| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| #include <immintrin.h> |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/cfl.h" |
| |
| #include "av1/common/x86/cfl_simd.h" |
| |
| #define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 32) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 16) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 8) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 4) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 64, 64) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 64, 32) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 64) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 64, 4) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 64, 8) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 64, 16) \ |
| cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2( \ |
| TX_SIZE tx_size) { \ |
| static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \ |
| cfl_subsample_##bd##_##sub##_4x4_ssse3, /* 4x4 */ \ |
| cfl_subsample_##bd##_##sub##_8x8_ssse3, /* 8x8 */ \ |
| cfl_subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */ \ |
| cfl_subsample_##bd##_##sub##_32x32_avx2, /* 32x32 */ \ |
| cfl_subsample_##bd##_##sub##_64x64_avx2, /* 64x64 */ \ |
| cfl_subsample_##bd##_##sub##_4x8_ssse3, /* 4x8 */ \ |
| cfl_subsample_##bd##_##sub##_8x4_ssse3, /* 8x4 */ \ |
| cfl_subsample_##bd##_##sub##_8x16_ssse3, /* 8x16 */ \ |
| cfl_subsample_##bd##_##sub##_16x8_ssse3, /* 16x8 */ \ |
| cfl_subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */ \ |
| cfl_subsample_##bd##_##sub##_32x16_avx2, /* 32x16 */ \ |
| cfl_subsample_##bd##_##sub##_32x64_avx2, /* 32x64 */ \ |
| cfl_subsample_##bd##_##sub##_64x32_avx2, /* 64x32 */ \ |
| cfl_subsample_##bd##_##sub##_4x16_ssse3, /* 4x16 */ \ |
| cfl_subsample_##bd##_##sub##_16x4_ssse3, /* 16x4 */ \ |
| cfl_subsample_##bd##_##sub##_8x32_ssse3, /* 8x32 */ \ |
| cfl_subsample_##bd##_##sub##_32x8_avx2, /* 32x8 */ \ |
| cfl_subsample_##bd##_##sub##_16x64_ssse3, /* 16x64 */ \ |
| cfl_subsample_##bd##_##sub##_64x16_avx2, /* 64x16 */ \ |
| cfl_subsample_##bd##_##sub##_4x32_ssse3, /* 4x32 */ \ |
| cfl_subsample_##bd##_##sub##_32x4_avx2, /* 32x4 */ \ |
| cfl_subsample_##bd##_##sub##_8x64_ssse3, /* 8x64 */ \ |
| cfl_subsample_##bd##_##sub##_64x8_avx2, /* 64x8 */ \ |
| cfl_subsample_##bd##_##sub##_4x64_ssse3, /* 4x64 */ \ |
| cfl_subsample_##bd##_##sub##_64x4_avx2, /* 64x4 */ \ |
| }; \ |
| return subfn_##sub[tx_size]; \ |
| } |
| |
| /** |
| * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more |
| * precise version of a box filter 4:2:0 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| * |
| * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. |
| */ |
| static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| const int luma_stride = input_stride << 1; |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; |
| do { |
| if (width == 32) { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); |
| __m256i sum = _mm256_add_epi16(top, bot); |
| |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| __m256i bot_1 = |
| _mm256_loadu_si256((__m256i *)(input + 16 + input_stride)); |
| __m256i sum_1 = _mm256_add_epi16(top_1, bot_1); |
| |
| __m256i hsum = _mm256_hadd_epi16(sum, sum_1); |
| hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum = _mm256_add_epi16(hsum, hsum); |
| _mm256_storeu_si256(row, hsum); |
| } else { // width == 64 |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); |
| __m256i sum = _mm256_add_epi16(top, bot); |
| |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| __m256i bot_1 = |
| _mm256_loadu_si256((__m256i *)(input + 16 + input_stride)); |
| __m256i sum_1 = _mm256_add_epi16(top_1, bot_1); |
| |
| __m256i hsum = _mm256_hadd_epi16(sum, sum_1); |
| hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum = _mm256_add_epi16(hsum, hsum); |
| _mm256_storeu_si256(row, hsum); |
| |
| __m256i top_2 = _mm256_loadu_si256((__m256i *)(input + 32)); |
| __m256i bot_2 = |
| _mm256_loadu_si256((__m256i *)(input + 32 + input_stride)); |
| __m256i sum_2 = _mm256_add_epi16(top_2, bot_2); |
| |
| __m256i top_3 = _mm256_loadu_si256((__m256i *)(input + 48)); |
| __m256i bot_3 = |
| _mm256_loadu_si256((__m256i *)(input + 48 + input_stride)); |
| __m256i sum_3 = _mm256_add_epi16(top_3, bot_3); |
| |
| __m256i hsum_1 = _mm256_hadd_epi16(sum_2, sum_3); |
| hsum_1 = _mm256_permute4x64_epi64(hsum_1, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum_1 = _mm256_add_epi16(hsum_1, hsum_1); |
| _mm256_storeu_si256(row + 1, hsum_1); |
| } |
| input += luma_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| static void cfl_luma_subsampling_420_hbd_121_avx2_w4(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, |
| int height) { |
| // Shuffle mask to get {p2, p0} from a 4-element vector. |
| const __m128i center_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, 4, 1, 0); |
| // Shuffle mask for left taps {p1, p0}, handling the i=0 boundary. |
| const __m128i left_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 2, 1, 0); |
| // Shuffle mask for right taps {p3, p1}. |
| const __m128i right_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, 6, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const __m128i top = _mm_loadl_epi64((const __m128i *)input); |
| const __m128i bot = |
| _mm_loadl_epi64((const __m128i *)(input + input_stride)); |
| |
| const __m128i top_center = _mm_shuffle_epi8(top, center_mask); |
| const __m128i top_left = _mm_shuffle_epi8(top, left_mask); |
| const __m128i top_right = _mm_shuffle_epi8(top, right_mask); |
| __m128i top_sum = _mm_add_epi16(top_left, top_right); |
| top_sum = _mm_add_epi16(top_sum, _mm_add_epi16(top_center, top_center)); |
| |
| const __m128i bot_center = _mm_shuffle_epi8(bot, center_mask); |
| const __m128i bot_left = _mm_shuffle_epi8(bot, left_mask); |
| const __m128i bot_right = _mm_shuffle_epi8(bot, right_mask); |
| __m128i bot_sum = _mm_add_epi16(bot_left, bot_right); |
| bot_sum = _mm_add_epi16(bot_sum, _mm_add_epi16(bot_center, bot_center)); |
| |
| const __m128i final_sum = _mm_add_epi16(top_sum, bot_sum); |
| |
| _mm_storeu_si32((void *)output_q3, final_sum); |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_420_hbd_121_avx2_w8(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, |
| int height) { |
