|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "av1/common/av1_loopfilter.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/thread_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/resize.h" | 
|  | #include "av1/common/restoration.h" | 
|  | #include "av1/common/ccso.h" | 
|  |  | 
|  | // Set up nsync by width. | 
|  | static INLINE int get_sync_range(int width) { | 
|  | // nsync numbers are picked by testing. For example, for 4k | 
|  | // video, using 4 gives best performance. | 
|  | if (width < 640) | 
|  | return 1; | 
|  | else if (width <= 1280) | 
|  | return 2; | 
|  | else if (width <= 4096) | 
|  | return 4; | 
|  | else | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | static INLINE int get_lr_sync_range(int width) { | 
|  | #if 0 | 
|  | // nsync numbers are picked by testing. For example, for 4k | 
|  | // video, using 4 gives best performance. | 
|  | if (width < 640) | 
|  | return 1; | 
|  | else if (width <= 1280) | 
|  | return 2; | 
|  | else if (width <= 4096) | 
|  | return 4; | 
|  | else | 
|  | return 8; | 
|  | #else | 
|  | (void)width; | 
|  | return 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Allocate memory for lf row synchronization | 
|  | static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, | 
|  | int width, int num_workers) { | 
|  | lf_sync->rows = rows; | 
|  | #if CONFIG_MULTITHREAD | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], | 
|  | aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); | 
|  | if (lf_sync->mutex_[j]) { | 
|  | for (i = 0; i < rows; ++i) { | 
|  | pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lf_sync->cond_[j], | 
|  | aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); | 
|  | if (lf_sync->cond_[j]) { | 
|  | for (i = 0; i < rows; ++i) { | 
|  | pthread_cond_init(&lf_sync->cond_[j][i], NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lf_sync->job_mutex, | 
|  | aom_malloc(sizeof(*(lf_sync->job_mutex)))); | 
|  | if (lf_sync->job_mutex) { | 
|  | pthread_mutex_init(lf_sync->job_mutex, NULL); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | CHECK_MEM_ERROR(cm, lf_sync->lfdata, | 
|  | aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); | 
|  | lf_sync->num_workers = num_workers; | 
|  |  | 
|  | for (int j = 0; j < MAX_MB_PLANE; j++) { | 
|  | CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], | 
|  | aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); | 
|  | } | 
|  | CHECK_MEM_ERROR( | 
|  | cm, lf_sync->job_queue, | 
|  | aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); | 
|  | // Set up nsync. | 
|  | lf_sync->sync_range = get_sync_range(width); | 
|  | } | 
|  |  | 
|  | // Deallocate lf synchronization related mutex and data | 
|  | void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { | 
|  | if (lf_sync != NULL) { | 
|  | int j; | 
|  | #if CONFIG_MULTITHREAD | 
|  | int i; | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | if (lf_sync->mutex_[j] != NULL) { | 
|  | for (i = 0; i < lf_sync->rows; ++i) { | 
|  | pthread_mutex_destroy(&lf_sync->mutex_[j][i]); | 
|  | } | 
|  | aom_free(lf_sync->mutex_[j]); | 
|  | } | 
|  | if (lf_sync->cond_[j] != NULL) { | 
|  | for (i = 0; i < lf_sync->rows; ++i) { | 
|  | pthread_cond_destroy(&lf_sync->cond_[j][i]); | 
|  | } | 
|  | aom_free(lf_sync->cond_[j]); | 
|  | } | 
|  | } | 
|  | if (lf_sync->job_mutex != NULL) { | 
|  | pthread_mutex_destroy(lf_sync->job_mutex); | 
|  | aom_free(lf_sync->job_mutex); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | aom_free(lf_sync->lfdata); | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | aom_free(lf_sync->cur_sb_col[j]); | 
|  | } | 
|  |  | 
|  | aom_free(lf_sync->job_queue); | 
|  | // clear the structure as the source of this call may be a resize in which | 
|  | // case this call will be followed by an _alloc() which may fail. | 
|  | av1_zero(*lf_sync); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void loop_filter_data_reset(LFWorkerData *lf_data, | 
|  | YV12_BUFFER_CONFIG *frame_buffer, | 
|  | struct AV1Common *cm, MACROBLOCKD *xd) { | 
|  | struct macroblockd_plane *pd = xd->plane; | 
|  | lf_data->frame_buffer = frame_buffer; | 
|  | lf_data->cm = cm; | 
|  | lf_data->xd = xd; | 
|  | for (int i = 0; i < MAX_MB_PLANE; i++) { | 
|  | memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst)); | 
|  | lf_data->planes[i].subsampling_x = pd[i].subsampling_x; | 
|  | lf_data->planes[i].subsampling_y = pd[i].subsampling_y; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync, | 
|  | int num_workers) { | 
|  | if (num_workers < 1) return; | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (cdef_sync->mutex_ == NULL) { | 
|  | CHECK_MEM_ERROR(cm, cdef_sync->mutex_, | 
|  | aom_malloc(sizeof(*(cdef_sync->mutex_)))); | 
|  | if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); | 
|  | } | 
|  | #else | 
|  | (void)cm; | 
|  | (void)cdef_sync; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | void av1_free_cdef_sync(AV1CdefSync *cdef_sync) { | 
|  | if (cdef_sync == NULL) return; | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (cdef_sync->mutex_ != NULL) { | 
|  | pthread_mutex_destroy(cdef_sync->mutex_); | 
|  | aom_free(cdef_sync->mutex_); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | // Wait for the previous row to complete in cdef row multi-thread. | 
|  | static INLINE void cdef_row_mt_sync_read(AV1CdefSync *cdef_sync, int row) { | 
|  | if (!row) return; | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1CdefRowSync *cdef_row_mt = cdef_sync->cdef_row_mt; | 
|  | pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_); | 
|  | while (cdef_row_mt[row - 1].is_row_done != 1) | 
|  | pthread_cond_wait(cdef_row_mt[row - 1].row_cond_, | 
|  | cdef_row_mt[row - 1].row_mutex_); | 
|  | cdef_row_mt[row - 1].is_row_done = 0; | 
|  | pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_); | 
|  | #else | 
|  | (void)cdef_sync; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | // Signals current CDEF row has completed its processing to other threads. | 
