blob: e4b0cf0f7ac066ec0e091ae4eb5a5457fd5c2dbf [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_once.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/cfl.h"
#include "av1/common/intra_dip.h"
#include "av1/common/reconintra.h"
#include <av1/encoder/block.h>
enum {
NEED_LEFT = 1 << 1,
NEED_ABOVE = 1 << 2,
NEED_ABOVERIGHT = 1 << 3,
NEED_ABOVELEFT = 1 << 4,
NEED_BOTTOMLEFT = 1 << 5,
};
#define INTRA_EDGE_FILT 3
#define INTRA_EDGE_TAPS 5
#define MAX_UPSAMPLE_SZ 16
#define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 64)
static const uint8_t extend_modes[INTRA_MODES] = {
NEED_ABOVE | NEED_LEFT | NEED_ABOVELEFT, // DC
NEED_ABOVE, // V
NEED_LEFT, // H
NEED_ABOVE | NEED_ABOVERIGHT, // D45
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D113
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D157
NEED_LEFT | NEED_BOTTOMLEFT, // D203
NEED_ABOVE | NEED_ABOVERIGHT, // D67
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT | NEED_ABOVERIGHT |
NEED_BOTTOMLEFT, // SMOOTH
NEED_LEFT | NEED_ABOVE | NEED_BOTTOMLEFT, // SMOOTH_V
NEED_LEFT | NEED_ABOVE | NEED_ABOVERIGHT, // SMOOTH_H
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // PAETH
};
static int has_top_right(const AV1_COMMON *cm, const MACROBLOCKD *xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int top_available, int right_available, TX_SIZE txsz,
int plane, int row_off, int col_off, int ss_x,
int ss_y, int px_to_right_edge, int *px_top_right,
int is_bsize_altered_for_chroma) {
if (!top_available || !right_available) return 0;
const int bw_unit = mi_size_wide[bsize];
const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1);
const int top_right_count_unit = tx_size_wide_unit[txsz];
const int px_tr_common = AOMMIN(tx_size_wide[txsz], px_to_right_edge);
if (px_tr_common <= 0) return 0;
#if CONFIG_CHROMA_LARGE_TX
// Do not allow more than 64 top reference samples for intra prediction
if (plane != AOM_PLANE_Y && tx_size_wide[txsz] > 32) return 0;
#endif // CONFIG_CHROMA_LARGE_TX
*px_top_right = px_tr_common;
if (plane == AOM_PLANE_Y) {
int txb_idx = xd->mi[0]->txb_idx;
TX_PARTITION_TYPE partition = xd->mi[0]->tx_partition_type[0];
if (partition == TX_PARTITION_HORZ5 || partition == TX_PARTITION_VERT5) {
if (txb_idx >= 1) return 0;
}
}
if (row_off > 0) { // Just need to check if enough pixels on the right.
const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) {
// Special case: For 256 and 128 blocks, if the tx unit's top right center
// is aligned with 64x64 boundary and we are not at the right most column,
#if CONFIG_TU64_TRAVERSED_ORDER
// then the tx unit may have pixels available at its top-right corner.
#else
// then the tx unit does in fact have pixels available at its top-right
// corner.
#endif // CONFIG_TU64_TRAVERSED_ORDER
const int tr_col = col_off + top_right_count_unit;
const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y;
if (tr_col != plane_bw_unit && tr_col % plane_bw_unit_64 == 0 &&
row_off % plane_bh_unit_64 == 0) {
#if CONFIG_TU64_TRAVERSED_ORDER
const int plane_bw_unit_128 = mi_size_wide[BLOCK_128X128] >> ss_x;
const int plane_bh_unit_128 = mi_size_high[BLOCK_128X128] >> ss_y;
// Since 64x64 TUs are decoded in 128x128 units, the top-right reference
// samples of the top-right transform block in the bottom-right 64x64
// transform block within a 128x128 block, i.e., ((row_off %
// plane_bh_unit_128) && !(tr_col % plane_bw_unit_128)), are unavailable
return ((row_off % plane_bh_unit_128) && !(tr_col % plane_bw_unit_128))
? 0
: 1;
#else
return 1;
#endif // CONFIG_TU64_TRAVERSED_ORDER
}
const int col_off_64 = col_off % plane_bw_unit_64;
return col_off_64 + top_right_count_unit < plane_bw_unit_64;
}
return col_off + top_right_count_unit < plane_bw_unit;
} else {
// All top-right pixels are in the block above, which is already available.
if (col_off + top_right_count_unit < plane_bw_unit) return 1;
// Handle the top-right intra tx block of the coding block
const int sb_mi_size = mi_size_wide[cm->sb_size];
const int mi_row_aligned =
is_bsize_altered_for_chroma
? xd->mi[0]->chroma_ref_info.mi_row_chroma_base
: mi_row;
const int mi_col_aligned =
is_bsize_altered_for_chroma
? xd->mi[0]->chroma_ref_info.mi_col_chroma_base
: mi_col;
const int tr_mask_row = (mi_row_aligned & (sb_mi_size - 1)) - 1;
const int tr_mask_col =
(mi_col_aligned & (sb_mi_size - 1)) + mi_size_wide[bsize];
if (tr_mask_row < 0) {
return 1;
} else if (tr_mask_col >= sb_mi_size) {
return 0;
} else { // Handle the general case: the top_right mi is in the same SB
const int tr_offset = tr_mask_row * xd->is_mi_coded_stride + tr_mask_col;
// As long as the first mi is available, we determine tr is available
int has_tr = xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)][tr_offset];
// Calculate px_top_right: how many top-right pixels are available. If it
// is less than tx_size_wide[txsz], px_top_right will be used to
// determine the location of the last available pixel, which will be used
// for padding.
if (has_tr) {
int mi_tr = 0;
for (int i = 0; i < top_right_count_unit << ss_x; ++i) {
if ((tr_mask_col + i) >= sb_mi_size ||
!xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)][tr_offset + i]) {
break;
} else {
mi_tr++;
}
}
*px_top_right = AOMMIN((mi_tr << MI_SIZE_LOG2) >> ss_x, px_tr_common);
}
return has_tr;
}
}
}
static int has_bottom_left(const AV1_COMMON *cm, const MACROBLOCKD *xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bottom_available, int left_available,
TX_SIZE txsz, int plane, int row_off, int col_off,
int ss_x, int ss_y, int px_to_bottom_edge,
int *px_bottom_left,
int is_bsize_altered_for_chroma) {
if (!bottom_available || !left_available) return 0;
const int px_bl_common = AOMMIN(tx_size_high[txsz], px_to_bottom_edge);
if (px_bl_common <= 0) return 0;
#if CONFIG_CHROMA_LARGE_TX
// Do not allow more than 64 left reference samples for intra prediction
if (plane != AOM_PLANE_Y && tx_size_high[txsz] > 32) return 0;
#endif // CONFIG_CHROMA_LARGE_TX
if (plane == AOM_PLANE_Y) {
int txb_idx = xd->mi[0]->txb_idx;
TX_PARTITION_TYPE partition = xd->mi[0]->tx_partition_type[0];
if (partition == TX_PARTITION_HORZ5 || partition == TX_PARTITION_VERT5) {
if (txb_idx >= 1) return 0;
}
}
*px_bottom_left = px_bl_common;
#if CONFIG_TU64_TRAVERSED_ORDER
// Special case for 256x* and 128x* coding blocks. This is needed because
// 256x* and 128x* coding blocks are divided into 64x* blocks, and each 64x*
// block is coded in 128x* unit. For example, for a 256x256 coding block, the
// coding order of 64x64 residual blocks are following
// A B E F
// C D G H
// I J M N
// K L O P
#else
// Special case for 128x* blocks, when col_off is half the block width.
// This is needed because 128x* superblocks are divided into 64x* blocks in
// raster order
#endif // CONFIG_TU64_TRAVERSED_ORDER
if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) {
const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
const int col_off_64 = col_off % plane_bw_unit_64;
if (col_off_64 == 0) {
// We are at the left edge of top-right or bottom-right 64x* block.
const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y;
const int row_off_64 = row_off % plane_bh_unit_64;
const int plane_bh_unit =
AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64);
// Check if all bottom-left pixels are in the left 64x* block (which is
// already coded).
#if CONFIG_TU64_TRAVERSED_ORDER
const int plane_bw_unit_128 = mi_size_wide[BLOCK_128X128] >> ss_x;
const int col_off_128 = col_off % plane_bw_unit_128;
if (col_off_128 == 0) {
// Since 64x64 TUs are decoded in 128x128 units, the bottom-left
// reference samples of the top-left 64x64 transform block within a
// 128x128 block, i.e., (col_off_64 == 0 && row_off_128 +
// tx_size_high_unit[txsz] < plane_bh_unit_128), become available
const int plane_bh_unit_128 = mi_size_high[BLOCK_128X128] >> ss_y;
const int row_off_128 = row_off % plane_bh_unit_128;
return row_off_128 + tx_size_high_unit[txsz] < plane_bh_unit_128;
} else
#endif // CONFIG_TU64_TRAVERSED_ORDER
return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit;
}
}
if (col_off > 0) {
// Bottom-left pixels are in the bottom-left block, which is not available.
return 0;
} else {
const int bh_unit = mi_size_high[bsize];
const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1);
const int bottom_left_count_unit = tx_size_high_unit[txsz];
// All bottom-left pixels are in the left block, which is already available.
if (row_off + bottom_left_count_unit < plane_bh_unit) return 1;
// The general case: neither the leftmost column nor the bottom row. The
// bottom-left mi is in the same SB
const int sb_mi_size = mi_size_high[cm->sb_size];
const int mi_row_aligned =
is_bsize_altered_for_chroma
? xd->mi[0]->chroma_ref_info.mi_row_chroma_base
: mi_row;
const int mi_col_aligned =
is_bsize_altered_for_chroma
? xd->mi[0]->chroma_ref_info.mi_col_chroma_base
: mi_col;
const int bl_mask_row =
(mi_row_aligned & (sb_mi_size - 1)) + mi_size_high[bsize];
const int bl_mask_col = (mi_col_aligned & (sb_mi_size - 1)) - 1;
if (bl_mask_col < 0) {
const int plane_sb_height = block_size_high[cm->sb_size] >> ss_y;
const int plane_bottom_row =
(((mi_row_aligned & (sb_mi_size - 1)) << MI_SIZE_LOG2) +
block_size_high[bsize]) >>
ss_y;
*px_bottom_left =
AOMMIN(plane_sb_height - plane_bottom_row, px_bl_common);
return *px_bottom_left > 0;
} else if (bl_mask_row >= sb_mi_size) {
return 0;
} else {
const int bl_offset = bl_mask_row * xd->is_mi_coded_stride + bl_mask_col;
// As long as there is one bottom-left mi available, we determine bl is
// available
int has_bl = xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)][bl_offset];
// Calculate px_bottom_left: how many bottom-left pixels are available. If
// it is less than tx_size_high[txsz], px_bottom_left will be used to
// determine the location of the last available pixel, which will be used
// for padding.
