blob: 83a2c91d8b5bdcbd3705031047ddf21ab148edac [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <immintrin.h>
#include "config/av1_rtcd.h"
#include "av1/common/cfl.h"
#include "av1/common/x86/cfl_simd.h"
#define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd) \
CFL_SUBSAMPLE(avx2, sub, bd, 32, 32) \
CFL_SUBSAMPLE(avx2, sub, bd, 32, 16) \
CFL_SUBSAMPLE(avx2, sub, bd, 32, 8) \
CFL_SUBSAMPLE(avx2, sub, bd, 32, 4) \
CFL_SUBSAMPLE(avx2, sub, bd, 64, 64) \
CFL_SUBSAMPLE(avx2, sub, bd, 64, 32) \
CFL_SUBSAMPLE(avx2, sub, bd, 32, 64) \
CFL_SUBSAMPLE(avx2, sub, bd, 64, 4) \
CFL_SUBSAMPLE(avx2, sub, bd, 64, 8) \
CFL_SUBSAMPLE(avx2, sub, bd, 64, 16) \
cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2( \
TX_SIZE tx_size) { \
static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \
cfl_subsample_##bd##_##sub##_4x4_ssse3, /* 4x4 */ \
cfl_subsample_##bd##_##sub##_8x8_ssse3, /* 8x8 */ \
cfl_subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */ \
cfl_subsample_##bd##_##sub##_32x32_avx2, /* 32x32 */ \
cfl_subsample_##bd##_##sub##_64x64_avx2, /* 64x64 */ \
cfl_subsample_##bd##_##sub##_4x8_ssse3, /* 4x8 */ \
cfl_subsample_##bd##_##sub##_8x4_ssse3, /* 8x4 */ \
cfl_subsample_##bd##_##sub##_8x16_ssse3, /* 8x16 */ \
cfl_subsample_##bd##_##sub##_16x8_ssse3, /* 16x8 */ \
cfl_subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */ \
cfl_subsample_##bd##_##sub##_32x16_avx2, /* 32x16 */ \
cfl_subsample_##bd##_##sub##_32x64_avx2, /* 32x64 */ \
cfl_subsample_##bd##_##sub##_64x32_avx2, /* 64x32 */ \
cfl_subsample_##bd##_##sub##_4x16_ssse3, /* 4x16 */ \
cfl_subsample_##bd##_##sub##_16x4_ssse3, /* 16x4 */ \
cfl_subsample_##bd##_##sub##_8x32_ssse3, /* 8x32 */ \
cfl_subsample_##bd##_##sub##_32x8_avx2, /* 32x8 */ \
cfl_subsample_##bd##_##sub##_16x64_ssse3, /* 16x64 */ \
cfl_subsample_##bd##_##sub##_64x16_avx2, /* 64x16 */ \
cfl_subsample_##bd##_##sub##_4x32_ssse3, /* 4x32 */ \
cfl_subsample_##bd##_##sub##_32x4_avx2, /* 32x4 */ \
cfl_subsample_##bd##_##sub##_8x64_ssse3, /* 8x64 */ \
cfl_subsample_##bd##_##sub##_64x8_avx2, /* 64x8 */ \
cfl_subsample_##bd##_##sub##_4x64_ssse3, /* 4x64 */ \
cfl_subsample_##bd##_##sub##_64x4_avx2, /* 64x4 */ \
}; \
return subfn_##sub[tx_size]; \
}
/**
* Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
* precise version of a box filter 4:2:0 pixel subsampling in Q3.
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*
* Note: For 4:2:0 luma subsampling, the width will never be greater than 16.
*/
static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input,
int input_stride,
uint16_t *pred_buf_q3, int width,
int height) {
const int luma_stride = input_stride << 1;
__m256i *row = (__m256i *)pred_buf_q3;
const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256;
do {
if (width == 32) {
__m256i top = _mm256_loadu_si256((__m256i *)input);
__m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));
__m256i sum = _mm256_add_epi16(top, bot);
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
__m256i bot_1 =
_mm256_loadu_si256((__m256i *)(input + 16 + input_stride));
__m256i sum_1 = _mm256_add_epi16(top_1, bot_1);
__m256i hsum = _mm256_hadd_epi16(sum, sum_1);
hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
hsum = _mm256_add_epi16(hsum, hsum);
_mm256_storeu_si256(row, hsum);
} else { // width == 64
__m256i top = _mm256_loadu_si256((__m256i *)input);
__m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));
__m256i sum = _mm256_add_epi16(top, bot);
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
__m256i bot_1 =
_mm256_loadu_si256((__m256i *)(input + 16 + input_stride));
__m256i sum_1 = _mm256_add_epi16(top_1, bot_1);
__m256i hsum = _mm256_hadd_epi16(sum, sum_1);
hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
hsum = _mm256_add_epi16(hsum, hsum);
_mm256_storeu_si256(row, hsum);
__m256i top_2 = _mm256_loadu_si256((__m256i *)(input + 32));
__m256i bot_2 =
_mm256_loadu_si256((__m256i *)(input + 32 + input_stride));
__m256i sum_2 = _mm256_add_epi16(top_2, bot_2);
__m256i top_3 = _mm256_loadu_si256((__m256i *)(input + 48));
__m256i bot_3 =
_mm256_loadu_si256((__m256i *)(input + 48 + input_stride));
__m256i sum_3 = _mm256_add_epi16(top_3, bot_3);
__m256i hsum_1 = _mm256_hadd_epi16(sum_2, sum_3);
hsum_1 = _mm256_permute4x64_epi64(hsum_1, _MM_SHUFFLE(3, 1, 2, 0));
hsum_1 = _mm256_add_epi16(hsum_1, hsum_1);
_mm256_storeu_si256(row + 1, hsum_1);
}
input += luma_stride;
} while ((row += CFL_BUF_LINE_I256) < row_end);
}
static void cfl_luma_subsampling_420_hbd_121_avx2_w4(const uint16_t *input,
int input_stride,
uint16_t *output_q3,
int height) {
// Shuffle mask to get {p2, p0} from a 4-element vector.
const __m128i center_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, 4, 1, 0);
// Shuffle mask for left taps {p1, p0}, handling the i=0 boundary.
const __m128i left_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 2, 1, 0);
// Shuffle mask for right taps {p3, p1}.
const __m128i right_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, 6, 3, 2);
for (int j = 0; j < height; j += 2) {
const __m128i top = _mm_loadl_epi64((const __m128i *)input);
const __m128i bot =
_mm_loadl_epi64((const __m128i *)(input + input_stride));
const __m128i top_center = _mm_shuffle_epi8(top, center_mask);
const __m128i top_left = _mm_shuffle_epi8(top, left_mask);
const __m128i top_right = _mm_shuffle_epi8(top, right_mask);
__m128i top_sum = _mm_add_epi16(top_left, top_right);
top_sum = _mm_add_epi16(top_sum, _mm_add_epi16(top_center, top_center));
const __m128i bot_center = _mm_shuffle_epi8(bot, center_mask);
const __m128i bot_left = _mm_shuffle_epi8(bot, left_mask);
const __m128i bot_right = _mm_shuffle_epi8(bot, right_mask);
__m128i bot_sum = _mm_add_epi16(bot_left, bot_right);
bot_sum = _mm_add_epi16(bot_sum, _mm_add_epi16(bot_center, bot_center));
const __m128i final_sum = _mm_add_epi16(top_sum, bot_sum);
_mm_storeu_si32((void *)output_q3, final_sum);
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
static void cfl_luma_subsampling_420_hbd_121_avx2_w8(const uint16_t *input,
int input_stride,
uint16_t *output_q3,
int height) {
// Shuffle mask to select {p6, p4, p2, p0} from a 128-bit vector.