|  | static INLINE void cdef_row_mt_sync_write(AV1CdefSync *cdef_sync, int row) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1CdefRowSync *cdef_row_mt = cdef_sync->cdef_row_mt; | 
|  | pthread_mutex_lock(cdef_row_mt[row].row_mutex_); | 
|  | pthread_cond_signal(cdef_row_mt[row].row_cond_); | 
|  | cdef_row_mt[row].is_row_done = 1; | 
|  | pthread_mutex_unlock(cdef_row_mt[row].row_mutex_); | 
|  | #else | 
|  | (void)cdef_sync; | 
|  | (void)row; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, | 
|  | int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | const int nsync = lf_sync->sync_range; | 
|  |  | 
|  | if (r && !(c & (nsync - 1))) { | 
|  | pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; | 
|  | pthread_mutex_lock(mutex); | 
|  |  | 
|  | while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { | 
|  | pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); | 
|  | } | 
|  | pthread_mutex_unlock(mutex); | 
|  | } | 
|  | #else | 
|  | (void)lf_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, | 
|  | const int sb_cols, int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | const int nsync = lf_sync->sync_range; | 
|  | int cur; | 
|  | // Only signal when there are enough filtered SB for next row to run. | 
|  | int sig = 1; | 
|  |  | 
|  | if (c < sb_cols - 1) { | 
|  | cur = c; | 
|  | if (c % nsync) sig = 0; | 
|  | } else { | 
|  | cur = sb_cols + nsync; | 
|  | } | 
|  |  | 
|  | if (sig) { | 
|  | pthread_mutex_lock(&lf_sync->mutex_[plane][r]); | 
|  |  | 
|  | lf_sync->cur_sb_col[plane][r] = cur; | 
|  |  | 
|  | pthread_cond_broadcast(&lf_sync->cond_[plane][r]); | 
|  | pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); | 
|  | } | 
|  | #else | 
|  | (void)lf_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)sb_cols; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start, | 
|  | int stop, int plane_start, int plane_end, | 
|  | int mib_size) { | 
|  | int mi_row, plane, dir; | 
|  | AV1LfMTInfo *lf_job_queue = lf_sync->job_queue; | 
|  | lf_sync->jobs_enqueued = 0; | 
|  | lf_sync->jobs_dequeued = 0; | 
|  |  | 
|  | for (dir = 0; dir < 2; dir++) { | 
|  | for (plane = plane_start; plane < plane_end; plane++) { | 
|  | if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) | 
|  | break; | 
|  | else if (plane == 1 && !(cm->lf.filter_level_u)) | 
|  | continue; | 
|  | else if (plane == 2 && !(cm->lf.filter_level_v)) | 
|  | continue; | 
|  | for (mi_row = start; mi_row < stop; mi_row += mib_size) { | 
|  | lf_job_queue->mi_row = mi_row; | 
|  | lf_job_queue->plane = plane; | 
|  | lf_job_queue->dir = dir; | 
|  | lf_job_queue++; | 
|  | lf_sync->jobs_enqueued++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) { | 
|  | AV1LfMTInfo *cur_job_info = NULL; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(lf_sync->job_mutex); | 
|  |  | 
|  | if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) { | 
|  | cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued; | 
|  | lf_sync->jobs_dequeued++; | 
|  | } | 
|  |  | 
|  | pthread_mutex_unlock(lf_sync->job_mutex); | 
|  | #else | 
|  | (void)lf_sync; | 
|  | #endif | 
|  |  | 
|  | return cur_job_info; | 
|  | } | 
|  |  | 
|  | // Implement row loopfiltering for each thread. | 
|  | static INLINE void thread_loop_filter_rows( | 
|  | const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, | 
|  | struct macroblockd_plane *planes, MACROBLOCKD *xd, | 
|  | AV1LfSync *const lf_sync) { | 
|  | const int mib_size = cm->mib_size; | 
|  | const int mib_size_log2 = cm->mib_size_log2; | 
|  | const int sb_cols = | 
|  | ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, mib_size_log2) >> mib_size_log2; | 
|  | int mi_row, mi_col, plane, dir; | 
|  | int r, c; | 
|  |  | 
|  | while (1) { | 
|  | AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); | 
|  |  | 
|  | if (cur_job_info != NULL) { | 
|  | mi_row = cur_job_info->mi_row; | 
|  | plane = cur_job_info->plane; | 
|  | dir = cur_job_info->dir; | 
|  | r = mi_row >> mib_size_log2; | 
|  |  | 
|  | if (dir == 0) { | 
|  | for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += mib_size) { | 
|  | c = mi_col >> mib_size_log2; | 
|  |  | 
|  | av1_setup_dst_planes(planes, frame_buffer, mi_row, mi_col, plane, | 
|  | plane + 1, NULL); | 
|  |  | 
|  | av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, | 
|  | mi_col); | 
|  | sync_write(lf_sync, r, c, sb_cols, plane); | 
|  | } | 
|  | } else if (dir == 1) { | 
|  | for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += mib_size) { | 
|  | c = mi_col >> mib_size_log2; | 
|  |  | 
|  | // Wait for vertical edge filtering of the top-right block to be | 
|  | // completed | 
|  | sync_read(lf_sync, r, c, plane); | 
|  |  | 
|  | // Wait for vertical edge filtering of the right block to be | 
|  | // completed | 
|  | sync_read(lf_sync, r + 1, c, plane); | 
|  |  | 
|  | av1_setup_dst_planes(planes, frame_buffer, mi_row, mi_col, plane, | 
|  | plane + 1, NULL); | 
|  | av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, | 
|  | mi_col); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Row-based multi-threaded loopfilter hook | 
|  | static int loop_filter_row_worker(void *arg1, void *arg2) { | 
|  | AV1LfSync *const lf_sync = (AV1LfSync *)arg1; | 
|  | LFWorkerData *const lf_data = (LFWorkerData *)arg2; | 
|  | thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, | 
|  | lf_data->xd, lf_sync); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd, int start, int stop, | 
|  | int plane_start, int plane_end, | 
|  | AVxWorker *workers, int nworkers, | 
|  | AV1LfSync *lf_sync) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | const int mib_size = cm->mib_size; | 
|  | const int mib_size_log2 = cm->mib_size_log2; | 
|  | // Number of superblock rows and cols | 
|  | const int sb_rows = | 
|  | ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, mib_size_log2) >> mib_size_log2; | 