| // Shuffle mask to select {p6, p4, p2, p0} from a 128-bit vector. |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // Shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6] |
| // This mimics the C code's 'left = AOMMAX(0, i - 1)' for i=0 |
| const __m128i left_edge_mask = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // Shuffle mask to clamp right edge: [p1, p2, p3, p4, p5, p6, p7, p7] |
| // This mimics the C code's filter for the last pixel (i=6) |
| const __m128i right_edge_mask = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top = input; |
| const uint16_t *bot = input + input_stride; |
| |
| // 1. Load 8 center pixels (SAFE). |
| const __m128i top_center = _mm_loadu_si128((const __m128i *)top); |
| const __m128i bot_center = _mm_loadu_si128((const __m128i *)bot); |
| |
| // 1a. Construct left/right taps by shuffling center (SAFE). |
| // This avoids reading from (top - 1) and (top + 8). |
| const __m128i top_left = _mm_shuffle_epi8(top_center, left_edge_mask); |
| const __m128i top_right = _mm_shuffle_epi8(top_center, right_edge_mask); |
| |
| const __m128i bot_left = _mm_shuffle_epi8(bot_center, left_edge_mask); |
| const __m128i bot_right = _mm_shuffle_epi8(bot_center, right_edge_mask); |
| |
| // 2. Apply the horizontal 1-2-1 filter. |
| const __m128i center_2x = _mm_add_epi16(top_center, top_center); |
| const __m128i top_sum_unpacked = |
| _mm_add_epi16(_mm_add_epi16(top_left, top_right), center_2x); |
| |
| const __m128i bot_center_2x = _mm_add_epi16(bot_center, bot_center); |
| const __m128i bot_sum_unpacked = |
| _mm_add_epi16(_mm_add_epi16(bot_left, bot_right), bot_center_2x); |
| |
| // 3. Apply the vertical filter. |
| const __m128i sum_unpacked = |
| _mm_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| // 4. Subsample: Select every other pixel. |
| const __m128i final_sum = _mm_shuffle_epi8(sum_unpacked, subsample_mask); |
| |
| // 5. Store the final 4 subsampled pixels (64 bits). |
| _mm_storel_epi64((__m128i *)output_q3, final_sum); |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_420_hbd_121_avx2_w16(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, |
| int height) { |
| // SSSE3 shuffle mask to select {p6, p4, p2, p0} from a 128-bit lane. |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // 128-bit shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6] |
| const __m128i left_edge_mask_lo = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // 128-bit shuffle mask to clamp right edge: [p9, p10, p11, p12, p13, p14, |
| // p15, p15] (relative to the high 128-bit lane) |
| const __m128i right_edge_mask_hi = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top = input; |
| const uint16_t *bot = input + input_stride; |
| |
| // 1. Load 16 center pixels (SAFE). |
| const __m256i top_center = _mm256_loadu_si256((const __m256i *)top); |
| const __m256i bot_center = _mm256_loadu_si256((const __m256i *)bot); |
| |
| // 1a. Extract 128-bit lanes to perform shuffles and alignments. |
| const __m128i top_lo = |
| _mm256_extracti128_si256(top_center, 0); // [t7...t0] |
| const __m128i top_hi = |
| _mm256_extracti128_si256(top_center, 1); // [t15...t8] |
| const __m128i bot_lo = |
| _mm256_extracti128_si256(bot_center, 0); // [b7...b0] |
| const __m128i bot_hi = |
| _mm256_extracti128_si256(bot_center, 1); // [b15...b8] |
| |
| // 1b. Construct 'left' vectors |
| // top_left_lo = [t0, t0, t1, t2, t3, t4, t5, t6] |
| const __m128i top_left_lo = _mm_shuffle_epi8(top_lo, left_edge_mask_lo); |
| // top_left_hi = [t7, t8, t9, t10, t11, t12, t13, t14] |
| const __m128i top_left_hi = _mm_alignr_epi8(top_hi, top_lo, 14); |
| const __m256i top_left = _mm256_set_m128i(top_left_hi, top_left_lo); |
| |
| const __m128i bot_left_lo = _mm_shuffle_epi8(bot_lo, left_edge_mask_lo); |
| const __m128i bot_left_hi = _mm_alignr_epi8(bot_hi, bot_lo, 14); |
| const __m256i bot_left = _mm256_set_m128i(bot_left_hi, bot_left_lo); |
| |
| // 1c. Construct 'right' vectors |
| // top_right_lo = [t1, t2, t3, t4, t5, t6, t7, t8] |
| const __m128i top_right_lo = _mm_alignr_epi8(top_hi, top_lo, 2); |
| // top_right_hi = [t9, t10, t11, t12, t13, t14, t15, t15] |
| const __m128i top_right_hi = _mm_shuffle_epi8(top_hi, right_edge_mask_hi); |
| const __m256i top_right = _mm256_set_m128i(top_right_hi, top_right_lo); |
| |
| const __m128i bot_right_lo = _mm_alignr_epi8(bot_hi, bot_lo, 2); |
| const __m128i bot_right_hi = _mm_shuffle_epi8(bot_hi, right_edge_mask_hi); |
| const __m256i bot_right = _mm256_set_m128i(bot_right_hi, bot_right_lo); |
| |
| // 2. Apply the horizontal 1-2-1 filter (left + 2*center + right). |
| const __m256i center_2x = _mm256_add_epi16(top_center, top_center); |
| const __m256i top_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(top_left, top_right), center_2x); |
| |
| const __m256i bot_center_2x = _mm256_add_epi16(bot_center, bot_center); |
| const __m256i bot_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), bot_center_2x); |
| |
| // 3. Apply the vertical filter by adding the top and bottom results. |
| const __m256i sum_unpacked = |
| _mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| // 4. Subsample: Select every other pixel from the 16 results. |
| const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1); |
| |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| |
| const __m128i final_sum = _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| // 5. Store the final 8 subsampled pixels. |
| _mm_storeu_si128((__m128i *)output_q3, final_sum); |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_420_hbd_121_avx2_w32(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, |
| int height) { |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // Mask to clamp left edge of the first 16-pixel block: [p0, p0, p1...p6] |
| const __m128i left_edge_mask_lo = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // Mask to clamp right edge of the second 16-pixel block: [p25...p31,p31] |
| const __m128i right_edge_mask_hi = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top = input; |
| const uint16_t *bot = input + input_stride; |
| |
| // Process first 16 pixels (Left-clamped) |
| { |
| // 1. Load center and right taps (SAFE). |
| const __m256i top_center = _mm256_loadu_si256((const __m256i *)top); |
| const __m256i top_right = _mm256_loadu_si256((const __m256i *)(top + 1)); |
