|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include "aom_ports/system_state.h" | 
|  |  | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/intra_dip.h" | 
|  |  | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/encodeframe_utils.h" | 
|  | #include "av1/encoder/partition_strategy.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  |  | 
|  | static AOM_INLINE int set_deltaq_rdmult(const AV1_COMP *const cpi, | 
|  | const MACROBLOCK *const x) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonQuantParams *quant_params = &cm->quant_params; | 
|  | return av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex + | 
|  | quant_params->y_dc_delta_q); | 
|  | } | 
|  |  | 
|  | void av1_set_ssim_rdmult(const AV1_COMP *const cpi, MvCosts *const mv_costs, | 
|  | const BLOCK_SIZE bsize, const int mi_row, | 
|  | const int mi_col, int *const rdmult) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  |  | 
|  | const BLOCK_SIZE bsize_base = BLOCK_16X16; | 
|  | const int num_mi_w = mi_size_wide[bsize_base]; | 
|  | const int num_mi_h = mi_size_high[bsize_base]; | 
|  | const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; | 
|  | const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; | 
|  | const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; | 
|  | const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; | 
|  | int row, col; | 
|  | double num_of_mi = 0.0; | 
|  | double geom_mean_of_scale = 0.0; | 
|  |  | 
|  | assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM); | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | for (row = mi_row / num_mi_w; | 
|  | row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { | 
|  | for (col = mi_col / num_mi_h; | 
|  | col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { | 
|  | const int index = row * num_cols + col; | 
|  | geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]); | 
|  | num_of_mi += 1.0; | 
|  | } | 
|  | } | 
|  | geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi); | 
|  |  | 
|  | *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); | 
|  | *rdmult = AOMMAX(*rdmult, 0); | 
|  | av1_set_error_per_bit(mv_costs, *rdmult); | 
|  | aom_clear_system_state(); | 
|  | } | 
|  |  | 
|  | // Return the end column for the current superblock, in unit of TPL blocks. | 
|  | static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col, | 
|  | int num_mi_w) { | 
|  | // Find the start column of this superblock. | 
|  | const int sb_mi_col_start = (mi_col >> cm->mib_size_log2) | 
|  | << cm->mib_size_log2; | 
|  | const int sb_mi_col_start_sr = sb_mi_col_start; | 
|  | // Width of this superblock in mi units. | 
|  | const int sb_mi_width = mi_size_wide[cm->sb_size]; | 
|  | const int sb_mi_width_sr = sb_mi_width; | 
|  | // Superblock end in mi units. | 
|  | const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr; | 
|  | // Superblock end in TPL units. | 
|  | return (sb_mi_end + num_mi_w - 1) / num_mi_w; | 
|  | } | 
|  |  | 
|  | int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | const BLOCK_SIZE bsize, const int mi_row, | 
|  | const int mi_col, int orig_rdmult) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | assert(IMPLIES(cpi->gf_group.size > 0, | 
|  | cpi->gf_group.index < cpi->gf_group.size)); | 
|  | const int tpl_idx = cpi->gf_group.index; | 
|  | const TplDepFrame *tpl_frame = &cpi->tpl_data.tpl_frame[tpl_idx]; | 
|  | const int deltaq_rdmult = set_deltaq_rdmult(cpi, x); | 
|  | if (tpl_frame->is_valid == 0) return deltaq_rdmult; | 
|  | if (!is_frame_tpl_eligible(gf_group, gf_group->index)) return deltaq_rdmult; | 
|  | if (tpl_idx >= MAX_TPL_FRAME_IDX) return deltaq_rdmult; | 
|  | if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; | 
|  |  | 
|  | const int mi_col_sr = mi_col; | 
|  | const int mi_cols_sr = av1_pixels_to_mi(cm->width); | 
|  | const int block_mi_width_sr = mi_size_wide[bsize]; | 
|  | const BLOCK_SIZE bsize_base = BLOCK_16X16; | 
|  | const int num_mi_w = mi_size_wide[bsize_base]; | 
|  | const int num_mi_h = mi_size_high[bsize_base]; | 