|  | const int num_workers = nworkers; | 
|  | int i; | 
|  |  | 
|  | if (!lf_sync->sync_range || sb_rows != lf_sync->rows || | 
|  | num_workers > lf_sync->num_workers) { | 
|  | av1_loop_filter_dealloc(lf_sync); | 
|  | loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); | 
|  | } | 
|  |  | 
|  | // Initialize cur_sb_col to -1 for all SB rows. | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | memset(lf_sync->cur_sb_col[i], -1, | 
|  | sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows); | 
|  | } | 
|  |  | 
|  | enqueue_lf_jobs(lf_sync, cm, start, stop, plane_start, plane_end, mib_size); | 
|  |  | 
|  | // Set up loopfilter thread data. | 
|  | for (i = 0; i < num_workers; ++i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | LFWorkerData *const lf_data = &lf_sync->lfdata[i]; | 
|  |  | 
|  | worker->hook = loop_filter_row_worker; | 
|  | worker->data1 = lf_sync; | 
|  | worker->data2 = lf_data; | 
|  |  | 
|  | // Loopfilter data | 
|  | loop_filter_data_reset(lf_data, frame, cm, xd); | 
|  |  | 
|  | // Start loopfiltering | 
|  | if (i == num_workers - 1) { | 
|  | winterface->execute(worker); | 
|  | } else { | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait till all rows are finished | 
|  | for (i = 0; i < num_workers; ++i) { | 
|  | winterface->sync(&workers[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd, int plane_start, int plane_end, | 
|  | int partial_frame, AVxWorker *workers, | 
|  | int num_workers, AV1LfSync *lf_sync) { | 
|  | #if CONFIG_CWG_F317 | 
|  | if (cm->bridge_frame_info.is_bridge_frame) { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int start_mi_row, end_mi_row, mi_rows_to_filter; | 
|  |  | 
|  | start_mi_row = 0; | 
|  | mi_rows_to_filter = cm->mi_params.mi_rows; | 
|  | if (partial_frame && cm->mi_params.mi_rows > 8) { | 
|  | start_mi_row = cm->mi_params.mi_rows >> 1; | 
|  | start_mi_row &= 0xfffffff8; | 
|  | mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8); | 
|  | } | 
|  | end_mi_row = start_mi_row + mi_rows_to_filter; | 
|  | av1_loop_filter_frame_init(cm, plane_start, plane_end); | 
|  |  | 
|  | loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, | 
|  | plane_end, workers, num_workers, lf_sync); | 
|  | } | 
|  |  | 
|  | // Initialize ccso worker data | 
|  | static INLINE void ccso_data_reset(CCSOWorkerData *ccsoworkerdata, | 
|  | AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | uint16_t *ext_rec_y) { | 
|  | ccsoworkerdata->cm = cm; | 
|  | ccsoworkerdata->xd = xd; | 
|  | ccsoworkerdata->src_y = ext_rec_y; | 
|  | } | 
|  |  | 
|  | // Allocate memory for ccso row synchronization | 
|  | static void ccso_filter_alloc(AV1CcsoSync *ccso_sync, AV1_COMMON *cm, int rows, | 
|  | int num_workers) { | 
|  | ccso_sync->rows = rows; | 
|  | #if CONFIG_MULTITHREAD | 
|  | CHECK_MEM_ERROR(cm, ccso_sync->job_mutex, | 
|  | aom_malloc(sizeof(*(ccso_sync->job_mutex)))); | 
|  | if (ccso_sync->job_mutex) { | 
|  | pthread_mutex_init(ccso_sync->job_mutex, NULL); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | CHECK_MEM_ERROR( | 
|  | cm, ccso_sync->ccsoworkerdata, | 
|  | aom_malloc(num_workers * sizeof(*(ccso_sync->ccsoworkerdata)))); | 
|  | ccso_sync->num_workers = num_workers; | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, ccso_sync->job_queue, | 
|  | aom_malloc(sizeof(*(ccso_sync->job_queue)) * rows)); | 
|  | } | 
|  |  | 
|  | // Deallocate ccso synchronization related mutex and data | 
|  | void av1_ccso_filter_dealloc(AV1CcsoSync *ccso_sync) { | 
|  | if (ccso_sync != NULL) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (ccso_sync->job_mutex != NULL) { | 
|  | pthread_mutex_destroy(ccso_sync->job_mutex); | 
|  | aom_free(ccso_sync->job_mutex); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | aom_free(ccso_sync->ccsoworkerdata); | 
|  |  | 
|  | aom_free(ccso_sync->job_queue); | 
|  | // clear the structure as the source of this call may be a resize in which | 
|  | // case this call will be followed by an _alloc() which may fail. | 
|  | av1_zero(*ccso_sync); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compares the number of CCSO blocks processed between two rows used for job | 
|  | // sorting | 
|  | static int compare_ccso_blk_proc(const void *a, const void *b) { | 
|  | const AV1CCSOMTInfo *structA = (const AV1CCSOMTInfo *)a; | 
|  | const AV1CCSOMTInfo *structB = (const AV1CCSOMTInfo *)b; | 
|  |  | 
|  | if (structA->blk_proc < structB->blk_proc) { | 
|  | return 1;  // structA comes after structB | 
|  | } else if (structA->blk_proc > structB->blk_proc) { | 
|  | return -1;  // structA comes before structB | 
|  | } else { | 
|  | return 0;  // Elements are equal | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generates job list for ccso filter | 
|  | static void enqueue_ccso_jobs(AV1CcsoSync *ccso_sync, AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd) { | 
|  | AV1CCSOMTInfo *ccso_job_queue = ccso_sync->job_queue; | 
|  | ccso_sync->jobs_enqueued = 0; | 
|  | ccso_sync->jobs_dequeued = 0; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const int inc_row = 1 << CCSO_PROC_BLK_LOG2; | 
|  | const int blk_size = 1 << CCSO_BLK_SIZE; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | const int pic_height = xd->plane[plane].dst.height; | 
|  | const int pic_width = xd->plane[plane].dst.width; | 
|  | int blk_log2_x = CCSO_BLK_SIZE; | 
|  | int blk_log2_y = CCSO_BLK_SIZE; | 
|  | if (plane != 0) { | 
|  | blk_log2_x = CCSO_BLK_SIZE - cm->seq_params.subsampling_x; | 
|  | blk_log2_y = CCSO_BLK_SIZE - cm->seq_params.subsampling_y; | 
|  | } | 
|  | if (cm->ccso_info.ccso_enable[plane]) { | 
|  | for (int row = 0; row < pic_height; row += inc_row) { | 
|  | int blk_processed = 0; | 
|  | const int ccso_blk_idx_y = (blk_size >> MI_SIZE_LOG2) * | 
|  | (row >> blk_log2_y) * mi_params->mi_stride; | 
|  | for (int col = 0; col < pic_width; col += inc_row) { | 
|  | const int ccso_blk_idx = | 
|  | ccso_blk_idx_y + (blk_size >> MI_SIZE_LOG2) * (col >> blk_log2_x); | 