| const __m256i bot_center = _mm256_loadu_si256((const __m256i *)bot); |
| const __m256i bot_right = _mm256_loadu_si256((const __m256i *)(bot + 1)); |
| |
| // 1a. Extract lanes to build the clamped left-tap vectors. |
| const __m128i top_lo = |
| _mm256_extracti128_si256(top_center, 0); // [t7...t0] |
| const __m128i top_hi = |
| _mm256_extracti128_si256(top_center, 1); // [t15...t8] |
| const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0); |
| const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1); |
| |
| // 1b. Construct 'left' vectors (SAFE) |
| // top_left_lo = [t0, t0, t1, t2, t3, t4, t5, t6] |
| const __m128i top_left_lo = _mm_shuffle_epi8(top_lo, left_edge_mask_lo); |
| // top_left_hi = [t7, t8, t9, t10, t11, t12, t13, t14] |
| const __m128i top_left_hi = _mm_alignr_epi8(top_hi, top_lo, 14); |
| const __m256i top_left = _mm256_set_m128i(top_left_hi, top_left_lo); |
| |
| const __m128i bot_left_lo = _mm_shuffle_epi8(bot_lo, left_edge_mask_lo); |
| const __m128i bot_left_hi = _mm_alignr_epi8(bot_hi, bot_lo, 14); |
| const __m256i bot_left = _mm256_set_m128i(bot_left_hi, bot_left_lo); |
| |
| // 2. Calculate sum |
| const __m256i top_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(top_left, top_right), |
| _mm256_add_epi16(top_center, top_center)); |
| const __m256i bot_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), |
| _mm256_add_epi16(bot_center, bot_center)); |
| const __m256i sum_unpacked = |
| _mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1); |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| const __m128i final_sum = |
| _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| _mm_storeu_si128((__m128i *)output_q3, final_sum); |
| } |
| |
| // Process second 16 pixels (Right-clamped) |
| { |
| // 1. Load left and center taps (SAFE). |
| const __m256i top_left = _mm256_loadu_si256((const __m256i *)(top + 15)); |
| const __m256i top_center = |
| _mm256_loadu_si256((const __m256i *)(top + 16)); |
| const __m256i bot_left = _mm256_loadu_si256((const __m256i *)(bot + 15)); |
| const __m256i bot_center = |
| _mm256_loadu_si256((const __m256i *)(bot + 16)); |
| |
| // 1a. Extract lanes to build the clamped right-tap vectors. |
| const __m128i top_lo = |
| _mm256_extracti128_si256(top_center, 0); // [t23...t16] |
| const __m128i top_hi = |
| _mm256_extracti128_si256(top_center, 1); // [t31...t24] |
| const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0); |
| const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1); |
| |
| // 1b. Construct 'right' vectors (SAFE) |
| // top_right_lo = [t17, t18, t19, t20, t21, t22, t23, t24] |
| const __m128i top_right_lo = _mm_alignr_epi8(top_hi, top_lo, 2); |
| // top_right_hi = [t25, t26, t27, t28, t29, t30, t31, t31] |
| const __m128i top_right_hi = _mm_shuffle_epi8(top_hi, right_edge_mask_hi); |
| const __m256i top_right = _mm256_set_m128i(top_right_hi, top_right_lo); |
| |
| const __m128i bot_right_lo = _mm_alignr_epi8(bot_hi, bot_lo, 2); |
| const __m128i bot_right_hi = _mm_shuffle_epi8(bot_hi, right_edge_mask_hi); |
| const __m256i bot_right = _mm256_set_m128i(bot_right_hi, bot_right_lo); |
| |
| // 2. Calculate sum |
| const __m256i top_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(top_left, top_right), |
| _mm256_add_epi16(top_center, top_center)); |
| const __m256i bot_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), |
| _mm256_add_epi16(bot_center, bot_center)); |
| const __m256i sum_unpacked = |
| _mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1); |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| const __m128i final_sum = |
| _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| _mm_storeu_si128((__m128i *)(output_q3 + 8), final_sum); |
| } |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_420_hbd_121_avx2_w64(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, |
| int height) { |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // Mask to clamp left edge of the first 16-pixel block: [p0, p0, p1...p6] |
| const __m128i left_edge_mask_lo = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // Mask to clamp right edge of the last 16-pixel block: [p57...p63,p63] |
| // (relative to the high 128-bit lane of the last 16-pixel chunk) |
| const __m128i right_edge_mask_hi = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top = input; |
| const uint16_t *bot = input + input_stride; |
| |
| // --- Block 0 (i=0, pixels 0-15): Left-clamped --- |
| { |
| // 1. Load center and right taps (SAFE). |
| const __m256i top_center = _mm256_loadu_si256((const __m256i *)top); |
| const __m256i top_right = _mm256_loadu_si256((const __m256i *)(top + 1)); |
| const __m256i bot_center = _mm256_loadu_si256((const __m256i *)bot); |
| const __m256i bot_right = _mm256_loadu_si256((const __m256i *)(bot + 1)); |
| |
| // 1a. Extract lanes to build the clamped left-tap vectors. |
| const __m128i top_lo = _mm256_extracti128_si256(top_center, 0); |
| const __m128i top_hi = _mm256_extracti128_si256(top_center, 1); |
| const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0); |
| const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1); |
| |
| // 1b. Construct 'left' vectors (SAFE) |
| const __m128i top_left_lo = _mm_shuffle_epi8(top_lo, left_edge_mask_lo); |
| const __m128i top_left_hi = _mm_alignr_epi8(top_hi, top_lo, 14); |
| const __m256i top_left = _mm256_set_m128i(top_left_hi, top_left_lo); |
| |
| const __m128i bot_left_lo = _mm_shuffle_epi8(bot_lo, left_edge_mask_lo); |
| const __m128i bot_left_hi = _mm_alignr_epi8(bot_hi, bot_lo, 14); |
| const __m256i bot_left = _mm256_set_m128i(bot_left_hi, bot_left_lo); |
| |
| // 2. Calculate sum |
| const __m256i top_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(top_left, top_right), |
| _mm256_add_epi16(top_center, top_center)); |
| const __m256i bot_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), |
| _mm256_add_epi16(bot_center, bot_center)); |
| const __m256i sum_unpacked = |
| _mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1); |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| const __m128i final_sum = |
| _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| _mm_storeu_si128((__m128i *)output_q3, final_sum); |
| } |
| |
| // --- Block 1 (i=1, pixels 16-31): Middle (SAFE) --- |
| { |
| const int offset = 16; |
| const __m256i top_left = |