|  | const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w; | 
|  | const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; | 
|  | const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w; | 
|  | const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; | 
|  | // This is required because the end col of superblock may be off by 1 in case | 
|  | // of superres. | 
|  | const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w); | 
|  | int row, col; | 
|  | double base_block_count = 0.0; | 
|  | double geom_mean_of_scale = 0.0; | 
|  | aom_clear_system_state(); | 
|  | for (row = mi_row / num_mi_w; | 
|  | row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { | 
|  | for (col = mi_col_sr / num_mi_h; | 
|  | col < num_cols && col < mi_col_sr / num_mi_h + num_bcols && | 
|  | col < sb_bcol_end; | 
|  | ++col) { | 
|  | const int index = row * num_cols + col; | 
|  | geom_mean_of_scale += log(cpi->tpl_sb_rdmult_scaling_factors[index]); | 
|  | base_block_count += 1.0; | 
|  | } | 
|  | } | 
|  | geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count); | 
|  | int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5); | 
|  | rdmult = AOMMAX(rdmult, 0); | 
|  | av1_set_error_per_bit(&x->mv_costs, rdmult); | 
|  | aom_clear_system_state(); | 
|  | if (bsize == cm->sb_size) { | 
|  | const int rdmult_sb = set_deltaq_rdmult(cpi, x); | 
|  | assert(rdmult_sb == rdmult); | 
|  | (void)rdmult_sb; | 
|  | } | 
|  | return rdmult; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts, | 
|  | const MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *mbmi) { | 
|  | const int ctx = av1_get_pred_context_switchable_interp(xd, 0); | 
|  | ++counts->switchable_interp[ctx][mbmi->interp_fltr]; | 
|  | } | 
|  |  | 
|  | static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi, | 
|  | const TX_MODE tx_mode) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | int plane_index = xd->tree_type == CHROMA_PART; | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | mbmi->tx_size = TX_4X4; | 
|  | } else if (tx_mode != TX_MODE_SELECT) { | 
|  | mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type[plane_index], tx_mode); | 
|  | } else { | 
|  | BLOCK_SIZE bsize = mbmi->sb_type[plane_index]; | 
|  | TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize); | 
|  | mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size); | 
|  | } | 
|  | memset(mbmi->tx_partition_type, TX_PARTITION_NONE, | 
|  | sizeof(mbmi->tx_partition_type)); | 
|  | const int stride = xd->tx_type_map_stride; | 
|  | const int bw = mi_size_wide[mbmi->sb_type[plane_index]]; | 
|  | for (int row = 0; row < mi_size_high[mbmi->sb_type[plane_index]]; ++row) { | 
|  | memset(xd->tx_type_map + row * stride, DCT_DCT, | 
|  | bw * sizeof(xd->tx_type_map[0])); | 
|  | } | 
|  | const BLOCK_SIZE chroma_bsize = get_bsize_base(xd, mbmi, AOM_PLANE_U); | 
|  | for (int row = 0; row < mi_size_high[chroma_bsize]; ++row) | 
|  | memset(xd->cctx_type_map + row * xd->cctx_type_map_stride, CCTX_NONE, | 
|  | mi_size_wide[chroma_bsize] * sizeof(xd->cctx_type_map[0])); | 
|  | av1_zero(txfm_info->blk_skip); | 
|  | txfm_info->skip_txfm = 0; | 
|  | } | 
|  |  | 
|  | // This function will copy the best reference mode information from | 
|  | // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT. | 
|  | static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( | 
|  | MB_MODE_INFO_EXT *mbmi_ext, | 
|  | const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type, | 
|  | int skip_mode, PREDICTION_MODE this_mode) { | 
|  | if (skip_mode) { | 
|  | memcpy(&(mbmi_ext->skip_mvp_candidate_list), | 
|  | &(mbmi_ext_best->skip_mvp_candidate_list), | 
|  | sizeof(mbmi_ext->skip_mvp_candidate_list)); | 
|  | } | 
|  |  | 
|  | MV_REFERENCE_FRAME rf[2]; | 
|  | av1_set_ref_frame(rf, ref_frame_type); | 
|  | if (has_second_drl_by_mode(this_mode, rf)) { | 
|  | memcpy(mbmi_ext->ref_mv_stack[rf[0]], mbmi_ext_best->ref_mv_stack[0], | 
|  | sizeof(mbmi_ext->ref_mv_stack[0])); | 
|  | memcpy(mbmi_ext->weight[rf[0]], mbmi_ext_best->weight[0], | 