|  | const bool use_ccso = | 
|  | (plane == 0) ? mi_params->mi_grid_base[ccso_blk_idx]->ccso_blk_y | 
|  | : (plane == 1) | 
|  | ? mi_params->mi_grid_base[ccso_blk_idx]->ccso_blk_u | 
|  | : mi_params->mi_grid_base[ccso_blk_idx]->ccso_blk_v; | 
|  | if (use_ccso) blk_processed++; | 
|  | } | 
|  | // No block is available for CCSO processing, skip this job | 
|  | if (blk_processed == 0) continue; | 
|  |  | 
|  | ccso_job_queue->row = row; | 
|  | ccso_job_queue->plane = plane; | 
|  | ccso_job_queue->blk_proc = blk_processed; | 
|  | ccso_job_queue++; | 
|  | ccso_sync->jobs_enqueued++; | 
|  | } | 
|  | } | 
|  | } | 
|  | qsort(ccso_sync->job_queue, ccso_sync->jobs_enqueued, | 
|  | sizeof(ccso_sync->job_queue[0]), compare_ccso_blk_proc); | 
|  | } | 
|  |  | 
|  | // Returns job info for each thread | 
|  | static AV1CCSOMTInfo *get_ccso_job_info(AV1CcsoSync *ccso_sync) { | 
|  | AV1CCSOMTInfo *cur_job_info = NULL; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(ccso_sync->job_mutex); | 
|  | if (ccso_sync->jobs_dequeued < ccso_sync->jobs_enqueued) { | 
|  | cur_job_info = ccso_sync->job_queue + ccso_sync->jobs_dequeued; | 
|  | ccso_sync->jobs_dequeued++; | 
|  | } | 
|  | pthread_mutex_unlock(ccso_sync->job_mutex); | 
|  | #else | 
|  | (void)ccso_sync; | 
|  | #endif | 
|  | return cur_job_info; | 
|  | } | 
|  |  | 
|  | // Implement row ccso for each thread. | 
|  | static INLINE void process_ccso_rows(AV1_COMMON *const cm, MACROBLOCKD *xd, | 
|  | uint16_t *src_y, | 
|  | AV1CcsoSync *const ccso_sync) { | 
|  | int src_cls[2]; | 
|  | int src_loc[2]; | 
|  | const int ccso_ext_stride = xd->plane[0].dst.width + (CCSO_PADDING_SIZE << 1); | 
|  | const int blk_log2 = CCSO_BLK_SIZE; | 
|  |  | 
|  | while (1) { | 
|  | AV1CCSOMTInfo *cur_job_info = get_ccso_job_info(ccso_sync); | 
|  | // Break the while loop if no job is available | 
|  | if (cur_job_info == NULL) break; | 
|  |  | 
|  | int blk_log2_x = CCSO_BLK_SIZE; | 
|  | int blk_log2_y = CCSO_BLK_SIZE; | 
|  | const int row = cur_job_info->row; | 
|  | const int plane = cur_job_info->plane; | 
|  | uint16_t *dst_yuv = xd->plane[plane].dst.buf; | 
|  | const uint16_t thr = quant_sz[cm->ccso_info.scale_idx[plane]] | 
|  | [cm->ccso_info.quant_idx[plane]]; | 
|  | const uint8_t filter_sup = cm->ccso_info.ext_filter_support[plane]; | 
|  | const int dst_stride = xd->plane[plane].dst.stride; | 
|  | const int proc_unit_log2 = | 
|  | cm->mib_size_log2 - | 
|  | AOMMAX(xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y) + | 
|  | MI_SIZE_LOG2; | 
|  | const int y_uv_vscale = xd->plane[plane].subsampling_y; | 
|  | derive_ccso_sample_pos(src_loc, ccso_ext_stride, filter_sup); | 
|  | if (plane != 0) { | 
|  | blk_log2_x = CCSO_BLK_SIZE - cm->seq_params.subsampling_x; | 
|  | blk_log2_y = CCSO_BLK_SIZE - cm->seq_params.subsampling_y; | 
|  | } | 
|  | const int unit_log2_x = AOMMIN(proc_unit_log2, blk_log2_x); | 
|  | const int unit_log2_y = AOMMIN(proc_unit_log2, blk_log2_y); | 
|  | const int blk_size = 1 << blk_log2; | 
|  | const int blk_log2_proc = CCSO_PROC_BLK_LOG2; | 
|  | const int blk_size_proc = 1 << blk_log2_proc; | 
|  | const uint16_t *src_y_temp = | 
|  | src_y + (CCSO_PADDING_SIZE * ccso_ext_stride + CCSO_PADDING_SIZE) + | 
|  | (row >> CCSO_PROC_BLK_LOG2) * | 
|  | (ccso_ext_stride << (blk_log2_proc + y_uv_vscale)); | 
|  | uint16_t *dst_yuv_temp = | 
|  | dst_yuv + (row >> CCSO_PROC_BLK_LOG2) * (dst_stride << blk_log2_proc); | 
|  |  | 
|  | av1_apply_ccso_filter_for_row( | 
|  | cm, xd, src_y_temp, dst_yuv_temp, src_loc, src_cls, row, thr, blk_size, | 
|  | blk_size_proc, blk_log2_x, blk_log2_y, unit_log2_x, unit_log2_y, plane); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Row based processing of ccso worker | 
|  | static int ccso_row_worker(void *arg1, void *arg2) { | 
|  | AV1CcsoSync *ccso_sync = (AV1CcsoSync *)arg1; | 
|  | CCSOWorkerData *ccso_data = (CCSOWorkerData *)arg2; | 
|  | process_ccso_rows(ccso_data->cm, ccso_data->xd, ccso_data->src_y, ccso_sync); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Apply CCSO filter for frame with multithread support | 
|  | static void apply_ccso_filter_mt(AVxWorker *workers, int nworkers, | 
|  | AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | uint16_t *ext_rec_y, AV1CcsoSync *ccso_sync) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int num_proc_blk_rows = 0; | 
|  | const int num_workers = nworkers; | 
|  | const int round_offset = (1 << CCSO_PROC_BLK_LOG2) - 1; | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | const int pic_height = xd->plane[plane].dst.height; | 
|  | if (cm->ccso_info.ccso_enable[plane]) | 
|  | num_proc_blk_rows += | 
|  | (pic_height + round_offset) & ~round_offset >> CCSO_PROC_BLK_LOG2; | 
|  | } | 
|  |  | 
|  | if (num_proc_blk_rows != ccso_sync->rows || | 
|  | num_workers > ccso_sync->num_workers) { | 
|  | av1_ccso_filter_dealloc(ccso_sync); | 
|  | ccso_filter_alloc(ccso_sync, cm, num_proc_blk_rows, num_workers); | 
|  | } | 
|  |  | 
|  | enqueue_ccso_jobs(ccso_sync, cm, xd); | 
|  | // return if no blocks in frame are to be filtered | 
|  | if (ccso_sync->jobs_enqueued == 0) return; | 
|  |  | 
|  | // Setup ccso worker data and execute | 
|  | for (int i = 0; i < num_workers; ++i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | CCSOWorkerData *const ccso_data = &ccso_sync->ccsoworkerdata[i]; | 
|  | worker->hook = ccso_row_worker; | 
|  | worker->data1 = ccso_sync; | 
|  | worker->data2 = ccso_data; | 
|  |  | 
|  | // ccso data | 
|  | ccso_data_reset(ccso_data, cm, xd, ext_rec_y); | 
|  |  | 
|  | // Start the workers | 
|  | if (i == num_workers - 1) { | 
|  | winterface->execute(worker); | 
|  | } else { | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait till all workers are finished | 
|  | for (int i = 0; i < num_workers; ++i) { | 
|  | winterface->sync(&workers[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_ccso_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd, AVxWorker *workers, int num_workers, | 
