
| mv_refined[sub_idx * 2 + ref].as_mv.col + |
| mv_refined[(sub_idx + 1) * 2 + ref].as_mv.col, |
| 1); |
| subblock_mv = &avg_mv; |
| } else { |
| subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv); |
| } |
| |
| const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2); |
| const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2); |
| inter_pred_params->dist_to_top_edge = -GET_MV_SUBPEL(mi_y + j); |
| inter_pred_params->dist_to_bottom_edge = |
| GET_MV_SUBPEL(height - bh - mi_y - j); |
| inter_pred_params->dist_to_left_edge = -GET_MV_SUBPEL(mi_x + i); |
| inter_pred_params->dist_to_right_edge = |
| GET_MV_SUBPEL(width - bw - mi_x - i); |
| |
| calc_subpel_params_func(subblock_mv, inter_pred_params, xd, mi_x + i, |
| mi_y + j, ref, 1, mc_buf, &pre, subpel_params, |
| &src_stride); |
| |
| int use_bacp = 0; |
| assert(inter_pred_params->mask_comp.type == COMPOUND_AVERAGE); |
| assert(inter_pred_params->comp_mode == UNIFORM_COMP); |
| int stored_do_average = inter_pred_params->conv_params.do_average; |
| InterCompMode stored_comp_mode = inter_pred_params->comp_mode; |
| uint8_t *stored_seg_mask = inter_pred_params->mask_comp.seg_mask; |
| |
| if (inter_pred_params->border_data.enable_bacp) { |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x0 = |
| subpel_params->x0; |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x1 = |
| subpel_params->x1; |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y0 = |
| subpel_params->y0; |
| inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y1 = |
| subpel_params->y1; |
| if (ref == 1) { |
| use_bacp = is_out_of_frame_block( |
| inter_pred_params, inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, n_blocks); |
| |
| if (use_bacp && |
| inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { |
| inter_pred_params->conv_params.do_average = 0; |
| inter_pred_params->comp_mode = MASK_COMP; |
| inter_pred_params->mask_comp.seg_mask = xd->seg_mask; |
| } |
| } |
| } |
| |
| assert(IMPLIES(ref == 0, !use_bacp)); |
| if (use_bacp) { |
| assert(inter_pred_params->comp_mode == MASK_COMP); |
| make_masked_inter_predictor(pre, src_stride, dst, dst_stride, |
| inter_pred_params, subpel_params, use_bacp, |
| n_blocks); |
| |
| } else { |
| av1_make_inter_predictor(pre, src_stride, dst, dst_stride, |
| inter_pred_params, subpel_params); |
| } |
| |
| // Restored to original |
| // inter_pred_params |
| if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { |
| inter_pred_params->conv_params.do_average = stored_do_average; |
| inter_pred_params->comp_mode = stored_comp_mode; |
| inter_pred_params->mask_comp.seg_mask = stored_seg_mask; |
| } |
| n_blocks++; |
| dst += sub_bw; |
| inter_pred_params->conv_params.dst += sub_bw; |
| inter_pred_params->pix_col += sub_bw; |
| } |
| dst -= bw; |
| inter_pred_params->conv_params.dst -= bw; |
| inter_pred_params->pix_col -= bw; |
| |
| dst += sub_bh * dst_stride; |
| inter_pred_params->conv_params.dst += |
| sub_bh * inter_pred_params->conv_params.dst_stride; |
| inter_pred_params->pix_row += sub_bh; |
| } |
| |
| inter_pred_params->conv_params.dst = orig_conv_dst; |
| } |
| |
| // Use a second pass of motion compensation to |
| // rebuild inter predictor |
| void av1_opfl_rebuild_inter_predictor( |
| uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int build_for_decode, const AV1_COMMON *cm, int pu_width, int ref, |
| uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func, |
| int use_4x4, MB_MODE_INFO *mi, int pu_height, const MV mi_mv[2], |
| int use_sub_pad) { |
| SubpelParams subpel_params; |
| |
| make_inter_pred_of_nxn(dst, dst_stride, mv_refined, inter_pred_params, xd, |
| mi_x, mi_y, build_for_decode, cm, pu_width, plane, ref, |
| mc_buf, calc_subpel_params_func, use_4x4, |
| &subpel_params, mi, pu_height, mi_mv, use_sub_pad); |
| } |
| |
| void av1_build_one_inter_predictor( |
| uint16_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| 1 /* is_mv_1_16th_pel */, mc_buf, &src, |
| &subpel_params, &src_stride); |
| |
| int use_bacp = 0; |
| int sub_block_id = 0; |
| if (inter_pred_params->border_data.enable_bacp) { |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x0 = |
| subpel_params.x0; |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x1 = |
| subpel_params.x1; |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y0 = |
| subpel_params.y0; |
| inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y1 = |
| subpel_params.y1; |
| if (ref == 1) { |
| use_bacp = is_out_of_frame_block( |
| inter_pred_params, inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, sub_block_id); |
| if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) { |
| inter_pred_params->conv_params.do_average = 0; |
| inter_pred_params->comp_mode = MASK_COMP; |
| inter_pred_params->mask_comp.seg_mask = xd->seg_mask; |
| } |
| } |
| } |
| |
| assert(IMPLIES(ref == 0, !use_bacp)); |
| |
| if (inter_pred_params->comp_mode == UNIFORM_SINGLE || |
| inter_pred_params->comp_mode == UNIFORM_COMP) { |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| assert(IMPLIES(use_bacp, ref == 0)); |
| assert(use_bacp == 0); |
| } else { |
| make_masked_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params, use_bacp, 0); |
| assert(IMPLIES(inter_pred_params->border_data.enable_bacp, ref == 1)); |
| } |
| } |
| |
| // The bellow arrays are used to map the |
| // number of BAWP reference samples to a 2^N |
| // number for each side (left or above). |
| static const uint8_t blk_size_log2_bawp[BAWP_MAX_REF_NUMB + 1] = { |
| 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4 |
| }; |
| static const uint8_t log_to_blk_size[5] = { 0, 2, 4, 8, 16 }; |
| |
| // The below function is used to allocate the |
| // number of reference samples for the left |
| // and above based on the availablity of the |
| // left and above and the total number of |
| // available samples. The final number should |
| // be 0, 4, 8, 16 or 32 in total. |
| static void derive_number_ref_samples_bawp(bool above_valid, bool left_valid, |
| int width, int height, int *numb_up, |
| int *numb_left) { |
| // If the number of adjusted number of |
| // samples is zero, set the availability to |
| // be false |
| const bool above_available = width ? above_valid : false; |
| const bool left_available = height ? left_valid : false; |
| |
| // If both left and above references are |
| // availalbe, the numbers of reference |
| // samples in each side are calculated based |
| // on the clamped width and clamped height. |
| // Else, only the reference samples in the |
| // available side is used. |
| |
| *numb_up = -1; |
| *numb_left = -1; |
| if (above_available && left_available) { |
| if (width == 16 && height == 16) { |
| *numb_up = 16; |
| *numb_left = 16; // Using 32 samples in |
| // total for 16x16 |
| } else if (width > 4 && height > 4) { |
| *numb_up = 8; |
| *numb_left = 8; // (16) 8x8, 8x16, 16x8 |
| } else if (width < 16 && height < 16) { |
| *numb_up = 4; |
| *numb_left = 4; // (8) 4x8, 8x4 |
| } else if (width == 16) { |
| *numb_up = 16; |
| *numb_left = 0; // (16) 16x4 |
| } else { |
| *numb_up = 0; |
| *numb_left = 16; // (16) 4x16 |
| } |
| } else if (above_available) { |
| *numb_up = width; |
| *numb_left = 0; |
| } else if (left_available) { |
| *numb_up = 0; |
| *numb_left = height; |
| } else { |
| *numb_up = 0; |
| *numb_left = 0; |
| } |
| } |
| |
| // Derive the scaling factor and offset of |
| // block adaptive weighted prediction mode. |
| // One row from the top boundary and one |
| // column from the left boundary are used in |
| // the less square error process. |
| static void derive_bawp_parameters(MACROBLOCKD *xd, uint16_t *recon_top, |
| uint16_t *recon_left, int rec_stride, |
| uint16_t *ref_top, uint16_t *ref_left, |
| int ref_stride, int ref, int plane, int bw, |
| int bh) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| if (!mbmi->morph_pred) assert(mbmi->bawp_flag[0] >= 1); |
| // only integer position of reference, may |
| // need to consider fractional position of |
| // ref samples |
| int count = 0; |
| int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0; |
| |
| const int max_numb_each_size = |
| plane ? (BAWP_MAX_REF_NUMB >> 1) : BAWP_MAX_REF_NUMB; |
| // Clamp the bw and bh to use up to 16 |
| // samples in the left and above |
| bw = AOMMIN(bw, max_numb_each_size); |
| bh = AOMMIN(bh, max_numb_each_size); |
| |
| // Make the number of samples in each side |
| // to 4, 8, or 16 by padding. If the number |
| // of sample in a side is smaller than 3, |
| // dont use the reference in this side (set |
| // the corresponding elements in |
| // blk_size_log2_bawp to zero). |
| const int log2_width = blk_size_log2_bawp[bw]; |
| const int width = log_to_blk_size[log2_width]; |
| |
| const int log2_height = blk_size_log2_bawp[bh]; |
| const int height = log_to_blk_size[log2_height]; |
| |
| int numb_up = 0, numb_left = 0; |
| derive_number_ref_samples_bawp(xd->up_available, xd->left_available, width, |
| height, &numb_up, &numb_left); |
| |
| uint16_t ref_pad[BAWP_MAX_REF_NUMB] = { 0 }; |
| uint16_t recon_pad[BAWP_MAX_REF_NUMB] = { 0 }; |
| |
| if (numb_up) { |
| const int step = (int)width / numb_up; |
| const int start = step == 1 ? 0 : step >> 1; |
| const int delta_w = width - bw; |
| |
| for (int i = 0; i < bw; ++i) { |
| ref_pad[i] = ref_top[i]; |
| recon_pad[i] = recon_top[i]; |
| } |
| // Padding |
| if (delta_w > 0) { |
| for (int i = 0; i < delta_w; i++) { |
| ref_pad[i + bw] = ref_pad[i]; |
| recon_pad[i + bw] = recon_pad[i]; |
| } |
| } |
| |
| for (int i = start; i < width; i = i + step) { |
| sum_x += ref_pad[i]; |
| sum_y += recon_pad[i]; |
| sum_xy += ref_pad[i] * recon_pad[i]; |
| sum_xx += ref_pad[i] * ref_pad[i]; |
| } |
| count += numb_up; |
| } |
| |
| if (numb_left) { |
| const int step_left = (int)height / numb_left; |
| const int start_left = step_left == 1 ? 0 : step_left >> 1; |
| const int delta = height - bh; |
| |
| for (int i = 0; i < bh; ++i) { |
| ref_pad[i] = ref_left[0]; |
| recon_pad[i] = recon_left[0]; |
| |
| recon_left += rec_stride; |
| ref_left += ref_stride; |
| } |
| // Padding |
| if (delta > 0) { |
| for (int i = 0; i < delta; i++) { |
| ref_pad[i + bh] = ref_pad[i]; |
| recon_pad[i + bh] = recon_pad[i]; |
| } |
| } |
| for (int i = start_left; i < height; i = i + step_left) { |
| sum_x += ref_pad[i]; |
| sum_y += recon_pad[i]; |
| sum_xy += ref_pad[i] * recon_pad[i]; |
| sum_xx += ref_pad[i] * ref_pad[i]; |
| } |
| count += numb_left; |
| } |
| |
| const int16_t shift = 8; // maybe a smaller value can be used |
| |
| if (mbmi->bawp_flag[0] > 1 && plane == 0) { |
| if (count > 0) { |
| const int beta = derive_linear_parameters_beta( |
| sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]); |
| mbmi->bawp_beta[plane][ref] = beta; |
| } else { |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| } |
| } else { |
| if (count > 0) { |
| if (plane == 0) { |
| const int16_t alpha = derive_linear_parameters_alpha( |
| sum_x, sum_y, sum_xx, sum_xy, count, shift); |
| mbmi->bawp_alpha[plane][ref] = (alpha == 0) ? (1 << shift) : alpha; |
| } else { |
| mbmi->bawp_alpha[plane][ref] = mbmi->bawp_alpha[0][ref]; |
| } |
| |
| const int beta = derive_linear_parameters_beta( |
| sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]); |
| mbmi->bawp_beta[plane][ref] = beta; |
| } else { |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| } |
| } |
| } |
| |
| // Generate weighted prediction of the block. |
| void av1_make_bawp_block_c(uint16_t *dst, int dst_stride, int16_t alpha, |
| int32_t beta, int shift, int bw, int bh, int bd) { |
| for (int j = 0; j < bh; ++j) { |
| for (int i = 0; i < bw; ++i) { |
| dst[j * dst_stride + i] = clip_pixel_highbd( |
| (dst[j * dst_stride + i] * alpha + beta) >> shift, bd); |
| } |
| } |
| } |
| |
| // generate inter prediction of a block coded |
| // in bwap mode enabled |
| void av1_build_one_bawp_inter_predictor( |
| uint16_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, const AV1_COMMON *cm, MACROBLOCKD *xd, |
| const BUFFER_SET *dst_orig, int bw, int bh, int mi_x, int mi_y, int ref, |
| int plane, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, 0, |
| mc_buf, &src, &subpel_params, &src_stride); |
| |
| assert(inter_pred_params->comp_mode == UNIFORM_SINGLE); |
| if (inter_pred_params->comp_mode == UNIFORM_SINGLE || |
| inter_pred_params->comp_mode == UNIFORM_COMP) { |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } else { |
| make_masked_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params, 0, 0); |
| } |
| |
| const int shift = 8; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int x_off = GET_MV_RAWPEL(mbmi->mv[ref].as_mv.col); |
| const int y_off = GET_MV_RAWPEL(mbmi->mv[ref].as_mv.row); |
| |
| const int x_off_p = x_off >> inter_pred_params->subsampling_x; |
| const int y_off_p = y_off >> inter_pred_params->subsampling_y; |
| |
| const int mi_x_p = mi_x >> inter_pred_params->subsampling_x; |