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// Shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6]
// This mimics the C code's 'left = AOMMAX(0, i - 1)' for i=0
const __m128i left_edge_mask =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// Shuffle mask to clamp right edge: [p1, p2, p3, p4, p5, p6, p7, p7]
// This mimics the C code's filter for the last pixel (i=6)
const __m128i right_edge_mask =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top = input;
const uint16_t *bot = input + input_stride;
// 1. Load 8 center pixels (SAFE).
const __m128i top_center = _mm_loadu_si128((const __m128i *)top);
const __m128i bot_center = _mm_loadu_si128((const __m128i *)bot);
// 1a. Construct left/right taps by shuffling center (SAFE).
// This avoids reading from (top - 1) and (top + 8).
const __m128i top_left = _mm_shuffle_epi8(top_center, left_edge_mask);
const __m128i top_right = _mm_shuffle_epi8(top_center, right_edge_mask);
const __m128i bot_left = _mm_shuffle_epi8(bot_center, left_edge_mask);
const __m128i bot_right = _mm_shuffle_epi8(bot_center, right_edge_mask);
// 2. Apply the horizontal 1-2-1 filter.
const __m128i center_2x = _mm_add_epi16(top_center, top_center);
const __m128i top_sum_unpacked =
_mm_add_epi16(_mm_add_epi16(top_left, top_right), center_2x);
const __m128i bot_center_2x = _mm_add_epi16(bot_center, bot_center);
const __m128i bot_sum_unpacked =
_mm_add_epi16(_mm_add_epi16(bot_left, bot_right), bot_center_2x);
// 3. Apply the vertical filter.
const __m128i sum_unpacked =
_mm_add_epi16(top_sum_unpacked, bot_sum_unpacked);
// 4. Subsample: Select every other pixel.
const __m128i final_sum = _mm_shuffle_epi8(sum_unpacked, subsample_mask);
// 5. Store the final 4 subsampled pixels (64 bits).
_mm_storel_epi64((__m128i *)output_q3, final_sum);
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
static void cfl_luma_subsampling_420_hbd_121_avx2_w16(const uint16_t *input,
int input_stride,
uint16_t *output_q3,
int height) {
// SSSE3 shuffle mask to select {p6, p4, p2, p0} from a 128-bit lane.
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// 128-bit shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6]
const __m128i left_edge_mask_lo =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// 128-bit shuffle mask to clamp right edge: [p9, p10, p11, p12, p13, p14,
// p15, p15] (relative to the high 128-bit lane)
const __m128i right_edge_mask_hi =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top = input;
const uint16_t *bot = input + input_stride;
// 1. Load 16 center pixels (SAFE).
const __m256i top_center = _mm256_loadu_si256((const __m256i *)top);
const __m256i bot_center = _mm256_loadu_si256((const __m256i *)bot);
// 1a. Extract 128-bit lanes to perform shuffles and alignments.
const __m128i top_lo =
_mm256_extracti128_si256(top_center, 0); // [t7...t0]
const __m128i top_hi =
_mm256_extracti128_si256(top_center, 1); // [t15...t8]
const __m128i bot_lo =
_mm256_extracti128_si256(bot_center, 0); // [b7...b0]
const __m128i bot_hi =
_mm256_extracti128_si256(bot_center, 1); // [b15...b8]
// 1b. Construct 'left' vectors
// top_left_lo = [t0, t0, t1, t2, t3, t4, t5, t6]
const __m128i top_left_lo = _mm_shuffle_epi8(top_lo, left_edge_mask_lo);
// top_left_hi = [t7, t8, t9, t10, t11, t12, t13, t14]
const __m128i top_left_hi = _mm_alignr_epi8(top_hi, top_lo, 14);
const __m256i top_left = _mm256_set_m128i(top_left_hi, top_left_lo);
const __m128i bot_left_lo = _mm_shuffle_epi8(bot_lo, left_edge_mask_lo);
const __m128i bot_left_hi = _mm_alignr_epi8(bot_hi, bot_lo, 14);
const __m256i bot_left = _mm256_set_m128i(bot_left_hi, bot_left_lo);
// 1c. Construct 'right' vectors
// top_right_lo = [t1, t2, t3, t4, t5, t6, t7, t8]
const __m128i top_right_lo = _mm_alignr_epi8(top_hi, top_lo, 2);
// top_right_hi = [t9, t10, t11, t12, t13, t14, t15, t15]
const __m128i top_right_hi = _mm_shuffle_epi8(top_hi, right_edge_mask_hi);
const __m256i top_right = _mm256_set_m128i(top_right_hi, top_right_lo);
const __m128i bot_right_lo = _mm_alignr_epi8(bot_hi, bot_lo, 2);
const __m128i bot_right_hi = _mm_shuffle_epi8(bot_hi, right_edge_mask_hi);
const __m256i bot_right = _mm256_set_m128i(bot_right_hi, bot_right_lo);
// 2. Apply the horizontal 1-2-1 filter (left + 2*center + right).
const __m256i center_2x = _mm256_add_epi16(top_center, top_center);
const __m256i top_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(top_left, top_right), center_2x);
const __m256i bot_center_2x = _mm256_add_epi16(bot_center, bot_center);
const __m256i bot_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right), bot_center_2x);
// 3. Apply the vertical filter by adding the top and bottom results.
const __m256i sum_unpacked =
_mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked);
// 4. Subsample: Select every other pixel from the 16 results.
const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum = _mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
// 5. Store the final 8 subsampled pixels.
_mm_storeu_si128((__m128i *)output_q3, final_sum);
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
static void cfl_luma_subsampling_420_hbd_121_avx2_w32(const uint16_t *input,
int input_stride,
uint16_t *output_q3,
int height) {
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// Mask to clamp left edge of the first 16-pixel block: [p0, p0, p1...p6]
const __m128i left_edge_mask_lo =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// Mask to clamp right edge of the second 16-pixel block: [p25...p31,p31]
const __m128i right_edge_mask_hi =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top = input;
const uint16_t *bot = input + input_stride;
// Process first 16 pixels (Left-clamped)
{
// 1. Load center and right taps (SAFE).
const __m256i top_center = _mm256_loadu_si256((const __m256i *)top);
const __m256i top_right = _mm256_loadu_si256((const __m256i *)(top + 1));
const __m256i bot_center = _mm256_loadu_si256((const __m256i *)bot);
const __m256i bot_right = _mm256_loadu_si256((const __m256i *)(bot + 1));
// 1a. Extract lanes to build the clamped left-tap vectors.
const __m128i top_lo =
_mm256_extracti128_si256(top_center, 0); // [t7...t0]
const __m128i top_hi =
_mm256_extracti128_si256(top_center, 1); // [t15...t8]
const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0);
const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1);
// 1b. Construct 'left' vectors (SAFE)
// top_left_lo = [t0, t0, t1, t2, t3, t4, t5, t6]
const __m128i top_left_lo = _mm_shuffle_epi8(top_lo, left_edge_mask_lo);
// top_left_hi = [t7, t8, t9, t10, t11, t12, t13, t14]
const __m128i top_left_hi = _mm_alignr_epi8(top_hi, top_lo, 14);
const __m256i top_left = _mm256_set_m128i(top_left_hi, top_left_lo);
const __m128i bot_left_lo = _mm_shuffle_epi8(bot_lo, left_edge_mask_lo);
const __m128i bot_left_hi = _mm_alignr_epi8(bot_hi, bot_lo, 14);
const __m256i bot_left = _mm256_set_m128i(bot_left_hi, bot_left_lo);
// 2. Calculate sum
const __m256i top_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(top_left, top_right),
_mm256_add_epi16(top_center, top_center));
const __m256i bot_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right),
_mm256_add_epi16(bot_center, bot_center));
const __m256i sum_unpacked =
_mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked);
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum =
_mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
_mm_storeu_si128((__m128i *)output_q3, final_sum);
}
// Process second 16 pixels (Right-clamped)
{
// 1. Load left and center taps (SAFE).