if (has_bl) {
int mi_bl = 0;
for (int i = 0; i < bottom_left_count_unit << ss_y; ++i) {
if ((bl_mask_row + i) >= sb_mi_size ||
!xd->is_mi_coded[av1_get_sdp_idx(xd->tree_type)]
[bl_offset + i * xd->is_mi_coded_stride]) {
break;
} else {
mi_bl++;
}
}
*px_bottom_left = AOMMIN((mi_bl << MI_SIZE_LOG2) >> ss_y, px_bl_common);
}
return has_bl;
}
}
}
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd);
static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL];
static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL];
static intra_high_pred_fn ibp_dc_pred_high[2][2][TX_SIZES_ALL];
static void init_intra_predictors_internal(void) {
assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES);
#define INIT_RECTANGULAR(p, type) \
p[TX_4X8] = aom_##type##_predictor_4x8; \
p[TX_8X4] = aom_##type##_predictor_8x4; \
p[TX_8X16] = aom_##type##_predictor_8x16; \
p[TX_16X8] = aom_##type##_predictor_16x8; \
p[TX_16X32] = aom_##type##_predictor_16x32; \
p[TX_32X16] = aom_##type##_predictor_32x16; \
p[TX_32X64] = aom_##type##_predictor_32x64; \
p[TX_64X32] = aom_##type##_predictor_64x32; \
p[TX_4X16] = aom_##type##_predictor_4x16; \
p[TX_16X4] = aom_##type##_predictor_16x4; \
p[TX_8X32] = aom_##type##_predictor_8x32; \
p[TX_32X8] = aom_##type##_predictor_32x8; \
p[TX_16X64] = aom_##type##_predictor_16x64; \
p[TX_64X16] = aom_##type##_predictor_64x16; \
p[TX_4X32] = aom_##type##_predictor_4x32; \
p[TX_32X4] = aom_##type##_predictor_32x4; \
p[TX_8X64] = aom_##type##_predictor_8x64; \
p[TX_64X8] = aom_##type##_predictor_64x8; \
p[TX_4X64] = aom_##type##_predictor_4x64; \
p[TX_64X4] = aom_##type##_predictor_64x4;
#define INIT_NO_4X4(p, type) \
p[TX_8X8] = aom_##type##_predictor_8x8; \
p[TX_16X16] = aom_##type##_predictor_16x16; \
p[TX_32X32] = aom_##type##_predictor_32x32; \
p[TX_64X64] = aom_##type##_predictor_64x64; \
INIT_RECTANGULAR(p, type)
#define INIT_ALL_SIZES(p, type) \
p[TX_4X4] = aom_##type##_predictor_4x4; \
INIT_NO_4X4(p, type)
INIT_ALL_SIZES(pred_high[V_PRED], highbd_v);
INIT_ALL_SIZES(pred_high[H_PRED], highbd_h);
INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth);
INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth);
INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v);
INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h);
INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128);
INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top);
INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left);
INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc);
INIT_ALL_SIZES(ibp_dc_pred_high[0][0], highbd_dc_128);
INIT_ALL_SIZES(ibp_dc_pred_high[0][1], highbd_ibp_dc_top);
INIT_ALL_SIZES(ibp_dc_pred_high[1][0], highbd_ibp_dc_left);
INIT_ALL_SIZES(ibp_dc_pred_high[1][1], highbd_ibp_dc);
#undef intra_pred_allsizes
}
// get the context for y_mode_idx
// the context of y_mode_idx depends on the count of directional neighboring
// modes
int get_y_mode_idx_ctx(MACROBLOCKD *const xd) {
const PREDICTION_MODE above_joint_mode =
av1_get_joint_mode(xd->above_right_mbmi);
const PREDICTION_MODE left_joint_mode =
av1_get_joint_mode(xd->bottom_left_mbmi);
const int is_above_angular =
above_joint_mode >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0;
const int is_left_angular =
left_joint_mode >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0;
return is_above_angular + is_left_angular;
}
/*! \brief set the luma intra mode and delta angles for a given mode index.
* \param[in] mode_idx mode index in intra mode decision
* process.
* \param[in] mbmi Pointer to structure holding
* the mode info for the current macroblock.
*/
void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi) {
if (mode_idx < NON_DIRECTIONAL_MODES_COUNT) {
mbmi->mode = mode_idx;
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
} else {
mbmi->mode =
(mode_idx - NON_DIRECTIONAL_MODES_COUNT) / TOTAL_ANGLE_DELTA_COUNT +
NON_DIRECTIONAL_MODES_COUNT;
mbmi->angle_delta[PLANE_TYPE_Y] =
(mode_idx - NON_DIRECTIONAL_MODES_COUNT) % TOTAL_ANGLE_DELTA_COUNT -
MAX_ANGLE_DELTA;
}
mbmi->mode = reordered_y_mode[mbmi->mode];
}
// re-order the intra prediction modes for y component based
// on the neighboring intra prediction modes. The intra prediction
// mode list for 4x4, 4x8, and 8x4 blocks are fixed, and not dependent
// on the intra prediction modes of neighboring blocks
void get_y_intra_mode_set(MB_MODE_INFO *mi, MACROBLOCKD *const xd) {
int neighbor_joint_modes[2];
neighbor_joint_modes[0] = av1_get_joint_mode(xd->bottom_left_mbmi);
neighbor_joint_modes[1] = av1_get_joint_mode(xd->above_right_mbmi);
const int is_left_directional_mode =
neighbor_joint_modes[0] >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0;
const int is_above_directional_mode =
neighbor_joint_modes[1] >= NON_DIRECTIONAL_MODES_COUNT ? 1 : 0;
// To mark whether each intra prediction mode is added into intra mode list or
// not
int is_mode_selected_list[LUMA_MODE_COUNT];
const int block_width = block_size_wide[mi->sb_type[PLANE_TYPE_Y]];
const int block_height = block_size_high[mi->sb_type[PLANE_TYPE_Y]];
// Check whether the block area size is greater than 64 samples
const int is_large_block = (block_width * block_height > 64);
const int is_small_block = (mi->sb_type[PLANE_TYPE_Y] < BLOCK_8X8);
int i, j;
int mode_idx = 0;
for (i = 0; i < LUMA_MODE_COUNT; i++) {
is_mode_selected_list[i] = -1;
mi->y_intra_mode_list[i] = -1;
}
// always put non-directional modes into the first positions of the mode list
for (i = 0; i < NON_DIRECTIONAL_MODES_COUNT; ++i) {
mi->y_intra_mode_list[mode_idx++] = i;
is_mode_selected_list[i] = 1;
}
if (is_small_block == 0) {
int directional_mode_cnt =
is_above_directional_mode + is_left_directional_mode;
if (directional_mode_cnt == 2 &&
neighbor_joint_modes[0] == neighbor_joint_modes[1])
directional_mode_cnt = 1;
// copy above mode to left mode, if left mode is non-directiona mode and
// above mode is directional mode
if (directional_mode_cnt == 1 && is_left_directional_mode == 0) {
neighbor_joint_modes[0] = neighbor_joint_modes[1];
}
for (i = 0; i < directional_mode_cnt; ++i) {
mi->y_intra_mode_list[mode_idx++] = neighbor_joint_modes[i];
is_mode_selected_list[neighbor_joint_modes[i]] = 1;
}
// Add offsets to derive the neighboring modes
if (is_large_block) {
for (i = 0; i < 4; ++i) {
for (j = 0; j < directional_mode_cnt; ++j) {
int left_derived_mode = (neighbor_joint_modes[j] - i +
(56 - NON_DIRECTIONAL_MODES_COUNT - 1)) %
56 +
NON_DIRECTIONAL_MODES_COUNT;
int right_derived_mode = (neighbor_joint_modes[j] + i -
(NON_DIRECTIONAL_MODES_COUNT - 1)) %
56 +
NON_DIRECTIONAL_MODES_COUNT;
if (is_mode_selected_list[left_derived_mode] == -1) {
mi->y_intra_mode_list[mode_idx++] = left_derived_mode;
is_mode_selected_list[left_derived_mode] = 1;
}
if (is_mode_selected_list[right_derived_mode] == -1) {
mi->y_intra_mode_list[mode_idx++] = right_derived_mode;
is_mode_selected_list[right_derived_mode] = 1;
}
}
}
}
}
// fill the remaining list with default modes
for (i = 0; i < LUMA_MODE_COUNT - NON_DIRECTIONAL_MODES_COUNT &&
mode_idx < LUMA_MODE_COUNT;
++i) {
if (is_mode_selected_list[default_mode_list_y[i] +
NON_DIRECTIONAL_MODES_COUNT] == -1) {
mi->y_intra_mode_list[mode_idx++] =
default_mode_list_y[i] + NON_DIRECTIONAL_MODES_COUNT;
is_mode_selected_list[default_mode_list_y[i] +
NON_DIRECTIONAL_MODES_COUNT] = 1;
}
}
}
// re-order the intra prediction mode of uv component based on the
// intra prediction mode of co-located y block
void get_uv_intra_mode_set(MB_MODE_INFO *mi) {
int is_mode_selected_list[UV_INTRA_MODES - 1];
int i;
int mode_idx = 0;
for (i = 0; i < UV_INTRA_MODES - 1; i++) {
is_mode_selected_list[i] = -1;
mi->uv_intra_mode_list[i] = -1;
}
// check whether co-located y mode is directional mode or not
if (av1_is_directional_mode(mi->mode)) {
mi->uv_intra_mode_list[mode_idx++] = mi->mode;
is_mode_selected_list[mi->mode] = 1;
}
// put non-directional modes into the mode list
mi->uv_intra_mode_list[mode_idx++] = UV_DC_PRED;
is_mode_selected_list[UV_DC_PRED] = 1;
mi->uv_intra_mode_list[mode_idx++] = UV_SMOOTH_PRED;
is_mode_selected_list[UV_SMOOTH_PRED] = 1;
mi->uv_intra_mode_list[mode_idx++] = UV_SMOOTH_V_PRED;
is_mode_selected_list[UV_SMOOTH_V_PRED] = 1;
mi->uv_intra_mode_list[mode_idx++] = UV_SMOOTH_H_PRED;
is_mode_selected_list[UV_SMOOTH_H_PRED] = 1;
mi->uv_intra_mode_list[mode_idx++] = UV_PAETH_PRED;
is_mode_selected_list[UV_PAETH_PRED] = 1;
// fill the remaining list with default modes
const int directional_mode_count = DIR_MODE_END - DIR_MODE_START;
for (i = 0; i < directional_mode_count; ++i) {
if (is_mode_selected_list[default_mode_list_uv[i]] == -1) {
mi->uv_intra_mode_list[mode_idx++] = default_mode_list_uv[i];
is_mode_selected_list[default_mode_list_uv[i]] = 1;
}
}
}
int get_cfl_ctx(MACROBLOCKD *xd) {
const int above_ctx =
xd->chroma_above_mbmi ? xd->chroma_above_mbmi->uv_mode == UV_CFL_PRED : 0;
const int left_ctx =
xd->chroma_left_mbmi ? xd->chroma_left_mbmi->uv_mode == UV_CFL_PRED : 0;
return above_ctx + left_ctx;
}
// Directional prediction, zone 1: 0 < angle < 90
void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_above,
int dx, int dy, int bd, int mrl_index) {
int r, c, x, base, shift, val;
(void)left;
(void)dy;
(void)bd;
assert(dy == 1);
assert(dx > 0);
const int max_base_x = ((bw + bh) - 1 + (mrl_index << 1)) << upsample_above;
const int frac_bits = 6 - upsample_above;
const int base_inc = 1 << upsample_above;
x = dx * (1 + mrl_index);
for (r = 0; r < bh; ++r, dst += stride, x += dx) {
base = x >> frac_bits;
shift = ((x << upsample_above) & 0x3F) >> 1;
if (base >= max_base_x) {
for (int i = r; i < bh; ++i) {
aom_memset16(dst, above[max_base_x], bw);
dst += stride;
}
return;
}
for (c = 0; c < bw; ++c, base += base_inc) {
if (base < max_base_x) {