| const int mi_y_p = mi_y >> inter_pred_params->subsampling_y; |
| |
| #if CONFIG_F054_PIC_BOUNDARY |
| const int width_p = pd->dst.width; |
| const int height_p = pd->dst.height; |
| #else |
| const int width_p = cm->width >> inter_pred_params->subsampling_x; |
| const int height_p = cm->height >> inter_pred_params->subsampling_y; |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| |
| int ref_w = bw; |
| if ((mi_x_p + bw) >= width_p) ref_w = width_p - mi_x_p; |
| |
| int ref_h = bh; |
| if ((mi_y_p + bh) >= height_p) ref_h = height_p - mi_y_p; |
| if ((mi_x_p + x_off_p - BAWP_REF_LINES) < 0 || |
| (mi_y_p + y_off_p - BAWP_REF_LINES) < 0 || ref_w <= 0 || ref_h <= 0 || |
| (mi_x_p + ref_w + x_off_p) >= width_p || |
| (mi_y_p + ref_h + y_off_p) >= height_p) { |
| mbmi->bawp_alpha[plane][ref] = 1 << shift; |
| mbmi->bawp_beta[plane][ref] = -(1 << shift); |
| return; |
| } else { |
| uint16_t *recon_buf = xd->plane[plane].dst.buf; |
| int recon_stride = xd->plane[plane].dst.stride; |
| if (dst_orig != NULL) { |
| recon_buf = dst_orig->plane[plane]; |
| recon_stride = dst_orig->stride[plane]; |
| } |
| uint16_t *recon_top = recon_buf - BAWP_REF_LINES * recon_stride; |
| uint16_t *recon_left = recon_buf - BAWP_REF_LINES; |
| |
| // the picture boundary limitation to be |
| // checked. |
| const int ref_stride = pd->pre[ref].stride; |
| uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p; |
| uint16_t *ref_top = ref_buf - BAWP_REF_LINES * ref_stride; |
| uint16_t *ref_left = ref_buf - BAWP_REF_LINES; |
| if (mbmi->bawp_flag[0] > 1 && plane == 0) { |
| const int first_ref_dist = |
| cm->ref_frame_relative_dist[mbmi->ref_frame[0]]; |
| const int bawp_scale_table[3][EXPLICIT_BAWP_SCALE_CNT] = { { -1, 1 }, |
| { -2, 2 }, |
| { -3, 3 } }; |
| const int list_index = |
| (mbmi->mode == NEARMV) |
| ? 0 |
| : ((mbmi->mode == NEWMV && mbmi->use_amvd) ? 1 : 2); |
| |
| int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag[0] - 2]; |
| const int delta_sign = delta_scales > 0 ? 1 : -1; |
| const int delta_magtitude = delta_sign * delta_scales; |
| if (first_ref_dist > 4) delta_scales = delta_sign * (delta_magtitude + 1); |
| mbmi->bawp_alpha[plane][ref] = 256 + (delta_scales * 16); |
| } |
| |
| derive_bawp_parameters(xd, recon_top, recon_left, recon_stride, ref_top, |
| ref_left, ref_stride, ref, plane, ref_w, ref_h); |
| } |
| |
| int16_t alpha = mbmi->bawp_alpha[plane][ref]; |
| int32_t beta = mbmi->bawp_beta[plane][ref]; |
| av1_make_bawp_block(dst, dst_stride, alpha, beta, shift, bw, bh, xd->bd); |
| } |
| |
| // True if the following hold: |
| // 1. Not intrabc |
| // 2. At least one dimension is size 4 with |
| // subsampling |
| // 3. If sub-sampled, none of the previous |
| // blocks around the sub-sample |
| // are intrabc or inter-blocks |
| static bool is_sub8x8_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mi, int plane, int is_intrabc) { |
| #if CONFIG_CHROMA_MERGE_LATENCY_FIX |
| (void)xd; |
| #endif // CONFIG_CHROMA_MERGE_LATENCY_FIX |
| if (is_intrabc |
| #if CONFIG_CHROMA_MERGE_LATENCY_FIX |
| && frame_is_intra_only(cm) |
| #endif // CONFIG_CHROMA_MERGE_LATENCY_FIX |
| ) { |
| return false; |
| } |
| if (!(plane && |
| (mi->sb_type[PLANE_TYPE_UV] != mi->chroma_ref_info.bsize_base))) |
| return false; |
| |
| #if CONFIG_CHROMA_MERGE_LATENCY_FIX |
| assert(!frame_is_intra_only(cm)); |
| #else |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_row, mi_col) may not be the correct coordinates |
| // for the top-left corner of the prediction source. So, we need to find the |
| // correct top-left corner (row_start, col_start). |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| const int row_start = |
| plane ? mi->chroma_ref_info.mi_row_chroma_base - mi_row : 0; |
| const int col_start = |
| plane ? mi->chroma_ref_info.mi_col_chroma_base - mi_col : 0; |
| const BLOCK_SIZE plane_bsize = |
| plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y]; |
| const int plane_mi_height = mi_size_high[plane_bsize]; |
| const int plane_mi_width = mi_size_wide[plane_bsize]; |
| const int mi_rows = cm->mi_params.mi_rows; |
| const int mi_cols = cm->mi_params.mi_cols; |
| |
| // Scan through all the blocks in the current chroma unit |
| for (int row = 0; row < plane_mi_height; ++row) { |
| const int row_coord = row_start + row; |
| if (mi_row + row_coord >= mi_rows) break; |
| for (int col = 0; col < plane_mi_width; ++col) { |
| const int col_coord = col_start + col; |
| if (mi_col + col_coord >= mi_cols) break; |
| // For the blocks at the lower right of the final chroma block, the mis |
| // are not set up correctly yet, so we do not check them. |
| if ((row_coord >= 0 && col_coord > 0) || |
| (col_coord >= 0 && row_coord > 0)) { |
| break; |
| } |
| const MB_MODE_INFO *this_mbmi = |
| xd->mi[row_coord * xd->mi_stride + col_coord]; |
| assert(this_mbmi != NULL); |
| if (!is_inter_block(this_mbmi, xd->tree_type)) return false; |
| if (is_intrabc_block(this_mbmi, xd->tree_type)) return false; |
| } |
| } |
| #endif // CONFIG_CHROMA_MERGE_LATENCY_FIX |
| return true; |
| } |
| |
| static void build_inter_predictors_sub8x8( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const bool ss_x = pd->subsampling_x; |
| const bool ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y]; |
| const int plane_mi_height = mi_size_high[plane_bsize]; |
| const int plane_mi_width = mi_size_wide[plane_bsize]; |
| assert(!is_intrabc_block(mi, xd->tree_type)); |
| |
| // For sub8x8 chroma blocks, we may be |
| // covering more than one luma block's worth |
| // of pixels. Thus (mi_x, mi_y) may not be |
| // the correct coordinates for the top-left |
| // corner of the prediction source - the |
| // correct top-left corner is at (pre_x, |
| // pre_y). |
| const int row_start = |
| plane ? (mi->chroma_ref_info.mi_row_chroma_base - xd->mi_row) : 0; |
| const int col_start = |
| plane ? (mi->chroma_ref_info.mi_col_chroma_base - xd->mi_col) : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| const int mi_stride = xd->mi_stride; |
| const int mi_rows = cm->mi_params.mi_rows; |
| const int mi_cols = cm->mi_params.mi_cols; |
| |
| const int mb_to_top_edge_start = xd->mb_to_top_edge; |
| const int mb_to_left_edge_start = xd->mb_to_left_edge; |
| const int mb_to_bottom_edge_start = xd->mb_to_bottom_edge; |
| const int mb_to_right_edge_start = xd->mb_to_right_edge; |
| |
| // Row progress keeps track of which mi |
| // block in the row has been set. |
| SUB_8_BITMASK_T row_progress[MAX_MI_LUMA_SIZE_FOR_SUB_8] = { 0 }; |
| assert(plane_mi_height <= MAX_MI_LUMA_SIZE_FOR_SUB_8); |
| assert(plane_mi_width <= MAX_MI_LUMA_SIZE_FOR_SUB_8); |
| assert(MAX_MI_LUMA_SIZE_FOR_SUB_8 == SUB_8_BITMASK_SIZE); |
| for (int mi_row = 0; mi_row < plane_mi_height; mi_row++) { |
| if (xd->mi_row + row_start + mi_row >= mi_rows) break; |
| for (int mi_col = 0; mi_col < plane_mi_width; mi_col++) { |
| if (xd->mi_col + col_start + mi_col >= mi_cols) break; |
| const SUB_8_BITMASK_T check_flag = 1 << (SUB_8_BITMASK_SIZE - 1 - mi_col); |
| if (row_progress[mi_row] & check_flag) { |
| continue; |
| } |
| |
| const MB_MODE_INFO *this_mbmi = |
| xd->mi[(row_start + mi_row) * mi_stride + (col_start + mi_col)]; |
| assert(this_mbmi != NULL); |
| |
| const BLOCK_SIZE bsize = this_mbmi->sb_type[PLANE_TYPE_Y]; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| int row = row_start + mi_row + xd->mi_row; |
| int col = col_start + mi_col + xd->mi_col; |
| xd->mb_to_top_edge = -GET_MV_SUBPEL(row * MI_SIZE); |
| xd->mb_to_bottom_edge = |
| GET_MV_SUBPEL((cm->mi_params.mi_rows - mi_height - row) * MI_SIZE); |
| xd->mb_to_left_edge = -GET_MV_SUBPEL((col * MI_SIZE)); |
| xd->mb_to_right_edge = |
| GET_MV_SUBPEL((cm->mi_params.mi_cols - mi_width - col) * MI_SIZE); |
| |
| // The flag here is a block of mi_width |
| // many 1s offset by the mi_col. For |
| // example, if the current mi_col is 2, |
| // and the mi_width is 2, then the flag |
| // will be 00110000. We or this with |
| // row_progress to update the blocks |
| // that have been coded. Note that |
| // because we are always coding in a |
| // causal order, we could technically |
| // simplify the bitwise operation, and |
| // use the flag 11110000 in the above |
| // example instead. However, we are not |
| // taking this approach here to keep the |
| // logic simpler. |
| const SUB_8_BITMASK_T set_flag = |
| ((SUB_8_BITMASK_ON << (SUB_8_BITMASK_SIZE - mi_width)) & |
| SUB_8_BITMASK_ON) >> |
| mi_col; |
| for (int mi_row_offset = 0; mi_row_offset < mi_height; mi_row_offset++) { |
| row_progress[mi_row + mi_row_offset] |= set_flag; |
| } |
| |
| assert(is_inter_block(this_mbmi, xd->tree_type)); |
| const int chroma_width = block_size_wide[bsize] >> ss_x; |
| const int chroma_height = block_size_high[bsize] >> ss_y; |
| const int pixel_row = (MI_SIZE * mi_row >> ss_y); |
| const int pixel_col = (MI_SIZE * mi_col >> ss_x); |
| // TODO(yuec): enabling compound |
| // prediction in none sub8x8 mbs in the |
| // group |
| bool is_compound = 0; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint16_t *dst = dst_buf->buf + dst_buf->stride * pixel_row + pixel_col; |
| int ref = 0; |
| const RefCntBuffer *ref_buf = |
| get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *ref_scale_factors = |
| get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *const sf = ref_scale_factors; |
| #if CONFIG_F054_PIC_BOUNDARY |
| const struct buf_2d pre_buf = { |
| NULL, |
| (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, |
| ref_buf->buf.uv_width, |
| ref_buf->buf.uv_height, |
| ref_buf->buf.uv_crop_width, |
| ref_buf->buf.uv_crop_height, |
| ref_buf->buf.uv_stride, |
| }; |
| #else |
| const struct buf_2d pre_buf = { |
| NULL, |
| (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, |
| ref_buf->buf.uv_crop_width, |
| ref_buf->buf.uv_crop_height, |
| ref_buf->buf.uv_crop_width, |
| ref_buf->buf.uv_crop_height, |
| ref_buf->buf.uv_stride, |
| }; |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| |
| const MV mv = this_mbmi->mv[ref].as_mv; |
| InterPredParams inter_pred_params; |
| av1_init_inter_params( |
| &inter_pred_params, chroma_width, chroma_height, pre_y + pixel_row, |
| pre_x + pixel_col, pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, &pre_buf, this_mbmi->interp_fltr); |
| inter_pred_params.conv_params = |
| get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd); |
| |
| if (is_thin_4xn_nx4_block(bsize) && has_second_ref(this_mbmi)) { |
| assert(this_mbmi->interinter_comp.type != COMPOUND_DIFFWTD); |
| } |
| |
| const MV mv_1_16th_pel = convert_mv_to_1_16th_pel(&mv); |
| av1_build_one_inter_predictor(dst, dst_buf->stride, &mv_1_16th_pel, |
| &inter_pred_params, xd, mi_x + pixel_col, |
| mi_y + pixel_row, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| } |
| xd->mb_to_top_edge = mb_to_top_edge_start; |
| xd->mb_to_bottom_edge = mb_to_bottom_edge_start; |
| xd->mb_to_left_edge = mb_to_left_edge_start; |
| xd->mb_to_right_edge = mb_to_right_edge_start; |
| } |
| |
| // TODO(any): make a simd function for this. |
| static inline void aom_memset16_optimized(uint16_t *dst, uint16_t value, |
| int count) { |
| while (count >= 8) { |
| dst[0] = value; |
| dst[1] = value; |
| dst[2] = value; |
| dst[3] = value; |
| dst[4] = value; |
| dst[5] = value; |
| dst[6] = value; |
| dst[7] = value; |
| dst += 8; |
| count -= 8; |
| } |
| while (count >= 4) { |
| dst[0] = value; |
| dst[1] = value; |
| dst[2] = value; |
| dst[3] = value; |
| dst += 4; |
| count -= 4; |
| } |
| while (count > 0) { |
| *dst++ = value; |
| count--; |
| } |
| } |
| |
| AOM_INLINE void highbd_build_mc_border(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int x, |
| int y, int b_w, int b_h, int w, int h) { |
| // Get a pointer to the start of the real |
| // data for this row. |
| const uint16_t *ref_row = src - x - y * src_stride; |
| |
| if (y >= h) |
| ref_row += (h - 1) * src_stride; |
| else if (y > 0) |
| ref_row += y * src_stride; |
| |
| do { |
| int right = 0, copy; |
| int left = x < 0 ? -x : 0; |
| |
| if (left > b_w) left = b_w; |
| |
| if (x + b_w > w) right = x + b_w - w; |
| |
| if (right > b_w) right = b_w; |
| |
| copy = b_w - left - right; |
| |
| if (left) aom_memset16_optimized(dst, ref_row[0], left); |
| |
| if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); |
| |
| if (right) aom_memset16_optimized(dst + left + copy, ref_row[w - 1], right); |
| |
| dst += dst_stride; |
| ++y; |
| |
| if (y > 0 && y < h) ref_row += src_stride; |
| } while (--b_h); |
| } |
| /* Extend MC border for support SB in BRU |
| * optimized decoder */ |
| void bru_extend_mc_border(const AV1_COMMON *const cm, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, YV12_BUFFER_CONFIG *src) { |
| const int org_bw = mi_size_wide[bsize]; |
| const int org_bh = mi_size_high[bsize]; |
| const int ss_x = src->uv_width < src->y_width; |
| const int ss_y = src->uv_height < src->y_height; |
| uint16_t *src_data; |
| uint16_t *dst_data; |