const __m256i top_left = _mm256_loadu_si256((const __m256i *)(top + 15));
const __m256i top_center =
_mm256_loadu_si256((const __m256i *)(top + 16));
const __m256i bot_left = _mm256_loadu_si256((const __m256i *)(bot + 15));
const __m256i bot_center =
_mm256_loadu_si256((const __m256i *)(bot + 16));
// 1a. Extract lanes to build the clamped right-tap vectors.
const __m128i top_lo =
_mm256_extracti128_si256(top_center, 0); // [t23...t16]
const __m128i top_hi =
_mm256_extracti128_si256(top_center, 1); // [t31...t24]
const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0);
const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1);
// 1b. Construct 'right' vectors (SAFE)
// top_right_lo = [t17, t18, t19, t20, t21, t22, t23, t24]
const __m128i top_right_lo = _mm_alignr_epi8(top_hi, top_lo, 2);
// top_right_hi = [t25, t26, t27, t28, t29, t30, t31, t31]
const __m128i top_right_hi = _mm_shuffle_epi8(top_hi, right_edge_mask_hi);
const __m256i top_right = _mm256_set_m128i(top_right_hi, top_right_lo);
const __m128i bot_right_lo = _mm_alignr_epi8(bot_hi, bot_lo, 2);
const __m128i bot_right_hi = _mm_shuffle_epi8(bot_hi, right_edge_mask_hi);
const __m256i bot_right = _mm256_set_m128i(bot_right_hi, bot_right_lo);
// 2. Calculate sum
const __m256i top_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(top_left, top_right),
_mm256_add_epi16(top_center, top_center));
const __m256i bot_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right),
_mm256_add_epi16(bot_center, bot_center));
const __m256i sum_unpacked =
_mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked);
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum =
_mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
_mm_storeu_si128((__m128i *)(output_q3 + 8), final_sum);
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
static void cfl_luma_subsampling_420_hbd_121_avx2_w64(const uint16_t *input,
int input_stride,
uint16_t *output_q3,
int height) {
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// Mask to clamp left edge of the first 16-pixel block: [p0, p0, p1...p6]
const __m128i left_edge_mask_lo =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// Mask to clamp right edge of the last 16-pixel block: [p57...p63,p63]
// (relative to the high 128-bit lane of the last 16-pixel chunk)
const __m128i right_edge_mask_hi =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top = input;
const uint16_t *bot = input + input_stride;
// --- Block 0 (i=0, pixels 0-15): Left-clamped ---
{
// 1. Load center and right taps (SAFE).
const __m256i top_center = _mm256_loadu_si256((const __m256i *)top);
const __m256i top_right = _mm256_loadu_si256((const __m256i *)(top + 1));
const __m256i bot_center = _mm256_loadu_si256((const __m256i *)bot);
const __m256i bot_right = _mm256_loadu_si256((const __m256i *)(bot + 1));
// 1a. Extract lanes to build the clamped left-tap vectors.
const __m128i top_lo = _mm256_extracti128_si256(top_center, 0);
const __m128i top_hi = _mm256_extracti128_si256(top_center, 1);
const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0);
const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1);
// 1b. Construct 'left' vectors (SAFE)
const __m128i top_left_lo = _mm_shuffle_epi8(top_lo, left_edge_mask_lo);
const __m128i top_left_hi = _mm_alignr_epi8(top_hi, top_lo, 14);
const __m256i top_left = _mm256_set_m128i(top_left_hi, top_left_lo);
const __m128i bot_left_lo = _mm_shuffle_epi8(bot_lo, left_edge_mask_lo);
const __m128i bot_left_hi = _mm_alignr_epi8(bot_hi, bot_lo, 14);
const __m256i bot_left = _mm256_set_m128i(bot_left_hi, bot_left_lo);
// 2. Calculate sum
const __m256i top_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(top_left, top_right),
_mm256_add_epi16(top_center, top_center));
const __m256i bot_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right),
_mm256_add_epi16(bot_center, bot_center));
const __m256i sum_unpacked =
_mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked);
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum =
_mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
_mm_storeu_si128((__m128i *)output_q3, final_sum);
}
// --- Block 1 (i=1, pixels 16-31): Middle (SAFE) ---
{
const int offset = 16;
const __m256i top_left =
_mm256_loadu_si256((const __m256i *)(top + offset - 1));
const __m256i top_center =
_mm256_loadu_si256((const __m256i *)(top + offset));
const __m256i top_right =
_mm256_loadu_si256((const __m256i *)(top + offset + 1));
const __m256i bot_left =
_mm256_loadu_si256((const __m256i *)(bot + offset - 1));
const __m256i bot_center =
_mm256_loadu_si256((const __m256i *)(bot + offset));
const __m256i bot_right =
_mm256_loadu_si256((const __m256i *)(bot + offset + 1));
const __m256i top_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(top_left, top_right),
_mm256_add_epi16(top_center, top_center));
const __m256i bot_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right),
_mm256_add_epi16(bot_center, bot_center));
const __m256i sum_unpacked =
_mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked);
const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum =
_mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
_mm_storeu_si128((__m128i *)(output_q3 + 8), final_sum);
}
// --- Block 2 (i=2, pixels 32-47): Middle (SAFE) ---
{
const int offset = 32;
const __m256i top_left =
_mm256_loadu_si256((const __m256i *)(top + offset - 1));
const __m256i top_center =
_mm256_loadu_si256((const __m256i *)(top + offset));
const __m256i top_right =
_mm256_loadu_si256((const __m256i *)(top + offset + 1));
const __m256i bot_left =
_mm256_loadu_si256((const __m256i *)(bot + offset - 1));
const __m256i bot_center =
_mm256_loadu_si256((const __m256i *)(bot + offset));
const __m256i bot_right =
_mm256_loadu_si256((const __m256i *)(bot + offset + 1));
const __m256i top_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(top_left, top_right),
_mm256_add_epi16(top_center, top_center));
const __m256i bot_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right),
_mm256_add_epi16(bot_center, bot_center));
const __m256i sum_unpacked =
_mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked);
const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum =
_mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
_mm_storeu_si128((__m128i *)(output_q3 + 16), final_sum);
}
// --- Block 3 (i=3, pixels 48-63): Right-clamped ---
{
const int offset = 48;
// 1. Load left and center taps (SAFE).
const __m256i top_left =
_mm256_loadu_si256((const __m256i *)(top + offset - 1));
const __m256i top_center =
_mm256_loadu_si256((const __m256i *)(top + offset));
const __m256i bot_left =
_mm256_loadu_si256((const __m256i *)(bot + offset - 1));
const __m256i bot_center =
_mm256_loadu_si256((const __m256i *)(bot + offset));
// 1a. Extract lanes to build the clamped right-tap vectors.