| _mm256_loadu_si256((const __m256i *)(top + offset - 1)); |
| const __m256i top_center = |
| _mm256_loadu_si256((const __m256i *)(top + offset)); |
| const __m256i top_right = |
| _mm256_loadu_si256((const __m256i *)(top + offset + 1)); |
| const __m256i bot_left = |
| _mm256_loadu_si256((const __m256i *)(bot + offset - 1)); |
| const __m256i bot_center = |
| _mm256_loadu_si256((const __m256i *)(bot + offset)); |
| const __m256i bot_right = |
| _mm256_loadu_si256((const __m256i *)(bot + offset + 1)); |
| |
| const __m256i top_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(top_left, top_right), |
| _mm256_add_epi16(top_center, top_center)); |
| const __m256i bot_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), |
| _mm256_add_epi16(bot_center, bot_center)); |
| const __m256i sum_unpacked = |
| _mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1); |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| const __m128i final_sum = |
| _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| _mm_storeu_si128((__m128i *)(output_q3 + 8), final_sum); |
| } |
| |
| // --- Block 2 (i=2, pixels 32-47): Middle (SAFE) --- |
| { |
| const int offset = 32; |
| const __m256i top_left = |
| _mm256_loadu_si256((const __m256i *)(top + offset - 1)); |
| const __m256i top_center = |
| _mm256_loadu_si256((const __m256i *)(top + offset)); |
| const __m256i top_right = |
| _mm256_loadu_si256((const __m256i *)(top + offset + 1)); |
| const __m256i bot_left = |
| _mm256_loadu_si256((const __m256i *)(bot + offset - 1)); |
| const __m256i bot_center = |
| _mm256_loadu_si256((const __m256i *)(bot + offset)); |
| const __m256i bot_right = |
| _mm256_loadu_si256((const __m256i *)(bot + offset + 1)); |
| |
| const __m256i top_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(top_left, top_right), |
| _mm256_add_epi16(top_center, top_center)); |
| const __m256i bot_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), |
| _mm256_add_epi16(bot_center, bot_center)); |
| const __m256i sum_unpacked = |
| _mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1); |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| const __m128i final_sum = |
| _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| _mm_storeu_si128((__m128i *)(output_q3 + 16), final_sum); |
| } |
| |
| // --- Block 3 (i=3, pixels 48-63): Right-clamped --- |
| { |
| const int offset = 48; |
| // 1. Load left and center taps (SAFE). |
| const __m256i top_left = |
| _mm256_loadu_si256((const __m256i *)(top + offset - 1)); |
| const __m256i top_center = |
| _mm256_loadu_si256((const __m256i *)(top + offset)); |
| const __m256i bot_left = |
| _mm256_loadu_si256((const __m256i *)(bot + offset - 1)); |
| const __m256i bot_center = |
| _mm256_loadu_si256((const __m256i *)(bot + offset)); |
| |
| // 1a. Extract lanes to build the clamped right-tap vectors. |
| const __m128i top_lo = |
| _mm256_extracti128_si256(top_center, 0); // [t55...t48] |
| const __m128i top_hi = |
| _mm256_extracti128_si256(top_center, 1); // [t63...t56] |
| const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0); |
| const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1); |
| |
| // 1b. Construct 'right' vectors (SAFE) |
| // top_right_lo = [t49, t50, t51, t52, t53, t54, t55, t56] |
| const __m128i top_right_lo = _mm_alignr_epi8(top_hi, top_lo, 2); |
| // top_right_hi = [t57, t58, t59, t60, t61, t62, t63, t63] |
| const __m128i top_right_hi = _mm_shuffle_epi8(top_hi, right_edge_mask_hi); |
| const __m256i top_right = _mm256_set_m128i(top_right_hi, top_right_lo); |
| |
| const __m128i bot_right_lo = _mm_alignr_epi8(bot_hi, bot_lo, 2); |
| const __m128i bot_right_hi = _mm_shuffle_epi8(bot_hi, right_edge_mask_hi); |
| const __m256i bot_right = _mm256_set_m128i(bot_right_hi, bot_right_lo); |
| |
| // 2. Calculate sum |
| const __m256i top_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(top_left, top_right), |
| _mm256_add_epi16(top_center, top_center)); |
| const __m256i bot_sum_unpacked = |
| _mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), |
| _mm256_add_epi16(bot_center, bot_center)); |
| const __m256i sum_unpacked = |
| _mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1); |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| const __m128i final_sum = |
| _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| _mm_storeu_si128((__m128i *)(output_q3 + 24), final_sum); |
| } |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_420_hbd_121_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, |
| int width, int height) { |
| switch (width) { |
| case 4: |
| cfl_luma_subsampling_420_hbd_121_avx2_w4(input, input_stride, output_q3, |
| height); |
| break; |
| case 8: |
| cfl_luma_subsampling_420_hbd_121_avx2_w8(input, input_stride, output_q3, |
| height); |
| break; |
| case 16: |
| cfl_luma_subsampling_420_hbd_121_avx2_w16(input, input_stride, output_q3, |
| height); |
| break; |
| case 32: |
| cfl_luma_subsampling_420_hbd_121_avx2_w32(input, input_stride, output_q3, |
| height); |
| break; |
| case 64: |
| cfl_luma_subsampling_420_hbd_121_avx2_w64(input, input_stride, output_q3, |
| height); |
| break; |
| default: assert(0 && "Invalid width."); |
| } |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd) |
| |
| // AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with width=4 |
| static void cfl_luma_subsampling_420_hbd_colocated_avx2_w4( |
| const uint16_t *input, int input_stride, uint16_t *output_q3, int height) { |
| // Masks to construct {p2, p0} and {p1, p0} etc. from a 4-pixel vector |
| const __m128i center_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, 4, 1, 0); |
| const __m128i left_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 2, 1, 0); |
| const __m128i right_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, 6, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride); |
| const uint16_t *bot_ptr = input + input_stride; |
| |
| const __m128i v_in = _mm_loadl_epi64((const __m128i *)input); |
| const __m128i v_top = _mm_loadl_epi64((const __m128i *)top_ptr); |
| const __m128i v_bot = _mm_loadl_epi64((const __m128i *)bot_ptr); |
| |
| // left + right |
| __m128i sum = _mm_add_epi16(_mm_shuffle_epi8(v_in, left_mask), |
| _mm_shuffle_epi8(v_in, right_mask)); |
| // + top + bottom |
| sum = _mm_add_epi16(sum, _mm_shuffle_epi8(v_top, center_mask)); |