|  | sizeof(mbmi_ext->weight[0])); | 
|  | mbmi_ext->ref_mv_count[rf[0]] = mbmi_ext_best->ref_mv_count[0]; | 
|  | memcpy(mbmi_ext->ref_mv_stack[rf[1]], mbmi_ext_best->ref_mv_stack[1], | 
|  | sizeof(mbmi_ext->ref_mv_stack[0])); | 
|  | memcpy(mbmi_ext->weight[rf[1]], mbmi_ext_best->weight[1], | 
|  | sizeof(mbmi_ext->weight[0])); | 
|  | mbmi_ext->ref_mv_count[rf[1]] = mbmi_ext_best->ref_mv_count[1]; | 
|  | } else { | 
|  | memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], | 
|  | mbmi_ext_best->ref_mv_stack[0], sizeof(mbmi_ext->ref_mv_stack[0])); | 
|  | memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight[0], | 
|  | sizeof(mbmi_ext->weight[0])); | 
|  | mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count[0]; | 
|  | } | 
|  |  | 
|  | mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; | 
|  | memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, | 
|  | sizeof(mbmi_ext->global_mvs)); | 
|  |  | 
|  | if (ref_frame_type < INTER_REFS_PER_FRAME) { | 
|  | memcpy(mbmi_ext->warp_param_stack[ref_frame_type], | 
|  | mbmi_ext_best->warp_param_stack, | 
|  | sizeof(mbmi_ext->warp_param_stack[0])); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_update_state(const AV1_COMP *const cpi, ThreadData *td, | 
|  | const PICK_MODE_CONTEXT *const ctx, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { | 
|  | int i, x_idx, y; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | RD_COUNTS *const rdc = &td->rd_counts; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | struct macroblock_plane *const p = x->plane; | 
|  | struct macroblockd_plane *const pd = xd->plane; | 
|  | const MB_MODE_INFO *const mi = &ctx->mic; | 
|  | MB_MODE_INFO *const mi_addr = xd->mi[0]; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int bw = mi_size_wide[mi->sb_type[xd->tree_type == CHROMA_PART]]; | 
|  | const int bh = mi_size_high[mi->sb_type[xd->tree_type == CHROMA_PART]]; | 
|  | const int mis = mi_params->mi_stride; | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | assert(mi->sb_type[xd->tree_type == CHROMA_PART] == bsize); | 
|  |  | 
|  | *mi_addr = *mi; | 
|  | mi_addr->chroma_ref_info = ctx->chroma_ref_info; | 
|  | if (is_warp_mode(mi->motion_mode)) update_submi(xd, cm, ctx->submic, bsize); | 
|  | if (xd->tree_type != CHROMA_PART) | 
|  | copy_mbmi_ext_frame_to_mbmi_ext(x->mbmi_ext, &ctx->mbmi_ext_best, | 
|  | av1_ref_frame_type(ctx->mic.ref_frame), | 
|  | mi->skip_mode, ctx->mic.mode); | 
|  |  | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | const int num_blk_plane = | 
|  | (i == AOM_PLANE_Y) ? ctx->num_4x4_blk : ctx->num_4x4_blk_chroma; | 
|  | memcpy(txfm_info->blk_skip[i], ctx->blk_skip[i], | 
|  | sizeof(*txfm_info->blk_skip[i]) * num_blk_plane); | 
|  | } | 
|  |  | 
|  | txfm_info->skip_txfm = ctx->rd_stats.skip_txfm; | 
|  | if (xd->tree_type != CHROMA_PART) { | 
|  | xd->tx_type_map = ctx->tx_type_map; | 
|  | xd->tx_type_map_stride = mi_size_wide[bsize]; | 
|  | // If not dry_run, copy the transform type data into the frame level buffer. | 
|  | // Encoder will fetch tx types when writing bitstream. | 
|  | if (!dry_run) { | 
|  | const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); | 
|  | TX_TYPE *const tx_type_map = mi_params->tx_type_map + grid_idx; | 
|  | const int mi_stride = mi_params->mi_stride; | 
|  | for (int blk_row = 0; blk_row < bh; ++blk_row) { | 
|  | av1_copy_array(tx_type_map + blk_row * mi_stride, | 
|  | xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw); | 
|  | } | 
|  | xd->tx_type_map = tx_type_map; | 
|  | xd->tx_type_map_stride = mi_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (xd->tree_type != LUMA_PART && xd->is_chroma_ref && | 
|  | is_cctx_allowed(cm, xd)) { | 
|  | xd->cctx_type_map = ctx->cctx_type_map; | 
|  | const BLOCK_SIZE chroma_bsize = get_bsize_base(xd, mi, AOM_PLANE_U); | 
|  | xd->cctx_type_map_stride = mi_size_wide[chroma_bsize]; | 
|  | // If not dry_run, copy the cctx type data into the frame level buffer. | 
|  | // Encoder will fetch cctx types when writing bitstream. | 