| for (int plane = 0; plane < av1_num_planes(cm); plane++) { |
| const int is_uv = plane > 0; |
| const int s_x = is_uv ? ss_x : 0; |
| const int s_y = is_uv ? ss_y : 0; |
| PadBlock block; |
| PadBlock block_cur; |
| #if CONFIG_F054_PIC_BOUNDARY |
| const int frame_H = is_uv ? src->uv_height : src->y_height; |
| const int frame_W = is_uv ? src->uv_width : src->y_width; |
| #else |
| const int frame_H = is_uv ? src->uv_crop_height : src->y_crop_height; |
| const int frame_W = is_uv ? src->uv_crop_width : src->y_crop_width; |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| block.x0 = mi_col << (MI_SIZE_LOG2 - s_x); |
| block.y0 = mi_row << (MI_SIZE_LOG2 - s_y); |
| block.x1 = block.x0 + (org_bw << (MI_SIZE_LOG2 - s_x)); |
| block.y1 = block.y0 + (org_bh << (MI_SIZE_LOG2 - s_y)); |
| block_cur = block; |
| if (block.x1 > frame_W) block.x1 = frame_W; |
| if (block.y1 > frame_H) block.y1 = frame_H; |
| block.x0 -= AOM_INTERP_EXTEND - 1; |
| block.x1 += AOM_INTERP_EXTEND; |
| block.y0 -= AOM_INTERP_EXTEND - 1; |
| block.y1 += AOM_INTERP_EXTEND; |
| if (block.x0 < 0 || block.x1 > frame_W - 1 || block.y0 < 0 || |
| block.y1 > frame_H - 1) { |
| // BRU extend border should not touch |
| // any pixel in the frame , but only in |
| // the extend region if block - |
| // AOM_INTERP_EXTEND >= 0, means this is |
| // not on the top/left border, then |
| // reset to current block |
| if (block.x0 >= 0) block.x0 = block_cur.x0; |
| if (block.y0 >= 0) block.y0 = block_cur.y0; |
| // if block + AOM_INTERP_EXTEND <= W/H, |
| // means this is not on the bottom/right |
| // border, then reset to current block |
| if (block.x1 <= frame_W) block.x1 = block_cur.x1; |
| if (block.y1 <= frame_H) block.y1 = block_cur.y1; |
| |
| int b_w = block.x1 - block.x0; |
| int b_h = block.y1 - block.y0; |
| |
| int stride = src->strides[is_uv]; |
| // Get reference block pointer. |
| src_data = src->buffers[plane] + |
| scaled_buffer_offset(block.x0, block.y0, stride, NULL); |
| dst_data = src->buffers[plane] + |
| scaled_buffer_offset(block.x0, block.y0, stride, NULL); |
| |
| highbd_build_mc_border(src_data, stride, dst_data, stride, block.x0, |
| block.y0, b_w, b_h, frame_W, frame_H); |
| } |
| } |
| } |
| |
| void refinemv_highbd_pad_mc_border(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, int x0, |
| int y0, int b_w, int b_h, |
| const ReferenceArea *ref_area) { |
| const int ref_x0 = ref_area->pad_block.x0; |
| const int ref_y0 = ref_area->pad_block.y0; |
| const int ref_x1 = ref_area->pad_block.x1; |
| const int ref_y1 = ref_area->pad_block.y1; |
| |
| // Get a pointer to the start of the real |
| // data for this row. |
| const uint16_t *ref_row = src - x0 - y0 * src_stride; |
| |
| if (y0 >= ref_area->pad_block.y1) |
| ref_row += (ref_area->pad_block.y1 - 1) * src_stride; |
| else if (y0 >= ref_area->pad_block.y0) |
| ref_row += y0 * src_stride; |
| else |
| ref_row += ref_area->pad_block.y0 * src_stride; |
| |
| int left = x0 < ref_x0 ? ref_x0 - x0 : 0; |
| if (left > b_w) left = b_w; |
| int right = (x0 + b_w > ref_x1) ? (x0 + b_w - ref_x1) : 0; |
| if (right > b_w) right = b_w; |
| const int copy = b_w - left - right; |
| |
| do { |
| if (left) |
| aom_memset16_optimized(dst, ref_row[ref_area->pad_block.x0], left); |
| if (copy) memcpy(dst + left, ref_row + x0 + left, copy * sizeof(uint16_t)); |
| if (right) |
| aom_memset16_optimized(dst + left + copy, |
| ref_row[ref_area->pad_block.x1 - 1], right); |
| |
| dst += dst_stride; |
| ++y0; |
| |
| if (y0 > ref_y0 && y0 < ref_y1) ref_row += src_stride; |
| } while (--b_h); |
| } |
| |
| // check if padding is required during motion |
| // compensation return 1 means reference pixel |
| // is outside of the reference range and |
| // padding is required return 0 means no |
| // padding. |
| int update_extend_mc_border_params(const struct scale_factors *const sf, |
| struct buf_2d *const pre_buf, MV32 scaled_mv, |
| PadBlock *block, int subpel_x_mv, |
| int subpel_y_mv, int do_warp, int is_intrabc, |
| int *x_pad, int *y_pad, |
| const ReferenceArea *ref_area) { |
| // Get reference width and height. |
| int frame_width = pre_buf->width; |
| int frame_height = pre_buf->height; |
| |
| // Do border extension if there is motion or |
| // width/height is not a multiple of 8 |
| // pixels. Extension is needed in optical |
| // flow refinement to obtain MV offsets |
| (void)scaled_mv; |
| if (!is_intrabc && !do_warp) { |
| if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { |
| block->x0 -= AOM_INTERP_EXTEND - 1; |
| block->x1 += AOM_INTERP_EXTEND; |
| *x_pad = 1; |
| } |
| |
| if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { |
| block->y0 -= AOM_INTERP_EXTEND - 1; |
| block->y1 += AOM_INTERP_EXTEND; |
| *y_pad = 1; |
| } |
| |
| // Skip border extension if block is |
| // inside the frame. |
| if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || |
| block->y1 > frame_height - 1) { |
| return 1; |
| } |
| |
| if (ref_area) { |
| // Skip border extension if block is in |
| // the reference area. |
| if (block->x0 < ref_area->pad_block.x0 || |
| block->x1 > ref_area->pad_block.x1 || |
| block->y0 < ref_area->pad_block.y0 || |
| block->y1 > ref_area->pad_block.y1) { |
| return 1; |
| } |
| } |
| } |
| return 0; |
| }; |
| |
| // perform padding of the motion compensated |
| // block if requires. Padding is performed if |
| // the motion compensated block is partially |
| // out of the reference area. |
| static void refinemv_extend_mc_border( |
| const struct scale_factors *const sf, struct buf_2d *const pre_buf, |
| MV32 scaled_mv, PadBlock block, int subpel_x_mv, int subpel_y_mv, |
| int do_warp, int is_intrabc, uint16_t *paded_ref_buf, |
| int paded_ref_buf_stride, uint16_t **pre, int *src_stride, |
| const ReferenceArea *ref_area) { |
| int x_pad = 0, y_pad = 0; |
| if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, |
| subpel_x_mv, subpel_y_mv, do_warp, |
| is_intrabc, &x_pad, &y_pad, ref_area)) { |
| // Get reference block pointer. |
| const uint16_t *const buf_ptr = |
| pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; |
| int buf_stride = pre_buf->stride; |
| const int b_w = block.x1 - block.x0; |
| const int b_h = block.y1 - block.y0; |
| |
| refinemv_highbd_pad_mc_border(buf_ptr, buf_stride, paded_ref_buf, |
| paded_ref_buf_stride, block.x0, block.y0, b_w, |
| b_h, ref_area); |
| *src_stride = paded_ref_buf_stride; |
| *pre = paded_ref_buf + |
| y_pad * (AOM_INTERP_EXTEND - 1) * paded_ref_buf_stride + |
| x_pad * (AOM_INTERP_EXTEND - 1); |
| } |
| } |
| |
| void dec_calc_subpel_params(const MV *const src_mv, |
| InterPredParams *const inter_pred_params, |
| const MACROBLOCKD *const xd, int mi_x, int mi_y, |
| uint16_t **pre, SubpelParams *subpel_params, |
| int *src_stride, PadBlock *block, |
| int use_optflow_refinement, MV32 *scaled_mv, |
| int *subpel_x_mv, int *subpel_y_mv) { |
| const struct scale_factors *sf = inter_pred_params->scale_factors; |
| struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; |
| |
| const int bw = inter_pred_params->original_pu_width; |
| const int bh = inter_pred_params->original_pu_height; |
| const int is_scaled = av1_is_scaled(sf); |
| if (is_scaled) { |
| int ssx = inter_pred_params->subsampling_x; |
| int ssy = inter_pred_params->subsampling_y; |
| int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| if (use_optflow_refinement) { |
| orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssy); |
| orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssx); |
| } else { |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| } |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| subpel_params->xs = sf->x_step_q4; |
| subpel_params->ys = sf->y_step_q4; |
| |
| // Get reference block top left |
| // coordinate. |
| block->x0 = pos_x >> SCALE_SUBPEL_BITS; |
| block->y0 = pos_y >> SCALE_SUBPEL_BITS; |
| |
| // Get reference block bottom right |
| // coordinate. |
| block->x1 = |
| ((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| block->y1 = |
| ((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| |
| MV temp_mv; |
| temp_mv = clamp_mv_to_umv_border_sb( |
| xd, src_mv, bw, bh, use_optflow_refinement, |
| inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); |
| *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); |
| scaled_mv->row += SCALE_EXTRA_OFF; |
| scaled_mv->col += SCALE_EXTRA_OFF; |
| |
| *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; |
| } else { |
| // Get block position in current frame. |
| int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, src_mv, bw, bh, use_optflow_refinement, |
| inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); |
| subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; |
| subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| |
| // Get reference block top left |
| // coordinate. |
| pos_x += mv_q4.col; |
| pos_y += mv_q4.row; |
| block->x0 = pos_x >> SUBPEL_BITS; |
| block->y0 = pos_y >> SUBPEL_BITS; |
| |
| // Get reference block bottom right |
| // coordinate. |
| block->x1 = |
| (pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1; |
| block->y1 = |
| (pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1; |
| |
| scaled_mv->row = mv_q4.row; |
| scaled_mv->col = mv_q4.col; |
| *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; |
| } |
| *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; |
| *src_stride = pre_buf->stride; |
| |
| if (inter_pred_params->border_data.enable_bacp) { |
| subpel_params->x0 = block->x0; |
| subpel_params->x1 = block->x1; |
| subpel_params->y0 = block->y0; |
| subpel_params->y1 = block->y1; |
| } |
| } |
| |
| void common_calc_subpel_params_and_extend( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, |
| int use_optflow_refinement, uint16_t **mc_buf, uint16_t **pre, |
| SubpelParams *subpel_params, int *src_stride) { |
| (void)ref; |
| (void)mc_buf; |
| |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| assert(inter_pred_params->use_ref_padding); |
| dec_calc_subpel_params( |
| src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride, |
| &block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| |
| // printf(" Use ref padding \n"); |
| const int paded_ref_buf_stride = |
| inter_pred_params->ref_area->paded_ref_buf_stride; |
| refinemv_extend_mc_border( |
| inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf, |
| scaled_mv, block, subpel_x_mv, subpel_y_mv, |
| inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc, |
| &inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre, |
| src_stride, inter_pred_params->ref_area); |
| } |
| |
| static void get_ref_area_info(const MV *const src_mv, |
| InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, |
| int use_optflow_refinement, uint16_t **pre, |
| SubpelParams *subpel_params, int *src_stride, |
| ReferenceArea *ref_area) { |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| |
| dec_calc_subpel_params( |
| src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride, |
| &block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| |
| struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf; |
| int frame_height = pre_buf->height; |
| int frame_width = pre_buf->width; |
| block.x0 -= REF_LEFT_BORDER; |
| block.x1 += REF_RIGHT_BORDER; |
| block.y0 -= REF_TOP_BORDER; |
| block.y1 += REF_BOTTOM_BORDER; |
| |
| ref_area->pad_block.x0 = CLIP(block.x0, 0, frame_width - 1); |
| ref_area->pad_block.y0 = CLIP(block.y0, 0, frame_height - 1); |
| ref_area->pad_block.x1 = CLIP(block.x1, 1, frame_width); |
| ref_area->pad_block.y1 = CLIP(block.y1, 1, frame_height); |
| } |
| |
| void av1_get_reference_area_with_padding_single( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| const MV mv, int bw, int bh, int mi_x, int mi_y, ReferenceArea *ref_area, |
| int pu_width, int pu_height, int ref) { |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| int row_start = 0; |
| int col_start = 0; |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| |
| const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x); |
| const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y); |
| |
| const struct scale_factors *const sf = is_tip |
| ? cm->tip_ref.ref_scale_factor[ref] |
| : xd->block_ref_scale_factors[ref]; |
| const struct buf_2d *const pre_buf = &pd->pre[ref]; |
| |
| // initialize the reference buffer |
| ref_area->pad_block.x0 = 0; |
| ref_area->pad_block.y0 = 0; |
| ref_area->pad_block.x1 = cm->width; |
| ref_area->pad_block.y1 = cm->height; |
| ref_area->paded_ref_buf_stride = REF_BUFFER_WIDTH; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| |
| inter_pred_params.original_pu_width = pu_width; |
| inter_pred_params.original_pu_height = pu_height; |
| |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| |
| const MV *src_mv = &mv; |
| get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src, |
| &subpel_params, &src_stride, ref_area); |
| } |
| |
| static void get_ref_area_info_warp(const MV *const src_mv, |
| InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, |
| int use_optflow_refinement, uint16_t **pre, |
| SubpelParams *subpel_params, int *src_stride, |
| WarpBoundaryBox *ref_area) { |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| |
| dec_calc_subpel_params( |
| src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride, |
| &block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| |
| struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf; |
| int frame_height = pre_buf->height; |
| int frame_width = pre_buf->width; |
| block.x0 -= REF_LEFT_BORDER_WARP; |
| block.x1 += REF_RIGHT_BORDER_WARP; |
| block.y0 -= REF_TOP_BORDER_WARP; |
| block.y1 += REF_BOTTOM_BORDER_WARP; |
| |
| ref_area->x0 = CLIP(block.x0, 0, frame_width - 1); |
| ref_area->y0 = CLIP(block.y0, 0, frame_height - 1); |
| ref_area->x1 = CLIP(block.x1, 1, frame_width); |
| ref_area->y1 = CLIP(block.y1, 1, frame_height); |
| } |
| |
| void av1_get_reference_area_with_padding_single_warp( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, |
| const MV mv, int bw, int bh, int mi_x, int mi_y, WarpBoundaryBox *ref_area, |
| int pu_width, int pu_height, int ref) { |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| int row_start = 0; |
| int col_start = 0; |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| |
| const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x); |
| const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y); |
| |
| const struct scale_factors *const sf = is_tip |
| ? cm->tip_ref.ref_scale_factor[ref] |
| : xd->block_ref_scale_factors[ref]; |
| const struct buf_2d *const pre_buf = &pd->pre[ref]; |
| |
| // initialize the reference buffer |
| ref_area->x0 = 0; |
| ref_area->y0 = 0; |
| ref_area->x1 = cm->width; |
| ref_area->y1 = cm->height; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| |
| inter_pred_params.original_pu_width = pu_width; |
| inter_pred_params.original_pu_height = pu_height; |
| |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| |
| const MV *src_mv = &mv; |
| get_ref_area_info_warp(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src, |
| &subpel_params, &src_stride, ref_area); |
| } |
| |
| void av1_get_reference_area_with_padding(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, MB_MODE_INFO *mi, |
| const MV mv[2], int bw, int bh, |
| int mi_x, int mi_y, |
| ReferenceArea ref_area[2], |
| int pu_width, int pu_height) { |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| assert(IMPLIES(!is_tip, has_second_ref(mi))); |
| assert(!is_intrabc_block(mi, xd->tree_type)); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| if (is_tip && bw < 8 && bh < 8) return; |
| |
| int row_start = 0; |
| int col_start = 0; |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| |
| const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x); |
| const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y); |
| |
| for (int ref = 0; ref < 2; ++ref) { |
| const struct scale_factors *const sf = |
| is_tip ? cm->tip_ref.ref_scale_factor[ref] |
| : xd->block_ref_scale_factors[ref]; |
| const struct buf_2d *const pre_buf = &pd->pre[ref]; |
| |
| // initialize the reference buffer |
| ref_area[ref].pad_block.x0 = 0; |
| ref_area[ref].pad_block.y0 = 0; |
| ref_area[ref].pad_block.x1 = cm->width; |
| ref_area[ref].pad_block.y1 = cm->height; |
| ref_area[ref].paded_ref_buf_stride = REF_BUFFER_WIDTH; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| |
| inter_pred_params.original_pu_width = pu_width; |
| inter_pred_params.original_pu_height = pu_height; |
| |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| |
| assert(!inter_pred_params.use_ref_padding); |
| |
| const MV *src_mv = ref == 0 ? &mv[0] : &mv[1]; |
| get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src, |
| &subpel_params, &src_stride, &ref_area[ref]); |
| } |
| } |
| |
| void av1_refinemv_build_predictors(MACROBLOCKD *xd, int mi_x, int mi_y, |
| uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, |
| uint16_t *dst_ref0, uint16_t *dst_ref1, |
| int dst_stride, MV mv0, MV mv1, |
| InterPredParams *inter_pred_params) { |
| for (int ref = 0; ref < 2; ref++) { |
| SubpelParams subpel_params; |
| uint16_t *src; |
| int src_stride; |
| |
| uint16_t *dst_ref = ref == 0 ? dst_ref0 : dst_ref1; |
| MV *src_mv = ref == 0 ? &mv0 : &mv1; |
| #if CONFIG_SUBBLK_REF_EXT |
| src_mv->row -= 8 * SUBBLK_REF_EXT_LINES; |
| src_mv->col -= 8 * SUBBLK_REF_EXT_LINES; |
| #endif // CONFIG_SUBBLK_REF_EXT |
| calc_subpel_params_func(src_mv, &inter_pred_params[ref], xd, mi_x, mi_y, |
| ref, 0, mc_buf, &src, &subpel_params, &src_stride); |
| assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE || |
| inter_pred_params[ref].comp_mode == UNIFORM_COMP); |
| av1_make_inter_predictor(src, src_stride, dst_ref, dst_stride, |
| &inter_pred_params[ref], &subpel_params); |
| } |
| } |
| |
| void apply_mv_refinement(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, |
| MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y, |
| uint16_t **mc_buf, const MV mv[2], |
| CalcSubpelParamsFunc calc_subpel_params_func, |
| int pre_x, int pre_y, uint16_t *dst_ref0, |
| uint16_t *dst_ref1, uint16_t **dst_ref0_ptr, |
| uint16_t **dst_ref1_ptr, MV *best_mv_ref, int pu_width, |
| int pu_height, ReferenceArea ref_area[2]) { |
| // initialize basemv as best MV |
| best_mv_ref[0] = mv[0]; |
| best_mv_ref[1] = mv[1]; |
| |
| // Check if any component of the MV exceed |
| // maximum value If any of the MV components |
| // exceed the maximum value, do not refine |
| // mv |
| const int max_sr = 2; // Maximum search range at unit of |
| // 1-pel |
| for (int k = 0; k < 2; k++) { |
| for (int comp = 0; comp < 2; comp++) { |
| int val = comp == 0 ? mv[k].row : mv[k].col; |
| int min_mv_comp = val - max_sr * 8; |
| int max_mv_comp = val + max_sr * 8; |
| #if CONFIG_SUBBLK_REF_EXT |
| min_mv_comp -= 8 * SUBBLK_REF_EXT_LINES; |
| #endif // CONFIG_SUBBLK_REF_EXT |
| if (min_mv_comp < (MV_LOW + 1) || min_mv_comp > (MV_UPP - 1) || |
| max_mv_comp < (MV_LOW + 1) || max_mv_comp > (MV_UPP - 1)) |
| return; |
| } |
| } |
| |
| #if CONFIG_SUBBLK_REF_EXT |
| bw += 2 * SUBBLK_REF_EXT_LINES; |
| bh += 2 * SUBBLK_REF_EXT_LINES; |
| #endif // CONFIG_SUBBLK_REF_EXT |
| |
| const int dsts_offset = (REFINEMV_SUBBLOCK_WIDTH + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) * |
| (REFINEMV_SUBBLOCK_HEIGHT + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)); |
| uint16_t *dsts0[2] = { dst_ref0, dst_ref0 + dsts_offset }; |
| uint16_t *dsts1[2] = { dst_ref1, dst_ref1 + dsts_offset }; |
| int dsts_cur = 0; |
| |
| const MV center_mvs[2] = { best_mv_ref[0], best_mv_ref[1] }; |
| assert(mi->refinemv_flag < REFINEMV_NUM_MODES); |
| assert(cm->seq_params.enable_refinemv); |
| #if CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG |
| assert(IMPLIES(is_tip_ref_frame(mi->ref_frame[0]), |
| cm->seq_params.enable_tip_refinemv)); |
| #endif // CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG |
| |
| // Generate MV independent inter_pred_params |
| // for both references |
| InterPredParams inter_pred_params[2]; |
| for (int ref = 0; ref < 2; ref++) { |
| const int is_compound = 0; |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| const int is_tip = mi->ref_frame[0] == TIP_FRAME; |
| |
| assert(is_intrabc == 0); |
| assert(plane == 0); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| |
| const struct scale_factors *const sf = |
| is_tip ? cm->tip_ref.ref_scale_factor[ref] |
| : (is_intrabc ? &cm->sf_identity |
| : xd->block_ref_scale_factors[ref]); |
| const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| |
| av1_init_inter_params(&inter_pred_params[ref], bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, BILINEAR); |
| |
| inter_pred_params[ref].original_pu_width = pu_width; |
| inter_pred_params[ref].original_pu_height = pu_height; |
| inter_pred_params[ref].conv_params = get_conv_params_no_round( |
| 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| assert(inter_pred_params[ref].mode == TRANSLATION_PRED); |
| assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE); |
| assert(inter_pred_params[ref].conv_params.is_compound == 0); |
| assert(inter_pred_params[ref].conv_params.do_average == 0); |
| assert(mi->interinter_comp.type == COMPOUND_AVERAGE); |
| } |
| |
| int switchable_refinemv_flags = |
| (mi->ref_frame[0] != TIP_FRAME) && switchable_refinemv_flag(cm, mi); |
| |
| // If we signal the refinemv_flags we do not |
| // select sad0 Set sad0 a large value so |
| // that it does not be selected |
| #if CONFIG_SUBBLK_REF_EXT |
| const int dst_stride = REFINEMV_SUBBLOCK_WIDTH + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES); |
| #else |
| const int dst_stride = REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES; |
| #endif // CONFIG_SUBBLK_REF_EXT |
| int sad0 = INT32_MAX >> 1; |
| if (!switchable_refinemv_flags) { |
| av1_refinemv_build_predictors( |
| xd, mi_x, mi_y, mc_buf, calc_subpel_params_func, dst_ref0, dst_ref1, |
| dst_stride, center_mvs[0], center_mvs[1], inter_pred_params); |
| sad0 = get_refinemv_sad(dst_ref0, dst_ref1, dst_stride, bw, bh, xd->bd); |
| *dst_ref0_ptr = |
| dst_ref0 + SUBBLK_REF_EXT_LINES * dst_stride + SUBBLK_REF_EXT_LINES; |
| *dst_ref1_ptr = |
| dst_ref1 + SUBBLK_REF_EXT_LINES * dst_stride + SUBBLK_REF_EXT_LINES; |
| dsts_cur = !dsts_cur; |
| dst_ref0 = dsts0[dsts_cur]; |
| dst_ref1 = dsts1[dsts_cur]; |
| } |
| #if !CONFIG_SUBBLK_REF_EXT |
| assert(IMPLIES(mi->ref_frame[0] == TIP_FRAME, bw == 8 && bh == 8)); |
| #endif // !CONFIG_SUBBLK_REF_EXT |
| if (mi->ref_frame[0] == TIP_FRAME) { |
| const int tip_sad_thres = bw * bh; |
| if (!switchable_refinemv_flags && sad0 < tip_sad_thres) return; |
| } |
| |
| if (!switchable_refinemv_flags) { |
| int shift = 3; |
| int th = (bw * bh) << 1; |
| sad0 -= (sad0 >> shift); |
| assert(sad0 >= 0); |
| if (sad0 < th) return; |
| } |
| |
| int min_sad = sad0; |
| MV refined_mv[2]; |
| refined_mv[0] = center_mvs[0]; |
| refined_mv[1] = center_mvs[1]; |
| |
| static const MV neighbors[DMVR_SEARCH_NUM_NEIGHBORS] = { |
| { -2, -2 }, { -2, -1 }, { -2, 0 }, { -2, 1 }, { -2, 2 }, { -1, -2 }, |
| { -1, -1 }, { -1, 0 }, { -1, 1 }, { -1, 2 }, { 0, -2 }, { 0, -1 }, |
| { 0, 1 }, { 0, 2 }, { 1, -2 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, |
| { 1, 2 }, { 2, -2 }, { 2, -1 }, { 2, 0 }, { 2, 1 }, { 2, 2 } |
| }; |
| |
| MV best_offset = { 0, 0 }; |
| // Prediction is generated at once for |
| // (bw+4) x (bh+4) block, by extending 2 |
| // samples (search range of the refinement |
| // stage) on each side. Later, the |
| // prediction buffers are appropriately |
| // offset for SAD calculation. |
| const int ext_bw = bw + 4; |
| const int ext_bh = bh + 4; |
| for (int ref = 0; ref < 2; ref++) { |
| inter_pred_params[ref].use_ref_padding = 1; |
| inter_pred_params[ref].ref_area = &ref_area[ref]; |
| inter_pred_params[ref].block_width = ext_bw; |
| inter_pred_params[ref].block_height = ext_bh; |
| inter_pred_params[ref].original_pu_width = pu_width + 4; |
| inter_pred_params[ref].original_pu_height = pu_height + 4; |
| refined_mv[ref].row -= 8 * DMVR_SEARCH_EXT_LINES; |
| refined_mv[ref].col -= 8 * DMVR_SEARCH_EXT_LINES; |
| } |
| |
| av1_refinemv_build_predictors(xd, mi_x, mi_y, mc_buf, calc_subpel_params_func, |
| dst_ref0, dst_ref1, dst_stride, refined_mv[0], |
| refined_mv[1], inter_pred_params); |
| |
| for (int idx = 0; idx < DMVR_SEARCH_NUM_NEIGHBORS; ++idx) { |
| const MV offset = { neighbors[idx].row, neighbors[idx].col }; |
| |
| uint16_t *dst_ref0_offset = |
| dst_ref0 + (2 + offset.row) * dst_stride + 2 + offset.col; |
| uint16_t *dst_ref1_offset = |
| dst_ref1 + (2 - offset.row) * dst_stride + 2 - offset.col; |
| |
| const int this_sad = get_refinemv_sad(dst_ref0_offset, dst_ref1_offset, |
| dst_stride, bw, bh, xd->bd); |
| |
| if (this_sad < min_sad) { |
| min_sad = this_sad; |
| best_offset = offset; |
| if (dst_ref0_ptr != NULL && dst_ref1_ptr != NULL) { |
| *dst_ref0_ptr = dst_ref0_offset + SUBBLK_REF_EXT_LINES * dst_stride + |
| SUBBLK_REF_EXT_LINES; |
| *dst_ref1_ptr = dst_ref1_offset + SUBBLK_REF_EXT_LINES * dst_stride + |
| SUBBLK_REF_EXT_LINES; |
| } |
| } |
| } |
| |
| best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row; |
| best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col; |
| best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row; |
| best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col; |
| |
| assert(min_sad <= sad0); |
| |
| assert(IMPLIES(switchable_refinemv_flags, |
| !(best_mv_ref[0].row == center_mvs[0].row && |
| best_mv_ref[0].col == center_mvs[0].col && |
| best_mv_ref[1].row == center_mvs[1].row && |
| best_mv_ref[1].col == center_mvs[1].col))); |
| } |
| |
| // This function consolidates the refinemv |
| // enabling check for both TIP ref mode blocks |
| // and non-TIP ref mode blocks. |
| static AOM_INLINE int is_sub_block_refinemv_enabled(const AV1_COMMON *cm, |