|  | uint16_t *ext_rec_y, AV1CcsoSync *ccso_sync) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | av1_setup_dst_planes(xd->plane, frame, 0, 0, 0, num_planes, NULL); | 
|  |  | 
|  | apply_ccso_filter_mt(workers, num_workers, cm, xd, ext_rec_y, ccso_sync); | 
|  | } | 
|  |  | 
|  | static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; | 
|  | const int nsync = loop_res_sync->sync_range; | 
|  |  | 
|  | if (r && !(c & (nsync - 1))) { | 
|  | pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; | 
|  | pthread_mutex_lock(mutex); | 
|  |  | 
|  | while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { | 
|  | pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); | 
|  | } | 
|  | pthread_mutex_unlock(mutex); | 
|  | } | 
|  | #else | 
|  | (void)lr_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void lr_sync_write(void *const lr_sync, int r, int c, | 
|  | const int sb_cols, int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; | 
|  | const int nsync = loop_res_sync->sync_range; | 
|  | int cur; | 
|  | // Only signal when there are enough filtered SB for next row to run. | 
|  | int sig = 1; | 
|  |  | 
|  | if (c < sb_cols - 1) { | 
|  | cur = c; | 
|  | if (c % nsync) sig = 0; | 
|  | } else { | 
|  | cur = sb_cols + nsync; | 
|  | } | 
|  |  | 
|  | if (sig) { | 
|  | pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); | 
|  |  | 
|  | loop_res_sync->cur_sb_col[plane][r] = cur; | 
|  |  | 
|  | pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); | 
|  | pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); | 
|  | } | 
|  | #else | 
|  | (void)lr_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)sb_cols; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | // Allocate memory for loop restoration row synchronization | 
|  | static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, | 
|  | int num_workers, int num_rows_lr, | 
|  | int num_planes, int width) { | 
|  | lr_sync->rows = num_rows_lr; | 
|  | lr_sync->num_planes = num_planes; | 
|  | #if CONFIG_MULTITHREAD | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (j = 0; j < num_planes; j++) { | 
|  | CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], | 
|  | aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); | 
|  | if (lr_sync->mutex_[j]) { | 
|  | for (i = 0; i < num_rows_lr; ++i) { | 
|  | pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lr_sync->cond_[j], | 
|  | aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); | 
|  | if (lr_sync->cond_[j]) { | 
|  | for (i = 0; i < num_rows_lr; ++i) { | 
|  | pthread_cond_init(&lr_sync->cond_[j][i], NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lr_sync->job_mutex, | 
|  | aom_malloc(sizeof(*(lr_sync->job_mutex)))); | 
|  | if (lr_sync->job_mutex) { | 
|  | pthread_mutex_init(lr_sync->job_mutex, NULL); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, | 
|  | aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata)))); | 
|  |  | 
|  | for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { | 
|  | if (worker_idx < num_workers - 1) { | 
|  | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, | 
|  | aom_malloc(sizeof(RestorationLineBuffers))); | 
|  |  | 
|  | } else { | 
|  | lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; | 
|  | } | 
|  | } | 
|  |  | 
|  | lr_sync->num_workers = num_workers; | 
|  |  | 
|  | for (int j = 0; j < num_planes; j++) { | 
|  | CHECK_MEM_ERROR( | 
|  | cm, lr_sync->cur_sb_col[j], | 
|  | aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); | 
|  | } | 
|  | CHECK_MEM_ERROR( | 
|  | cm, lr_sync->job_queue, | 
|  | aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); | 
|  | // Set up nsync. | 
|  | lr_sync->sync_range = get_lr_sync_range(width); | 
|  | } | 
|  |  | 
|  | // Deallocate loop restoration synchronization related mutex and data | 
|  | void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) { | 
|  | if (lr_sync != NULL) { | 
|  | int j; | 
|  | #if CONFIG_MULTITHREAD | 
|  | int i; | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | if (lr_sync->mutex_[j] != NULL) { | 
|  | for (i = 0; i < lr_sync->rows; ++i) { | 
|  | pthread_mutex_destroy(&lr_sync->mutex_[j][i]); | 
|  | } | 
|  | aom_free(lr_sync->mutex_[j]); | 
|  | } | 
|  | if (lr_sync->cond_[j] != NULL) { | 
|  | for (i = 0; i < lr_sync->rows; ++i) { | 
|  | pthread_cond_destroy(&lr_sync->cond_[j][i]); | 
|  | } | 
|  | aom_free(lr_sync->cond_[j]); | 
|  | } | 
|  | } | 
|  | if (lr_sync->job_mutex != NULL) { | 
|  | pthread_mutex_destroy(lr_sync->job_mutex); | 
|  | aom_free(lr_sync->job_mutex); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | aom_free(lr_sync->cur_sb_col[j]); | 
|  | } | 
|  |  | 
|  | aom_free(lr_sync->job_queue); | 
|  |  | 
|  | if (lr_sync->lrworkerdata) { | 
|  | for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) { | 
|  | LRWorkerData *const workerdata_data = | 
|  | lr_sync->lrworkerdata + worker_idx; | 
|  |  | 
|  | aom_free(workerdata_data->rlbs); | 
|  | } | 
|  | aom_free(lr_sync->lrworkerdata); | 
|  | } | 
|  |  | 
|  | // clear the structure as the source of this call may be a resize in which | 
|  | // case this call will be followed by an _alloc() which may fail. | 
|  | av1_zero(*lr_sync); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, | 
|  | AV1_COMMON *cm) { | 
|  | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; | 
|  | int32_t lr_job_counter[2], num_even_lr_jobs = 0; | 
|  | lr_sync->jobs_enqueued = 0; | 
|  | lr_sync->jobs_dequeued = 0; | 
|  |  | 
|  | #if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | const int num_tile_rows = cm->tiles.rows; | 
|  | const int num_tile_cols = cm->tiles.cols; | 
|  | #else | 
|  | const int num_tile_rows = 1; | 
|  | const int num_tile_cols = 1; | 
|  | #endif  // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; | 
|  | for (int tile_row = 0; tile_row < num_tile_rows; ++tile_row) | 
|  | num_even_lr_jobs += | 
|  | ((ctxt[plane].rsi->vert_units_per_tile[tile_row] + 1) >> 1) * | 