const __m128i top_lo =
_mm256_extracti128_si256(top_center, 0); // [t55...t48]
const __m128i top_hi =
_mm256_extracti128_si256(top_center, 1); // [t63...t56]
const __m128i bot_lo = _mm256_extracti128_si256(bot_center, 0);
const __m128i bot_hi = _mm256_extracti128_si256(bot_center, 1);
// 1b. Construct 'right' vectors (SAFE)
// top_right_lo = [t49, t50, t51, t52, t53, t54, t55, t56]
const __m128i top_right_lo = _mm_alignr_epi8(top_hi, top_lo, 2);
// top_right_hi = [t57, t58, t59, t60, t61, t62, t63, t63]
const __m128i top_right_hi = _mm_shuffle_epi8(top_hi, right_edge_mask_hi);
const __m256i top_right = _mm256_set_m128i(top_right_hi, top_right_lo);
const __m128i bot_right_lo = _mm_alignr_epi8(bot_hi, bot_lo, 2);
const __m128i bot_right_hi = _mm_shuffle_epi8(bot_hi, right_edge_mask_hi);
const __m256i bot_right = _mm256_set_m128i(bot_right_hi, bot_right_lo);
// 2. Calculate sum
const __m256i top_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(top_left, top_right),
_mm256_add_epi16(top_center, top_center));
const __m256i bot_sum_unpacked =
_mm256_add_epi16(_mm256_add_epi16(bot_left, bot_right),
_mm256_add_epi16(bot_center, bot_center));
const __m256i sum_unpacked =
_mm256_add_epi16(top_sum_unpacked, bot_sum_unpacked);
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum_unpacked, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum_unpacked, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum =
_mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
_mm_storeu_si128((__m128i *)(output_q3 + 24), final_sum);
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
static void cfl_luma_subsampling_420_hbd_121_avx2(const uint16_t *input,
int input_stride,
uint16_t *output_q3,
int width, int height) {
switch (width) {
case 4:
cfl_luma_subsampling_420_hbd_121_avx2_w4(input, input_stride, output_q3,
height);
break;
case 8:
cfl_luma_subsampling_420_hbd_121_avx2_w8(input, input_stride, output_q3,
height);
break;
case 16:
cfl_luma_subsampling_420_hbd_121_avx2_w16(input, input_stride, output_q3,
height);
break;
case 32:
cfl_luma_subsampling_420_hbd_121_avx2_w32(input, input_stride, output_q3,
height);
break;
case 64:
cfl_luma_subsampling_420_hbd_121_avx2_w64(input, input_stride, output_q3,
height);
break;
default: assert(0 && "Invalid width.");
}
}
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd)
// AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with width=4
static void cfl_luma_subsampling_420_hbd_colocated_avx2_w4(
const uint16_t *input, int input_stride, uint16_t *output_q3, int height) {
// Masks to construct {p2, p0} and {p1, p0} etc. from a 4-pixel vector
const __m128i center_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, 4, 1, 0);
const __m128i left_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 2, 1, 0);
const __m128i right_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, 6, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride);
const uint16_t *bot_ptr = input + input_stride;
const __m128i v_in = _mm_loadl_epi64((const __m128i *)input);
const __m128i v_top = _mm_loadl_epi64((const __m128i *)top_ptr);
const __m128i v_bot = _mm_loadl_epi64((const __m128i *)bot_ptr);
// left + right
__m128i sum = _mm_add_epi16(_mm_shuffle_epi8(v_in, left_mask),
_mm_shuffle_epi8(v_in, right_mask));
// + top + bottom
sum = _mm_add_epi16(sum, _mm_shuffle_epi8(v_top, center_mask));
sum = _mm_add_epi16(sum, _mm_shuffle_epi8(v_bot, center_mask));
// + 4 * center
const __m128i center4x =
_mm_slli_epi16(_mm_shuffle_epi8(v_in, center_mask), 2);
sum = _mm_add_epi16(sum, center4x);
_mm_storeu_si32((void *)output_q3, sum);
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
// AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with width=8
static void cfl_luma_subsampling_420_hbd_colocated_avx2_w8(
const uint16_t *input, int input_stride, uint16_t *output_q3, int height) {
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// Shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6]
const __m128i left_edge_mask =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// Shuffle mask to clamp right edge: [p1, p2, p3, p4, p5, p6, p7, p7]
const __m128i right_edge_mask =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride);
const uint16_t *bot_ptr = input + input_stride;
// 1. Load center, top, and bottom taps (SAFE).
const __m128i center = _mm_loadu_si128((const __m128i *)input);
const __m128i top = _mm_loadu_si128((const __m128i *)top_ptr);
const __m128i bottom = _mm_loadu_si128((const __m128i *)bot_ptr);
// 2. Construct left and right taps from center (SAFE).
const __m128i left = _mm_shuffle_epi8(center, left_edge_mask);
const __m128i right = _mm_shuffle_epi8(center, right_edge_mask);
// 3. Perform filter calculation.
__m128i sum = _mm_add_epi16(left, right);
sum = _mm_add_epi16(sum, top);
sum = _mm_add_epi16(sum, bottom);
const __m128i center4x = _mm_slli_epi16(center, 2); // 4 * center
sum = _mm_add_epi16(sum, center4x);
// 4. Subsample and store.
const __m128i subsampled = _mm_shuffle_epi8(sum, subsample_mask);
_mm_storel_epi64((__m128i *)output_q3, subsampled);
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
// AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with
// width=16
static void cfl_luma_subsampling_420_hbd_colocated_avx2_w16(
const uint16_t *input, int input_stride, uint16_t *output_q3, int height) {
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// 128-bit shuffle mask to clamp left edge: [p0, p0, p1, p2, p3, p4, p5, p6]
const __m128i left_edge_mask_lo =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// 128-bit shuffle mask to clamp right edge: [p9, p10, p11, p12, p13, p14,
// p15, p15] (relative to the high 128-bit lane)
const __m128i right_edge_mask_hi =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride);
const uint16_t *bot_ptr = input + input_stride;
// 1. Load center, top, and bottom taps (SAFE).
const __m256i center = _mm256_loadu_si256((const __m256i *)input);
const __m256i top = _mm256_loadu_si256((const __m256i *)top_ptr);
const __m256i bottom = _mm256_loadu_si256((const __m256i *)bot_ptr);
// 1a. Extract 128-bit lanes from center to build left/right taps.
const __m128i center_lo = _mm256_extracti128_si256(center, 0); // [t7...t0]
const __m128i center_hi =
_mm256_extracti128_si256(center, 1); // [t15...t8]
// 1b. Construct 'left' vector (SAFE)
// left_lo = [t0, t0, t1, t2, t3, t4, t5, t6]
const __m128i left_lo = _mm_shuffle_epi8(center_lo, left_edge_mask_lo);
// left_hi = [t7, t8, t9, t10, t11, t12, t13, t14]
const __m128i left_hi = _mm_alignr_epi8(center_hi, center_lo, 14);
const __m256i left = _mm256_set_m128i(left_hi, left_lo);
// 1c. Construct 'right' vector (SAFE)
// right_lo = [t1, t2, t3, t4, t5, t6, t7, t8]
const __m128i right_lo = _mm_alignr_epi8(center_hi, center_lo, 2);
// right_hi = [t9, t10, t11, t12, t13, t14, t15, t15]
const __m128i right_hi = _mm_shuffle_epi8(center_hi, right_edge_mask_hi);
const __m256i right = _mm256_set_m128i(right_hi, right_lo);
// 2. Apply the filter.