|  | if (!dry_run) { | 
|  | const int mi_stride = mi_params->mi_stride; | 
|  | CctxType cur_cctx_type = | 
|  | txfm_info->skip_txfm ? CCTX_NONE : xd->cctx_type_map[0]; | 
|  | const int chroma_bw = mi_size_wide[chroma_bsize]; | 
|  | const int chroma_bh = mi_size_high[chroma_bsize]; | 
|  | const int grid_idx = | 
|  | get_mi_grid_idx(mi_params, mi->chroma_ref_info.mi_row_chroma_base, | 
|  | mi->chroma_ref_info.mi_col_chroma_base); | 
|  | CctxType *const cctx_type_map = mi_params->cctx_type_map + grid_idx; | 
|  | for (int blk_row = 0; blk_row < chroma_bh; ++blk_row) { | 
|  | memset(&cctx_type_map[blk_row * mi_stride], cur_cctx_type, | 
|  | chroma_bw * sizeof(cctx_type_map[0])); | 
|  | } | 
|  | xd->cctx_type_map = cctx_type_map; | 
|  | xd->cctx_type_map_stride = mi_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If segmentation in use | 
|  | if (seg->enabled) { | 
|  | // For in frame complexity AQ copy the segment id from the segment map. | 
|  | if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) { | 
|  | const uint8_t *const map = | 
|  | seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; | 
|  | mi_addr->segment_id = | 
|  | map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0; | 
|  | reset_tx_size(x, mi_addr, x->txfm_search_params.tx_mode_search_type); | 
|  | } | 
|  | // Else for cyclic refresh mode update the segment map, set the segment id | 
|  | // and then update the quantizer. | 
|  | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && | 
|  | xd->tree_type == SHARED_PART) { | 
|  | av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize, | 
|  | ctx->rd_stats.rate, ctx->rd_stats.dist, | 
|  | txfm_info->skip_txfm); | 
|  | } | 
|  |  | 
|  | if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed( | 
|  | #if CONFIG_CWG_F307_CFL_SEQ_FLAG | 
|  | cm->seq_params.enable_cfl_intra, | 
|  | #endif  // CONFIG_CWG_F307_CFL_SEQ_FLAG | 
|  | xd)) | 
|  | mi_addr->uv_mode = UV_DC_PRED; | 
|  | } | 
|  | for (i = (xd->tree_type == CHROMA_PART); i < num_planes; ++i) { | 
|  | p[i].coeff = ctx->coeff[i]; | 
|  | p[i].qcoeff = ctx->qcoeff[i]; | 
|  | p[i].dqcoeff = ctx->dqcoeff[i]; | 
|  | p[i].eobs = ctx->eobs[i]; | 
|  | p[i].bobs = ctx->bobs[i]; | 
|  | p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; | 
|  | } | 
|  | for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; | 
|  | // Restore the coding context of the MB to that that was in place | 
|  | // when the mode was picked for it | 
|  | // Note: the copying here must match corresponding decoder-side copying in | 
|  | // parse_decode_block(). | 
|  | // TODO(any): Refactor. | 
|  | for (y = 0; y < mi_height; y++) { | 
|  | for (x_idx = 0; x_idx < mi_width; x_idx++) { | 
|  | if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && | 
|  | (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { | 
|  | const int mi_idx = | 
|  | get_alloc_mi_idx(mi_params, mi_row + y, mi_col + x_idx); | 
|  | xd->mi[x_idx + y * mis] = &mi_params->mi_alloc[mi_idx]; | 
|  | if (xd->tree_type == LUMA_PART) { | 
|  | *(xd->mi[x_idx + y * mis]) = *mi_addr; | 
|  | } else if (xd->tree_type == CHROMA_PART) { | 
|  | xd->mi[x_idx + y * mis]->sb_type[PLANE_TYPE_UV] = | 
|  | mi_addr->sb_type[PLANE_TYPE_UV]; | 
|  | xd->mi[x_idx + y * mis]->uv_mode = mi_addr->uv_mode; | 
|  | xd->mi[x_idx + y * mis]->angle_delta[PLANE_TYPE_UV] = | 
|  | mi_addr->angle_delta[PLANE_TYPE_UV]; | 
|  | xd->mi[x_idx + y * mis]->cfl_alpha_signs = mi_addr->cfl_alpha_signs; | 
|  | xd->mi[x_idx + y * mis]->cfl_alpha_idx = mi_addr->cfl_alpha_idx; | 
|  | xd->mi[x_idx + y * mis]->partition = mi_addr->partition; | 
|  | xd->mi[x_idx + y * mis]->chroma_mi_row_start = | 
|  | mi_addr->chroma_mi_row_start; | 
|  | xd->mi[x_idx + y * mis]->chroma_mi_col_start = | 
|  | mi_addr->chroma_mi_col_start; | 
|  | xd->mi[x_idx + y * mis] | 
|  | ->palette_mode_info.palette_size[PLANE_TYPE_UV] = | 
|  | mi_addr->palette_mode_info.palette_size[PLANE_TYPE_UV]; | 
|  | for (i = PALETTE_MAX_SIZE; i < 3 * PALETTE_MAX_SIZE; i++) | 
|  | xd->mi[x_idx + y * mis]->palette_mode_info.palette_colors[i] = | 