val = above[base] * (32 - shift) + above[base + 1] * shift;
dst[c] = ROUND_POWER_OF_TWO(val, 5);
} else {
dst[c] = above[max_base_x];
}
}
}
}
// Directional prediction, zone 2: 90 < angle < 180
void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_above,
int upsample_left, int dx, int dy, int bd,
int mrl_index) {
(void)bd;
assert(dx > 0);
assert(dy > 0);
const int min_base_x = -(1 << upsample_above) - mrl_index;
const int min_base_y = -(1 << upsample_left) - mrl_index;
(void)min_base_y;
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
for (int r = 0; r < bh; ++r) {
for (int c = 0; c < bw; ++c) {
int val;
int y = r + 1;
int x = (c << 6) - (y + mrl_index) * dx;
const int base_x = x >> frac_bits_x;
if (base_x >= min_base_x) {
const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
} else {
x = c + 1;
y = (r << 6) - (x + mrl_index) * dy;
const int base_y = y >> frac_bits_y;
assert(base_y >= min_base_y);
const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
}
dst[c] = val;
}
dst += stride;
}
}
// Directional prediction, zone 3: 180 < angle < 270
void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int upsample_left,
int dx, int dy, int bd, int mrl_index) {
int r, c, y, base, shift, val;
(void)above;
(void)dx;
(void)bd;
assert(dx == 1);
assert(dy > 0);
const int max_base_y = ((bw + bh - 1) << upsample_left) + (mrl_index << 1);
const int frac_bits = 6 - upsample_left;
const int base_inc = 1 << upsample_left;
y = dy * (1 + mrl_index);
for (c = 0; c < bw; ++c, y += dy) {
base = y >> frac_bits;
shift = ((y << upsample_left) & 0x3F) >> 1;
for (r = 0; r < bh; ++r, base += base_inc) {
if (base < max_base_y) {
val = left[base] * (32 - shift) + left[base + 1] * shift;
dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
} else {
for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
break;
}
}
}
}
// Directional prediction, zone 1: 0 < angle < 90 using IDIF
void av1_highbd_dr_prediction_z1_idif_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int dx, int dy,
int bd, int mrl_index) {
int r, c, x, base, shift, val;
uint16_t ref[4] = { 0 };
(void)left;
(void)dy;
(void)bd;
assert(dy == 1);
assert(dx > 0);
const int max_base_x = (bw + bh) - 1 + (mrl_index << 1);
const int frac_bits = 6;
const int base_inc = 1;
x = dx * (1 + mrl_index);
for (r = 0; r < bh; ++r, dst += stride, x += dx) {
base = x >> frac_bits;
shift = (x & 0x3F) >> 1;
if (base > max_base_x) {
for (int i = r; i < bh; ++i) {
aom_memset16(dst, above[max_base_x], bw);
dst += stride;
}
return;
}
for (c = 0; c < bw; ++c, base += base_inc) {
if (base <= max_base_x) {
// 4-tap filter
ref[0] = above[base - 1];
ref[1] = above[base];
ref[2] = above[base + 1];
ref[3] = above[base + 2];
val = av1_dr_interp_filter[shift][0] * ref[0] +
av1_dr_interp_filter[shift][1] * ref[1] +
av1_dr_interp_filter[shift][2] * ref[2] +
av1_dr_interp_filter[shift][3] * ref[3];
dst[c] = clip_pixel_highbd(
ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER), bd);
} else {
dst[c] = above[max_base_x];
}
}
}
}
// Directional prediction, zone 2: 90 < angle < 180 using IDIF
void av1_highbd_dr_prediction_z2_idif_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int dx, int dy,
int bd, int mrl_index) {
(void)bd;
assert(dx > 0);
assert(dy > 0);
const int min_base_x = -1 - mrl_index;
const int min_base_y = -1 - mrl_index;
(void)min_base_y;
const int frac_bits_x = 6;
const int frac_bits_y = 6;
uint16_t ref[4] = { 0 };
for (int r = 0; r < bh; ++r) {
for (int c = 0; c < bw; ++c) {
int val;
int y = r + 1;
int x = (c << 6) - (y + mrl_index) * dx;
const int base_x = x >> frac_bits_x;
if (base_x >= min_base_x) {
const int shift = (x & 0x3F) >> 1;
// 4-tap filter
ref[0] = above[base_x - 1];
ref[1] = above[base_x];
ref[2] = above[base_x + 1];
ref[3] = above[base_x + 2];
val = av1_dr_interp_filter[shift][0] * ref[0] +
av1_dr_interp_filter[shift][1] * ref[1] +
av1_dr_interp_filter[shift][2] * ref[2] +
av1_dr_interp_filter[shift][3] * ref[3];
val = clip_pixel_highbd(ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER),
bd);
} else {
x = c + 1;
y = (r << 6) - (x + mrl_index) * dy;
const int base_y = y >> frac_bits_y;
assert(base_y >= min_base_y);
const int shift = (y & 0x3F) >> 1;
// 4-tap filter
ref[0] = left[base_y - 1];
ref[1] = left[base_y];
ref[2] = left[base_y + 1];
ref[3] = left[base_y + 2];
val = av1_dr_interp_filter[shift][0] * ref[0] +
av1_dr_interp_filter[shift][1] * ref[1] +
av1_dr_interp_filter[shift][2] * ref[2] +
av1_dr_interp_filter[shift][3] * ref[3];
val = clip_pixel_highbd(ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER),
bd);
}
dst[c] = val;
}
dst += stride;
}
}
// Directional prediction, zone 3: 180 < angle < 270 using IDIF
void av1_highbd_dr_prediction_z3_idif_c(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int dx, int dy,
int bd, int mrl_index) {
int r, c, y, base, shift, val;
(void)above;
(void)dx;
(void)bd;
assert(dx == 1);
assert(dy > 0);
uint16_t ref[4] = { 0 };
const int max_base_y = (bw + bh) - 1 + (mrl_index << 1);
const int frac_bits = 6;
const int base_inc = 1;
y = dy * (1 + mrl_index);
for (c = 0; c < bw; ++c, y += dy) {
base = y >> frac_bits;
shift = (y & 0x3F) >> 1;
for (r = 0; r < bh; ++r, base += base_inc) {
if (base <= max_base_y) {
// 4-tap filter
ref[0] = left[base - 1];
ref[1] = left[base];
ref[2] = left[base + 1];
ref[3] = left[base + 2];
val = av1_dr_interp_filter[shift][0] * ref[0] +
av1_dr_interp_filter[shift][1] * ref[1] +
av1_dr_interp_filter[shift][2] * ref[2] +
av1_dr_interp_filter[shift][3] * ref[3];
dst[r * stride + c] = clip_pixel_highbd(
ROUND_POWER_OF_TWO(val, POWER_DR_INTERP_FILTER), bd);
} else {
for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
break;
}
}
}
}
static void highbd_dr_predictor_idif(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, uint16_t *above,
uint16_t *left, int angle, int bd,
int mrl_index) {
const int dx = av1_get_dx(angle);
const int dy = av1_get_dy(angle);
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(angle > 0 && angle < 270);
const int max_base_z1_z3 = (bw + bh) - 1 + (mrl_index << 1);
const int max_base_z2_above = bw - 1;
const int max_base_z2_left = bh - 1;
const int min_base_z2 = -(1 + mrl_index);
if (angle > 0 && angle < 90) {
above[max_base_z1_z3 + 1] = above[max_base_z1_z3];
above[max_base_z1_z3 + 2] = above[max_base_z1_z3];
av1_highbd_dr_prediction_z1_idif(dst, stride, bw, bh, above, left, dx, dy,
bd, mrl_index);
} else if (angle > 90 && angle < 180) {
above[min_base_z2 - 1] = above[min_base_z2];
left[min_base_z2 - 1] = left[min_base_z2];
if (mrl_index == 0) {
above[max_base_z2_above + 1] = above[max_base_z2_above];
left[max_base_z2_left + 1] = left[max_base_z2_left];
}
av1_highbd_dr_prediction_z2_idif(dst, stride, bw, bh, above, left, dx, dy,
bd, mrl_index);
} else if (angle > 180 && angle < 270) {
left[max_base_z1_z3 + 1] = left[max_base_z1_z3];
left[max_base_z1_z3 + 2] = left[max_base_z1_z3];
av1_highbd_dr_prediction_z3_idif(dst, stride, bw, bh, above, left, dx, dy,
bd, mrl_index);
} else if (angle == 90) {
pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
} else if (angle == 180) {
pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
}
}
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int upsample_above,
int upsample_left, int angle, int bd,
int mrl_index) {
const int dx = av1_get_dx(angle);
const int dy = av1_get_dy(angle);
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(angle > 0 && angle < 270);
if (angle > 0 && angle < 90) {
av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
upsample_above, dx, dy, bd, mrl_index);
} else if (angle > 90 && angle < 180) {
av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left,
upsample_above, upsample_left, dx, dy, bd,
mrl_index);
} else if (angle > 180 && angle < 270) {
av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left,
dx, dy, bd, mrl_index);
} else if (angle == 90) {
pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
} else if (angle == 180) {
pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
}
}
// Generate the second directional predictor for IBP
static void highbd_second_dr_predictor(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int upsample_above,
int upsample_left, int angle, int bd) {
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
if (angle > 0 && angle < 90) {
int dy = dr_intra_derivative[90 - angle];
int dx = 1;
av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left,
dx, dy, bd, 0);
} else if (angle > 180 && angle < 270) {
int dx = dr_intra_derivative[angle - 180];
int dy = 1;
av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
upsample_above, dx, dy, bd, 0);
}
}
// Generate the second directional predictor for IBP
static void highbd_second_dr_predictor_idif(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, uint16_t *above,
uint16_t *left, int angle, int bd) {
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
const int max_base = ((bw + bh) - 1);
if (angle > 0 && angle < 90) {
int dy = dr_intra_derivative[90 - angle];
int dx = 1;
left[max_base + 1] = left[max_base];
left[max_base + 2] = left[max_base];
av1_highbd_dr_prediction_z3_idif(dst, stride, bw, bh, above, left, dx, dy,
bd, 0);
} else if (angle > 180 && angle < 270) {
int dx = dr_intra_derivative[angle - 180];
int dy = 1;
above[max_base + 1] = above[max_base];
above[max_base + 2] = above[max_base];
av1_highbd_dr_prediction_z1_idif(dst, stride, bw, bh, above, left, dx, dy,
bd, 0);
}
}
static int is_smooth(const MB_MODE_INFO *mbmi, int plane, TREE_TYPE tree_type) {
(void)tree_type;
if (plane == 0) {
const PREDICTION_MODE mode = mbmi->mode;
return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
mode == SMOOTH_H_PRED);
} else {
// uv_mode is not set for inter blocks, so need to explicitly
// detect that case.