__m256i sum = _mm256_add_epi16(left, right);
sum = _mm256_add_epi16(sum, top);
sum = _mm256_add_epi16(sum, bottom);
const __m256i center4x = _mm256_slli_epi16(center, 2); // 4 * center
sum = _mm256_add_epi16(sum, center4x);
// 3. Subsample and store.
const __m128i sum_lo = _mm256_extracti128_si256(sum, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum, 1);
const __m128i subsampled_lo = _mm_shuffle_epi8(sum_lo, subsample_mask);
const __m128i subsampled_hi = _mm_shuffle_epi8(sum_hi, subsample_mask);
const __m128i final_sum = _mm_unpacklo_epi64(subsampled_lo, subsampled_hi);
_mm_storeu_si128((__m128i *)output_q3, final_sum);
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
// AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with
// width=32
static void cfl_luma_subsampling_420_hbd_colocated_avx2_w32(
const uint16_t *input, int input_stride, uint16_t *output_q3, int height) {
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// Mask to clamp left edge: [p0, p0, p1...p6]
const __m128i left_edge_mask_lo =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// Mask to clamp right edge: [p25...p31,p31]
const __m128i right_edge_mask_hi =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride);
const uint16_t *bot_ptr = input + input_stride;
// Process first 16 pixels (Left-clamped)
{
// 1. Load center, right, top, bottom (all SAFE).
const __m256i center = _mm256_loadu_si256((const __m256i *)input);
const __m256i right = _mm256_loadu_si256((const __m256i *)(input + 1));
const __m256i top = _mm256_loadu_si256((const __m256i *)top_ptr);
const __m256i bot = _mm256_loadu_si256((const __m256i *)bot_ptr);
// 1a. Extract lanes from center to build 'left' vector.
const __m128i center_lo = _mm256_extracti128_si256(center, 0);
const __m128i center_hi = _mm256_extracti128_si256(center, 1);
// 1b. Construct 'left' vector (SAFE)
const __m128i left_lo = _mm_shuffle_epi8(center_lo, left_edge_mask_lo);
const __m128i left_hi = _mm_alignr_epi8(center_hi, center_lo, 14);
const __m256i left = _mm256_set_m128i(left_hi, left_lo);
// 2. Calculate sum
__m256i sum = _mm256_add_epi16(left, right);
sum = _mm256_add_epi16(sum, top);
sum = _mm256_add_epi16(sum, bot);
sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2));
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum, 1);
const __m128i subsampled =
_mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask),
_mm_shuffle_epi8(sum_hi, subsample_mask));
_mm_storeu_si128((__m128i *)output_q3, subsampled);
}
// Process second 16 pixels (Right-clamped)
{
// 1. Load left, center, top, bottom (all SAFE).
const __m256i left = _mm256_loadu_si256((const __m256i *)(input + 15));
const __m256i center = _mm256_loadu_si256((const __m256i *)(input + 16));
const __m256i top = _mm256_loadu_si256((const __m256i *)(top_ptr + 16));
const __m256i bot = _mm256_loadu_si256((const __m256i *)(bot_ptr + 16));
// 1a. Extract lanes from center to build 'right' vector.
const __m128i center_lo =
_mm256_extracti128_si256(center, 0); // [t23...t16]
const __m128i center_hi =
_mm256_extracti128_si256(center, 1); // [t31...t24]
// 1b. Construct 'right' vector (SAFE)
const __m128i right_lo = _mm_alignr_epi8(center_hi, center_lo, 2);
const __m128i right_hi = _mm_shuffle_epi8(center_hi, right_edge_mask_hi);
const __m256i right = _mm256_set_m128i(right_hi, right_lo);
// 2. Calculate sum
__m256i sum = _mm256_add_epi16(left, right);
sum = _mm256_add_epi16(sum, top);
sum = _mm256_add_epi16(sum, bot);
sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2));
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum, 1);
const __m128i subsampled =
_mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask),
_mm_shuffle_epi8(sum_hi, subsample_mask));
_mm_storeu_si128((__m128i *)(output_q3 + 8), subsampled);
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
// AVX2 implementation for cfl_luma_subsampling_420_hbd_colocated_c with
// width=64
static void cfl_luma_subsampling_420_hbd_colocated_avx2_w64(
const uint16_t *input, int input_stride, uint16_t *output_q3, int height) {
const __m128i subsample_mask =
_mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, 13, 12, 9, 8, 5, 4, 1, 0);
// Mask to clamp left edge of the first 16-pixel block: [p0, p0, p1...p6]
const __m128i left_edge_mask_lo =
_mm_set_epi8(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0);
// Mask to clamp right edge of the last 16-pixel block: [p57...p63,p63]
// (relative to the high 128-bit lane of the last 16-pixel chunk)
const __m128i right_edge_mask_hi =
_mm_set_epi8(15, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2);
for (int j = 0; j < height; j += 2) {
const uint16_t *top_ptr = ((j & 63) == 0) ? input : (input - input_stride);
const uint16_t *bot_ptr = input + input_stride;
// --- Block 0 (i=0, pixels 0-15): Left-clamped ---
{
// 1. Load center, right, top, bottom (all SAFE).
const __m256i center = _mm256_loadu_si256((const __m256i *)input);
const __m256i right = _mm256_loadu_si256((const __m256i *)(input + 1));
const __m256i top = _mm256_loadu_si256((const __m256i *)top_ptr);
const __m256i bot = _mm256_loadu_si256((const __m256i *)bot_ptr);
// 1a. Extract lanes to build the clamped left-tap vector.
const __m128i center_lo = _mm256_extracti128_si256(center, 0);
const __m128i center_hi = _mm256_extracti128_si256(center, 1);
// 1b. Construct 'left' vector (SAFE)
const __m128i left_lo = _mm_shuffle_epi8(center_lo, left_edge_mask_lo);
const __m128i left_hi = _mm_alignr_epi8(center_hi, center_lo, 14);
const __m256i left = _mm256_set_m128i(left_hi, left_lo);
// 2. Calculate sum
__m256i sum = _mm256_add_epi16(left, right);
sum = _mm256_add_epi16(sum, top);
sum = _mm256_add_epi16(sum, bot);
sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2));
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum, 1);
const __m128i subsampled =
_mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask),
_mm_shuffle_epi8(sum_hi, subsample_mask));
_mm_storeu_si128((__m128i *)output_q3, subsampled);
}
// --- Block 1 (i=1, pixels 16-31): Middle (SAFE) ---
{
const int offset = 16;
const __m256i left =
_mm256_loadu_si256((const __m256i *)(input + offset - 1));
const __m256i center =
_mm256_loadu_si256((const __m256i *)(input + offset));
const __m256i right =
_mm256_loadu_si256((const __m256i *)(input + offset + 1));
const __m256i top =
_mm256_loadu_si256((const __m256i *)(top_ptr + offset));
const __m256i bot =
_mm256_loadu_si256((const __m256i *)(bot_ptr + offset));
__m256i sum = _mm256_add_epi16(left, right);
sum = _mm256_add_epi16(sum, top);
sum = _mm256_add_epi16(sum, bot);
sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2));
const __m128i sum_lo = _mm256_extracti128_si256(sum, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum, 1);
const __m128i subsampled =
_mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask),
_mm_shuffle_epi8(sum_hi, subsample_mask));
_mm_storeu_si128((__m128i *)(output_q3 + 8), subsampled);
}
// --- Block 2 (i=2, pixels 32-47): Middle (SAFE) ---
{
const int offset = 32;
const __m256i left =
_mm256_loadu_si256((const __m256i *)(input + offset - 1));
const __m256i center =
_mm256_loadu_si256((const __m256i *)(input + offset));
const __m256i right =
_mm256_loadu_si256((const __m256i *)(input + offset + 1));
const __m256i top =
_mm256_loadu_si256((const __m256i *)(top_ptr + offset));
const __m256i bot =
_mm256_loadu_si256((const __m256i *)(bot_ptr + offset));
__m256i sum = _mm256_add_epi16(left, right);
sum = _mm256_add_epi16(sum, top);
sum = _mm256_add_epi16(sum, bot);
sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2));
const __m128i sum_lo = _mm256_extracti128_si256(sum, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum, 1);
const __m128i subsampled =
_mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask),
_mm_shuffle_epi8(sum_hi, subsample_mask));
_mm_storeu_si128((__m128i *)(output_q3 + 16), subsampled);
}
// --- Block 3 (i=3, pixels 48-63): Right-clamped ---
{
const int offset = 48;
// 1. Load left, center, top, bottom (all SAFE).