|  | num_tile_cols; | 
|  | } | 
|  | lr_job_counter[0] = 0; | 
|  | lr_job_counter[1] = num_even_lr_jobs; | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; | 
|  | const int is_uv = plane > 0; | 
|  | const int ss_y = is_uv && cm->seq_params.subsampling_y; | 
|  | const int unit_size = ctxt[plane].rsi->restoration_unit_size; | 
|  |  | 
|  | for (int tile_row = 0; tile_row < num_tile_rows; ++tile_row) { | 
|  | for (int tile_col = 0; tile_col < num_tile_cols; ++tile_col) { | 
|  | AV1PixelRect tile_rect; | 
|  | #if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | TileInfo tile_info; | 
|  | av1_tile_init(&tile_info, cm, tile_row, tile_col); | 
|  | tile_rect = av1_get_tile_rect(&tile_info, cm, is_uv); | 
|  | #else | 
|  | tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | #endif  // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | const int tile_h = tile_rect.bottom - tile_rect.top; | 
|  | int y0 = 0, i = 0; | 
|  | while (y0 < tile_h) { | 
|  | int remaining_h = tile_h - y0; | 
|  | int h = (i == ctxt[plane].rsi->vert_units_per_tile[tile_row] - 1) | 
|  | ? remaining_h | 
|  | : unit_size; | 
|  | RestorationTileLimits limits; | 
|  | limits.v_start = tile_rect.top + y0; | 
|  | limits.v_end = tile_rect.top + y0 + h; | 
|  | assert(limits.v_end <= tile_rect.bottom); | 
|  | // Offset the tile upwards to align with the restoration processing | 
|  | // stripe | 
|  | if (limits.v_start == tile_rect.top) { | 
|  | const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  | if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset; | 
|  | h = limits.v_end - limits.v_start; | 
|  | } | 
|  |  | 
|  | assert(lr_job_counter[0] <= num_even_lr_jobs); | 
|  |  | 
|  | lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; | 
|  | lr_job_queue[lr_job_counter[i & 1]].plane = plane; | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; | 
|  | lr_job_queue[lr_job_counter[i & 1]].tile_rect = tile_rect; | 
|  | lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; | 
|  | lr_job_queue[lr_job_counter[i & 1]].tile_row = tile_row; | 
|  | lr_job_queue[lr_job_counter[i & 1]].tile_col = tile_col; | 
|  |  | 
|  | if ((i & 1) == 0) { | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = | 
|  | limits.v_start + RESTORATION_BORDER_VERT; | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = | 
|  | limits.v_end - RESTORATION_BORDER_VERT; | 
|  | if (i == 0) { | 
|  | assert(limits.v_start == tile_rect.top); | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top; | 
|  | } | 
|  | if (i == (ctxt[plane].rsi->vert_units_per_tile[tile_row] - 1)) { | 
|  | assert(limits.v_end == tile_rect.bottom); | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom; | 
|  | } | 
|  | } else { | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = | 
|  | AOMMAX(limits.v_start - RESTORATION_BORDER_VERT, tile_rect.top); | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = AOMMIN( | 
|  | limits.v_end + RESTORATION_BORDER_VERT, tile_rect.bottom); | 
|  | } | 
|  | lr_job_counter[i & 1]++; | 
|  | lr_sync->jobs_enqueued++; | 
|  |  | 
|  | y0 += h; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { | 
|  | AV1LrMTInfo *cur_job_info = NULL; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(lr_sync->job_mutex); | 
|  |  | 
|  | if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { | 
|  | cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; | 
|  | lr_sync->jobs_dequeued++; | 
|  | } | 
|  |  | 
|  | pthread_mutex_unlock(lr_sync->job_mutex); | 
|  | #else | 
|  | (void)lr_sync; | 
|  | #endif | 
|  |  | 
|  | return cur_job_info; | 
|  | } | 
|  |  | 
|  | // Implement row loop restoration for each thread. | 
|  | static int loop_restoration_row_worker(void *arg1, void *arg2) { | 
|  | AV1LrSync *const lr_sync = (AV1LrSync *)arg1; | 
|  | LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; | 
|  | AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; | 
|  | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
|  | int lr_unit_row; | 
|  | int plane; | 
|  | typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, | 
|  | YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, | 
|  | int vstart, int vend); | 
|  | static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y, | 
|  | aom_yv12_partial_coloc_copy_u, | 
|  | aom_yv12_partial_coloc_copy_v }; | 
|  |  | 
|  | while (1) { | 
|  | AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); | 
|  | if (cur_job_info != NULL) { | 
|  | AV1PixelRect tile_rect = cur_job_info->tile_rect; | 
|  | RestorationTileLimits limits; | 
|  | sync_read_fn_t on_sync_read; | 
|  | sync_write_fn_t on_sync_write; | 
|  | limits.v_start = cur_job_info->v_start; | 
|  | limits.v_end = cur_job_info->v_end; | 
|  | lr_unit_row = cur_job_info->lr_unit_row; | 
|  | plane = cur_job_info->plane; | 
|  | const int tile_row = cur_job_info->tile_row; | 
|  | const int tile_col = cur_job_info->tile_col; | 
|  | assert(tile_row == get_tile_row_from_mi_row( | 
|  | lr_ctxt->tiles, tile_rect.top >> MI_SIZE_LOG2)); | 
|  | assert(tile_col == get_tile_col_from_mi_col( | 
|  | lr_ctxt->tiles, tile_rect.left >> MI_SIZE_LOG2)); | 
|  | const int unit_idx0 = | 
|  | get_ru_index_for_tile_start(ctxt[plane].rsi, tile_row, tile_col); | 
|  |  | 
|  | // sync_mode == 1 implies only sync read is required in LR Multi-threading | 
|  | // sync_mode == 0 implies only sync write is required. | 
|  | on_sync_read = | 
|  | cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; | 
|  | on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write | 
|  | : av1_lr_sync_write_dummy; | 
|  |  | 
|  | av1_foreach_rest_unit_in_row( | 
|  | &limits, &tile_rect, &tile_rect, lr_ctxt->on_rest_unit, lr_unit_row, | 
|  | ctxt[plane].rsi->restoration_unit_size, unit_idx0, | 
|  | ctxt[plane].rsi->horz_units_per_tile[tile_col], | 
|  | ctxt[plane].rsi->vert_units_per_tile[tile_row], | 
|  | ctxt[plane].rsi->horz_units_per_frame, plane, &ctxt[plane], | 