if (is_inter_block(
mbmi, mbmi->tree_type == SHARED_PART ? SHARED_PART : CHROMA_PART))
return 0;
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED ||
uv_mode == UV_SMOOTH_H_PRED);
}
}
static int get_filt_type(const MACROBLOCKD *xd, int plane) {
int ab_sm, le_sm;
if (plane == 0) {
const MB_MODE_INFO *ab = xd->above_mbmi;
const MB_MODE_INFO *le = xd->left_mbmi;
ab_sm = ab ? is_smooth(ab, plane, xd->tree_type) : 0;
le_sm = le ? is_smooth(le, plane, xd->tree_type) : 0;
} else {
const MB_MODE_INFO *ab = xd->chroma_above_mbmi;
const MB_MODE_INFO *le = xd->chroma_left_mbmi;
ab_sm = ab ? is_smooth(ab, plane, xd->tree_type) : 0;
le_sm = le ? is_smooth(le, plane, xd->tree_type) : 0;
}
return (ab_sm || le_sm) ? 1 : 0;
}
static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) {
const int d = abs(delta);
int strength = 0;
const int blk_wh = bs0 + bs1;
if (type == 0) {
if (blk_wh <= 8) {
if (d >= 56) strength = 1;
} else if (blk_wh <= 12) {
if (d >= 40) strength = 1;
} else if (blk_wh <= 16) {
if (d >= 40) strength = 1;
} else if (blk_wh <= 24) {
if (d >= 8) strength = 1;
if (d >= 16) strength = 2;
if (d >= 32) strength = 3;
} else if (blk_wh <= 32) {
if (d >= 1) strength = 1;
if (d >= 4) strength = 2;
if (d >= 32) strength = 3;
} else {
if (d >= 1) strength = 3;
}
} else {
if (blk_wh <= 8) {
if (d >= 40) strength = 1;
if (d >= 64) strength = 2;
} else if (blk_wh <= 16) {
if (d >= 20) strength = 1;
if (d >= 48) strength = 2;
} else if (blk_wh <= 24) {
if (d >= 4) strength = 3;
} else {
if (d >= 1) strength = 3;
}
}
return strength;
}
void av1_filter_intra_edge_high_c(uint16_t *p, int sz, int strength) {
if (!strength) return;
const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
{ 0, 5, 6, 5, 0 },
{ 2, 4, 4, 4, 2 } };
const int filt = strength - 1;
uint16_t edge[129];
memcpy(edge, p, sz * sizeof(*p));
for (int i = 1; i < sz; i++) {
int s = 0;
for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
int k = i - 2 + j;
k = (k < 0) ? 0 : k;
k = (k > sz - 1) ? sz - 1 : k;
s += edge[k] * kernel[filt][j];
}
s = (s + 8) >> 4;
p[i] = s;
}
}
static void filter_intra_edge_corner_high(uint16_t *p_above, uint16_t *p_left) {
const int kernel[3] = { 5, 6, 5 };
int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
(p_above[0] * kernel[2]);
s = (s + 8) >> 4;
p_above[-1] = s;
p_left[-1] = s;
}
void av1_upsample_intra_edge_high_c(uint16_t *p, int sz, int bd) {
// interpolate half-sample positions
assert(sz <= MAX_UPSAMPLE_SZ);
uint16_t in[MAX_UPSAMPLE_SZ + 3];
// copy p[-1..(sz-1)] and extend first and last samples
in[0] = p[-1];
in[1] = p[-1];
for (int i = 0; i < sz; i++) {
in[i + 2] = p[i];
}
in[sz + 2] = p[sz - 1];
// interpolate half-sample edge positions
p[-2] = in[0];
for (int i = 0; i < sz; i++) {
int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
s = (s + 8) >> 4;
s = clip_pixel_highbd(s, bd);
p[2 * i - 1] = s;
p[2 * i] = in[i + 2];
}
}
void av1_highbd_ibp_dr_prediction_z1_c(
const IbpWeightsType weights[][IBP_WEIGHT_SIZE][DIR_MODES_0_90],
int mode_idx, uint16_t *dst, ptrdiff_t stride, uint16_t *second_pred,
ptrdiff_t second_stride, int bw, int bh) {
const int col_shift = bw >> (IBP_WEIGHT_SIZE_LOG2 + 1);
const int row_shift = bh >> (IBP_WEIGHT_SIZE_LOG2 + 1);
int r, c;
for (r = 0; r < bh; ++r) {
const int row_idx = r >> row_shift;
for (c = 0; c < bw; ++c) {
const int col_idx = c >> col_shift;
const uint8_t weight = weights[row_idx][col_idx][mode_idx];
dst[c] = ROUND_POWER_OF_TWO(
dst[c] * weight + second_pred[c] * (IBP_WEIGHT_MAX - weight),
IBP_WEIGHT_SHIFT);
}
dst += stride;
second_pred += second_stride;
}
}
void av1_highbd_ibp_dr_prediction_z3_c(
const IbpWeightsType weights[][IBP_WEIGHT_SIZE][DIR_MODES_0_90],
int mode_idx, uint16_t *dst, ptrdiff_t stride, uint16_t *second_pred,
ptrdiff_t second_stride, int bw, int bh) {
const int col_shift = bw >> (IBP_WEIGHT_SIZE_LOG2 + 1);
const int row_shift = bh >> (IBP_WEIGHT_SIZE_LOG2 + 1);
int r, c;
for (c = 0; c < bw; ++c) {
const int col_idx = c >> col_shift;
uint16_t *tmp_dst = dst + c;
uint16_t *tmp_second = second_pred + c;
for (r = 0; r < bh; ++r) {
const int row_idx = r >> row_shift;
const uint8_t weight = weights[col_idx][row_idx][mode_idx];
tmp_dst[0] = ROUND_POWER_OF_TWO(
tmp_dst[0] * weight + tmp_second[0] * (IBP_WEIGHT_MAX - weight),
IBP_WEIGHT_SHIFT);
tmp_dst += stride;
tmp_second += second_stride;
}
}
}
static void build_intra_predictors_high(
const MACROBLOCKD *xd, const uint16_t *ref, int ref_stride, uint16_t *dst,
int dst_stride, PREDICTION_MODE mode, int angle_delta, TX_SIZE tx_size,
int disable_edge_filter, int n_top_px, int n_topright_px, int n_left_px,
int n_bottomleft_px, int plane, int is_sb_boundary,
const int seq_intra_pred_filter_flag, const int seq_ibp_flag,
const IbpWeightsType ibp_weights[][IBP_WEIGHT_SIZE][DIR_MODES_0_90]) {
MB_MODE_INFO *const mbmi = xd->mi[0];
int i;
DECLARE_ALIGNED(16, uint16_t, left_data_1st[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint16_t, above_data_1st[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint16_t, left_data_2nd[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint16_t, above_data_2nd[NUM_INTRA_NEIGHBOUR_PIXELS]);
DECLARE_ALIGNED(16, uint16_t, second_pred_data[MAX_TX_SQUARE + 32]);
DECLARE_ALIGNED(16, uint16_t, mrl_line_0_data[MAX_TX_SQUARE + 32]);
uint16_t *const above_row_1st = above_data_1st + 32;
uint16_t *const left_col_1st = left_data_1st + 32;
uint16_t *const above_row_2nd = above_data_2nd + 32;
uint16_t *const left_col_2nd = left_data_2nd + 32;
uint16_t *const second_pred = second_pred_data + 16;
uint16_t *dst_mrl_line_0 = mrl_line_0_data + 16;
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
const uint8_t mrl_index =
(plane == PLANE_TYPE_Y && is_inter_block(xd->mi[0], xd->tree_type) == 0)
? xd->mi[0]->mrl_index
: 0;
const int above_mrl_idx = is_sb_boundary ? 0 : mrl_index;
const uint16_t *above_ref_1st = ref - ref_stride * (above_mrl_idx + 1);
const uint16_t *left_ref_1st = ref - 1 - mrl_index;
const uint16_t *above_ref_2nd = ref - ref_stride;
const uint16_t *left_ref_2nd = ref - 1;
int p_angle = 0;
const int is_dr_mode = av1_is_directional_mode(mode);
const int use_intra_dip = mbmi->use_intra_dip && plane == PLANE_TYPE_Y;
int base = 128 << (xd->bd - 8);
// The left_data, above_data buffers must be zeroed to fix some intermittent
// valgrind errors. Uninitialized reads in intra pred modules (e.g. width =
// 4 path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data
// are seen to be the potential reason for this issue.