const __m256i left =
_mm256_loadu_si256((const __m256i *)(input + offset - 1));
const __m256i center =
_mm256_loadu_si256((const __m256i *)(input + offset));
const __m256i top =
_mm256_loadu_si256((const __m256i *)(top_ptr + offset));
const __m256i bot =
_mm256_loadu_si256((const __m256i *)(bot_ptr + offset));
// 1a. Extract lanes to build the clamped right-tap vector.
const __m128i center_lo =
_mm256_extracti128_si256(center, 0); // [t55...t48]
const __m128i center_hi =
_mm256_extracti128_si256(center, 1); // [t63...t56]
// 1b. Construct 'right' vector (SAFE)
const __m128i right_lo = _mm_alignr_epi8(center_hi, center_lo, 2);
const __m128i right_hi = _mm_shuffle_epi8(center_hi, right_edge_mask_hi);
const __m256i right = _mm256_set_m128i(right_hi, right_lo);
// 2. Calculate sum
__m256i sum = _mm256_add_epi16(left, right);
sum = _mm256_add_epi16(sum, top);
sum = _mm256_add_epi16(sum, bot);
sum = _mm256_add_epi16(sum, _mm256_slli_epi16(center, 2));
// 3. Subsample and store
const __m128i sum_lo = _mm256_extracti128_si256(sum, 0);
const __m128i sum_hi = _mm256_extracti128_si256(sum, 1);
const __m128i subsampled =
_mm_unpacklo_epi64(_mm_shuffle_epi8(sum_lo, subsample_mask),
_mm_shuffle_epi8(sum_hi, subsample_mask));
_mm_storeu_si128((__m128i *)(output_q3 + 24), subsampled);
}
input += input_stride << 1;
output_q3 += CFL_BUF_LINE;
}
}
static void cfl_luma_subsampling_420_hbd_colocated_avx2(const uint16_t *input,
int input_stride,
uint16_t *output_q3,
int width, int height) {
switch (width) {
case 4:
cfl_luma_subsampling_420_hbd_colocated_avx2_w4(input, input_stride,
output_q3, height);
break;
case 8:
cfl_luma_subsampling_420_hbd_colocated_avx2_w8(input, input_stride,
output_q3, height);
break;
case 16:
cfl_luma_subsampling_420_hbd_colocated_avx2_w16(input, input_stride,
output_q3, height);
break;
case 32:
cfl_luma_subsampling_420_hbd_colocated_avx2_w32(input, input_stride,
output_q3, height);
break;
case 64:
cfl_luma_subsampling_420_hbd_colocated_avx2_w64(input, input_stride,
output_q3, height);
break;
default: assert(0 && "Invalid width."); break;
}
}
/**
* Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
* precise version of a box filter 4:2:2 pixel subsampling in Q3.
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*
*/
static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input,
int input_stride,
uint16_t *pred_buf_q3, int width,
int height) {
__m256i *row = (__m256i *)pred_buf_q3;
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
do {
if (width == 32) {
__m256i top = _mm256_loadu_si256((__m256i *)input);
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
__m256i hsum = _mm256_hadd_epi16(top, top_1);
hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
hsum = _mm256_slli_epi16(hsum, 2);
_mm256_storeu_si256(row, hsum);
} else { // width == 64
__m256i top = _mm256_loadu_si256((__m256i *)input);
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
__m256i hsum = _mm256_hadd_epi16(top, top_1);
hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
hsum = _mm256_slli_epi16(hsum, 2);
_mm256_storeu_si256(row, hsum);
__m256i top_2 = _mm256_loadu_si256((__m256i *)(input + 32));
__m256i top_3 = _mm256_loadu_si256((__m256i *)(input + 48));
__m256i hsum_1 = _mm256_hadd_epi16(top_2, top_3);
hsum_1 = _mm256_permute4x64_epi64(hsum_1, _MM_SHUFFLE(3, 1, 2, 0));
hsum_1 = _mm256_slli_epi16(hsum_1, 2);
_mm256_storeu_si256(row + 1, hsum_1);
}
input += input_stride;
} while ((row += CFL_BUF_LINE_I256) < row_end);
}
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd)
static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input,
int input_stride,
uint16_t *pred_buf_q3, int width,
int height) {
__m256i *row = (__m256i *)pred_buf_q3;
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
do {
if (width == 32) {
__m256i top = _mm256_loadu_si256((__m256i *)input);
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
_mm256_storeu_si256(row, _mm256_slli_epi16(top, 3));
_mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3));
} else { // width == 64
__m256i top = _mm256_loadu_si256((__m256i *)input);
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
_mm256_storeu_si256(row, _mm256_slli_epi16(top, 3));
_mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3));
__m256i top_2 = _mm256_loadu_si256((__m256i *)(input + 32));
__m256i top_3 = _mm256_loadu_si256((__m256i *)(input + 48));
_mm256_storeu_si256(row + 2, _mm256_slli_epi16(top_2, 3));
_mm256_storeu_si256(row + 3, _mm256_slli_epi16(top_3, 3));
}
input += input_stride;
} while ((row += CFL_BUF_LINE_I256) < row_end);
}
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd)
CFL_GET_SUBSAMPLE_121_FUNCTION(avx2)
CFL_GET_SUBSAMPLE_COLOCATED_FUNCTION(avx2)
static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12,
__m256i alpha_sign, __m256i dc_q0) {
__m256i ac_q3 = _mm256_loadu_si256(input);
__m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3);
__m256i scaled_luma_q0 =
_mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12);
scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign);
return _mm256_add_epi16(scaled_luma_q0, dc_q0);
}
static __m256i highbd_max_epi16(int bd) {
const __m256i neg_one = _mm256_set1_epi16(-1);
// (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one);
}
static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) {
return _mm256_max_epi16(_mm256_min_epi16(u, max), zero);
}
static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3,
uint16_t *dst, int dst_stride,
int alpha_q3, int bd, int width,
int height) {
// Use SSSE3 version for smaller widths
assert(width == 16 || width == 32);
const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3);
const __m256i alpha_q12 =
_mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), (9 - CFL_ADD_BITS_ALPHA));
const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst);
const __m256i max = highbd_max_epi16(bd);
__m256i *row = (__m256i *)pred_buf_q3;
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
do {
const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
_mm256_storeu_si256((__m256i *)dst,
highbd_clamp_epi16(res, _mm256_setzero_si256(), max));
if (width == 32) {
const __m256i res_1 =
predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
_mm256_storeu_si256(
(__m256i *)(dst + 16),
highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max));
}
dst += dst_stride;
} while ((row += CFL_BUF_LINE_I256) < row_end);
}
CFL_PREDICT_X(avx2, 16, 4, hbd)
CFL_PREDICT_X(avx2, 16, 8, hbd)
CFL_PREDICT_X(avx2, 16, 16, hbd)
CFL_PREDICT_X(avx2, 16, 32, hbd)
CFL_PREDICT_X(avx2, 32, 8, hbd)
CFL_PREDICT_X(avx2, 32, 16, hbd)
CFL_PREDICT_X(avx2, 32, 32, hbd)
CFL_PREDICT_X(avx2, 32, 4, hbd)
cfl_predict_hbd_fn cfl_get_predict_hbd_fn_avx2(TX_SIZE tx_size) {
static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = {
cfl_predict_hbd_4x4_ssse3, /* 4x4 */
cfl_predict_hbd_8x8_ssse3, /* 8x8 */
cfl_predict_hbd_16x16_avx2, /* 16x16 */
cfl_predict_hbd_32x32_avx2, /* 32x32 */
NULL, /* 64x64 (invalid CFL size) */
cfl_predict_hbd_4x8_ssse3, /* 4x8 */
cfl_predict_hbd_8x4_ssse3, /* 8x4 */
cfl_predict_hbd_8x16_ssse3, /* 8x16 */
cfl_predict_hbd_16x8_avx2, /* 16x8 */
cfl_predict_hbd_16x32_avx2, /* 16x32 */
cfl_predict_hbd_32x16_avx2, /* 32x16 */
NULL, /* 32x64 (invalid CFL size) */
NULL, /* 64x32 (invalid CFL size) */
cfl_predict_hbd_4x16_ssse3, /* 4x16 */
cfl_predict_hbd_16x4_avx2, /* 16x4 */
cfl_predict_hbd_8x32_ssse3, /* 8x32 */
cfl_predict_hbd_32x8_avx2, /* 32x8 */
NULL, /* 16x64 (invalid CFL size) */
NULL, /* 64x16 (invalid CFL size) */
cfl_predict_hbd_4x32_ssse3, /* 4x32 */
cfl_predict_hbd_32x4_avx2, /* 32x4 */
NULL, /* 8x64 (invalid CFL size) */
NULL, /* 64x8 (invalid CFL size) */
NULL, /* 4x64 (invalid CFL size) */
NULL, /* 64x4 (invalid CFL size) */
};
// Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the
// function pointer array out of bounds.