|  | lrworkerdata->rlbs, on_sync_read, on_sync_write, lr_sync, NULL); | 
|  |  | 
|  | copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, tile_rect.left, | 
|  | tile_rect.right, cur_job_info->v_copy_start, | 
|  | cur_job_info->v_copy_end); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, | 
|  | AVxWorker *workers, int nworkers, | 
|  | AV1LrSync *lr_sync, AV1_COMMON *cm) { | 
|  | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
|  |  | 
|  | uint16_t *luma = NULL; | 
|  | uint16_t *luma_buf; | 
|  | const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; | 
|  | int luma_stride = dgd->widths[1] + 2 * WIENERNS_UV_BRD; | 
|  | luma_buf = wienerns_copy_luma_with_virtual_lines(cm, &luma); | 
|  | assert(luma_buf != NULL); | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | #if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | const int num_tile_cols = cm->tiles.cols; | 
|  | #else | 
|  | const int num_tile_cols = 1; | 
|  | #endif  // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  |  | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int num_rows_lr = 0; | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; | 
|  |  | 
|  | ctxt[plane].plane = plane; | 
|  | ctxt[plane].base_qindex = cm->quant_params.base_qindex; | 
|  | const int is_uv = (plane != AOM_PLANE_Y); | 
|  | ctxt[plane].luma = is_uv ? luma : NULL; | 
|  | ctxt[plane].luma_stride = is_uv ? luma_stride : -1; | 
|  | ctxt[plane].tskip = cm->mi_params.tx_skip[plane]; | 
|  | ctxt[plane].tskip_stride = cm->mi_params.tx_skip_stride[plane]; | 
|  | if (plane != AOM_PLANE_Y) | 
|  | ctxt[plane].qindex_offset = plane == AOM_PLANE_U | 
|  | ? cm->quant_params.u_ac_delta_q | 
|  | : cm->quant_params.v_ac_delta_q; | 
|  | else | 
|  | ctxt[plane].qindex_offset = 0; | 
|  | ctxt[plane].wiener_class_id = cm->mi_params.wiener_class_id[plane]; | 
|  | ctxt[plane].wiener_class_id_stride = | 
|  | cm->mi_params.wiener_class_id_stride[plane]; | 
|  | ctxt[plane].tskip_zero_flag = 0; | 
|  | // const AV1PixelRect tile_rect = ctxt[plane].tile_rect; | 
|  | // const int max_tile_h = tile_rect.bottom - tile_rect.top; | 
|  |  | 
|  | // const int unit_size = cm->rst_info[plane].restoration_unit_size; | 
|  |  | 
|  | // num_rows_lr = | 
|  | //     AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, | 
|  | //     max_tile_h)); | 
|  | num_rows_lr = AOMMAX( | 
|  | num_rows_lr, cm->rst_info[plane].vert_units_per_frame * num_tile_cols); | 
|  | } | 
|  |  | 
|  | const int num_workers = nworkers; | 
|  | int i; | 
|  | assert(MAX_MB_PLANE == 3); | 
|  |  | 
|  | if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows || | 
|  | num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) { | 
|  | av1_loop_restoration_dealloc(lr_sync, num_workers); | 
|  | loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes, | 
|  | cm->width); | 
|  | } | 
|  |  | 
|  | // Initialize cur_sb_col to -1 for all SB rows. | 
|  | for (i = 0; i < num_planes; i++) { | 
|  | memset(lr_sync->cur_sb_col[i], -1, | 
|  | sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); | 
|  | } | 
|  |  | 
|  | enqueue_lr_jobs(lr_sync, lr_ctxt, cm); | 
|  |  | 
|  | // Set up looprestoration thread data. | 
|  | for (i = 0; i < num_workers; ++i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; | 
|  | worker->hook = loop_restoration_row_worker; | 
|  | worker->data1 = lr_sync; | 
|  | worker->data2 = &lr_sync->lrworkerdata[i]; | 
|  |  | 
|  | // Start loopfiltering | 
|  | if (i == num_workers - 1) { | 
|  | winterface->execute(worker); | 
|  | } else { | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait till all rows are finished | 
|  | for (i = 0; i < num_workers; ++i) { | 
|  | winterface->sync(&workers[i]); | 
|  | } | 
|  | free(luma_buf); | 
|  | } | 
|  |  | 
|  | void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, | 
|  | AV1_COMMON *cm, int optimized_lr, | 
|  | AVxWorker *workers, int num_workers, | 
|  | AV1LrSync *lr_sync, void *lr_ctxt) { | 
|  | assert(!cm->features.all_lossless); | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; | 
|  |  | 
|  | av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, | 
|  | optimized_lr, num_planes); | 
|  |  | 
|  | foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, | 
|  | cm); | 
|  | } | 
|  |  | 
|  | // Initializes cdef_sync parameters. | 
|  | static AOM_INLINE void reset_cdef_job_info(AV1CdefSync *cdef_sync) { | 
|  | cdef_sync->end_of_frame = 0; | 
|  | cdef_sync->fbr = 0; | 
|  | cdef_sync->fbc = 0; | 
|  | } | 
|  |  | 
|  | // Launch all CDEF workers for row multithreading | 
|  | static AOM_INLINE void launch_cdef_workers(AVxWorker *const workers, | 
|  | int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | for (int i = 0; i < num_workers; ++i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | if (i == num_workers - 1) | 
|  | winterface->execute(worker); | 
|  | else | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Synchronize all CDEF workers for the completion of Cdef frame. | 
|  | static AOM_INLINE void sync_cdef_workers(AVxWorker *const workers, | 
|  | AV1_COMMON *const cm, | 
|  | int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int had_error = 0; | 
|  |  | 
|  | // Wait for completion of Cdef frame. | 
|  | for (int i = 0; i < num_workers; ++i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | had_error |= !winterface->sync(worker); | 
|  | } | 
|  | if (had_error) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_ERROR, | 
|  | "Failed to process cdef frame"); | 
|  | } | 
|  |  | 
|  | // Updates the row index of the next job to be processed. | 
|  | // Also updates end_of_frame flag when the processing of all rows is complete. | 
|  | static void update_cdef_row_next_job_info(AV1CdefSync *cdef_sync, int nvfb) { | 
|  | cdef_sync->fbr++; | 
|  | if (cdef_sync->fbr == nvfb) { | 
|  | cdef_sync->end_of_frame = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Checks if a job is available. If job is available, | 