aom_memset16(left_data_1st, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
aom_memset16(above_data_1st, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
aom_memset16(left_data_2nd, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
aom_memset16(above_data_2nd, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
// The default values if ref pixels are not available:
// base base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
// base+1 A B .. Y Z
// base+1 C D .. W X
// base+1 E F .. U V
// base+1 G H .. S T T T T T
int apply_sub_block_based_refinement_filter =
seq_intra_pred_filter_flag && (mrl_index == 0);
const bool is_ibp_orip_allowed_blk_sz = tx_size != TX_4X4;
apply_sub_block_based_refinement_filter &= is_ibp_orip_allowed_blk_sz;
const int apply_ibp = seq_ibp_flag && is_ibp_orip_allowed_blk_sz;
const int txb_idx = get_tx_partition_idx(xd->mi[0], plane);
xd->mi[0]->is_wide_angle[plane > 0][txb_idx] = 0;
xd->mi[0]->mapped_intra_mode[plane > 0][txb_idx] = DC_PRED;
if (is_dr_mode) {
p_angle = mode_to_angle_map[mode] + angle_delta;
const int mrl_index_to_delta[4] = { 0, 1, -1, 0 };
p_angle += mrl_index_to_delta[mrl_index];
assert(p_angle > 0 && p_angle < 270);
if (!is_inter_block(xd->mi[0], xd->tree_type)) {
p_angle =
wide_angle_mapping(xd->mi[0], angle_delta, tx_size, mode, plane);
} else {
mbmi->is_wide_angle[plane > 0][txb_idx] = 0;
mbmi->mapped_intra_mode[plane > 0][txb_idx] = DC_PRED;
}
if (p_angle <= 90)
need_above = 1, need_left = 0, need_above_left = 1;
else if (p_angle < 180)
need_above = 1, need_left = 1, need_above_left = 1;
else
need_above = 0, need_left = 1, need_above_left = 1;
if (apply_ibp) {
need_above = 1, need_left = 1, need_above_left = 1;
}
if (apply_sub_block_based_refinement_filter &&
(p_angle == 90 || p_angle == 180)) {
need_above = 1;
need_left = 1;
need_above_left = 1;
}
}
if (use_intra_dip) need_left = need_above = need_above_left = 1;
assert(n_top_px >= 0);
assert(n_topright_px >= 0);
assert(n_left_px >= 0);
assert(n_bottomleft_px >= 0);
if (xd->mi[0]->multi_line_mrl == 0 &&
((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0))) {
int val;
if (need_left) {
val = (n_top_px > 0) ? above_ref_1st[0] : base + 1;
} else {
val = (n_left_px > 0) ? left_ref_1st[0] : base - 1;
}
for (i = 0; i < txhpx; ++i) {
aom_memset16(dst, val, txwpx);
dst += dst_stride;
}
return;
}
// NEED_LEFT
if (need_left) {
int need_bottom = extend_modes[mode] & NEED_BOTTOMLEFT;
if (use_intra_dip) need_bottom = 1;
if (is_dr_mode)
need_bottom =
apply_ibp ? (p_angle < 90) || (p_angle > 180) : p_angle > 180;
int num_left_pixels_needed =
txhpx + (need_bottom ? txwpx : 3) + (mrl_index << 1);
if (use_intra_dip) {
// DIP mode requires left edge + 1/4 tx height for overhang feature.
num_left_pixels_needed = txhpx + (txhpx >> 2);
}
i = 0;
if (n_left_px > 0) {
for (; i < n_left_px; i++) {
left_col_1st[i] = left_ref_1st[i * ref_stride];
left_col_2nd[i] = left_ref_2nd[i * ref_stride];
}
if (need_bottom && n_bottomleft_px > 0) {
assert(i == txhpx);
for (; i < txhpx + n_bottomleft_px; i++) {
left_col_1st[i] = left_ref_1st[i * ref_stride];
left_col_2nd[i] = left_ref_2nd[i * ref_stride];
}
}
if (i < num_left_pixels_needed) {
aom_memset16(&left_col_1st[i], left_col_1st[i - 1],
num_left_pixels_needed - i);
aom_memset16(&left_col_2nd[i], left_col_2nd[i - 1],
num_left_pixels_needed - i);
}
} else if (n_top_px > 0) {
aom_memset16(left_col_1st, above_ref_1st[0], num_left_pixels_needed);
aom_memset16(left_col_2nd, above_ref_2nd[0], num_left_pixels_needed);
}
}
// NEED_ABOVE
if (need_above) {
int need_right = extend_modes[mode] & NEED_ABOVERIGHT;
if (use_intra_dip) need_right = 1;
if (is_dr_mode)
need_right = apply_ibp ? (p_angle < 90) || (p_angle > 180) : p_angle < 90;
int num_top_pixels_needed =
txwpx + (need_right ? txhpx : 0) + (mrl_index << 1);
if (use_intra_dip) {
// DIP mode requires above line + 1/4 tx width for overhang feature.
num_top_pixels_needed = txwpx + (txwpx >> 2);
}
if (n_top_px > 0) {
memcpy(above_row_1st, above_ref_1st, n_top_px * sizeof(above_ref_1st[0]));
memcpy(above_row_2nd, above_ref_2nd, n_top_px * sizeof(above_ref_2nd[0]));
i = n_top_px;
if (need_right && n_topright_px > 0) {
assert(n_top_px == txwpx);
memcpy(above_row_1st + txwpx, above_ref_1st + txwpx,
n_topright_px * sizeof(above_ref_1st[0]));
memcpy(above_row_2nd + txwpx, above_ref_2nd + txwpx,
n_topright_px * sizeof(above_ref_2nd[0]));
i += n_topright_px;
}
if (i < num_top_pixels_needed) {
aom_memset16(&above_row_1st[i], above_row_1st[i - 1],
num_top_pixels_needed - i);
aom_memset16(&above_row_2nd[i], above_row_2nd[i - 1],
num_top_pixels_needed - i);
}
} else if (n_left_px > 0) {
aom_memset16(above_row_1st, left_ref_1st[0], num_top_pixels_needed);
aom_memset16(above_row_2nd, left_ref_2nd[0], num_top_pixels_needed);
}
}
if (need_above_left) {
for (i = 1; i <= mrl_index + 1; i++) {
if (n_top_px > 0 && n_left_px > 0) {
above_row_1st[-i] = above_ref_1st[-i];
above_row_2nd[-i] = above_ref_2nd[-i];
if (is_sb_boundary) {
left_col_1st[-i] = left_ref_1st[-ref_stride];
left_col_2nd[-i] = left_ref_2nd[-ref_stride];
} else {
left_col_1st[-i] = left_ref_1st[-i * ref_stride];
left_col_2nd[-i] = left_ref_2nd[-i * ref_stride];
}
} else if (n_top_px > 0) {
above_row_1st[-i] = left_col_1st[-i] = above_ref_1st[0];
above_row_2nd[-i] = left_col_2nd[-i] = above_ref_2nd[0];
} else if (n_left_px > 0) {
above_row_1st[-i] = left_col_1st[-i] = left_ref_1st[0];
above_row_2nd[-i] = left_col_2nd[-i] = left_ref_2nd[0];
} else {
above_row_1st[-i] = left_col_1st[-i] = base;
above_row_2nd[-i] = left_col_2nd[-i] = base;
}
}
}
if (use_intra_dip) {
av1_highbd_intra_dip_predictor(mbmi->intra_dip_mode, dst, dst_stride,
above_row_1st, left_col_1st, tx_size, xd->bd
#if CONFIG_DIP_EXT_PRUNING
,
mbmi->intra_dip_features
#endif // CONFIG_DIP_EXT_PRUNING
);
return;
}
if (is_dr_mode) {
int upsample_above = 0;
int upsample_left = 0;
if (!disable_edge_filter && mrl_index == 0) {
int need_right = p_angle < 90;
int need_bottom = p_angle > 180;
int filt_type_above = get_filt_type(xd, plane);
int filt_type_left = filt_type_above;
int angle_above = p_angle - 90;
int angle_left = p_angle - 180;
if (apply_ibp) {
need_right |= p_angle > 180;
need_bottom |= p_angle < 90;
const MB_MODE_INFO *ab =
(plane == 0) ? xd->above_mbmi : xd->chroma_above_mbmi;
const MB_MODE_INFO *le =
(plane == 0) ? xd->left_mbmi : xd->chroma_left_mbmi;
filt_type_above = ab ? is_smooth(ab, plane, xd->tree_type) : 0;
filt_type_left = le ? is_smooth(le, plane, xd->tree_type) : 0;
angle_above = p_angle > 180 ? (p_angle - 180 - 90) : angle_above;
angle_left = p_angle < 90 ? p_angle : angle_left;
}
if (p_angle != 90 && p_angle != 180) {
const int ab_le = need_above_left ? 1 : 0;
if (need_above && need_left && (txwpx + txhpx >= 24)) {
filter_intra_edge_corner_high(above_row_1st, left_col_1st);
}
if (need_above && n_top_px > 0) {
const int strength = intra_edge_filter_strength(
txwpx, txhpx, angle_above, filt_type_above);
const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
av1_filter_intra_edge_high(above_row_1st - ab_le, n_px, strength);
}
if (need_left && n_left_px > 0) {
const int strength = intra_edge_filter_strength(
txhpx, txwpx, angle_left, filt_type_left);
const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
av1_filter_intra_edge_high(left_col_1st - ab_le, n_px, strength);
}
}
}
const int is_multi_line_mrls_allowed_blk_sz = (tx_size == TX_4X4) ? 0 : 1;
if (plane == AOM_PLANE_Y) {
highbd_dr_predictor_idif(dst, dst_stride, tx_size, above_row_1st,
left_col_1st, p_angle, xd->bd, mrl_index);
if (xd->mi[0]->multi_line_mrl && mrl_index &&
is_multi_line_mrls_allowed_blk_sz) {
highbd_dr_predictor_idif(dst_mrl_line_0, txwpx, tx_size, above_row_2nd,
left_col_2nd, p_angle, xd->bd, 0);
int r, c;
for (r = 0; r < txhpx; ++r) {
for (c = 0; c < txwpx; ++c) {
dst[r * dst_stride + c] =
(dst[r * dst_stride + c] + dst_mrl_line_0[r * txwpx + c]) / 2;
}
}
}
} else {
highbd_dr_predictor(dst, dst_stride, tx_size, above_row_1st, left_col_1st,
upsample_above, upsample_left, p_angle, xd->bd,
mrl_index);
if (xd->mi[0]->multi_line_mrl && mrl_index &&
is_multi_line_mrls_allowed_blk_sz) {
highbd_dr_predictor(dst_mrl_line_0, txwpx, tx_size, above_row_2nd,
left_col_2nd, upsample_above, upsample_left,
p_angle, xd->bd, 0);
int r, c;
for (r = 0; r < txhpx; ++r) {
for (c = 0; c < txwpx; ++c) {
dst[r * dst_stride + c] =
(dst[r * dst_stride + c] + dst_mrl_line_0[r * txwpx + c]) / 2;
}
}
}
}
if (apply_ibp) {
if (mrl_index == 0 && (angle_delta % 2 == 0) && plane == PLANE_TYPE_Y) {
if (p_angle > 0 && p_angle < 90) {
int mode_index = angle_to_mode_index[p_angle];
if (is_ibp_enabled[mode_index]) {
if (plane == AOM_PLANE_Y) {
highbd_second_dr_predictor_idif(second_pred, txwpx, tx_size,
above_row_1st, left_col_1st,
p_angle, xd->bd);
} else {
highbd_second_dr_predictor(
second_pred, txwpx, tx_size, above_row_1st, left_col_1st,
upsample_above, upsample_left, p_angle, xd->bd);
}
av1_highbd_ibp_dr_prediction_z1_c(ibp_weights, mode_index, dst,
dst_stride, second_pred, txwpx,
txwpx, txhpx);
}
}
if (p_angle > 180 && p_angle < 270) {
int mode_index = angle_to_mode_index[270 - p_angle];
if (is_ibp_enabled[mode_index]) {
if (plane == AOM_PLANE_Y) {
highbd_second_dr_predictor_idif(second_pred, txwpx, tx_size,
above_row_1st, left_col_1st,
p_angle, xd->bd);
} else {
highbd_second_dr_predictor(
second_pred, txwpx, tx_size, above_row_1st, left_col_1st,
upsample_above, upsample_left, p_angle, xd->bd);
}
av1_highbd_ibp_dr_prediction_z3_c(ibp_weights, mode_index, dst,
dst_stride, second_pred, txwpx,
txwpx, txhpx);
}
}
}
}
// Apply sub-block based filter for horizontal/vertical intra mode
if (apply_sub_block_based_refinement_filter &&
av1_allow_orip_dir(p_angle, tx_size)) {
av1_apply_orip_4x4subblock_hbd(dst, dst_stride, tx_size, above_row_1st,
left_col_1st, mode, xd->bd);
}
return;
}
// predict
if (mode == DC_PRED) {
#if CONFIG_CHROMA_LARGE_TX
if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED &&
(txwpx > 32 || txhpx > 32)) {
highbd_dc_predictor_subsampled(dst, dst_stride, n_top_px > 0,
n_left_px > 0, txwpx, txhpx, above_row_1st,
left_col_1st, xd->bd);
} else
#endif // CONFIG_CHROMA_LARGE_TX
dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
dst, dst_stride, above_row_1st, left_col_1st, xd->bd);
if (apply_ibp && ((plane == 0) || (xd->mi[0]->uv_mode != UV_CFL_PRED)) &&
((n_left_px > 0) || (n_top_px > 0))) {
ibp_dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
dst, dst_stride, above_row_1st, left_col_1st, xd->bd);
}
} else {
pred_high[mode][tx_size](dst, dst_stride, above_row_1st, left_col_1st,
xd->bd);
}
// Apply sub-block based filter for DC/smooth intra mode
apply_sub_block_based_refinement_filter &=
av1_allow_orip_smooth_dc(mode, plane, tx_size);
if (apply_sub_block_based_refinement_filter) {
av1_apply_orip_4x4subblock_hbd(dst, dst_stride, tx_size, above_row_1st,
left_col_1st, mode, xd->bd);
}
}
#define ARITHMETIC_LEFT_SHIFT(x, shift) \
(((x) >= 0) ? ((x) << (shift)) : (-((-(x)) << (shift))))
void av1_predict_intra_block(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int wpx, int hpx, TX_SIZE tx_size,
PREDICTION_MODE mode, int angle_delta,
int use_palette, const uint16_t *ref,
int ref_stride, uint16_t *dst, int dst_stride,
int col_off, int row_off, int plane) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
const int x = col_off << MI_SIZE_LOG2;
const int y = row_off << MI_SIZE_LOG2;
if (use_palette) {
int r, c;
const uint8_t *const map = xd->plane[plane != 0].color_index_map +
xd->color_index_map_offset[plane != 0];
const uint16_t *const palette =
mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE;
for (r = 0; r < txhpx; ++r) {
for (c = 0; c < txwpx; ++c) {
dst[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]];
}
}
return;
}
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int txw = tx_size_wide_unit[tx_size];
const int txh = tx_size_high_unit[tx_size];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row_off, col_off, plane);
const int mi_row = plane ? xd->mi[0]->chroma_ref_info.mi_row_chroma_base
: -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = plane ? xd->mi[0]->chroma_ref_info.mi_col_chroma_base
: -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
BLOCK_SIZE bsize = mbmi->sb_type[plane > 0];
const BLOCK_SIZE init_bsize = bsize;
// force 4x4 chroma component block size.