| sum = _mm_add_epi16(sum, _mm_shuffle_epi8(v_bot, center_mask)); |
| // + 4 * center |
| const __m128i center4x = |
| _mm_slli_epi16(_mm_shuffle_epi8(v_in, center_mask), 2); |
| sum = _mm_add_epi16(sum, center4x); |
| |
| _mm_storeu_si32((void *)output_q3, sum); |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| // AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with width=8 |
| static void cfl_luma_subsampling_420_hbd_colocated_avx2_w8( |
| const uint16_t *input, int input_stride, uint16_t *output_q3, int height) { |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // Shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6] |
| const __m128i left_edge_mask = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // Shuffle mask to clamp right edge: [p1, p2, p3, p4, p5, p6, p7, p7] |
| const __m128i right_edge_mask = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride); |
| const uint16_t *bot_ptr = input + input_stride; |
| |
| // 1. Load center, top, and bottom taps (SAFE). |
| const __m128i center = _mm_loadu_si128((const __m128i *)input); |
| const __m128i top = _mm_loadu_si128((const __m128i *)top_ptr); |
| const __m128i bottom = _mm_loadu_si128((const __m128i *)bot_ptr); |
| |
| // 2. Construct left and right taps from center (SAFE). |
| const __m128i left = _mm_shuffle_epi8(center, left_edge_mask); |
| const __m128i right = _mm_shuffle_epi8(center, right_edge_mask); |
| |
| // 3. Perform filter calculation. |
| __m128i sum = _mm_add_epi16(left, right); |
| sum = _mm_add_epi16(sum, top); |
| sum = _mm_add_epi16(sum, bottom); |
| const __m128i center4x = _mm_slli_epi16(center, 2); // 4 * center |
| sum = _mm_add_epi16(sum, center4x); |
| |
| // 4. Subsample and store. |
| const __m128i subsampled = _mm_shuffle_epi8(sum, subsample_mask); |
| _mm_storel_epi64((__m128i *)output_q3, subsampled); |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| // AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with |
| // width=16 |
| static void cfl_luma_subsampling_420_hbd_colocated_avx2_w16( |
| const uint16_t *input, int input_stride, uint16_t *output_q3, int height) { |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // 128-bit shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6] |
| const __m128i left_edge_mask_lo = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // 128-bit shuffle mask to clamp right edge: [p9, p10, p11, p12, p13, p14, |
| // p15, p15] (relative to the high 128-bit lane) |
| const __m128i right_edge_mask_hi = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride); |
| const uint16_t *bot_ptr = input + input_stride; |
| |
| // 1. Load center, top, and bottom taps (SAFE). |
| const __m256i center = _mm256_loadu_si256((const __m256i *)input); |
| const __m256i top = _mm256_loadu_si256((const __m256i *)top_ptr); |
| const __m256i bottom = _mm256_loadu_si256((const __m256i *)bot_ptr); |
| |
| // 1a. Extract 128-bit lanes from center to build left/right taps. |
| const __m128i center_lo = _mm256_extracti128_si256(center, 0); // [t7...t0] |
| const __m128i center_hi = |
| _mm256_extracti128_si256(center, 1); // [t15...t8] |
| |
| // 1b. Construct 'left' vector (SAFE) |
| // left_lo = [t0, t0, t1, t2, t3, t4, t5, t6] |
| const __m128i left_lo = _mm_shuffle_epi8(center_lo, left_edge_mask_lo); |
| // left_hi = [t7, t8, t9, t10, t11, t12, t13, t14] |
| const __m128i left_hi = _mm_alignr_epi8(center_hi, center_lo, 14); |
| const __m256i left = _mm256_set_m128i(left_hi, left_lo); |
| |
| // 1c. Construct 'right' vector (SAFE) |
| // right_lo = [t1, t2, t3, t4, t5, t6, t7, t8] |
| const __m128i right_lo = _mm_alignr_epi8(center_hi, center_lo, 2); |
| // right_hi = [t9, t10, t11, t12, t13, t14, t15, t15] |
| const __m128i right_hi = _mm_shuffle_epi8(center_hi, right_edge_mask_hi); |
| const __m256i right = _mm256_set_m128i(right_hi, right_lo); |
| |
| // 2. Apply the filter. |
| __m256i sum = _mm256_add_epi16(left, right); |
| sum = _mm256_add_epi16(sum, top); |
| sum = _mm256_add_epi16(sum, bottom); |
| const __m256i center4x = _mm256_slli_epi16(center, 2); // 4 * center |
| sum = _mm256_add_epi16(sum, center4x); |
| |
| // 3. Subsample and store. |
| const __m128i sum_lo = _mm256_extracti128_si256(sum, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum, 1); |
| const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask); |
| const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask); |
| const __m128i final_sum = _mm_unpacklo_epi64(subsampled_lo, subsampled_hi); |
| |
| _mm_storeu_si128((__m128i *)output_q3, final_sum); |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| // AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with |
| // width=32 |
| static void cfl_luma_subsampling_420_hbd_colocated_avx2_w32( |
| const uint16_t *input, int input_stride, uint16_t *output_q3, int height) { |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // Mask to clamp left edge: [p0, p0, p1...p6] |
| const __m128i left_edge_mask_lo = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // Mask to clamp right edge: [p25...p31,p31] |
| const __m128i right_edge_mask_hi = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride); |
| const uint16_t *bot_ptr = input + input_stride; |
| |
| // Process first 16 pixels (Left-clamped) |
| { |
| // 1. Load center, right, top, bottom (all SAFE). |
| const __m256i center = _mm256_loadu_si256((const __m256i *)input); |
| const __m256i right = _mm256_loadu_si256((const __m256i *)(input + 1)); |
| const __m256i top = _mm256_loadu_si256((const __m256i *)top_ptr); |
| const __m256i bot = _mm256_loadu_si256((const __m256i *)bot_ptr); |
| |
| // 1a. Extract lanes from center to build 'left' vector. |
| const __m128i center_lo = _mm256_extracti128_si256(center, 0); |
| const __m128i center_hi = _mm256_extracti128_si256(center, 1); |
| |
| // 1b. Construct 'left' vector (SAFE) |
| const __m128i left_lo = _mm_shuffle_epi8(center_lo, left_edge_mask_lo); |
| const __m128i left_hi = _mm_alignr_epi8(center_hi, center_lo, 14); |
| const __m256i left = _mm256_set_m128i(left_hi, left_lo); |
| |
| // 2. Calculate sum |
| __m256i sum = _mm256_add_epi16(left, right); |
| sum = _mm256_add_epi16(sum, top); |
| sum = _mm256_add_epi16(sum, bot); |
| sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2)); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum, 1); |