|  | mi_addr->palette_mode_info.palette_colors[i]; | 
|  | } else { | 
|  | xd->mi[x_idx + y * mis] = mi_addr; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cpi->oxcf.q_cfg.aq_mode) | 
|  | av1_init_plane_quantizers(cpi, x, mi_addr->segment_id); | 
|  |  | 
|  | if (dry_run) return; | 
|  |  | 
|  | if (mi_addr->ref_frame[0] != INTRA_FRAME) { | 
|  | if (cm->features.interp_filter == SWITCHABLE && | 
|  | !is_warp_mode(mi_addr->motion_mode) && | 
|  | !is_nontrans_global_motion(xd, xd->mi[0])) { | 
|  | update_filter_type_count(td->counts, xd, mi_addr); | 
|  | } | 
|  |  | 
|  | rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; | 
|  | rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; | 
|  | rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, | 
|  | PREDICTION_MODE mode, int16_t mode_context, | 
|  | const AV1_COMMON *const cm, | 
|  | const MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize | 
|  |  | 
|  | ) { | 
|  | (void)counts; | 
|  |  | 
|  | if (is_tip_ref_frame(mbmi->ref_frame[0])) { | 
|  | const int tip_pred_index = | 
|  | tip_pred_mode_to_index[mode - SINGLE_INTER_MODE_START]; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->tip_pred_mode_cnt[tip_pred_index]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->tip_pred_mode_cdf, tip_pred_index, TIP_PRED_MODES); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_warpmv_mode_allowed(cm, mbmi, bsize)) { | 
|  | const int16_t iswarpmvmode_ctx = inter_warpmv_mode_ctx(cm, xd, mbmi); | 
|  | const int is_warpmv_or_warp_newmv = (mode == WARPMV || mode == WARP_NEWMV); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->inter_warp_cnts[iswarpmvmode_ctx][is_warpmv_or_warp_newmv]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->inter_warp_mode_cdf[iswarpmvmode_ctx], | 
|  | is_warpmv_or_warp_newmv, 2); | 
|  | if (is_warpmv_or_warp_newmv) { | 
|  | if (is_warp_newmv_allowed(cm, xd, mbmi, bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->is_warpmv_or_warp_newmv_cnt[mode == WARPMV]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->is_warpmv_or_warp_newmv_cdf, mode == WARPMV, 2); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | const int16_t ismode_ctx = inter_single_mode_ctx(mode_context); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->inter_single_mode[ismode_ctx][mode - SINGLE_INTER_MODE_START]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(fc->inter_single_mode_cdf[ismode_ctx], | 
|  | mode - SINGLE_INTER_MODE_START, INTER_SINGLE_MODES); | 
|  | } | 
|  |  | 
|  | static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, | 
|  | FRAME_COUNTS *counts) { | 
|  | FRAME_CONTEXT *fc = xd->tile_ctx; | 
|  | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  |  | 
|  | (void)counts; | 
|  | if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) { | 
|  | const int n = pmi->palette_size[0]; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->palette_y_mode[n > 0]; | 
|  | #endif | 
|  | update_cdf(fc->palette_y_mode_cdf, n > 0, 2); | 
|  | if (n > 0) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->palette_y_size[n - PALETTE_MIN_SIZE]; | 
|  | #endif | 
|  | update_cdf(fc->palette_y_size_cdf, n - PALETTE_MIN_SIZE, PALETTE_SIZES); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void update_fsc_cdf(const AV1_COMMON *const cm, MACROBLOCKD *xd, | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | FRAME_COUNTS *counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | const int intraonly) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | if (allow_fsc_intra(cm, bsize, mbmi)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | const int ctx = get_fsc_mode_ctx(xd, intraonly); | 
|  | ++counts->fsc_mode[ctx][fsc_bsize_groups[bsize]] | 
|  | [mbmi->fsc_mode[xd->tree_type == CHROMA_PART]]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, intraonly); | 
|  | update_cdf(fsc_cdf, mbmi->fsc_mode[xd->tree_type == CHROMA_PART], | 
|  | FSC_MODES); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, | 
|  | MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi) { | 