return pred[tx_size % TX_SIZES_ALL];
}
// Returns a vector where all the (32-bits) elements are the sum of all the
// lanes in a.
static INLINE __m256i fill_sum_epi32(__m256i a) {
// Given that a == [A, B, C, D, E, F, G, H]
a = _mm256_hadd_epi32(a, a);
// Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H
// a == [A', C', A', C', E', G', E', G']
a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0));
// a == [A', C', E', G', A', C', E', G']
a = _mm256_hadd_epi32(a, a);
// Given that A'' == A' + C' and E'' == E' + G'
// a == [A'', E'', A'', E'', A'', E'', A'', E'']
return _mm256_hadd_epi32(a, a);
// Given that A''' == A'' + E''
// a == [A''', A''', A''', A''', A''', A''', A''', A''']
}
static INLINE __m256i _mm256_addl_epi16(__m256i a) {
return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()),
_mm256_unpackhi_epi16(a, _mm256_setzero_si256()));
}
static INLINE void subtract_average_avx2(const uint16_t *src_ptr,
int16_t *dst_ptr, int width,
int height, int round_offset,
int num_pel_log2) {
// Use SSE2 version for smaller widths
assert(width == 16 || width == 32);
const __m256i *src = (__m256i *)src_ptr;
const __m256i *const end = src + height * CFL_BUF_LINE_I256;
// To maximize usage of the AVX2 registers, we sum two rows per loop
// iteration
const int step = 2 * CFL_BUF_LINE_I256;
__m256i sum = _mm256_setzero_si256();
// For width 32, we use a second sum accumulator to reduce accumulator
// dependencies in the loop.
__m256i sum2;
if (width == 32) sum2 = _mm256_setzero_si256();
do {
// Add top row to the bottom row
__m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src),
_mm256_loadu_si256(src + CFL_BUF_LINE_I256));
sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0));
if (width == 32) { /* Don't worry, this if it gets optimized out. */
// Add the second part of the top row to the second part of the bottom row
__m256i l1 =
_mm256_add_epi16(_mm256_loadu_si256(src + 1),
_mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256));
sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1));
}
src += step;
} while (src < end);
// Combine both sum accumulators
if (width == 32) sum = _mm256_add_epi32(sum, sum2);
__m256i fill = fill_sum_epi32(sum);
__m256i avg_epi16 = _mm256_srli_epi32(
_mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2);
avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16);
// Store and subtract loop
src = (__m256i *)src_ptr;
__m256i *dst = (__m256i *)dst_ptr;
do {
_mm256_storeu_si256(dst,
_mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16));
if (width == 32) {
_mm256_storeu_si256(
dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16));
}
src += CFL_BUF_LINE_I256;
dst += CFL_BUF_LINE_I256;
} while (src < end);
}
// Declare wrappers for AVX2 sizes
CFL_SUB_AVG_X(avx2, 16, 4, 32, 6)
CFL_SUB_AVG_X(avx2, 16, 8, 64, 7)
CFL_SUB_AVG_X(avx2, 16, 16, 128, 8)
CFL_SUB_AVG_X(avx2, 16, 32, 256, 9)
CFL_SUB_AVG_X(avx2, 32, 8, 128, 8)
CFL_SUB_AVG_X(avx2, 32, 16, 256, 9)
CFL_SUB_AVG_X(avx2, 32, 32, 512, 10)
CFL_SUB_AVG_X(avx2, 32, 4, 64, 7)
// Based on the observation that for small blocks AVX2 does not outperform
// SSE2, we call the SSE2 code for block widths 4 and 8.
cfl_subtract_average_fn cfl_get_subtract_average_fn_avx2(TX_SIZE tx_size) {
static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = {
cfl_subtract_average_4x4_sse2, /* 4x4 */
cfl_subtract_average_8x8_sse2, /* 8x8 */
cfl_subtract_average_16x16_avx2, /* 16x16 */
cfl_subtract_average_32x32_avx2, /* 32x32 */
NULL, /* 64x64 (invalid CFL size) */
cfl_subtract_average_4x8_sse2, /* 4x8 */
cfl_subtract_average_8x4_sse2, /* 8x4 */
cfl_subtract_average_8x16_sse2, /* 8x16 */
cfl_subtract_average_16x8_avx2, /* 16x8 */
cfl_subtract_average_16x32_avx2, /* 16x32 */
cfl_subtract_average_32x16_avx2, /* 32x16 */
NULL, /* 32x64 (invalid CFL size) */
NULL, /* 64x32 (invalid CFL size) */
cfl_subtract_average_4x16_sse2, /* 4x16 */
cfl_subtract_average_16x4_avx2, /* 16x4 */
cfl_subtract_average_8x32_sse2, /* 8x32 */
cfl_subtract_average_32x8_avx2, /* 32x8 */
NULL, /* 16x64 (invalid CFL size) */
NULL, /* 64x16 (invalid CFL size) */
cfl_subtract_average_4x32_sse2, /* 4x32 */
cfl_subtract_average_32x4_avx2, /* 32x4 */
NULL, /* 8x64 (invalid CFL size) */
NULL, /* 64x8 (invalid CFL size) */
NULL, /* 4x64 (invalid CFL size) */
NULL, /* 64x4 (invalid CFL size) */
};
// Modulo TX_SIZES_ALL to ensure that an attacker won't be able to
// index the function pointer array out of bounds.