| const __m128i subsampled = |
| _mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask), |
| _mm_shuffle_epi8(sum_hi, subsample_mask)); |
| _mm_storeu_si128((__m128i *)output_q3, subsampled); |
| } |
| |
| // Process second 16 pixels (Right-clamped) |
| { |
| // 1. Load left, center, top, bottom (all SAFE). |
| const __m256i left = _mm256_loadu_si256((const __m256i *)(input + 15)); |
| const __m256i center = _mm256_loadu_si256((const __m256i *)(input + 16)); |
| const __m256i top = _mm256_loadu_si256((const __m256i *)(top_ptr + 16)); |
| const __m256i bot = _mm256_loadu_si256((const __m256i *)(bot_ptr + 16)); |
| |
| // 1a. Extract lanes from center to build 'right' vector. |
| const __m128i center_lo = |
| _mm256_extracti128_si256(center, 0); // [t23...t16] |
| const __m128i center_hi = |
| _mm256_extracti128_si256(center, 1); // [t31...t24] |
| |
| // 1b. Construct 'right' vector (SAFE) |
| const __m128i right_lo = _mm_alignr_epi8(center_hi, center_lo, 2); |
| const __m128i right_hi = _mm_shuffle_epi8(center_hi, right_edge_mask_hi); |
| const __m256i right = _mm256_set_m128i(right_hi, right_lo); |
| |
| // 2. Calculate sum |
| __m256i sum = _mm256_add_epi16(left, right); |
| sum = _mm256_add_epi16(sum, top); |
| sum = _mm256_add_epi16(sum, bot); |
| sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2)); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum, 1); |
| const __m128i subsampled = |
| _mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask), |
| _mm_shuffle_epi8(sum_hi, subsample_mask)); |
| _mm_storeu_si128((__m128i *)(output_q3 + 8), subsampled); |
| } |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| // AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with |
| // width=64 |
| static void cfl_luma_subsampling_420_hbd_colocated_avx2_w64( |
| const uint16_t *input, int input_stride, uint16_t *output_q3, int height) { |
| const __m128i subsample_mask = |
| _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0); |
| |
| // Mask to clamp left edge of the first 16-pixel block: [p0, p0, p1...p6] |
| const __m128i left_edge_mask_lo = |
| _mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0); |
| |
| // Mask to clamp right edge of the last 16-pixel block: [p57...p63,p63] |
| // (relative to the high 128-bit lane of the last 16-pixel chunk) |
| const __m128i right_edge_mask_hi = |
| _mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2); |
| |
| for (int j = 0; j < height; j += 2) { |
| const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride); |
| const uint16_t *bot_ptr = input + input_stride; |
| |
| // --- Block 0 (i=0, pixels 0-15): Left-clamped --- |
| { |
| // 1. Load center, right, top, bottom (all SAFE). |
| const __m256i center = _mm256_loadu_si256((const __m256i *)input); |
| const __m256i right = _mm256_loadu_si256((const __m256i *)(input + 1)); |
| const __m256i top = _mm256_loadu_si256((const __m256i *)top_ptr); |
| const __m256i bot = _mm256_loadu_si256((const __m256i *)bot_ptr); |
| |
| // 1a. Extract lanes to build the clamped left-tap vector. |
| const __m128i center_lo = _mm256_extracti128_si256(center, 0); |
| const __m128i center_hi = _mm256_extracti128_si256(center, 1); |
| |
| // 1b. Construct 'left' vector (SAFE) |
| const __m128i left_lo = _mm_shuffle_epi8(center_lo, left_edge_mask_lo); |
| const __m128i left_hi = _mm_alignr_epi8(center_hi, center_lo, 14); |
| const __m256i left = _mm256_set_m128i(left_hi, left_lo); |
| |
| // 2. Calculate sum |
| __m256i sum = _mm256_add_epi16(left, right); |
| sum = _mm256_add_epi16(sum, top); |
| sum = _mm256_add_epi16(sum, bot); |
| sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2)); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum, 1); |
| const __m128i subsampled = |
| _mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask), |
| _mm_shuffle_epi8(sum_hi, subsample_mask)); |
| _mm_storeu_si128((__m128i *)output_q3, subsampled); |
| } |
| |
| // --- Block 1 (i=1, pixels 16-31): Middle (SAFE) --- |
| { |
| const int offset = 16; |
| const __m256i left = |
| _mm256_loadu_si256((const __m256i *)(input + offset - 1)); |
| const __m256i center = |
| _mm256_loadu_si256((const __m256i *)(input + offset)); |
| const __m256i right = |
| _mm256_loadu_si256((const __m256i *)(input + offset + 1)); |
| const __m256i top = |
| _mm256_loadu_si256((const __m256i *)(top_ptr + offset)); |
| const __m256i bot = |
| _mm256_loadu_si256((const __m256i *)(bot_ptr + offset)); |
| |
| __m256i sum = _mm256_add_epi16(left, right); |
| sum = _mm256_add_epi16(sum, top); |
| sum = _mm256_add_epi16(sum, bot); |
| sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2)); |
| |
| const __m128i sum_lo = _mm256_extracti128_si256(sum, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum, 1); |
| const __m128i subsampled = |
| _mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask), |
| _mm_shuffle_epi8(sum_hi, subsample_mask)); |
| _mm_storeu_si128((__m128i *)(output_q3 + 8), subsampled); |
| } |
| |
| // --- Block 2 (i=2, pixels 32-47): Middle (SAFE) --- |
| { |
| const int offset = 32; |
| const __m256i left = |
| _mm256_loadu_si256((const __m256i *)(input + offset - 1)); |
| const __m256i center = |
| _mm256_loadu_si256((const __m256i *)(input + offset)); |
| const __m256i right = |
| _mm256_loadu_si256((const __m256i *)(input + offset + 1)); |
| const __m256i top = |
| _mm256_loadu_si256((const __m256i *)(top_ptr + offset)); |
| const __m256i bot = |
| _mm256_loadu_si256((const __m256i *)(bot_ptr + offset)); |
| |
| __m256i sum = _mm256_add_epi16(left, right); |
| sum = _mm256_add_epi16(sum, top); |
| sum = _mm256_add_epi16(sum, bot); |
| sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2)); |
| |
| const __m128i sum_lo = _mm256_extracti128_si256(sum, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum, 1); |
| const __m128i subsampled = |
| _mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask), |
| _mm_shuffle_epi8(sum_hi, subsample_mask)); |
| _mm_storeu_si128((__m128i *)(output_q3 + 16), subsampled); |
| } |
| |
| // --- Block 3 (i=3, pixels 48-63): Right-clamped --- |
| { |
| const int offset = 48; |
| // 1. Load left, center, top, bottom (all SAFE). |
| const __m256i left = |
| _mm256_loadu_si256((const __m256i *)(input + offset - 1)); |
| const __m256i center = |