|  | FRAME_CONTEXT *fc = xd->tile_ctx; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | int cdf_idx = cm->coef_cdf_category; | 
|  | #endif | 
|  | (void)counts; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; | 
|  | if (xd->tree_type != CHROMA_PART) { | 
|  | const int intraonly = frame_is_intra_only(cm); | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | update_cdf(fc->dpcm_cdf, mbmi->use_dpcm_y, 2); | 
|  | if (mbmi->use_dpcm_y == 0) { | 
|  | const int context = get_y_mode_idx_ctx(xd); | 
|  | const int mode_idx = mbmi->y_mode_idx; | 
|  | int mode_set_index = mode_idx < FIRST_MODE_COUNT ? 0 : 1; | 
|  | mode_set_index += ((mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->y_mode_set_idx[mode_set_index]; | 
|  | #endif | 
|  | update_cdf(fc->y_mode_set_cdf, mode_set_index, INTRA_MODE_SETS); | 
|  | if (mode_set_index == 0) { | 
|  | int mode_set_low = AOMMIN(mode_idx, LUMA_INTRA_MODE_INDEX_COUNT - 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->y_mode_idx[context][mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->y_mode_idx_cdf[context], mode_set_low, | 
|  | LUMA_INTRA_MODE_INDEX_COUNT); | 
|  | if (mode_set_low == (LUMA_INTRA_MODE_INDEX_COUNT - 1)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->y_mode_idx_offset[context][mode_idx - mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->y_mode_idx_offset_cdf[context], | 
|  | mode_idx - mode_set_low, LUMA_INTRA_MODE_OFFSET_COUNT); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | update_cdf(fc->dpcm_vert_horz_cdf, mbmi->dpcm_mode_y, 2); | 
|  | } | 
|  | } else { | 
|  | const int context = get_y_mode_idx_ctx(xd); | 
|  | const int mode_idx = mbmi->y_mode_idx; | 
|  | int mode_set_index = mode_idx < FIRST_MODE_COUNT ? 0 : 1; | 
|  | mode_set_index += ((mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->y_mode_set_idx[mode_set_index]; | 
|  | #endif | 
|  | update_cdf(fc->y_mode_set_cdf, mode_set_index, INTRA_MODE_SETS); | 
|  | if (mode_set_index == 0) { | 
|  | int mode_set_low = AOMMIN(mode_idx, LUMA_INTRA_MODE_INDEX_COUNT - 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->y_mode_idx[context][mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->y_mode_idx_cdf[context], mode_set_low, | 
|  | LUMA_INTRA_MODE_INDEX_COUNT); | 
|  | if (mode_set_low == (LUMA_INTRA_MODE_INDEX_COUNT - 1)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->y_mode_idx_offset[context][mode_idx - mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->y_mode_idx_offset_cdf[context], | 
|  | mode_idx - mode_set_low, LUMA_INTRA_MODE_OFFSET_COUNT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | update_fsc_cdf(cm, xd, | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts, | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | intraonly); | 
|  | if (cm->seq_params.enable_mrls && av1_is_directional_mode(mbmi->mode)) { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | if (mbmi->use_dpcm_y == 0) { | 
|  | int mrl_ctx = get_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]); | 
|  | update_cdf(fc->mrl_index_cdf[mrl_ctx], mbmi->mrl_index, | 
|  | MRL_LINE_NUMBER); | 
|  | if (mbmi->mrl_index) { | 
|  | int multi_line_mrl_ctx = get_multi_line_mrl_index_ctx( | 
|  | xd->neighbors[0], xd->neighbors[1]); | 
|  | update_cdf(fc->multi_line_mrl_cdf[multi_line_mrl_ctx], | 
|  | mbmi->multi_line_mrl, 2); | 
|  | } | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->mrl_index[mrl_ctx][mbmi->mrl_index]; | 
|  | if (mbmi->mrl_index) { | 
|  | int multi_line_mrl_ctx = get_multi_line_mrl_index_ctx( | 
|  | xd->neighbors[0], xd->neighbors[1]); | 
|  | ++counts->multi_line_mrl[multi_line_mrl_ctx][mbmi->multi_line_mrl]; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | } else { | 
|  | int mrl_ctx = get_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]); | 
|  | update_cdf(fc->mrl_index_cdf[mrl_ctx], mbmi->mrl_index, | 
|  | MRL_LINE_NUMBER); | 
|  | if (mbmi->mrl_index) { | 
|  | int multi_line_mrl_ctx = | 
|  | get_multi_line_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]); | 