| const MB_MODE_INFO *mi, |
| int tip_ref_frame) { |
| if (!cm->seq_params.enable_refinemv) return 0; |
| |
| if (tip_ref_frame) { |
| #if CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG |
| if (!cm->seq_params.enable_tip_refinemv) return 0; |
| #endif // CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG |
| #if CONFIG_TIP_ENHANCEMENT |
| const int tip_wtd_index = cm->tip_global_wtd_index; |
| const int8_t tip_weight = tip_weighting_factors[tip_wtd_index]; |
| return (cm->has_both_sides_refs && tip_weight == TIP_EQUAL_WTD); |
| #else |
| #if CONFIG_TIP_LD |
| return (cm->has_both_sides_refs); |
| #else |
| return 1; |
| #endif // CONFIG_TIP_LD |
| #endif // CONFIG_TIP_ENHANCEMENT |
| } else { |
| int apply_sub_block_refinemv = |
| mi->refinemv_flag && !is_tip_ref_frame(mi->ref_frame[0]); |
| |
| if (apply_sub_block_refinemv && default_refinemv_modes(mi)) |
| apply_sub_block_refinemv &= |
| (mi->comp_group_idx == 0 && |
| mi->interinter_comp.type == COMPOUND_AVERAGE); |
| return apply_sub_block_refinemv; |
| } |
| } |
| |
| // check if the refinemv mode is allowed for a |
| // given block |
| static INLINE int is_mv_refine_allowed(const AV1_COMMON *cm, |
| const MB_MODE_INFO *mbmi, int plane) { |
| if (plane != 0) return 0; |
| if (is_tip_ref_frame(mbmi->ref_frame[0])) |
| return is_refinemv_allowed_tip_blocks(cm, mbmi); |
| return 1; |
| } |
| |
| // Calculate the SAD of 2 compound prediction |
| // blocks and use it to decide whether or not |
| // to skip the optical flow MV refinement for |
| // the TIP block. |
| static AOM_INLINE int skip_opfl_refine_with_tip( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, int bw, int bh, |
| int pu_width, int pu_height, int mi_x, int mi_y, uint16_t **mc_buf, |
| MV best_mv_ref[2], CalcSubpelParamsFunc calc_subpel_params_func, |
| uint16_t *dst0, uint16_t *dst1, int dst_stride, int do_pred) { |
| if (do_pred) { |
| MB_MODE_INFO mbmi; |
| memset(&mbmi, 0, sizeof(mbmi)); |
| mbmi.mv[0].as_mv = best_mv_ref[0]; |
| mbmi.mv[1].as_mv = best_mv_ref[1]; |
| mbmi.ref_frame[0] = TIP_FRAME; |
| mbmi.ref_frame[1] = NONE_FRAME; |
| mbmi.interp_fltr = cm->tip_interp_filter; |
| mbmi.use_intrabc[xd->tree_type == CHROMA_PART] = 0; |
| mbmi.use_intrabc[0] = 0; |
| mbmi.mode = NEWMV; |
| mbmi.motion_mode = SIMPLE_TRANSLATION; |
| mbmi.sb_type[PLANE_TYPE_Y] = BLOCK_8X8; |
| mbmi.interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi.max_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL; |
| mbmi.pb_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL; |
| mbmi.morph_pred = 0; |
| |
| assert(dst_stride == bw); |
| InterPredParams params0, params1; |
| av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms0, calc_subpel_params_func, 0, |
| dst0, &best_mv_ref[0], pu_width, pu_height); |
| av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y, |
| mc_buf, ¶ms1, calc_subpel_params_func, 1, |
| dst1, &best_mv_ref[1], pu_width, pu_height); |
| } |
| const int bd = cm->seq_params.bit_depth; |
| const unsigned int sad_thres = |
| cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT ? 15 : 6; |
| |
| const unsigned int sad = |
| get_highbd_sad(dst0, dst_stride, dst1, dst_stride, bd, 8, 8); |
| |
| return (sad < sad_thres); |
| } |
| |
| static void build_inter_predictors_8x8_and_bigger_refinemv( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, |
| int build_for_decode, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| MV mi_mv[2], CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst, |
| int dst_stride, int subblk_start_x, int subblk_start_y, int pu_width, |
| int pu_height, uint16_t *dst0_16_refinemv, uint16_t *dst1_16_refinemv, |
| int row_start, int col_start, MV *sb_refined_mv, MV *chroma_refined_mv, |
| int build_for_refine_mv_only, ReferenceArea ref_area[2], int_mv *mv_refined, |
| int *opfl_vxy_bufs) { |
| const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]); |
| const int is_compound = has_second_ref(mi) || tip_ref_frame; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| assert(!is_intrabc_block(mi, xd->tree_type)); |
| assert(is_compound); |
| assert(!mi->bawp_flag[0]); |
| assert(!is_masked_compound_type(mi->interinter_comp.type)); |
| |
| assert(mi->cwp_idx == CWP_EQUAL); |
| |
| int is_global[2] = { 0, 0 }; |
| if (!tip_ref_frame) { |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[mi->ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(mi, wm->wmtype); |
| } |
| } |
| |
| assert(!is_global[0] && !is_global[1]); |
| |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y; |
| |
| uint16_t *refinemv_ref0 = NULL; |
| uint16_t *refinemv_ref1 = NULL; |
| |
| int apply_refinemv = is_mv_refine_allowed(cm, mi, plane); |
| |
| MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] }; |
| if (apply_refinemv) { |
| uint16_t *dst_ref0 = NULL, *dst_ref1 = NULL; |
| dst_ref0 = &dst0_16_refinemv[0]; |
| dst_ref1 = &dst1_16_refinemv[0]; |
| |
| apply_mv_refinement(cm, xd, plane, mi, bw, bh, mi_x, mi_y, mc_buf, mi_mv, |
| calc_subpel_params_func, pre_x, pre_y, dst_ref0, |
| dst_ref1, &refinemv_ref0, &refinemv_ref1, best_mv_ref, |
| pu_width, pu_height, ref_area); |
| if (sb_refined_mv) { |
| // store the DMVR refined MV so that |
| // chroma can use it |
| sb_refined_mv[0] = best_mv_ref[0]; |
| sb_refined_mv[1] = best_mv_ref[1]; |
| } |
| assert(IMPLIES(plane, !build_for_refine_mv_only)); |
| // if build_for_refine_mv_only is |
| // non-zero, we build only to get the |
| // refinemv values The actual prediction |
| // values are not necessary |
| if (build_for_refine_mv_only) { |
| return; |
| } |
| } else if (!tip_ref_frame) { |
| best_mv_ref[0] = chroma_refined_mv[0]; |
| best_mv_ref[1] = chroma_refined_mv[1]; |
| } |
| |
| if (tip_ref_frame && plane == 0) { |
| mv_refined[0].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[0]); |
| mv_refined[1].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[1]); |
| } |
| int use_optflow_refinement = |
| is_optflow_refinement_enabled(cm, xd, mi, plane, tip_ref_frame); |
| assert(IMPLIES(use_optflow_refinement, |
| cm->features.opfl_refine_type != REFINE_NONE)); |
| |
| // Optical flow refinement with masked comp |
| // types or with non-sharp interpolation |
| // filter should only exist in REFINE_ALL. |
| assert(IMPLIES( |
| use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0)); |
| |
| int use_4x4 = tip_ref_frame ? 0 : 1; |
| int n = opfl_get_subblock_size(bw, bh, plane, use_4x4); |
| const int n_blocks = (bw / n) * (bh / n); |
| |
| // optical flow refined MVs in a subblock |
| // (16x16) unit |
| int_mv mv_refined_sb[4 * 2]; |
| memset(mv_refined_sb, 0, 4 * 2 * sizeof(int_mv)); |
| const int opfl_mv_stride = pu_width / n; |
| const int opfl_sb_idx = |
| (subblk_start_y / n) * opfl_mv_stride + subblk_start_x / n; |
| const int sb_rows = bh / n; |
| const int sb_cols = bw / n; |
| |
| if (use_optflow_refinement && plane == 0) { |
| // Pointers to hold optical flow MV |
| // offsets in a subblock unit. |
| int vx0_sb[4] = { 0 }; |
| int vx1_sb[4] = { 0 }; |
| int vy0_sb[4] = { 0 }; |
| int vy1_sb[4] = { 0 }; |
| |
| // Pointers to hold gradient and dst |
| // buffers. |
| int16_t *gx0 = xd->opfl_gxy_bufs; |
| int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1); |
| int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2); |
| int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3); |
| |
| // Initialize refined mv |
| const MV mv0 = best_mv_ref[0]; |
| const MV mv1 = best_mv_ref[1]; |
| |
| // Refine MV using optical flow. The final |
| // output MV will be in 1/16 precision. |
| uint16_t *dst0 = xd->opfl_dst_bufs; |
| uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE; |
| int do_pred = 1; |
| int opfl_dst_stride = bw; |
| if (refinemv_ref0 != NULL && refinemv_ref1 != NULL) { |
| dst0 = refinemv_ref0; |
| dst1 = refinemv_ref1; |
| #if CONFIG_SUBBLK_REF_EXT |
| opfl_dst_stride = REFINEMV_SUBBLOCK_WIDTH + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES); |
| #else |
| opfl_dst_stride = REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES; |
| #endif // CONFIG_SUBBLK_REF_EXT |
| do_pred = 0; |
| } |
| |
| if (tip_ref_frame) { |
| use_optflow_refinement = !skip_opfl_refine_with_tip( |
| cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf, |
| best_mv_ref, calc_subpel_params_func, dst0, dst1, opfl_dst_stride, |
| do_pred); |
| do_pred = 0; |
| } |
| if (use_optflow_refinement) { |
| for (int mvi = 0; mvi < n_blocks; mvi++) { |
| mv_refined_sb[mvi * 2].as_mv = mv0; |
| mv_refined_sb[mvi * 2 + 1].as_mv = mv1; |
| } |
| av1_get_optflow_based_mv( |
| cm, xd, plane, mi, mv_refined_sb, bw, bh, mi_x, mi_y, |
| build_for_decode, mc_buf, calc_subpel_params_func, gx0, gy0, gx1, gy1, |
| vx0_sb, vy0_sb, vx1_sb, vy1_sb, dst0, dst1, opfl_dst_stride, do_pred, |
| use_4x4, best_mv_ref, pu_width, pu_height); |
| for (int i = 0; i < sb_rows; i++) { |
| for (int j = 0; j < sb_cols; j++) { |
| int mvidx = opfl_sb_idx + i * opfl_mv_stride + j; |
| int mvidx_sb = i * sb_cols + j; |
| mv_refined[2 * mvidx].as_mv = mv_refined_sb[2 * mvidx_sb].as_mv; |
| mv_refined[2 * mvidx + 1].as_mv = |
| mv_refined_sb[2 * mvidx_sb + 1].as_mv; |
| // Store subblock MV delta at the |
| // prediction block level |
| opfl_vxy_bufs[mvidx] = vx0_sb[mvidx_sb]; |
| opfl_vxy_bufs[N_OF_OFFSETS * 1 + mvidx] = vx1_sb[mvidx_sb]; |
| opfl_vxy_bufs[N_OF_OFFSETS * 2 + mvidx] = vy0_sb[mvidx_sb]; |
| opfl_vxy_bufs[N_OF_OFFSETS * 3 + mvidx] = vy1_sb[mvidx_sb]; |
| } |
| } |
| } |
| } |
| |
| BacpBlockData bacp_block_data[2 * N_OF_OFFSETS]; |
| uint8_t use_bacp = |
| tip_ref_frame |
| ? cm->features.enable_imp_msk_bld && |
| !av1_is_scaled(cm->tip_ref.ref_scale_factor[0]) && |
| !av1_is_scaled(cm->tip_ref.ref_scale_factor[1]) |
| : use_border_aware_compound(cm, xd, mi) && mi->cwp_idx == CWP_EQUAL && |
| cm->features.enable_imp_msk_bld; |
| |
| int opfl_sub_bw = OF_BSIZE; |
| int opfl_sub_bh = OF_BSIZE; |
| opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh); |
| |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = |
| tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref] |
| : xd->block_ref_scale_factors[ref]; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| |
| MV mv = best_mv_ref[ref]; |
| const WarpTypesAllowed warp_types = { is_global[ref], |
| is_warp_mode(mi->motion_mode) }; |
| InterPredParams inter_pred_params; |
| const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw; |
| const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh; |
| |
| av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| const int refinemv_is_allowed_y = |
| is_mv_refine_allowed(cm, mi, 0) || |
| is_optflow_refinement_enabled(cm, xd, mi, 0, tip_ref_frame); |
| const int use_ref_padding = |
| tip_ref_frame |
| ? ((apply_refinemv || use_optflow_refinement) || |
| (plane && (comp_bw > 4 || comp_bh > 4) && refinemv_is_allowed_y)) |
| : 1; |
| if (use_ref_padding) { |
| inter_pred_params.use_ref_padding = 1; |
| inter_pred_params.ref_area = &ref_area[ref]; |
| } |
| |
| inter_pred_params.original_pu_width = pu_width; |
| inter_pred_params.original_pu_height = pu_height; |
| |
| if (is_compound) av1_init_comp_mode(&inter_pred_params); |
| inter_pred_params.border_data.enable_bacp = use_bacp; |
| inter_pred_params.border_data.bacp_block_data = |
| &bacp_block_data[0]; // Always point |
| // to the first |
| // ref |
| inter_pred_params.conv_params = get_conv_params_no_round( |
| ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); |
| assert(inter_pred_params.mode != WARP_PRED); |
| |
| if (is_compound) { |
| inter_pred_params.sb_type = tip_ref_frame ? |
| #if CONFIG_FLEX_TIP_BLK_SIZE |
| get_tip_bsize_from_bw_bh(bw, bh) |
| #else |
| BLOCK_8X8 |
| #endif // CONFIG_FLEX_TIP_BLK_SIZE |
| : mi->sb_type[PLANE_TYPE_Y]; |
| inter_pred_params.mask_comp = mi->interinter_comp; |
| } |
| |
| if (use_optflow_refinement && plane == 0) { |
| inter_pred_params.interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, |
| opfl_sub_bw); |
| |
| inter_pred_params.interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, |
| opfl_sub_bh); |
| |
| av1_opfl_rebuild_inter_predictor( |
| dst, dst_stride, plane, mv_refined_sb, &inter_pred_params, xd, mi_x, |
| mi_y, build_for_decode, cm, pu_width, ref, mc_buf, |
| calc_subpel_params_func, use_4x4, mi, pu_height, mi_mv, 0); |
| continue; |
| } |
| const MV mv_1_16th_pel = (tip_ref_frame && plane) |
| ? mv_refined[ref].as_mv |
| : convert_mv_to_1_16th_pel(&mv); |
| av1_build_one_inter_predictor(dst, dst_stride, &mv_1_16th_pel, |
| &inter_pred_params, xd, mi_x, mi_y, ref, |
| mc_buf, calc_subpel_params_func); |
| } |
| } |
| |
| static void build_inter_predictors_8x8_and_bigger( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, |
| const BUFFER_SET *dst_orig, int build_for_decode, int bw, int bh, int mi_x, |
| int mi_y, uint16_t **mc_buf, MV mi_mv[2], |
| CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst, int dst_stride, |