|  | // populates next job information and returns 1, else returns 0. | 
|  | static AOM_INLINE int get_cdef_row_next_job(AV1CdefSync *cdef_sync, | 
|  | int *cur_fbr, const int nvfb) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(cdef_sync->mutex_); | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | int do_next_row = 0; | 
|  | // Populates information needed for current job and update the row | 
|  | // index of the next row to be processed. | 
|  | if (cdef_sync->end_of_frame == 0) { | 
|  | do_next_row = 1; | 
|  | *cur_fbr = cdef_sync->fbr; | 
|  | update_cdef_row_next_job_info(cdef_sync, nvfb); | 
|  | } | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(cdef_sync->mutex_); | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | return do_next_row; | 
|  | } | 
|  |  | 
|  | // CDEF worker hook for row multi-threading | 
|  | static int cdef_sb_row_worker_hook(void *arg1, void *arg2) { | 
|  | AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1; | 
|  | AV1CdefWorkerData *cdef_worker = (AV1CdefWorkerData *)arg2; | 
|  | const int nvfb = | 
|  | (cdef_worker->cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; | 
|  | int cur_fbr; | 
|  | while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) { | 
|  | av1_cdef_fb_row(cdef_worker->cm, cdef_worker->xd, cdef_worker->linebuf, | 
|  | cdef_worker->colbuf, cdef_worker->srcbuf, cur_fbr, | 
|  | cdef_worker->cdef_init_fb_row_fn, cdef_sync); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Assigns CDEF hook function and thread data to each worker. | 
|  | static void prepare_cdef_frame_workers(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | AV1CdefWorkerData *cdef_worker, | 
|  | AVxWorkerHook hook, AVxWorker *workers, | 
|  | AV1CdefSync *cdef_sync, int num_workers, | 
|  | cdef_init_fb_row_t cdef_init_fb_row_fn) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | cdef_worker[0].srcbuf = cm->cdef_info.srcbuf; | 
|  | for (int plane = 0; plane < num_planes; plane++) | 
|  | cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane]; | 
|  | for (int i = 0; i < num_workers; ++i) { | 
|  | AVxWorker *worker = &workers[i]; | 
|  | cdef_worker[i].cm = cm; | 
|  | cdef_worker[i].xd = xd; | 
|  | cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn; | 
|  | for (int plane = 0; plane < num_planes; plane++) | 
|  | cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane]; | 
|  |  | 
|  | worker->hook = hook; | 
|  | worker->data1 = cdef_sync; | 
|  | worker->data2 = &cdef_worker[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_cdef_init_fb_row_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | CdefBlockInfo *const fb_info, | 
|  | uint16_t **const linebuf, uint16_t *const src, | 
|  | struct AV1CdefSyncData *const cdef_sync, int fbr) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; | 
|  | const int luma_stride = | 
|  | ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4); | 
|  |  | 
|  | // for the current filter block, it's top left corner mi structure (mi_tl) | 
|  | // is first accessed to check whether the top and left boundaries are | 
|  | // frame boundaries. Then bottom-left and top-right mi structures are | 
|  | // accessed to check whether the bottom and right boundaries | 
|  | // (respectively) are frame boundaries. | 
|  | // | 
|  | // Note that we can't just check the bottom-right mi structure - eg. if | 
|  | // we're at the right-hand edge of the frame but not the bottom, then | 
|  | // the bottom-right mi is NULL but the bottom-left is not. | 
|  | fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0; | 
|  | if (fbr != nvfb - 1) | 
|  | fb_info->frame_boundary[BOTTOM] = | 
|  | (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0; | 
|  | else | 
|  | fb_info->frame_boundary[BOTTOM] = 1; | 
|  |  | 
|  | fb_info->src = src; | 
|  | fb_info->damping = cm->cdef_info.cdef_damping; | 
|  | fb_info->coeff_shift = AOMMAX(cm->seq_params.bit_depth - 8, 0); | 
|  | av1_zero(fb_info->dir); | 
|  | av1_zero(fb_info->var); | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | const int stride = luma_stride >> xd->plane[plane].subsampling_x; | 
|  | const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; | 
|  | const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; | 
|  | const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; | 
|  | uint16_t *top_linebuf = &linebuf[plane][0]; | 
|  | uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride]; | 
|  |  | 
|  | if (fbr != nvfb - 1)  // if (fbr != 0)  // top line buffer copy | 
|  | av1_cdef_copy_sb8_16(cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], | 
|  | stride, xd->plane[plane].dst.buf, | 
|  | top_offset - CDEF_VBORDER, 0, | 
|  | xd->plane[plane].dst.stride, CDEF_VBORDER, stride); | 
|  | if (fbr != nvfb - 1)  // bottom line buffer copy | 
|  | av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride], | 
|  | stride, xd->plane[plane].dst.buf, bot_offset, 0, | 
|  | xd->plane[plane].dst.stride, CDEF_VBORDER, stride); | 
|  |  | 
|  | fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride]; | 
|  | fb_info->bot_linebuf[plane] = | 
|  | &linebuf[plane] | 
|  | [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)]; | 
|  | } | 
|  |  | 
|  | cdef_row_mt_sync_write(cdef_sync, fbr); | 
|  | cdef_row_mt_sync_read(cdef_sync, fbr); | 
|  | } | 
|  |  | 
|  | void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | AV1CdefWorkerData *const cdef_worker, | 
|  | AVxWorker *const workers, AV1CdefSync *const cdef_sync, | 
|  | int num_workers, | 
|  | cdef_init_fb_row_t cdef_init_fb_row_fn) { | 
|  | YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | av1_setup_dst_planes(xd->plane, frame, 0, 0, 0, num_planes, NULL); | 
|  |  | 
|  | reset_cdef_job_info(cdef_sync); | 
|  | prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook, | 
|  | workers, cdef_sync, num_workers, | 
|  | cdef_init_fb_row_fn); | 
|  | launch_cdef_workers(workers, num_workers); | 
|  | sync_cdef_workers(workers, cm, num_workers); | 
|  | } |