return sub_avg[tx_size % TX_SIZES_ALL];
}
#if CONFIG_MHCCP_SOLVER_BITS
static INLINE __m256i convert_int64_to_int32_avx2(__m256i a, __m256i b) {
// Extract low 32-bit of each 64-bit element from a and b
const __m256 low32 = _mm256_shuffle_ps(
_mm256_castsi256_ps(a), _mm256_castsi256_ps(b), _MM_SHUFFLE(2, 0, 2, 0));
// a0 a1 a2 a3 b0 b1 b2 b3
const __m256d ordered =
_mm256_permute4x64_pd(_mm256_castps_pd(low32), _MM_SHUFFLE(3, 1, 2, 0));
return _mm256_castpd_si256(ordered);
}
static INLINE __m256i floor_log2_uint32_avx2(__m256i x) {
const __m256i zero_mask = _mm256_cmpeq_epi32(x, _mm256_setzero_si256());
const __m128i x_lo = _mm256_castsi256_si128(x);
const __m128i x_hi = _mm256_extracti128_si256(x, 1);
// Convert int32 to double to access exponent bits
const __m256d d_lo = _mm256_cvtepi32_pd(x_lo);
const __m256d d_hi = _mm256_cvtepi32_pd(x_hi);
const __m256i bits_lo = _mm256_castpd_si256(d_lo);
const __m256i bits_hi = _mm256_castpd_si256(d_hi);
// Extract exponent bits [52..62]
const __m256i exp_lo = _mm256_srli_epi64(bits_lo, 52);
const __m256i exp_hi = _mm256_srli_epi64(bits_hi, 52);
__m256i exp = convert_int64_to_int32_avx2(exp_lo, exp_hi);
// Subtract exponent bias
exp = _mm256_sub_epi32(exp, _mm256_set1_epi32(1023));
// Set result to 0 for input x = 0
exp = _mm256_andnot_si256(zero_mask, exp);
return exp;
}
static INLINE __m256i mul_fixed32_adapt_avx2(__m256i a, __m256i b,
__m256i shift, __m256i bits_a) {
const __m256i zero = _mm256_setzero_si256();
const __m256i one = _mm256_set1_epi32(1);
// Compute the bit-width of |b|
__m256i bits_b = floor_log2_uint32_avx2(_mm256_abs_epi32(b));
bits_b = _mm256_add_epi32(bits_b, one);
const int bits_limit = 29;
// Decide how many bits to drop in total to avoid mul overflow
__m256i need = _mm256_sub_epi32(_mm256_add_epi32(bits_a, bits_b),
_mm256_set1_epi32(bits_limit));
need = _mm256_max_epi32(need, zero);
// Split the drop across a and b to minimize error
const __m256i s1 = _mm256_srai_epi32(need, 1);
const __m256i s2 = _mm256_sub_epi32(need, s1);
// Adjust dropped bits in final shift
const __m256i adj = _mm256_sub_epi32(shift, need);
// Safe 32-bit product
__m256i prod =
_mm256_mullo_epi32(_mm256_srav_epi32(a, s1), _mm256_srav_epi32(b, s2));
// Compute bias and bias=0 when adj is 0
const __m256i bias_mask = _mm256_cmpgt_epi32(adj, zero);
const __m256i adj_minus_1 =
_mm256_max_epi32(_mm256_sub_epi32(adj, one), zero);
const __m256i bias =
_mm256_and_si256(bias_mask, _mm256_sllv_epi32(one, adj_minus_1));
// Final right shift with symmetric rounding to nearest
const __m256i sign = _mm256_srai_epi32(prod, 31);
prod = _mm256_add_epi32(_mm256_add_epi32(prod, bias), sign);
return _mm256_srav_epi32(prod, adj);
}
#define CONVOLVE_FIXED32_AND_STORE \
{ \
__m256i sum = \
mul_fixed32_adapt_avx2(alpha[0], v, mhccp_decim_bits, bits_alpha[0]); \
sum = _mm256_add_epi32( \
sum, mul_fixed32_adapt_avx2(alpha[1], v2, mhccp_decim_bits, \
bits_alpha[1])); \
sum = _mm256_add_epi32( \
sum, mul_fixed32_adapt_avx2(alpha[2], mid, mhccp_decim_bits, \
bits_alpha[2])); \
sum = _mm256_max_epi32(sum, zero); \
sum = _mm256_min_epi32(sum, pixel_max); \
\
const __m128i res_lo = _mm256_castsi256_si128(sum); \
const __m128i res_hi = _mm256_extracti128_si256(sum, 1); \
const __m128i res = _mm_packs_epi32(res_lo, res_hi); \
\
if (width > 4) \
_mm_storeu_si128((__m128i *)(dst + i), res); \
else \
_mm_storeu_si64((__m128i *)(dst + i), res); \
}
static INLINE __m256i load_and_shift(const uint16_t *ptr) {
__m256i v = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i const *)ptr));
v = _mm256_srli_epi32(v, 3);
return v;
}
static INLINE __m256i non_linear_avx2(__m256i v, __m256i mid, int bit_depth) {
__m256i v2 = _mm256_mullo_epi32(v, v);
v2 = _mm256_add_epi32(v2, mid);
v2 = _mm256_srai_epi32(v2, bit_depth);
return v2;
}
void mhccp_predict_hv_hbd_avx2(const uint16_t *input, uint16_t *dst,
bool have_top, bool have_left, int dst_stride,
int32_t *alpha_q3, int bit_depth, int width,
int height, int dir) {
const __m256i mid = _mm256_set1_epi32(1 << (bit_depth - 1));
const __m256i pixel_max = _mm256_set1_epi32((1 << bit_depth) - 1);
const __m256i mhccp_decim_bits = _mm256_set1_epi32(MHCCP_DECIM_BITS);
const __m256i zero = _mm256_setzero_si256();
assert(MHCCP_NUM_PARAMS == 3);
__m256i alpha[MHCCP_NUM_PARAMS];
__m256i bits_alpha[MHCCP_NUM_PARAMS];
for (int i = 0; i < MHCCP_NUM_PARAMS; i++) {
alpha[i] = _mm256_set1_epi32(alpha_q3[i]);
const uint32_t abs_a =
(uint32_t)(alpha_q3[i] < 0 ? -alpha_q3[i] : alpha_q3[i]);
const int bits_a = ilog2_32(abs_a) + 1;
bits_alpha[i] = _mm256_set1_epi32(bits_a);
}
if (dir == 0) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i += 8) {
const __m256i v = load_and_shift(input + i);
const __m256i v2 = non_linear_avx2(v, mid, bit_depth);
CONVOLVE_FIXED32_AND_STORE
}
input += CFL_BUF_LINE * 2;
dst += dst_stride;
}
} else if (dir == 1) {
const uint16_t *top_row = !have_top ? input : &input[-2 * CFL_BUF_LINE];
const uint16_t *cur_row = input;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i += 8) {
const __m256i v = load_and_shift(top_row + i);
const __m256i v2 =
non_linear_avx2(load_and_shift(cur_row + i), mid, bit_depth);
CONVOLVE_FIXED32_AND_STORE
}
top_row = cur_row;
cur_row += CFL_BUF_LINE * 2;
dst += dst_stride;
}
} else {
assert(dir == 2);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i += 8) {
const __m256i cur = load_and_shift(input + i);
__m256i v;
if (i == 0 && !have_left) {
const __m256i idx = _mm256_setr_epi32(0, 0, 1, 2, 3, 4, 5, 6);
v = _mm256_permutevar8x32_epi32(cur, idx);
} else {
v = load_and_shift(input + i - 1);
}
const __m256i v2 = non_linear_avx2(cur, mid, bit_depth);
CONVOLVE_FIXED32_AND_STORE
}
input += CFL_BUF_LINE * 2;
dst += dst_stride;
}
}
}
#endif // CONFIG_MHCCP_SOLVER_BITS