| int pu_width, int pu_height, int build_for_refine_mv_only, |
| bool *ext_warp_used, int_mv *mv_refined, |
| REFINEMV_SUBMB_INFO *block_refinemv_subinfo, int *opfl_vxy_bufs) { |
| // In case of chroma, even for 4xN and Nx4 |
| // blocks, single prediction is used. |
| int singleref_for_compound = |
| plane && has_second_ref(mi) && |
| is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]); |
| #if CONFIG_TIP_ENHANCEMENT |
| const int tip_wtd_index = cm->tip_global_wtd_index; |
| const int8_t tip_weight = tip_weighting_factors[tip_wtd_index]; |
| #endif // CONFIG_TIP_ENHANCEMENT |
| const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]); |
| const int is_compound = (!singleref_for_compound && has_second_ref(mi)) || |
| #if CONFIG_TIP_ENHANCEMENT |
| (tip_ref_frame && tip_weight != TIP_SINGLE_WTD) |
| #else |
| tip_ref_frame |
| #endif // CONFIG_TIP_ENHANCEMENT |
| ; |
| const int is_intrabc = is_intrabc_block(mi, xd->tree_type); |
| assert(IMPLIES(is_intrabc, !is_compound)); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| |
| assert(IMPLIES(mi->refinemv_flag, !is_intrabc)); |
| assert(IMPLIES(mi->refinemv_flag, is_compound)); |
| assert(IMPLIES(mi->refinemv_flag && switchable_refinemv_flag(cm, mi), |
| mi->interinter_comp.type == COMPOUND_AVERAGE)); |
| assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag[0] == 0)); |
| assert(IMPLIES(mi->refinemv_flag, mi->interp_fltr == MULTITAP_SHARP)); |
| |
| assert(IMPLIES(tip_ref_frame, |
| mi->use_intrabc[0] == 0 && mi->use_intrabc[1] == 0)); |
| assert(IMPLIES(tip_ref_frame, mi->motion_mode == SIMPLE_TRANSLATION)); |
| assert(IMPLIES(tip_ref_frame, mi->interinter_comp.type == COMPOUND_AVERAGE)); |
| |
| assert(IMPLIES( |
| mi->refinemv_flag, |
| !is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]))); |
| if (is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]) && |
| has_second_ref(mi)) { |
| assert(mi->interinter_comp.type != COMPOUND_DIFFWTD); |
| } |
| |
| if (is_sub_block_refinemv_enabled(cm, mi, tip_ref_frame)) { |
| assert(IMPLIES(mi->refinemv_flag, mi->cwp_idx == CWP_EQUAL)); |
| #if CONFIG_FLEX_TIP_BLK_SIZE |
| const int sub_block_width = !tip_ref_frame |
| ? (REFINEMV_SUBBLOCK_WIDTH >> ss_x) |
| : REFINEMV_SUBBLOCK_WIDTH; |
| const int sub_block_height = !tip_ref_frame |
| ? (REFINEMV_SUBBLOCK_HEIGHT >> ss_y) |
| : REFINEMV_SUBBLOCK_HEIGHT; |
| const int refinemv_sb_size_width = AOMMIN(sub_block_width, bw); |
| const int refinemv_sb_size_height = AOMMIN(sub_block_height, bh); |
| #else |
| int refinemv_sb_size_width = |
| AOMMIN((REFINEMV_SUBBLOCK_WIDTH >> pd->subsampling_x), bw); |
| int refinemv_sb_size_height = |
| AOMMIN(REFINEMV_SUBBLOCK_HEIGHT >> pd->subsampling_y, bh); |
| #endif // CONFIG_FLEX_TIP_BLK_SIZE |
| #if CONFIG_SUBBLK_REF_EXT |
| uint16_t |
| dst0_16_refinemv[2 * |
| (REFINEMV_SUBBLOCK_WIDTH + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) * |
| (REFINEMV_SUBBLOCK_HEIGHT + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES))]; |
| uint16_t |
| dst1_16_refinemv[2 * |
| (REFINEMV_SUBBLOCK_WIDTH + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES)) * |
| (REFINEMV_SUBBLOCK_HEIGHT + |
| 2 * (SUBBLK_REF_EXT_LINES + DMVR_SEARCH_EXT_LINES))]; |
| #else |
| uint16_t dst0_16_refinemv |
| [2 * (REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES) * |
| (REFINEMV_SUBBLOCK_HEIGHT + 2 * DMVR_SEARCH_EXT_LINES)]; |
| uint16_t dst1_16_refinemv |
| [2 * (REFINEMV_SUBBLOCK_WIDTH + 2 * DMVR_SEARCH_EXT_LINES) * |
| (REFINEMV_SUBBLOCK_HEIGHT + 2 * DMVR_SEARCH_EXT_LINES)]; |
| #endif // CONFIG_SUBBLK_REF_EXT |
| |
| ReferenceArea ref_area[2]; |
| #if !CONFIG_SUBBLK_PAD |
| av1_get_reference_area_with_padding(cm, xd, plane, mi, mi_mv, bw, bh, mi_x, |
| mi_y, ref_area, pu_width, pu_height); |
| #endif //! CONFIG_SUBBLK_PAD |
| CONV_BUF_TYPE *tmp_conv_dst = xd->tmp_conv_dst; |
| assert(bw % refinemv_sb_size_width == 0); |
| assert(bh % refinemv_sb_size_height == 0); |
| for (int h = 0; h < bh; h += refinemv_sb_size_height) { |
| for (int w = 0; w < bw; w += refinemv_sb_size_width) { |
| const int x = mi_x + w * (1 << pd->subsampling_x); |
| const int y = mi_y + h * (1 << pd->subsampling_y); |
| if (is_subblock_outside(x, y, cm->mi_params.mi_cols, |
| cm->mi_params.mi_rows, build_for_decode)) { |
| continue; |
| } |
| uint16_t *dst_buf = dst + h * dst_stride + w; |
| xd->tmp_conv_dst = tmp_conv_dst + h * MAX_SB_SIZE + w; |
| |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| int row_start = |
| plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| int col_start = |
| plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| MV luma_refined_mv[2] = { { mi_mv[0].row, mi_mv[0].col }, |
| { mi_mv[1].row, mi_mv[1].col } }; |
| |
| MV chroma_refined_mv[2] = { |
| { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col }, |
| { mi->mv[1].as_mv.row, mi->mv[1].as_mv.col } |
| }; |
| |
| if (plane != 0) { |
| int luma_h = (h << pd->subsampling_y); |
| int luma_w = (w << pd->subsampling_x); |
| REFINEMV_SUBMB_INFO |
| *refinemv_subinfo = |
| &block_refinemv_subinfo[(luma_h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + |
| (luma_w >> MI_SIZE_LOG2)]; |
| chroma_refined_mv[0] = refinemv_subinfo->refinemv[0].as_mv; |
| chroma_refined_mv[1] = refinemv_subinfo->refinemv[1].as_mv; |
| } |
| #if CONFIG_SUBBLK_PAD |
| // sub_mi_x, and sub_mi_y are the |
| // top-left position of the luma |
| // samples of the sub-block |
| const int sub_mi_x = mi_x + w * (1 << pd->subsampling_x); |
| const int sub_mi_y = mi_y + h * (1 << pd->subsampling_y); |
| const int comp_bw = tip_ref_frame ? (refinemv_sb_size_width >> ss_x) |
| : refinemv_sb_size_width; |
| const int comp_bh = tip_ref_frame ? (refinemv_sb_size_height >> ss_y) |
| : refinemv_sb_size_height; |
| av1_get_reference_area_with_padding(cm, xd, plane, mi, mi_mv, comp_bw, |
| comp_bh, sub_mi_x, sub_mi_y, |
| ref_area, pu_width, pu_height); |
| #endif // CONFIG_SUBBLK_PAD |
| // mi_x, and mi_y are the top-left position of the luma samples of the |
| // sub-block |
| build_inter_predictors_8x8_and_bigger_refinemv( |
| cm, xd, plane, mi, build_for_decode, refinemv_sb_size_width, |
| refinemv_sb_size_height, mi_x + w * (1 << pd->subsampling_x), |
| mi_y + h * (1 << pd->subsampling_y), mc_buf, mi_mv, |
| calc_subpel_params_func, dst_buf, dst_stride, w, h, pu_width, |
| pu_height, dst0_16_refinemv, dst1_16_refinemv, row_start, col_start, |
| plane == 0 ? luma_refined_mv : NULL, chroma_refined_mv, |
| build_for_refine_mv_only, ref_area, mv_refined, opfl_vxy_bufs); |
| |
| if (plane == 0) { |
| REFINEMV_SUBMB_INFO |
| *refinemv_subinfo = |
| &block_refinemv_subinfo[(h >> MI_SIZE_LOG2) * MAX_MIB_SIZE + |
| (w >> MI_SIZE_LOG2)]; |
| fill_subblock_refine_mv(refinemv_subinfo, refinemv_sb_size_width, |
| refinemv_sb_size_height, luma_refined_mv[0], |
| luma_refined_mv[1]); |
| } |
| } |
| } |
| xd->tmp_conv_dst = tmp_conv_dst; |
| return; |
| } |
| |
| int is_global[2] = { 0, 0 }; |
| if (!tip_ref_frame) { |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[mi->ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(mi, wm->wmtype); |
| } |
| } |
| |
| int row_start = 0; |
| int col_start = 0; |
| const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2; |
| const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2; |
| row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0; |
| col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y; |
| MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] }; |
| if (tip_ref_frame && plane == 0) { |
| mv_refined[0].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[0]); |
| mv_refined[1].as_mv = convert_mv_to_1_16th_pel(&best_mv_ref[1]); |
| } |
| int use_optflow_refinement = |
| is_optflow_refinement_enabled(cm, xd, mi, plane, tip_ref_frame); |
| int use_4x4 = tip_ref_frame ? 0 : 1; |
| assert(IMPLIES(use_optflow_refinement, |
| cm->features.opfl_refine_type != REFINE_NONE)); |
| |
| // Optical flow refinement with masked comp |
| // types or with non-sharp interpolation |
| // filter should only exist in REFINE_ALL. |
| assert(IMPLIES( |
| use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE, |
| cm->features.opfl_refine_type == REFINE_ALL)); |
| assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0)); |
| // In REFINE_ALL mode, refinement should be |
| // used whenever applicable |
| assert(IMPLIES(cm->features.opfl_refine_type == REFINE_ALL && |
| !tip_ref_frame && opfl_allowed_cur_pred_mode(cm, xd, mi), |
| use_optflow_refinement)); |
| |
| assert(IMPLIES( |
| use_optflow_refinement, |
| !is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]))); |
| |
| // Pointers to gradient and dst buffers |
| |
| if (use_optflow_refinement && plane == 0) { |
| // Pointers to hold optical flow MV |
| // offsets. |
| int *vx0 = opfl_vxy_bufs; |
| int *vx1 = opfl_vxy_bufs + (N_OF_OFFSETS * 1); |
| int *vy0 = opfl_vxy_bufs + (N_OF_OFFSETS * 2); |
| int *vy1 = opfl_vxy_bufs + (N_OF_OFFSETS * 3); |
| |
| // Allocate gradient and dst buffers |
| const int n = opfl_get_subblock_size(bw, bh, plane, use_4x4); |
| const int n_blocks = (bw / n) * (bh / n); |
| int16_t *gx0 = xd->opfl_gxy_bufs; |
| int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1); |
| int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2); |
| int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3); |
| |
| // Initialize refined mv |
| const MV mv0 = best_mv_ref[0]; |
| const MV mv1 = best_mv_ref[1]; |
| // Refine MV using optical flow. The final |
| // output MV will be in 1/16 precision. |
| uint16_t *dst0 = xd->opfl_dst_bufs; |
| uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE; |
| |
| if (tip_ref_frame) { |
| use_optflow_refinement = !skip_opfl_refine_with_tip( |
| cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf, |
| best_mv_ref, calc_subpel_params_func, dst0, dst1, bw, |
| /*do_pred=*/1); |
| } |
| if (use_optflow_refinement) { |
| int do_pred = tip_ref_frame ? 0 : 1; |
| for (int mvi = 0; mvi < n_blocks; mvi++) { |
| mv_refined[mvi * 2].as_mv = mv0; |
| mv_refined[mvi * 2 + 1].as_mv = mv1; |
| } |
| av1_get_optflow_based_mv(cm, xd, plane, mi, mv_refined, bw, bh, mi_x, |
| mi_y, build_for_decode, mc_buf, |
| calc_subpel_params_func, gx0, gy0, gx1, gy1, vx0, |
| vy0, vx1, vy1, dst0, dst1, bw, do_pred, use_4x4, |
| best_mv_ref, pu_width, pu_height); |
| } |
| } |
| |
| int opfl_sub_bw = OF_BSIZE; |
| int opfl_sub_bh = OF_BSIZE; |
| opfl_subblock_size_plane(xd, plane, use_4x4, &opfl_sub_bw, &opfl_sub_bh); |
| |
| BacpBlockData bacp_block_data[2 * N_OF_OFFSETS]; |
| uint8_t use_bacp = tip_ref_frame |
| ? |
| #if CONFIG_TIP_ENHANCEMENT |
| is_compound && tip_weight == TIP_EQUAL_WTD && |
| #endif // CONFIG_TIP_ENHANCEMENT |
| cm->features.enable_imp_msk_bld && |
| !av1_is_scaled(cm->tip_ref.ref_scale_factor[0]) && |
| !av1_is_scaled(cm->tip_ref.ref_scale_factor[1]) |
| : use_border_aware_compound(cm, xd, mi) && |
| mi->cwp_idx == CWP_EQUAL && |
| cm->features.enable_imp_msk_bld; |
| |
| WarpBoundaryBox warp_bd_box_mem[MAX_WARP_BD_SQ]; |
| assert(IMPLIES(singleref_for_compound, !is_compound)); |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = |
| tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref] |
| : (is_intrabc ? &cm->sf_identity |
| : xd->block_ref_scale_factors[ref]); |
| struct buf_2d *const pre_buf = is_intrabc ? &pd->dst : &pd->pre[ref]; |
| MV mv = mi_mv[ref]; |
| const WarpTypesAllowed warp_types = { is_global[ref], |
| is_warp_mode(mi->motion_mode) }; |
| |
| InterPredParams inter_pred_params; |
| const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw; |
| const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh; |
| av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr); |
| inter_pred_params.original_pu_width = pu_width; |
| inter_pred_params.original_pu_height = pu_height; |
| |
| if (is_compound) av1_init_comp_mode(&inter_pred_params); |
| inter_pred_params.border_data.enable_bacp = use_bacp; |
| inter_pred_params.border_data.bacp_block_data = |
| &bacp_block_data[0]; // Always point |
| // to the first |
| // ref |
| |
| inter_pred_params.conv_params = get_conv_params_no_round( |
| ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); |
| #if CONFIG_ACROSS_SCALE_WARP |
| assert(IMPLIES(inter_pred_params.mode == WARP_PRED && |
| av1_is_scaled(inter_pred_params.scale_factors), |
| !inter_pred_params.warp_params.use_affine_filter)); |
| #endif // CONFIG_ACROSS_SCALE_WARP |
| if (inter_pred_params.mode == WARP_PRED && |
| (!inter_pred_params.warp_params.use_affine_filter || |
| #if CONFIG_ACROSS_SCALE_WARP |
| av1_is_scaled(inter_pred_params.scale_factors) || |
| #endif // CONFIG_ACROSS_SCALE_WARP |
| (comp_bw < 8 || comp_bh < 8))) { |
| *ext_warp_used = true; |
| inter_pred_params.use_warp_bd_box = 1; |
| inter_pred_params.warp_bd_box = &warp_bd_box_mem[0]; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| const int_mv warp_mv = get_int_warp_mv_for_fb( |
| xd, &inter_pred_params.warp_params, bsize, (mi_x >> MI_SIZE_LOG2), |