| _mm256_loadu_si256((const __m256i *)(input + offset)); |
| const __m256i top = |
| _mm256_loadu_si256((const __m256i *)(top_ptr + offset)); |
| const __m256i bot = |
| _mm256_loadu_si256((const __m256i *)(bot_ptr + offset)); |
| |
| // 1a. Extract lanes to build the clamped right-tap vector. |
| const __m128i center_lo = |
| _mm256_extracti128_si256(center, 0); // [t55...t48] |
| const __m128i center_hi = |
| _mm256_extracti128_si256(center, 1); // [t63...t56] |
| |
| // 1b. Construct 'right' vector (SAFE) |
| const __m128i right_lo = _mm_alignr_epi8(center_hi, center_lo, 2); |
| const __m128i right_hi = _mm_shuffle_epi8(center_hi, right_edge_mask_hi); |
| const __m256i right = _mm256_set_m128i(right_hi, right_lo); |
| |
| // 2. Calculate sum |
| __m256i sum = _mm256_add_epi16(left, right); |
| sum = _mm256_add_epi16(sum, top); |
| sum = _mm256_add_epi16(sum, bot); |
| sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2)); |
| |
| // 3. Subsample and store |
| const __m128i sum_lo = _mm256_extracti128_si256(sum, 0); |
| const __m128i sum_hi = _mm256_extracti128_si256(sum, 1); |
| const __m128i subsampled = |
| _mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask), |
| _mm_shuffle_epi8(sum_hi, subsample_mask)); |
| _mm_storeu_si128((__m128i *)(output_q3 + 24), subsampled); |
| } |
| |
| input += input_stride << 1; |
| output_q3 += CFL_BUF_LINE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_420_hbd_colocated_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *output_q3, |
| int width, int height) { |
| switch (width) { |
| case 4: |
| cfl_luma_subsampling_420_hbd_colocated_avx2_w4(input, input_stride, |
| output_q3, height); |
| break; |
| case 8: |
| cfl_luma_subsampling_420_hbd_colocated_avx2_w8(input, input_stride, |
| output_q3, height); |
| break; |
| case 16: |
| cfl_luma_subsampling_420_hbd_colocated_avx2_w16(input, input_stride, |
| output_q3, height); |
| break; |
| case 32: |
| cfl_luma_subsampling_420_hbd_colocated_avx2_w32(input, input_stride, |
| output_q3, height); |
| break; |
| case 64: |
| cfl_luma_subsampling_420_hbd_colocated_avx2_w64(input, input_stride, |
| output_q3, height); |
| break; |
| default: assert(0 && "Invalid width."); break; |
| } |
| } |
| |
| /** |
| * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more |
| * precise version of a box filter 4:2:2 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| * |
| */ |
| static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| do { |
| if (width == 32) { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| __m256i hsum = _mm256_hadd_epi16(top, top_1); |
| hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum = _mm256_slli_epi16(hsum, 2); |
| _mm256_storeu_si256(row, hsum); |
| } else { // width == 64 |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| __m256i hsum = _mm256_hadd_epi16(top, top_1); |
| hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum = _mm256_slli_epi16(hsum, 2); |
| _mm256_storeu_si256(row, hsum); |
| |
| __m256i top_2 = _mm256_loadu_si256((__m256i *)(input + 32)); |
| __m256i top_3 = _mm256_loadu_si256((__m256i *)(input + 48)); |
| __m256i hsum_1 = _mm256_hadd_epi16(top_2, top_3); |
| hsum_1 = _mm256_permute4x64_epi64(hsum_1, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum_1 = _mm256_slli_epi16(hsum_1, 2); |
| _mm256_storeu_si256(row + 1, hsum_1); |
| } |
| input += input_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd) |
| |
| static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| do { |
| if (width == 32) { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3)); |
| _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3)); |
| } else { // width == 64 |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3)); |
| _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3)); |
| __m256i top_2 = _mm256_loadu_si256((__m256i *)(input + 32)); |
| __m256i top_3 = _mm256_loadu_si256((__m256i *)(input + 48)); |
| _mm256_storeu_si256(row + 2, _mm256_slli_epi16(top_2, 3)); |
| _mm256_storeu_si256(row + 3, _mm256_slli_epi16(top_3, 3)); |
| } |
| input += input_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd) |
| |
| CFL_GET_SUBSAMPLE_121_FUNCTION(avx2) |
| |
| CFL_GET_SUBSAMPLE_COLOCATED_FUNCTION(avx2) |
| |
| static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12, |
| __m256i alpha_sign, __m256i dc_q0) { |
| __m256i ac_q3 = _mm256_loadu_si256(input); |
| __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3); |
| __m256i scaled_luma_q0 = |
| _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12); |
| scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign); |
| return _mm256_add_epi16(scaled_luma_q0, dc_q0); |
| } |
| |
| static __m256i highbd_max_epi16(int bd) { |
| const __m256i neg_one = _mm256_set1_epi16(-1); |
| // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) |
| return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one); |
| } |
| |
| static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) { |
| return _mm256_max_epi16(_mm256_min_epi16(u, max), zero); |
| } |
| |
| static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3, |
| uint16_t *dst, int dst_stride, |
| int alpha_q3, int bd, int width, |
| int height) { |
| // Use SSSE3 version for smaller widths |
| assert(width == 16 || width == 32); |
| const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); |
| const __m256i alpha_q12 = |
| _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), (9 - CFL_ADD_BITS_ALPHA)); |
| const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst); |
| const __m256i max = highbd_max_epi16(bd); |
| |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| do { |
| const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); |
| _mm256_storeu_si256((__m256i *)dst, |
| highbd_clamp_epi16(res, _mm256_setzero_si256(), max)); |
| if (width == 32) { |
| const __m256i res_1 = |
| predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); |
| _mm256_storeu_si256( |
| (__m256i *)(dst + 16), |
| highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max)); |
| } |
| dst += dst_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_PREDICT_X(avx2, 16, 4, hbd) |
| CFL_PREDICT_X(avx2, 16, 8, hbd) |
| CFL_PREDICT_X(avx2, 16, 16, hbd) |
| CFL_PREDICT_X(avx2, 16, 32, hbd) |
| CFL_PREDICT_X(avx2, 32, 8, hbd) |
| CFL_PREDICT_X(avx2, 32, 16, hbd) |