if (ss_x || ss_y) {
bsize = mbmi->chroma_ref_info.bsize_base;
}
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
// Distance between the right edge of this prediction block to
// the tile right edge
const int xr =
ARITHMETIC_LEFT_SHIFT(xd->tile.mi_col_end - mi_col - mi_wide, 2 - ss_x) +
wpx - x - txwpx;
// Distance between the bottom edge of this prediction block to
// the tile bottom edge
const int yd =
ARITHMETIC_LEFT_SHIFT(xd->tile.mi_row_end - mi_row - mi_high, 2 - ss_y) +
hpx - y - txhpx;
const int right_available =
mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end;
const int bottom_available =
(yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end);
int px_top_right = 0;
const int have_top_right = has_top_right(
cm, xd, bsize, mi_row, mi_col, have_top, right_available, tx_size, plane,
row_off, col_off, ss_x, ss_y, xr, &px_top_right, bsize != init_bsize);
int px_bottom_left = 0;
const int have_bottom_left =
has_bottom_left(cm, xd, bsize, mi_row, mi_col, bottom_available,
have_left, tx_size, plane, row_off, col_off, ss_x, ss_y,
yd, &px_bottom_left, bsize != init_bsize);
const int disable_edge_filter = !cm->seq_params.enable_intra_edge_filter;
const int is_sb_boundary =
(mi_row % cm->mib_size == 0 && row_off == 0) ? 1 : 0;
build_intra_predictors_high(
xd, ref, ref_stride, dst, dst_stride, mode, angle_delta, tx_size,
disable_edge_filter, have_top ? AOMMIN(txwpx, xr + txwpx) : 0,
have_top_right ? px_top_right : 0,
have_left ? AOMMIN(txhpx, yd + txhpx) : 0,
have_bottom_left ? px_bottom_left : 0, plane, is_sb_boundary,
cm->seq_params.enable_orip, cm->seq_params.enable_ibp,
cm->ibp_directional_weights);
return;
}
void mhccp_implicit_fetch_neighbor_luma(const AV1_COMMON *cm,
MACROBLOCKD *const xd, int row, int col,
TX_SIZE tx_size, int *above_lines,
int *left_lines, int is_top_sb_boundary,
int *ref_width, int *ref_height) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
const MB_MODE_INFO *const mbmi = xd->mi[0];
int input_stride = pd->dst.stride;
uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
int width = tx_size_wide[tx_size] << sub_x;
int height = tx_size_high[tx_size] << sub_y;
int have_top = 0, have_left = 0;
set_have_top_and_left(&have_top, &have_left, xd, row, col, 1);
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
BLOCK_SIZE bsize = mbmi->sb_type[1];
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int row_offset = mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base;
const int col_offset = mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base;
*above_lines =
have_top ? (((int)((xd->mi_row - row_offset) -
(int)((LINE_NUM + 1) >> (MI_SIZE_LOG2 >> sub_y))) <
xd->tile.mi_row_start)
? ((xd->mi_row - row_offset - xd->tile.mi_row_start)
<< MI_SIZE_LOG2)
: ((LINE_NUM + 1) << sub_y))
: 0; // This is luma line num
*left_lines =
have_left ? (((int)((xd->mi_col - col_offset) -
(int)((LINE_NUM + 1) >> (MI_SIZE_LOG2 >> sub_x))) <
xd->tile.mi_col_start)
? ((xd->mi_col - col_offset - xd->tile.mi_col_start)
<< MI_SIZE_LOG2)
: ((LINE_NUM + 1) << sub_x))
: 0;
// Distance between the bottom edge of this prediction block to
// the frame bottom edge
// txw,txh width/height in samples of transform block
// wpx,hpx width/height in pixels of chroma block
// width,height width height in pixels of transform block
// wpx - x - width is pixels to right of transform block to edge of chroma
// block tx_mi_col/tx_mi_row is mi location of transform block
const BLOCK_SIZE init_bsize = bsize;
// force 4x4 chroma component block size.
if (sub_x || sub_y) {
bsize = mbmi->chroma_ref_info.bsize_base;
}
const int hpx = block_size_high[bsize];
const int wpx = block_size_wide[bsize];
const int tx_mi_col = xd->mi[0]->chroma_ref_info.mi_col_chroma_base + col;
const int tx_mi_row = xd->mi[0]->chroma_ref_info.mi_row_chroma_base + row;
const int x = col << MI_SIZE_LOG2;
const int xr =
ARITHMETIC_LEFT_SHIFT(xd->tile.mi_col_end - mi_col - mi_wide, 2 - sub_x) +
((wpx - x - width) >> sub_x);
const int y = row << MI_SIZE_LOG2;
const int yd =
ARITHMETIC_LEFT_SHIFT(xd->tile.mi_row_end - mi_row - mi_high, 2 - sub_y) +
((hpx - y - height) >> sub_y);
const int right_available =
tx_mi_col + (width >> MI_SIZE_LOG2) < xd->tile.mi_col_end;
const int bottom_available =
(yd > 0) && (tx_mi_row + (height >> MI_SIZE_LOG2)) < xd->tile.mi_row_end;
int px_top_right = 0;
const int have_top_right =
has_top_right(cm, xd, bsize, mi_row - row_offset, mi_col - col_offset,
have_top, right_available, tx_size, 0, row, col, sub_x,
sub_y, xr, &px_top_right, bsize != init_bsize);
int px_bottom_left = 0;
const int have_bottom_left =
has_bottom_left(cm, xd, bsize, mi_row - row_offset, mi_col - col_offset,
bottom_available, have_left, tx_size, 0, row, col, sub_x,
sub_y, yd, &px_bottom_left, bsize != init_bsize);
*ref_width = AOMMIN(128, *left_lines + width +
(have_top_right && width > 4
? AOMMIN((px_top_right << sub_x), width)
: 0));
if ((((tx_mi_col) << MI_SIZE_LOG2) + width +
(have_top_right && width > 4 ? AOMMIN((px_top_right << sub_x), width)
: 0)) >=
(int)(xd->tile.mi_col_end << MI_SIZE_LOG2)) {
*ref_width = (xd->tile.mi_col_end << MI_SIZE_LOG2) -
((tx_mi_col) << MI_SIZE_LOG2) + *left_lines;
}
*ref_height = AOMMIN(128, *above_lines + height +
(have_bottom_left && height > 4
? AOMMIN((px_bottom_left << sub_y), height)
: 0));
if ((((tx_mi_row) << MI_SIZE_LOG2) + height +
(have_bottom_left && height > 4
? AOMMIN((px_bottom_left << sub_y), height)
: 0)) >= (int)(xd->tile.mi_row_end << MI_SIZE_LOG2)) {
*ref_height = *above_lines + (xd->tile.mi_row_end << MI_SIZE_LOG2) -
((tx_mi_row) << MI_SIZE_LOG2);
}
*ref_width = AOMMIN(*ref_width, 128);
*ref_height = AOMMIN(*ref_height, 128);
memset(cfl->mhccp_ref_buf_q3[0], 0, sizeof(cfl->mhccp_ref_buf_q3[0]));
uint16_t *output_q3 = cfl->mhccp_ref_buf_q3[0];
int output_stride = CFL_BUF_LINE * 2;
uint16_t *input = dst;
if (row_offset > 0)
input = input - (row_offset << MI_SIZE_LOG2) * input_stride;
if (col_offset > 0) input = input - (col_offset << MI_SIZE_LOG2);
input = input - (*above_lines) * input_stride - *left_lines;
if ((*above_lines) || (*left_lines)) {
if (sub_x && sub_y) {
for (int h = 0; h < (*ref_height); h += 2) {
for (int w = 0; w < (*ref_width); w += 2) {
const int bot = w + input_stride;
if ((h >= *above_lines && w >= *left_lines + width) ||
(h >= *above_lines + height && w >= *left_lines))
continue;
// For blocks at the superblock top boundary, we only have one line
// above available, therefore we need to offset values for above
// region Proposal E229 (for 4:2:0 case) propose to use only 4 lines
// and 2 padding lines for the luma reference region, and 2 lines and
// 1 padding line for the chroma reference region. Therefore, for
// these 2 padding lines above and to the left, we need to offset the
// reference region for the top and left boundaries ref_h_t_off is the
// position offset value of the top pixel in cfl_ds_filter_index == 2
// for both padding and superblock top boundary
int ref_h_t_off = 0;
// ref_h_c_off is the position offset value of the pixel in the same
// horizontal line of the center pixel for both padding and superblock
// top boundary
int ref_h_c_off = 0;
// ref_h_b_off is the position offset value of the bottom pixel in
// downsample filtering for both padding and superblock top boundary
int ref_h_b_off = 0;
// ref_w_off is the position offset value for padding only in the left
// and right directions
int ref_w_off = 0;
// Preparing the vertical position offset values for superblock top
// boundary and padding
if (*above_lines == ((LINE_NUM + 1) << sub_y)) {
if (is_top_sb_boundary && (h < *above_lines)) {
// For the top boundary of the superblock, we need to offset the
// reference region
ref_h_t_off = h != 0 ? ((LINE_NUM + 1) << sub_y) - h