| (mi_y >> MI_SIZE_LOG2)); |
| // printf("warpmv (%d, %d), loc (%d, |
| // %d)\n", warp_mv.as_mv.col, |
| // warp_mv.as_mv.row, mi_x, |
| // mi_y); |
| // printf("precision %d\n", |
| // mi->pb_mv_precision); |
| |
| int warp_bd_box_mem_stride = MAX_WARP_BD_SIZE; |
| for (int sub_mi_y = pre_y; sub_mi_y < pre_y + pu_height; sub_mi_y += 4) { |
| for (int sub_mi_x = pre_x; sub_mi_x < pre_x + pu_width; sub_mi_x += 4) { |
| int x_loc = sub_mi_x - pre_x; |
| int y_loc = sub_mi_y - pre_y; |
| int block_width = AOMMIN(8, comp_bw); |
| int block_height = AOMMIN(8, comp_bh); |
| if ((x_loc & 7) == 0 && (y_loc & 7) == 0) { |
| av1_get_reference_area_with_padding_single_warp( |
| cm, xd, plane, mi, warp_mv.as_mv, block_width, block_height, |
| (sub_mi_x << pd->subsampling_x), |
| (sub_mi_y << pd->subsampling_y), |
| &inter_pred_params |
| .warp_bd_box[(x_loc >> 3) + |
| (y_loc >> 3) * warp_bd_box_mem_stride], |
| pu_width, pu_height, ref); |
| } else { |
| continue; |
| } |
| } |
| } |
| } |
| |
| if (is_compound) { |
| inter_pred_params.sb_type = tip_ref_frame ? |
| #if CONFIG_FLEX_TIP_BLK_SIZE |
| get_tip_bsize_from_bw_bh(bw, bh) |
| #else |
| BLOCK_8X8 |
| #endif // CONFIG_FLEX_TIP_BLK_SIZE |
| : mi->sb_type[PLANE_TYPE_Y]; |
| inter_pred_params.mask_comp = mi->interinter_comp; |
| } |
| |
| if (is_masked_compound_type(mi->interinter_comp.type)) { |
| if (ref == 1) { |
| inter_pred_params.conv_params.do_average = 0; |
| inter_pred_params.comp_mode = MASK_COMP; |
| } |
| // Assign physical buffer. |
| inter_pred_params.mask_comp.seg_mask = xd->seg_mask; |
| } |
| |
| if (ref == 1 && inter_pred_params.conv_params.do_average == 1) { |
| if (get_cwp_idx(mi) != CWP_EQUAL) { |
| int8_t weight = get_cwp_idx(mi); |
| assert(mi->cwp_idx >= CWP_MIN && mi->cwp_idx <= CWP_MAX); |
| inter_pred_params.conv_params.fwd_offset = weight; |
| inter_pred_params.conv_params.bck_offset = |
| (1 << CWP_WEIGHT_BITS) - weight; |
| } |
| } |
| |
| if (use_optflow_refinement && plane == 0) { |
| inter_pred_params.interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, |
| opfl_sub_bw); |
| inter_pred_params.interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size(mi->interp_fltr, |
| opfl_sub_bh); |
| av1_opfl_rebuild_inter_predictor( |
| dst, dst_stride, plane, mv_refined, &inter_pred_params, xd, mi_x, |
| mi_y, build_for_decode, cm, pu_width, ref, mc_buf, |
| calc_subpel_params_func, use_4x4, mi, pu_height, mi_mv, 1); |
| continue; |
| } |
| if (mi->bawp_flag[0] > 0 && (plane == 0 || mi->bawp_flag[1])) { |
| av1_build_one_bawp_inter_predictor( |
| dst, dst_stride, &mv, &inter_pred_params, cm, xd, dst_orig, bw, bh, |
| mi_x, mi_y, ref, plane, mc_buf, calc_subpel_params_func); |
| continue; |
| } |
| |
| #if CONFIG_TIP_ENHANCEMENT |
| if (tip_ref_frame) { |
| set_tip_interp_weight_factor(cm, ref, &inter_pred_params); |
| } |
| #endif // CONFIG_TIP_ENHANCEMENT |
| |
| const MV mv_1_16th_pel = (tip_ref_frame && plane) |
| ? mv_refined[ref].as_mv |
| : convert_mv_to_1_16th_pel(&mv); |
| av1_build_one_inter_predictor(dst, dst_stride, &mv_1_16th_pel, |
| &inter_pred_params, xd, mi_x, mi_y, ref, |
| mc_buf, calc_subpel_params_func); |
| } |
| } |
| |
| // This function consolidates the prediction |
| // process of the TIP ref mode block and the |
| // non-TIP ref mode block. |
| static void build_inter_predictors_8x8_and_bigger_facade( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi, |
| const BUFFER_SET *dst_orig, int build_for_decode, int bw, int bh, int mi_x, |
| int mi_y, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func, |
| int build_for_refine_mv_only) { |
| const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]); |
| bool ext_warp_used = false; |
| |
| struct macroblockd_plane *pd = &xd->plane[plane]; |
| struct buf_2d *dst_buf = &pd->dst; |
| const int dst_stride = dst_buf->stride; |
| uint16_t *const dst = dst_buf->buf; |
| |
| if (tip_ref_frame) { |
| #if CONFIG_FLEX_TIP_BLK_SIZE |
| const int width = xd->width << MI_SIZE_LOG2; |
| const int height = xd->height << MI_SIZE_LOG2; |
| const BLOCK_SIZE unit_bsize = |
| get_unit_bsize_for_tip_ref(TIP_FRAME_AS_REF, width, height |
| #if CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG |
| , |
| cm->seq_params.enable_tip_refinemv |
| #endif // CONFIG_ENABLE_TIP_REFINEMV_SEQ_FLAG |
| ); |
| const int unit_blk_size = block_size_wide[unit_bsize]; |
| const int end_pixel_row = mi_y + height; |
| const int end_pixel_col = mi_x + width; |
| #else |
| // TMVP_MI_SIZE_UV is the block size in |
| // luma unit for Chroma TIP interpolation, |
| // will convert to the step size in TMVP |
| // 8x8 unit |
| const int unit_blk_size = (plane == 0) ? TMVP_MI_SIZE : TMVP_MI_SIZE_UV; |
| const int end_pixel_row = mi_y + (xd->height << MI_SIZE_LOG2); |
| const int end_pixel_col = mi_x + (xd->width << MI_SIZE_LOG2); |
| #endif // CONFIG_FLEX_TIP_BLK_SIZE |
| |
| for (int pixel_row = mi_y; pixel_row < end_pixel_row; |
| pixel_row += unit_blk_size) { |
| for (int pixel_col = mi_x; pixel_col < end_pixel_col; |
| pixel_col += unit_blk_size) { |
| const int tpl_row = pixel_row >> TMVP_MI_SZ_LOG2; |
| const int tpl_col = pixel_col >> TMVP_MI_SZ_LOG2; |
| const int row_offset = (pixel_row - mi_y) >> TMVP_MI_SZ_LOG2; |
| const int col_offset = (pixel_col - mi_x) >> TMVP_MI_SZ_LOG2; |
| const int tip_mv_offset = (row_offset * TIP_MV_STRIDE + col_offset) |
| << 1; |
| const int refinemv_offset = |
| ((pixel_row - mi_y) >> MI_SIZE_LOG2) * MAX_MIB_SIZE + |
| ((pixel_col - mi_x) >> MI_SIZE_LOG2); |
| const int opfl_vxy_offset = |
| ((pixel_row - mi_y) >> OF_BSIZE_LOG2) * |
| (xd->width >> (OF_BSIZE_LOG2 - MI_SIZE_LOG2)) + |
| ((pixel_col - mi_x) >> OF_BSIZE_LOG2); |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| MV tip_mv[2]; |
| int_mv tip_mv_tmp[2]; |
| |
| if (is_subblock_outside(pixel_col, pixel_row, cm->mi_params.mi_cols, |
| cm->mi_params.mi_rows, build_for_decode)) { |
| continue; |
| } |
| |
| get_tip_mv(cm, &mi->mv[0].as_mv, tpl_col, tpl_row, tip_mv_tmp); |
| |
| tip_mv[0] = tip_mv_tmp[0].as_mv; |
| tip_mv[1] = tip_mv_tmp[1].as_mv; |
| if (plane == 0) { |
| REFINEMV_SUBMB_INFO |
| *refinemv_subinfo = &xd->refinemv_subinfo[refinemv_offset]; |
| fill_subblock_refine_mv(refinemv_subinfo, unit_blk_size, |
| unit_blk_size, tip_mv[0], tip_mv[1]); |
| xd->opfl_vxy_bufs[opfl_vxy_offset] = 0; |
| xd->opfl_vxy_bufs[N_OF_OFFSETS * 1 + opfl_vxy_offset] = 0; |
| xd->opfl_vxy_bufs[N_OF_OFFSETS * 2 + opfl_vxy_offset] = 0; |
| xd->opfl_vxy_bufs[N_OF_OFFSETS * 3 + opfl_vxy_offset] = 0; |
| } |
| dst_buf->buf = dst + |
| ((row_offset << TMVP_MI_SZ_LOG2) >> ss_y) * dst_stride + |
| ((col_offset << TMVP_MI_SZ_LOG2) >> ss_x); |
| |
| build_inter_predictors_8x8_and_bigger( |
| cm, xd, plane, mi, dst_orig, build_for_decode, unit_blk_size, |
| unit_blk_size, pixel_col, pixel_row, mc_buf, tip_mv, |
| calc_subpel_params_func, dst_buf->buf, dst_stride, bw, bh, |
| build_for_refine_mv_only, &ext_warp_used, |
| &xd->mv_refined[tip_mv_offset], |
| &xd->refinemv_subinfo[refinemv_offset], |
| &xd->opfl_vxy_bufs[opfl_vxy_offset]); |
| } |
| } |
| |
| dst_buf->buf = dst; |
| } else { |
| MV mv[2] = { mi->mv[0].as_mv, mi->mv[1].as_mv }; |
| build_inter_predictors_8x8_and_bigger( |
| cm, xd, plane, mi, dst_orig, build_for_decode, bw, bh, mi_x, mi_y, |
| mc_buf, mv, calc_subpel_params_func, dst, dst_stride, bw, bh, |
| build_for_refine_mv_only, &ext_warp_used, xd->mv_refined, |
| xd->refinemv_subinfo, xd->opfl_vxy_bufs); |
| } |
| } |
| |
| void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, MB_MODE_INFO *mi, |
| const BUFFER_SET *dst_orig, |
| int build_for_refine_mv_only, |
| int build_for_decode, int bw, int bh, int mi_x, |
| int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| if (plane == AOM_PLANE_Y) |
| memset(xd->mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv)); |
| // just for debugging purpose |
| // Can be removed later on |
| if (mi->mode == WARPMV) { |
| assert(mi->ref_mv_idx[0] == 0); |
| assert(mi->ref_mv_idx[1] == 0); |
| assert(mi->motion_mode == WARP_DELTA || mi->motion_mode == WARP_CAUSAL); |
| } |
| |
| if (is_sub8x8_inter(cm, xd, mi, plane, is_intrabc_block(mi, xd->tree_type))) { |
| build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf, |
| calc_subpel_params_func); |
| } else { |
| build_inter_predictors_8x8_and_bigger_facade( |
| cm, xd, plane, mi, dst_orig, build_for_decode, bw, bh, mi_x, mi_y, |
| mc_buf, calc_subpel_params_func, build_for_refine_mv_only); |
| } |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane *planes, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const int plane_start, const int plane_end, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) |
| // instead of num_planes to quiet the static |
| // analysis warnings. |
| for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &planes[i]; |
| const int is_uv = i > 0; |
| #if CONFIG_F054_PIC_BOUNDARY |
| setup_pred_plane(&pd->dst, src->buffers[i], src->widths[is_uv], |
| src->heights[is_uv], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, NULL, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| #else |
| setup_pred_plane(&pd->dst, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, NULL, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| } |
| } |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf, const int num_planes, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| if (src != NULL) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) |
| // instead of num_planes to quiet the |
| // static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const int is_uv = i > 0; |
| #if CONFIG_F054_PIC_BOUNDARY |
| setup_pred_plane(&pd->pre[idx], src->buffers[i], src->widths[is_uv], |
| src->heights[is_uv], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, sf, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| #else |
| setup_pred_plane(&pd->pre[idx], src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, sf, pd->subsampling_x, pd->subsampling_y, |
| chroma_ref_info); |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| } |
| } |
| } |
| |
| static AOM_INLINE void combine_interintra_highbd( |
| INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index, |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| int8_t boundary_index, |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint16_t *comppred8, int compstride, const uint16_t *interpred8, |
| int interstride, const uint16_t *intrapred8, int intrastride, int bd) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| if (use_wedge_interintra) { |
| if (av1_is_wedge_used(bsize)) { |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| const uint8_t *mask = av1_get_all_contiguous_soft_mask( |
| wedge_index, wedge_sign, bsize, boundary_index); |
| #else |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| |
| const int subh = 2 * mi_size_high[bsize] == bh; |
| const int subw = 2 * mi_size_wide[bsize] == bw; |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, |
| block_size_wide[bsize], bw, bh, subw, subh, bd); |
| } |
| return; |
| } |
| |
| uint8_t mask[MAX_SB_SQUARE]; |
| build_smooth_interintra_mask(mask, bw, plane_bsize, mode); |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, bw, bw, bh, 0, 0, |
| bd); |
| } |
| |
| void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, int plane, |
| const BUFFER_SET *ctx, |
| uint16_t *dst, int dst_stride) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int ssy = xd->plane[plane].subsampling_y; |
| BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy); |
| PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; |
| assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0); |
| assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0); |
| assert(xd->mi[0]->use_intrabc[PLANE_TYPE_Y] == 0); |
| xd->mi[0]->txb_idx = 0; |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, |
| max_txsize_rect_lookup[plane_bsize], mode, 0, 0, |
| ctx->plane[plane], ctx->stride[plane], dst, |
| dst_stride, 0, 0, plane); |
| } |
| |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint16_t *inter_pred, int inter_stride, |
| const uint16_t *intra_pred, int intra_stride) { |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int ssy = xd->plane[plane].subsampling_y; |
| BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy); |
| |
| combine_interintra_highbd( |
| xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, |
| xd->mi[0]->interintra_wedge_index, |
| #if WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| xd->mi[0]->wedge_boundary_index, |
| #endif // WEDGE_BLD_SIG && CONFIG_ADAPTIVE_WEDGE_BOUNDARY |
| INTERINTRA_WEDGE_SIGN, bsize, plane_bsize, xd->plane[plane].dst.buf, |
| xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, |
| intra_stride, xd->bd); |
| } |
| |
| // build interintra_predictors for one plane |
| void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t *pred, int stride, |
| const BUFFER_SET *ctx, int plane, |