| CFL_PREDICT_X(avx2, 32, 32, hbd) |
| CFL_PREDICT_X(avx2, 32, 4, hbd) |
| |
| cfl_predict_hbd_fn cfl_get_predict_hbd_fn_avx2(TX_SIZE tx_size) { |
| static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = { |
| cfl_predict_hbd_4x4_ssse3, /* 4x4 */ |
| cfl_predict_hbd_8x8_ssse3, /* 8x8 */ |
| cfl_predict_hbd_16x16_avx2, /* 16x16 */ |
| cfl_predict_hbd_32x32_avx2, /* 32x32 */ |
| NULL, /* 64x64 (invalid CFL size) */ |
| cfl_predict_hbd_4x8_ssse3, /* 4x8 */ |
| cfl_predict_hbd_8x4_ssse3, /* 8x4 */ |
| cfl_predict_hbd_8x16_ssse3, /* 8x16 */ |
| cfl_predict_hbd_16x8_avx2, /* 16x8 */ |
| cfl_predict_hbd_16x32_avx2, /* 16x32 */ |
| cfl_predict_hbd_32x16_avx2, /* 32x16 */ |
| NULL, /* 32x64 (invalid CFL size) */ |
| NULL, /* 64x32 (invalid CFL size) */ |
| cfl_predict_hbd_4x16_ssse3, /* 4x16 */ |
| cfl_predict_hbd_16x4_avx2, /* 16x4 */ |
| cfl_predict_hbd_8x32_ssse3, /* 8x32 */ |
| cfl_predict_hbd_32x8_avx2, /* 32x8 */ |
| NULL, /* 16x64 (invalid CFL size) */ |
| NULL, /* 64x16 (invalid CFL size) */ |
| cfl_predict_hbd_4x32_ssse3, /* 4x32 */ |
| cfl_predict_hbd_32x4_avx2, /* 32x4 */ |
| NULL, /* 8x64 (invalid CFL size) */ |
| NULL, /* 64x8 (invalid CFL size) */ |
| NULL, /* 4x64 (invalid CFL size) */ |
| NULL, /* 64x4 (invalid CFL size) */ |
| }; |
| // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the |
| // function pointer array out of bounds. |
| return pred[tx_size % TX_SIZES_ALL]; |
| } |
| |
| // Returns a vector where all the (32-bits) elements are the sum of all the |
| // lanes in a. |
| static INLINE __m256i fill_sum_epi32(__m256i a) { |
| // Given that a == [A, B, C, D, E, F, G, H] |
| a = _mm256_hadd_epi32(a, a); |
| // Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H |
| // a == [A', C', A', C', E', G', E', G'] |
| a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0)); |
| // a == [A', C', E', G', A', C', E', G'] |
| a = _mm256_hadd_epi32(a, a); |
| // Given that A'' == A' + C' and E'' == E' + G' |
| // a == [A'', E'', A'', E'', A'', E'', A'', E''] |
| return _mm256_hadd_epi32(a, a); |
| // Given that A''' == A'' + E'' |
| // a == [A''', A''', A''', A''', A''', A''', A''', A'''] |
| } |
| |
| static INLINE __m256i _mm256_addl_epi16(__m256i a) { |
| return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()), |
| _mm256_unpackhi_epi16(a, _mm256_setzero_si256())); |
| } |
| |
| static INLINE void subtract_average_avx2(const uint16_t *src_ptr, |
| int16_t *dst_ptr, int width, |
| int height, int round_offset, |
| int num_pel_log2) { |
| // Use SSE2 version for smaller widths |
| assert(width == 16 || width == 32); |
| |
| const __m256i *src = (__m256i *)src_ptr; |
| const __m256i *const end = src + height * CFL_BUF_LINE_I256; |
| // To maximize usage of the AVX2 registers, we sum two rows per loop |
| // iteration |
| const int step = 2 * CFL_BUF_LINE_I256; |
| |
| __m256i sum = _mm256_setzero_si256(); |
| // For width 32, we use a second sum accumulator to reduce accumulator |
| // dependencies in the loop. |
| __m256i sum2; |
| if (width == 32) sum2 = _mm256_setzero_si256(); |
| |
| do { |
| // Add top row to the bottom row |
| __m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src), |
| _mm256_loadu_si256(src + CFL_BUF_LINE_I256)); |
| sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0)); |
| if (width == 32) { /* Don't worry, this if it gets optimized out. */ |
| // Add the second part of the top row to the second part of the bottom row |
| __m256i l1 = |
| _mm256_add_epi16(_mm256_loadu_si256(src + 1), |
| _mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256)); |
| sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1)); |
| } |
| src += step; |
| } while (src < end); |
| // Combine both sum accumulators |
| if (width == 32) sum = _mm256_add_epi32(sum, sum2); |
| |
| __m256i fill = fill_sum_epi32(sum); |
| |
| __m256i avg_epi16 = _mm256_srli_epi32( |
| _mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2); |
| avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16); |
| |
| // Store and subtract loop |
| src = (__m256i *)src_ptr; |
| __m256i *dst = (__m256i *)dst_ptr; |
| do { |
| _mm256_storeu_si256(dst, |
| _mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16)); |
| if (width == 32) { |
| _mm256_storeu_si256( |
| dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16)); |
| } |
| src += CFL_BUF_LINE_I256; |
| dst += CFL_BUF_LINE_I256; |
| } while (src < end); |
| } |
| |
| // Declare wrappers for AVX2 sizes |
| CFL_SUB_AVG_X(avx2, 16, 4, 32, 6) |
| CFL_SUB_AVG_X(avx2, 16, 8, 64, 7) |
| CFL_SUB_AVG_X(avx2, 16, 16, 128, 8) |
| CFL_SUB_AVG_X(avx2, 16, 32, 256, 9) |
| CFL_SUB_AVG_X(avx2, 32, 8, 128, 8) |
| CFL_SUB_AVG_X(avx2, 32, 16, 256, 9) |
| CFL_SUB_AVG_X(avx2, 32, 32, 512, 10) |
| CFL_SUB_AVG_X(avx2, 32, 4, 64, 7) |
| |
| // Based on the observation that for small blocks AVX2 does not outperform |
| // SSE2, we call the SSE2 code for block widths 4 and 8. |
| cfl_subtract_average_fn cfl_get_subtract_average_fn_avx2(TX_SIZE tx_size) { |
| static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { |
| cfl_subtract_average_4x4_sse2, /* 4x4 */ |
| cfl_subtract_average_8x8_sse2, /* 8x8 */ |
| cfl_subtract_average_16x16_avx2, /* 16x16 */ |
| cfl_subtract_average_32x32_avx2, /* 32x32 */ |
| NULL, /* 64x64 (invalid CFL size) */ |
| cfl_subtract_average_4x8_sse2, /* 4x8 */ |
| cfl_subtract_average_8x4_sse2, /* 8x4 */ |
| cfl_subtract_average_8x16_sse2, /* 8x16 */ |
| cfl_subtract_average_16x8_avx2, /* 16x8 */ |
| cfl_subtract_average_16x32_avx2, /* 16x32 */ |
| cfl_subtract_average_32x16_avx2, /* 32x16 */ |
| NULL, /* 32x64 (invalid CFL size) */ |
| NULL, /* 64x32 (invalid CFL size) */ |
| cfl_subtract_average_4x16_sse2, /* 4x16 */ |
| cfl_subtract_average_16x4_avx2, /* 16x4 */ |
| cfl_subtract_average_8x32_sse2, /* 8x32 */ |
| cfl_subtract_average_32x8_avx2, /* 32x8 */ |
| NULL, /* 16x64 (invalid CFL size) */ |
| NULL, /* 64x16 (invalid CFL size) */ |
| cfl_subtract_average_4x32_sse2, /* 4x32 */ |
| cfl_subtract_average_32x4_avx2, /* 32x4 */ |
| NULL, /* 8x64 (invalid CFL size) */ |
| NULL, /* 64x8 (invalid CFL size) */ |
| NULL, /* 4x64 (invalid CFL size) */ |
| NULL, /* 64x4 (invalid CFL size) */ |
| }; |
| // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to |
| // index the function pointer array out of bounds. |
| return sub_avg[tx_size % TX_SIZES_ALL]; |
| } |