: ((LINE_NUM + 1) << sub_y) - (h + 1);
ref_h_c_off = ((LINE_NUM + 1) << sub_y) - (h + 1);
ref_h_b_off = ((LINE_NUM + 1) << sub_y) - (h + 2);
} else {
#if !CONFIG_MHCCP_BUFFER_IMPROVE
// For the 2 padding lines above, we need to offset the reference
// region
if (h == 0) {
ref_h_t_off = 2;
ref_h_c_off = 2;
ref_h_b_off = 2;
}
#endif // CONFIG_MHCCP_BUFFER_IMPROVE
}
}
// For the 2 padding lines left, we need to offset the reference
// region
#if !CONFIG_MHCCP_BUFFER_IMPROVE
if (*left_lines == ((LINE_NUM + 1) << sub_x) && (w == 0)) {
ref_w_off = 2;
}
#endif // CONFIG_MHCCP_BUFFER_IMPROVE
if (cm->seq_params.cfl_ds_filter_index == 1) {
output_q3[w >> 1] =
input[AOMMAX(0, w - 1) + ref_w_off +
ref_h_c_off * input_stride] +
2 * input[w + ref_w_off + ref_h_c_off * input_stride] +
input[w + 1 + ref_w_off + ref_h_c_off * input_stride] +
input[bot + AOMMAX(-1, -w) + ref_w_off +
ref_h_b_off * input_stride] +
2 * input[bot + ref_w_off + ref_h_b_off * input_stride] +
input[bot + 1 + ref_w_off + ref_h_b_off * input_stride];
} else if (cm->seq_params.cfl_ds_filter_index == 2) {
const int top = h != 0 ? w - input_stride : w;
output_q3[w >> 1] =
input[AOMMAX(0, w - 1) + ref_w_off +
ref_h_c_off * input_stride] +
4 * input[w + ref_w_off + ref_h_c_off * input_stride] +
input[w + 1 + ref_w_off + ref_h_c_off * input_stride] +
input[top + ref_w_off + ref_h_t_off * input_stride] +
input[bot + ref_w_off + ref_h_b_off * input_stride];
} else {
output_q3[w >> 1] =
(input[w + ref_w_off + ref_h_c_off * input_stride] +
input[w + 1 + ref_w_off + ref_h_c_off * input_stride] +
input[bot + ref_w_off + ref_h_b_off * input_stride] +
input[bot + 1 + ref_w_off + ref_h_b_off * input_stride])
<< 1;
}
}
output_q3 += output_stride;
input += (input_stride << 1);
}
} else if (sub_x) {
for (int h = 0; h < (*ref_height); h++) {
for (int i = 0; i < (*ref_width); i += 2) {
const int filter_type = cm->seq_params.cfl_ds_filter_index;
int ref_h_c_off = 0;
int ref_w_off = 0;
if (*above_lines == (LINE_NUM + 1)) {
if (is_top_sb_boundary && (h < *above_lines)) {
// For the top boundary of the superblock, we need to offset the
// reference region
ref_h_c_off = (LINE_NUM + 1) - (h + 1);
} else {
#if !CONFIG_MHCCP_BUFFER_IMPROVE
if (h == 0) {
// For the 1 padding lines above, we need to offset the
// reference region
ref_h_c_off = 1;
}
#endif // CONFIG_MHCCP_BUFFER_IMPROVE
}
}
#if !CONFIG_MHCCP_BUFFER_IMPROVE
// For the 2 padding lines left, we need to offset the reference
// region
if (*left_lines == ((LINE_NUM + 1) << sub_x) && (i == 0)) {
ref_w_off = 2;
}
#endif // !CONFIG_MHCCP_BUFFER_IMPROVE
if (filter_type == 1) {
output_q3[i >> 1] =
(input[AOMMAX(0, i - 1) + ref_w_off +
ref_h_c_off * input_stride] +
2 * input[i + ref_w_off + ref_h_c_off * input_stride] +
input[i + 1 + ref_w_off + ref_h_c_off * input_stride])
<< 1;
} else if (filter_type == 2) {
output_q3[i >> 1] =
input[i + ref_w_off + ref_h_c_off * input_stride] << 3;
} else {
output_q3[i >> 1] =
(input[i + ref_w_off + ref_h_c_off * input_stride] +
input[i + 1 + ref_w_off + ref_h_c_off * input_stride])
<< 2;
}
}
output_q3 += output_stride;
input += input_stride;
}
} else if (sub_y) {
for (int h = 0; h < (*ref_height); h += 2) {
for (int i = 0; i < (*ref_width); ++i) {
const int bot = i + input_stride;
int ref_h_c_off = 0;
int ref_h_b_off = 0;
int ref_w_off = 0;
if (*above_lines == ((LINE_NUM + 1) << sub_y)) {
if (is_top_sb_boundary && (h < *above_lines)) {
// For the top boundary of the superblock, we need to offset the
// reference region
ref_h_c_off = ((LINE_NUM + 1) << sub_y) - (h + 1);
ref_h_b_off = ((LINE_NUM + 1) << sub_y) - (h + 2);
} else {
#if !CONFIG_MHCCP_BUFFER_IMPROVE
// For the 2 padding lines above, we need to offset the reference
// region
if (h == 0) {
ref_h_c_off = 2;
ref_h_b_off = 2;
}
#endif // CONFIG_MHCCP_BUFFER_IMPROVE
}
}
#if !CONFIG_MHCCP_BUFFER_IMPROVE
// For the 1 padding lines left, we need to offset the reference
// region
if (*left_lines == (LINE_NUM + 1) && (i == 0)) {
ref_w_off = 1;
}
#endif // !CONFIG_MHCCP_BUFFER_IMPROVE
output_q3[i] = (input[i + ref_w_off + ref_h_c_off * input_stride] +
input[bot + ref_w_off + ref_h_b_off * input_stride])
<< 2;
}
output_q3 += output_stride;
input += input_stride * 2;
}
} else {
for (int h = 0; h < (*ref_height); h++) {
for (int i = 0; i < (*ref_width); ++i) {
int ref_h_c_off = 0;
int ref_w_off = 0;
// For the top boundary of the superblock, we need to offset the
// reference region
if (*above_lines == (LINE_NUM + 1)) {
if (is_top_sb_boundary && (h < *above_lines)) {
ref_h_c_off = (LINE_NUM + 1) - (h + 1);
} else {
#if !CONFIG_MHCCP_BUFFER_IMPROVE
if (h == 0) {
// For the 1 padding lines above, we need to offset the
// reference region
ref_h_c_off = 1;
}
#endif // CONFIG_MHCCP_BUFFER_IMPROVE
}
}
#if !CONFIG_MHCCP_BUFFER_IMPROVE
// For the 1 padding lines left, we need to offset the reference
// region
if (*left_lines == (LINE_NUM + 1) && (i == 0)) {
ref_w_off = 1;
}
#endif // !CONFIG_MHCCP_BUFFER_IMPROVE
output_q3[i] = input[i + ref_w_off + ref_h_c_off * input_stride] << 3;
}
output_q3 += output_stride;
input += input_stride;
}
}
}
}
void mhccp_implicit_fetch_neighbor_chroma(MACROBLOCKD *const xd, int plane,
int row, int col, TX_SIZE tx_size,
int above_lines, int left_lines,
int is_top_sb_boundary, int ref_width,
int ref_height) {
CFL_CTX *const cfl = &xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[plane];
int input_stride = pd->dst.stride;
uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
memset(cfl->mhccp_ref_buf_q3[plane], 0, sizeof(cfl->mhccp_ref_buf_q3[plane]));
uint16_t *output_q3 = cfl->mhccp_ref_buf_q3[plane];
int output_stride = CFL_BUF_LINE * 2;
uint16_t *input = dst - above_lines * input_stride - left_lines;
if (above_lines || left_lines) {
for (int h = 0; h < ref_height; ++h) {
for (int w = 0; w < ref_width; ++w) {
if ((h >= above_lines && w >= left_lines + width) ||
(h >= above_lines + height && w >= left_lines))
continue;
int ref_h_offset = 0, ref_w_offset = 0;
if (above_lines == (LINE_NUM + 1)) {
if (is_top_sb_boundary && (h < above_lines)) {
ref_h_offset = (LINE_NUM + 1) - (h + 1);
} else {
if (h == 0) {
ref_h_offset = 1;
}
}
}
if (left_lines == (LINE_NUM + 1) && (w == 0)) {
ref_w_offset = 1;
}
output_q3[w] = input[w + ref_w_offset + ref_h_offset * input_stride];
}
output_q3 += output_stride;
input += input_stride;
}
}
}
#undef ARITHMETIC_LEFT_SHIFT
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, int blk_col, int blk_row,
TX_SIZE tx_size) {
MB_MODE_INFO *const mbmi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int dst_stride = pd->dst.stride;
uint16_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
const PREDICTION_MODE mode =
(plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0;
const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP;
if (plane != AOM_PLANE_Y) mbmi->txb_idx = 0;
if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED
#if CONFIG_CWG_F307_CFL_SEQ_FLAG
&& cm->seq_params.enable_cfl_intra
#endif // CONFIG_CWG_F307_CFL_SEQ_FLAG
) {
#if CONFIG_DEBUG
assert(is_cfl_allowed(
#if CONFIG_CWG_F307_CFL_SEQ_FLAG
cm->seq_params.enable_cfl_intra,
#endif // CONFIG_CWG_F307_CFL_SEQ_FLAG
xd));
const BLOCK_SIZE plane_bsize = get_mb_plane_block_size(
xd, mbmi, plane, pd->subsampling_x, pd->subsampling_y);
(void)plane_bsize;
assert(plane_bsize < BLOCK_SIZES_ALL);
if (!xd->lossless[mbmi->segment_id]) {
assert(blk_col == 0);
assert(blk_row == 0);
assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
}
#endif
// chroma_bsize is the size in units of 4x4 luma samples of the chroma
// block represented as a BLOCK_SIZE
const BLOCK_SIZE chroma_bsize = get_bsize_base(xd, mbmi, PLANE_TYPE_UV);
// chroma_tx_size is the size in units of 4x4 luma samples of the chroma