| BLOCK_SIZE bsize) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra(cm, xd, plane, ctx, intrapredictor, |
| MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor, |
| MAX_SB_SIZE); |
| } |
| |
| int av1_get_mpp_flag_context(const AV1_COMMON *cm, const MACROBLOCKD *xd) { |
| (void)cm; |
| #if CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor && is_inter_block(neighbor, SHARED_PART) && |
| !is_intrabc_block(neighbor, SHARED_PART)) { |
| ctx += (neighbor->most_probable_pb_mv_precision == |
| neighbor->pb_mv_precision); |
| } |
| } |
| |
| return ctx; |
| #else |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| const int above_mpp_flag = |
| (above_mi && is_inter_block(above_mi, SHARED_PART) && |
| !is_intrabc_block(above_mi, SHARED_PART)) |
| ? (above_mi->most_probable_pb_mv_precision == |
| above_mi->pb_mv_precision) |
| : 0; |
| const int left_mpp_flag = |
| (left_mi && is_inter_block(left_mi, SHARED_PART) && |
| !is_intrabc_block(left_mi, SHARED_PART)) |
| ? (left_mi->most_probable_pb_mv_precision == left_mi->pb_mv_precision) |
| : 0; |
| |
| return (above_mpp_flag + left_mpp_flag); |
| #endif // CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION |
| } |
| |
| // Derive the context index for refinemv flag |
| int av1_get_refinemv_context(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| BLOCK_SIZE bsize) { |
| (void)cm; |
| (void)bsize; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| if (mbmi->skip_mode) return 0; |
| return (1 + (mbmi->mode - NEAR_NEARMV)); |
| } |
| |
| int av1_get_pb_mv_precision_down_context(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| (void)cm; |
| #if CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION |
| int ctx = 0; |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor && is_inter_block(neighbor, SHARED_PART) && |
| !is_intrabc_block(neighbor, SHARED_PART)) { |
| ctx += (neighbor->max_mv_precision - neighbor->pb_mv_precision); |
| } |
| } |
| |
| return ctx > 0; |
| #else |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| const int above_down = |
| (above_mi && is_inter_block(above_mi, SHARED_PART) && |
| !is_intrabc_block(above_mi, SHARED_PART)) |
| ? above_mi->max_mv_precision - above_mi->pb_mv_precision |
| : 0; |
| const int left_down = |
| (left_mi && is_inter_block(left_mi, SHARED_PART) && |
| !is_intrabc_block(left_mi, SHARED_PART)) // && !left_mi->skip_mode) |
| ? left_mi->max_mv_precision - left_mi->pb_mv_precision |
| : 0; |
| assert(above_down >= 0); |
| assert(left_down >= 0); |
| return (above_down + left_down > 0); |
| #endif // CONFIG_CTX_MODELS_LINE_BUFFER_REDUCTION |
| } |
| |
| int av1_get_mv_class_context(const MvSubpelPrecision pb_mv_precision) { |
| return pb_mv_precision; |
| } |
| |
| void set_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) { |
| mbmi->pb_mv_precision = precision; |
| } |
| |
| // Function to check if precision need to be |
| // signaled or not |
| int is_intraBC_bv_precision_active(const AV1_COMMON *const cm, |
| const int intrabc_mode) { |
| assert(IMPLIES(!cm->features.allow_screen_content_tools, |
| !cm->features.cur_frame_force_integer_mv)); |
| assert(IMPLIES(cm->features.cur_frame_force_integer_mv, |
| cm->features.allow_screen_content_tools)); |
| return (!cm->features.cur_frame_force_integer_mv && intrabc_mode == 0); |
| } |
| // Set max value as default precision |
| void set_default_intraBC_bv_precision(const AV1_COMMON *const cm, |
| MB_MODE_INFO *mbmi) { |
| assert(IMPLIES(!cm->features.allow_screen_content_tools, |
| !cm->features.cur_frame_force_integer_mv)); |
| assert(IMPLIES(cm->features.cur_frame_force_integer_mv, |
| cm->features.allow_screen_content_tools)); |
| mbmi->pb_mv_precision = |
| cm->features.cur_frame_force_integer_mv |
| ? MV_PRECISION_ONE_PEL |
| : av1_intraBc_precision_sets |
| .precision[av1_intraBc_precision_sets.num_precisions - 1]; |
| } |
| |
| // set the mv precision for amvd applied mode |
| void set_amvd_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) { |
| mbmi->pb_mv_precision = |
| precision <= MV_PRECISION_QTR_PEL ? precision : MV_PRECISION_QTR_PEL; |
| } |
| int av1_get_pb_mv_precision_index(const MB_MODE_INFO *mbmi) { |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| int coded_precision_idx = -1; |
| for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; |
| precision_dx--) { |
| MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx]; |
| if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) { |
| coded_precision_idx++; |
| if (pb_mv_precision == mbmi->pb_mv_precision) return coded_precision_idx; |
| } |
| } |
| assert(0); |
| return coded_precision_idx; |
| } |
| |
| MvSubpelPrecision av1_get_precision_from_index(MB_MODE_INFO *mbmi, |
| int precision_idx_coded_value) { |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| int coded_precision_idx = -1; |
| MvSubpelPrecision pb_mv_precision = NUM_MV_PRECISIONS; |
| for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; |
| precision_dx--) { |
| pb_mv_precision = precision_def->precision[precision_dx]; |
| if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) { |
| coded_precision_idx++; |
| if (coded_precision_idx == precision_idx_coded_value) |
| return pb_mv_precision; |
| } |
| } |
| assert(0); |
| return pb_mv_precision; |
| } |
| void set_most_probable_mv_precision(const AV1_COMMON *const cm, |
| MB_MODE_INFO *mbmi, |
| const BLOCK_SIZE bsize) { |
| (void)bsize; |
| (void)cm; |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| mbmi->most_probable_pb_mv_precision = |
| precision_def->precision[precision_def->num_precisions - 1]; |
| |
| #if CONFIG_DEBUG |
| int mpp_found = 0; |
| for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0; |
| precision_dx--) { |
| MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx]; |
| if (pb_mv_precision == mbmi->most_probable_pb_mv_precision) { |
| mpp_found = 1; |
| break; |
| } |
| } |
| (void)mpp_found; |
| assert(mpp_found); |
| #endif |
| } |
| void set_precision_set(const AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize, |
| int *ref_mv_idx) { |
| (void)bsize; |
| (void)cm; |
| (void)xd; |
| (void)ref_mv_idx; |
| #if CONFIG_FRAME_HALF_PRECISION |
| mbmi->mb_precision_set = |
| (mbmi->max_mv_precision < MV_PRECISION_HALF_PEL) |
| ? 0 |
| : MV_PRECISION_ONE_EIGHTH_PEL - mbmi->max_mv_precision; |
| #else |
| int set_idx = 0; |
| |
| int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL) |
| ? NUMBER_OF_PRECISION_SETS |
| : 0; |
| mbmi->mb_precision_set = set_idx + offset_idx; |
| #endif // CONFIG_FRAME_HALF_PRECISION |
| } |
| void set_default_precision_set(const AV1_COMMON *const cm, MB_MODE_INFO *mbmi, |
| const BLOCK_SIZE bsize) { |
| (void)bsize; |
| (void)cm; |
| |
| #if CONFIG_FRAME_HALF_PRECISION |
| mbmi->mb_precision_set = |
| (mbmi->max_mv_precision < MV_PRECISION_HALF_PEL) |
| ? 0 |
| : MV_PRECISION_ONE_EIGHTH_PEL - mbmi->max_mv_precision; |
| #else |
| int set_idx = 0; |
| int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL) |
| ? NUMBER_OF_PRECISION_SETS |
| : 0; |
| mbmi->mb_precision_set = set_idx + offset_idx; |
| #endif // CONFIG_FRAME_HALF_PRECISION |
| } |
| void set_default_max_mv_precision(MB_MODE_INFO *mbmi, |
| MvSubpelPrecision precision) { |
| mbmi->max_mv_precision = precision; |
| } |
| MvSubpelPrecision av1_get_mbmi_max_mv_precision(const AV1_COMMON *const cm, |
| const SB_INFO *sbi, |
| const MB_MODE_INFO *mbmi) { |
| (void)mbmi; |
| (void)sbi; |
| return cm->features.fr_mv_precision; |
| } |
| |
| int is_pb_mv_precision_active(const AV1_COMMON *const cm, |
| const MB_MODE_INFO *mbmi, |
| const BLOCK_SIZE bsize) { |
| (void)bsize; |
| if (enable_adaptive_mvd_resolution(cm, mbmi)) return 0; |
| return cm->seq_params.enable_flex_mvres && |
| (mbmi->max_mv_precision >= MV_PRECISION_HALF_PEL) && |
| cm->features.use_pb_mv_precision && |
| have_newmv_in_inter_mode(mbmi->mode); |
| } |
| |
| // Copy mv0 and mv1 to the sub-blocks |
| // submi is the top-left corner of the |
| // sub-block need to fill bw is the block |
| // width in the unit of pixel bh is the block |
| // height in unit of pixel |
| void fill_subblock_refine_mv(REFINEMV_SUBMB_INFO *refinemv_subinfo, int bw, |
| int bh, MV mv0, MV mv1) { |
| const int stride = MAX_MIB_SIZE; |
| for (int y = 0; y < (bh >> MI_SIZE_LOG2); y++) { |
| for (int x = 0; x < (bw >> MI_SIZE_LOG2); x++) { |
| refinemv_subinfo[x].refinemv[0].as_mv = mv0; |
| refinemv_subinfo[x].refinemv[1].as_mv = mv1; |
| } |
| refinemv_subinfo += stride; |
| } |
| } |
| |
| bool av1_build_morph_pred(const AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col) { |
| #if CONFIG_F054_PIC_BOUNDARY |
| (void)cm; |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| // Predictor, i.e., the reconstructed block |
| // found from intrabc. |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| uint16_t *const dst = pd->dst.buf; |
| const int dst_stride = pd->dst.stride; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| FULLPEL_MV dv = get_fullmv_from_mv(&mbmi->mv[0].as_mv); |
| const int cur_x = mi_col * MI_SIZE; |
| const int cur_y = mi_row * MI_SIZE; |
| #if CONFIG_F054_PIC_BOUNDARY |
| if (cur_x >= pd->dst.width || cur_y >= pd->dst.height) return false; |
| #else |
| if (cur_x >= cm->width || cur_y >= cm->height) return false; |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| int ref_w = bw; |
| int ref_h = bh; |
| #if CONFIG_F054_PIC_BOUNDARY |
| if (cur_x + bw >= pd->dst.width) ref_w = pd->dst.width - cur_x; |
| if (cur_y + bh >= pd->dst.height) ref_h = pd->dst.height - cur_y; |
| #else |
| if (cur_x + bw >= cm->width) ref_w = cm->width - cur_x; |
| if (cur_y + bh >= cm->height) ref_h = cm->height - cur_y; |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| |
| const int cur_tmplt_x = cur_x - BAWP_REF_LINES; |
| const int cur_tmplt_y = cur_y - BAWP_REF_LINES; |
| const int ref_x = cur_x + dv.col; |
| const int ref_y = cur_y + dv.row; |
| const int ref_tmplt_x = ref_x - BAWP_REF_LINES; |
| const int ref_tmplt_y = ref_y - BAWP_REF_LINES; |
| #if CONFIG_F054_PIC_BOUNDARY |
| assert(cur_tmplt_x + ref_w < pd->dst.width); |
| assert(cur_tmplt_y + ref_h < pd->dst.height); |
| if (ref_tmplt_x < 0 || ref_tmplt_y < 0 || ref_x + ref_w >= pd->dst.width || |
| ref_y + ref_h >= pd->dst.height) { |
| #else |
| assert(cur_tmplt_x + ref_w < cm->width); |
| assert(cur_tmplt_y + ref_h < cm->height); |
| if (ref_tmplt_x < 0 || ref_tmplt_y < 0 || ref_x + ref_w >= cm->width || |
| ref_y + ref_h >= cm->height) { |
| #endif // CONFIG_F054_PIC_BOUNDARY |
| return false; |
| } |
| #if !CONFIG_LOCAL_INTRABC_BAWP |
| // Restriction: the reference block's |
| // template can't be outside the local 64x64 |
| // block for local intra block copy. If |
| // local intra block copy extends to |
| // 128x128, one has to change the |
| // restrictions here to make it match. |
| const int is_same_unit_x = (cur_x >> 6) == (ref_x >> 6); |
| const int is_same_unit_y = (cur_y >> 6) == (ref_y >> 6); |
| if (is_same_unit_x && is_same_unit_y) { |
| if (ref_x > 0 && (ref_x % 64 == 0)) return false; |
| if (ref_y > 0 && (ref_y % 64 == 0)) return false; |
| } |
| #endif // !CONFIG_LOCAL_INTRABC_BAWP |
| // Restriction: the reference block's |
| // template can't be outside the current |
| // tile. |
| const TileInfo *const tile = &xd->tile; |
| // Is the source top-left inside the current |
| // tile? |
| const int tile_top_edge = tile->mi_row_start * MI_SIZE; |
| if (ref_tmplt_y < tile_top_edge) return false; |
| const int tile_left_edge = tile->mi_col_start * MI_SIZE; |
| if (ref_tmplt_x < tile_left_edge) return false; |
| // Is the bottom right inside the current |
| // tile? |
| const int ref_bottom_edge = ref_y + bh; |
| const int tile_bottom_edge = tile->mi_row_end * MI_SIZE; |
| if (ref_bottom_edge > tile_bottom_edge) return false; |
| const int ref_right_edge = ref_x + bw; |
| const int tile_right_edge = tile->mi_col_end * MI_SIZE; |
| if (ref_right_edge > tile_right_edge) return false; |
| // The current block's template can't be |
| // outside the current tile too. |
| if (cur_tmplt_y < tile_top_edge) return false; |
| if (cur_tmplt_x < tile_left_edge) return false; |
| |
| uint16_t *recon_buf = xd->plane[0].dst.buf; |
| uint16_t *recon_top = dst - BAWP_REF_LINES * dst_stride; |
| uint16_t *recon_left = dst - BAWP_REF_LINES; |
| uint16_t *ref_buf = recon_buf + dv.row * dst_stride + dv.col; |
| uint16_t *ref_top = ref_buf - BAWP_REF_LINES * dst_stride; |
| uint16_t *ref_left = ref_buf - BAWP_REF_LINES; |
| derive_bawp_parameters(xd, recon_top, recon_left, dst_stride, ref_top, |
| ref_left, dst_stride, /*ref=*/0, /*plane=*/0, ref_w, |
| ref_h); |
| int16_t alpha = mbmi->bawp_alpha[0][0]; |
| int32_t beta = mbmi->bawp_beta[0][0]; |
| const int shift = 8; |
| for (int j = 0; j < bh; ++j) { |
| for (int i = 0; i < bw; ++i) { |
| dst[j * dst_stride + i] = clip_pixel_highbd( |
| (dst[j * dst_stride + i] * alpha + beta) >> shift, xd->bd); |
| } |
| } |
| return true; |
| } |