|  | update_cdf(fc->multi_line_mrl_cdf[multi_line_mrl_ctx], | 
|  | mbmi->multi_line_mrl, 2); | 
|  | } | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->mrl_index[mrl_ctx][mbmi->mrl_index]; | 
|  | if (mbmi->mrl_index) { | 
|  | int multi_line_mrl_ctx = | 
|  | get_multi_line_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]); | 
|  | ++counts->multi_line_mrl[multi_line_mrl_ctx][mbmi->multi_line_mrl]; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | } | 
|  | if (av1_intra_dip_allowed(cm, mbmi)) { | 
|  | const int use_intra_dip = mbmi->use_intra_dip; | 
|  | int ctx = get_intra_dip_ctx(xd->neighbors[0], xd->neighbors[1], bsize); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->intra_dip[cdf_idx][ctx][use_intra_dip]; | 
|  | if (use_intra_dip) { | 
|  | ++counts->intra_dip_mode_n6[mbmi->intra_dip_mode & 15]; | 
|  | } | 
|  | #endif | 
|  | aom_cdf_prob *cdf = fc->intra_dip_cdf[ctx]; | 
|  | update_cdf(cdf, use_intra_dip, 2); | 
|  | if (use_intra_dip) { | 
|  | int n_modes = av1_intra_dip_modes(bsize); | 
|  | aom_cdf_prob *mode_cdf = xd->tile_ctx->intra_dip_mode_n6_cdf; | 
|  | update_cdf(mode_cdf, mbmi->intra_dip_mode & 15, n_modes); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!xd->is_chroma_ref) return; | 
|  | if (xd->tree_type != LUMA_PART) { | 
|  | const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; | 
|  | const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed( | 
|  | #if CONFIG_CWG_F307_CFL_SEQ_FLAG | 
|  | cm->seq_params.enable_cfl_intra, | 
|  | #endif  // CONFIG_CWG_F307_CFL_SEQ_FLAG | 
|  | xd); | 
|  | const int uv_context = av1_is_directional_mode(mbmi->mode) ? 1 : 0; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | if (cfl_allowed) { | 
|  | const int cfl_ctx = get_cfl_ctx(xd); | 
|  | ++counts->cfl_mode[cfl_ctx][uv_mode == UV_CFL_PRED]; | 
|  | if (uv_mode != UV_CFL_PRED) { | 
|  | ++counts->uv_mode[uv_context][uv_mode]; | 
|  | } | 
|  | } else { | 
|  | ++counts->uv_mode[uv_context][uv_mode]; | 
|  | } | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (cfl_allowed) { | 
|  | const int cfl_ctx = get_cfl_ctx(xd); | 
|  | update_cdf(fc->cfl_cdf[cfl_ctx], mbmi->uv_mode == UV_CFL_PRED, 2); | 
|  | if (mbmi->uv_mode != UV_CFL_PRED) { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | update_cdf(fc->dpcm_uv_cdf, mbmi->use_dpcm_uv, 2); | 
|  | if (mbmi->use_dpcm_uv == 0) { | 
|  | int mode_set_low = | 
|  | AOMMIN(mbmi->uv_mode_idx, CHROMA_INTRA_MODE_INDEX_COUNT - 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->uv_mode[uv_context][mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->uv_mode_cdf[uv_context], mode_set_low, | 
|  | CHROMA_INTRA_MODE_INDEX_COUNT); | 
|  | } else { | 
|  | update_cdf(fc->dpcm_uv_vert_horz_cdf, mbmi->dpcm_mode_uv, 2); | 
|  | } | 
|  | } else { | 
|  | int mode_set_low = | 
|  | AOMMIN(mbmi->uv_mode_idx, CHROMA_INTRA_MODE_INDEX_COUNT - 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->uv_mode[uv_context][mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->uv_mode_cdf[uv_context], mode_set_low, | 
|  | CHROMA_INTRA_MODE_INDEX_COUNT); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | update_cdf(fc->dpcm_uv_cdf, mbmi->use_dpcm_uv, 2); | 
|  | if (mbmi->use_dpcm_uv == 0) { | 
|  | int mode_set_low = | 
|  | AOMMIN(mbmi->uv_mode_idx, CHROMA_INTRA_MODE_INDEX_COUNT - 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->uv_mode[uv_context][mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->uv_mode_cdf[uv_context], mode_set_low, | 
|  | CHROMA_INTRA_MODE_INDEX_COUNT); | 
|  | } else { | 
|  | update_cdf(fc->dpcm_uv_vert_horz_cdf, mbmi->dpcm_mode_uv, 2); | 
|  | } | 
|  | } else { | 
|  | int mode_set_low = | 
|  | AOMMIN(mbmi->uv_mode_idx, CHROMA_INTRA_MODE_INDEX_COUNT - 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->uv_mode[uv_context][mode_set_low]; | 
|  | #endif | 
|  | update_cdf(fc->uv_mode_cdf[uv_context], mode_set_low, | 
|  | CHROMA_INTRA_MODE_INDEX_COUNT); | 
|  | } | 
|  | } | 
|  | if (mbmi->uv_mode == UV_CFL_PRED) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->cfl_index[mbmi->cfl_idx]; | 