// block represented as a TX_SIZE
#if !CONFIG_CHROMA_LARGE_TX
const TX_SIZE chroma_tx_size = max_txsize_rect_lookup[chroma_bsize];
#endif // !CONFIG_CHROMA_LARGE_TX
CFL_CTX *const cfl = &xd->cfl;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
const int row_offset =
mi_row - xd->mi[0]->chroma_ref_info.mi_row_chroma_base;
const int col_offset =
mi_col - xd->mi[0]->chroma_ref_info.mi_col_chroma_base;
struct macroblockd_plane *const luma_pd = &xd->plane[AOM_PLANE_Y];
// luma_dst points to the top-left luma sample corresponding to the
// top-left chroma sample of the chroma block
uint16_t *luma_dst = &luma_pd->dst.buf[-(
(row_offset * luma_pd->dst.stride + col_offset) << MI_SIZE_LOG2)];
cfl_store(xd, cfl, luma_dst, luma_pd->dst.stride, 0, 0,
#if CONFIG_CHROMA_LARGE_TX
block_size_wide[chroma_bsize], block_size_high[chroma_bsize],
#else
chroma_tx_size,
#endif // CONFIG_CHROMA_LARGE_TX
cm->seq_params.cfl_ds_filter_index);
CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane);
if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) {
cfl->dc_pred_is_cached[pred_plane] = 0;
cfl->use_dc_pred_cache = 0;
}
if (cfl->dc_pred_is_cached[pred_plane] == 0) {
av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode,
angle_delta, use_palette, dst, dst_stride, dst,
dst_stride, blk_col, blk_row, plane);
if (cfl->use_dc_pred_cache) {
cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]);
cfl->dc_pred_is_cached[pred_plane] = 1;
}
} else {
cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane);
}
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
int above_lines = 0, left_lines = 0, ref_width = 0, ref_height = 0;
{
const int row_start = ((xd->mi[0]->chroma_ref_info.mi_row_chroma_base +
(blk_row << cfl->subsampling_y))
<< MI_SIZE_LOG2);
const int sb_height = block_size_high[cm->sb_size];
const int is_top_sb_boundary = !(row_start % sb_height);
#if MHCCP_RUNTIME_FLAG
if (mbmi->cfl_idx < CFL_MULTI_PARAM) {
#else
if (mbmi->cfl_idx < CFL_MULTI_PARAM_V) {
#endif // MHCCP_RUNTIME_FLAG
cfl_implicit_fetch_neighbor_luma(
cm, xd, blk_row << cfl->subsampling_y,
blk_col << cfl->subsampling_x, is_top_sb_boundary,
#if CONFIG_CHROMA_LARGE_TX
block_size_wide[chroma_bsize], block_size_high[chroma_bsize]
#else
chroma_tx_size
#endif // CONFIG_CHROMA_LARGE_TX
);
cfl_calc_luma_dc(xd, blk_row, blk_col, tx_size);
}
if (mbmi->cfl_idx == CFL_DERIVED_ALPHA) {
cfl_implicit_fetch_neighbor_chroma(cm, xd, plane, blk_row, blk_col,
tx_size);
cfl_derive_implicit_scaling_factor(xd, plane, blk_row, blk_col,
tx_size);
}
#if MHCCP_RUNTIME_FLAG
else if (mbmi->cfl_idx == CFL_MULTI_PARAM) {
#else
else if (mbmi->cfl_idx == CFL_MULTI_PARAM_V) {
#endif // MHCCP_RUNTIME_FLAG
mhccp_implicit_fetch_neighbor_luma(
cm, xd, blk_row << cfl->subsampling_y,
blk_col << cfl->subsampling_x, tx_size, &above_lines, &left_lines,
is_top_sb_boundary, &ref_width, &ref_height);
above_lines >>= sub_y;
left_lines >>= sub_x;
ref_width >>= sub_x;
ref_height >>= sub_y;
mhccp_implicit_fetch_neighbor_chroma(
xd, plane, blk_row, blk_col, tx_size, above_lines, left_lines,
is_top_sb_boundary, ref_width, ref_height);
mhccp_derive_multi_param_hv(xd, plane, above_lines, left_lines,
ref_width, ref_height, mbmi->mh_dir,
is_top_sb_boundary);
}
}
cfl_predict_block(
#if CONFIG_CWG_F307_CFL_SEQ_FLAG
cm->seq_params.enable_cfl_intra,
#endif // CONFIG_CWG_F307_CFL_SEQ_FLAG
xd, dst, dst_stride, tx_size, plane, above_lines > 0, left_lines > 0,
above_lines, left_lines);
return;
}
av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode,
angle_delta, use_palette, dst, dst_stride, dst,
dst_stride, blk_col, blk_row, plane);
}
void av1_init_intra_predictors(void) {
aom_once(init_intra_predictors_internal);
}
DECLARE_ALIGNED(16, const int8_t,
av1_sub_block_filter_intra_taps_4x4[16][9]) = {
{ 4, 16, 4, 0, 0, 16, 4, 0, 0 }, { 2, 4, 16, 4, 0, 8, 2, 0, 0 },
{ 1, 0, 4, 16, 4, 4, 1, 0, 0 }, { 0, 0, 2, 4, 16, 2, 0, 0, 0 },
{ 2, 8, 2, 0, 0, 4, 16, 4, 0 }, { 0, 2, 8, 2, 0, 2, 8, 2, 0 },
{ 0, 0, 2, 8, 2, 1, 4, 1, 0 }, { 0, 0, 0, 2, 8, 1, 2, 0, 0 },
{ 0, 4, 0, 0, 0, 0, 4, 16, 4 }, { 0, 0, 4, 0, 0, 0, 2, 8, 2 },
{ 0, 0, 1, 4, 1, 0, 1, 4, 1 }, { 0, 0, 0, 2, 4, 0, 0, 4, 0 },
{ 0, 0, 1, 0, 0, 0, 2, 4, 16 }, { 0, 0, 0, 1, 0, 0, 1, 2, 8 },
{ 0, 0, 1, 2, 1, 0, 0, 1, 4 }, { 0, 0, 0, 1, 2, 0, 0, 1, 2 },
};
void av1_apply_orip_4x4subblock_hbd(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, PREDICTION_MODE mode,
int bd) {
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
// initialize references for the first row
uint16_t ref_samples_sb_row[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint16_t left_ref_tmp_for_next_sb[5] = { 0, 0, 0, 0, 0 };
uint16_t ref_samples_sb_col[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint16_t top_ref_tmp_for_next_sb[5] = { 0, 0, 0, 0, 0 };
const int num_vertical_sb = (bh >> 2);
const int num_top_ref = 5;
const int num_left_ref = 4;
uint8_t widthThreshold = (mode == H_PRED) ? 0 : AOMMIN((bw >> 2), 4);
uint8_t heightThreshold = (mode == V_PRED) ? 0 : AOMMIN((bh >> 2), 4);
memcpy(&ref_samples_sb_row[0], &above[-1],
num_top_ref * sizeof(uint16_t)); // copy top reference
memcpy(&ref_samples_sb_row[num_top_ref], &left[0],
num_left_ref * sizeof(uint16_t)); // copy left reference
// initialize references for the column
if (num_vertical_sb > 1) {
ref_samples_sb_col[0] = left[3];
memcpy(&ref_samples_sb_col[1], &dst[3 * stride],
(num_top_ref - 1) * sizeof(uint16_t)); // copy top reference
memcpy(&ref_samples_sb_col[5], &left[4],
num_left_ref * sizeof(uint16_t)); // copy left reference
}
// loop to process first row of sub-blocks
for (int n = 0; n < (bw >> 2); n++) {
int r_sb = 0;
int c_sb = (n << 2);
memcpy(&ref_samples_sb_row[0], &above[c_sb - 1],
num_top_ref * sizeof(uint16_t)); // copy top reference
// copy left reference for the next sub-blocks
for (int q = 0; q < 4; q++)
left_ref_tmp_for_next_sb[q] = dst[(r_sb + q) * stride + c_sb + 3];
for (int k = 0; k < 16; ++k) {
int r_pos = r_sb + (k >> 2);
int c_pos = c_sb + (k & 0x03);
if (!(c_pos >= widthThreshold && r_pos >= heightThreshold)) {
int predvalue = (int)dst[stride * r_pos + c_pos];
int offset = 0;
for (int tap = 0; tap < 9; tap++) {
int diff = (int)ref_samples_sb_row[tap] - predvalue;
offset += av1_sub_block_filter_intra_taps_4x4[k][tap] * diff;
}
offset = (offset + 32) >> 6;
int filteredpixelValue = predvalue + offset;
dst[stride * r_pos + c_pos] = clip_pixel_highbd(filteredpixelValue, bd);
}
} // End of the subblock
memcpy(&ref_samples_sb_row[num_top_ref], &left_ref_tmp_for_next_sb[0],
num_left_ref *
sizeof(uint16_t)); // copy left reference for the next sub-block
}
// process first column
// loop to process first column of sub-blocks
if (num_vertical_sb > 1) {
for (int m = 1; m < num_vertical_sb; m++) {
int r_sb = (m << 2);
int c_sb = 0;
ref_samples_sb_col[0] = left[r_sb - 1];
memcpy(&ref_samples_sb_col[5], &left[r_sb],
(num_top_ref - 1) * sizeof(uint16_t)); // copy left reference
memcpy(&top_ref_tmp_for_next_sb[0], &dst[(r_sb + 3) * stride],
num_left_ref * sizeof(uint16_t)); // copy top reference
for (int k = 0; k < 16; ++k) {
int r_pos = r_sb + (k >> 2);
int c_pos = c_sb + (k & 0x03);
if (!(c_pos >= widthThreshold && r_pos >= heightThreshold)) {
int predvalue = (int)dst[stride * r_pos + c_pos];
int offset = 0;
for (int tap = 0; tap < 9; tap++) {
int diff = (int)ref_samples_sb_col[tap] - predvalue;
offset += av1_sub_block_filter_intra_taps_4x4[k][tap] * diff;
}
offset = (offset + 32) >> 6;
int filteredpixelValue = predvalue + offset;
dst[stride * r_pos + c_pos] =
clip_pixel_highbd(filteredpixelValue, bd);
}
} // End of the subblock
memcpy(
&ref_samples_sb_col[1], &top_ref_tmp_for_next_sb[0],
(num_top_ref - 1) *
sizeof(uint16_t)); // copy top reference for the next sub-block
}
}
}