|  | #endif | 
|  | if (is_mhccp_allowed(cm, xd)) { | 
|  | update_cdf(fc->cfl_mhccp_cdf, mbmi->cfl_idx == CFL_MULTI_PARAM, | 
|  | CFL_MHCCP_SWITCH_NUM); | 
|  | if (mbmi->cfl_idx == CFL_MULTI_PARAM) { | 
|  | aom_cdf_prob *filter_dir_cdf = get_mhccp_dir_cdf(xd, bsize); | 
|  | update_cdf(filter_dir_cdf, mbmi->mh_dir, MHCCP_MODE_NUM); | 
|  | } else { | 
|  | update_cdf(fc->cfl_index_cdf, mbmi->cfl_idx, CFL_TYPE_COUNT - 1); | 
|  | } | 
|  | } else { | 
|  | #if CONFIG_CWG_F307_CFL_SEQ_FLAG | 
|  | if (cm->seq_params.enable_cfl_intra) | 
|  | #endif  // CONFIG_CWG_F307_CFL_SEQ_FLAG | 
|  | update_cdf(fc->cfl_index_cdf, mbmi->cfl_idx, CFL_TYPE_COUNT - 1); | 
|  | } | 
|  | } | 
|  | if (uv_mode == UV_CFL_PRED) { | 
|  | const int8_t joint_sign = mbmi->cfl_alpha_signs; | 
|  | const uint8_t idx = mbmi->cfl_alpha_idx; | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->cfl_sign[joint_sign]; | 
|  | #endif | 
|  | update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); | 
|  | if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { | 
|  | aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; | 
|  | #endif | 
|  | update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); | 
|  | } | 
|  | if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { | 
|  | aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; | 
|  | #endif | 
|  | update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (av1_allow_palette(PLANE_TYPE_Y, cm->features.allow_screen_content_tools, | 
|  | bsize)) { | 
|  | update_palette_cdf(xd, mbmi, counts); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_restore_context(const AV1_COMMON *cm, MACROBLOCK *x, | 
|  | const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, const int num_planes) { | 
|  | (void)cm; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | int p; | 
|  | const int num_4x4_blocks_wide = mi_size_wide[bsize]; | 
|  | const int num_4x4_blocks_high = mi_size_high[bsize]; | 
|  | int mi_width = mi_size_wide[bsize]; | 
|  | int mi_height = mi_size_high[bsize]; | 
|  | for (p = (xd->tree_type == CHROMA_PART); p < num_planes; p++) { | 
|  | int tx_col = mi_col; | 
|  | int tx_row = mi_row & MAX_MIB_MASK; | 
|  | memcpy( | 
|  | xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), | 
|  | ctx->a + num_4x4_blocks_wide * p, | 
|  | (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> | 
|  | xd->plane[p].subsampling_x); | 
|  | memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), | 
|  | ctx->l + num_4x4_blocks_high * p, | 
|  | (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> | 
|  | xd->plane[p].subsampling_y); | 
|  | memcpy(xd->above_partition_context[p] + mi_col, ctx->sa + mi_width * p, | 
|  | sizeof(*xd->above_partition_context[p]) * mi_width); | 
|  | memcpy(xd->left_partition_context[p] + (mi_row & MAX_MIB_MASK), | 
|  | ctx->sl + mi_height * p, | 
|  | sizeof(xd->left_partition_context[p][0]) * mi_height); | 
|  | } | 
|  | av1_mark_block_as_not_coded(xd, mi_row, mi_col, bsize, cm->sb_size); | 
|  | } | 
|  |  | 
|  | void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | const int num_planes) { | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | int p; | 
|  | int mi_width = mi_size_wide[bsize]; | 
|  | int mi_height = mi_size_high[bsize]; | 
|  |  | 
|  | // buffer the above/left context information of the block in search. | 
|  | for (p = (xd->tree_type == CHROMA_PART); p < num_planes; ++p) { | 
|  | int tx_col = mi_col; | 
|  | int tx_row = mi_row & MAX_MIB_MASK; | 
|  | memcpy( | 
|  | ctx->a + mi_width * p, | 
|  | xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), | 
|  | (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x); | 
|  | memcpy(ctx->l + mi_height * p, | 
|  | xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), | 
|  | (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y); | 
|  | memcpy(ctx->sa + mi_width * p, xd->above_partition_context[p] + mi_col, | 
|  | sizeof(*xd->above_partition_context[p]) * mi_width); | 
|  | memcpy(ctx->sl + mi_height * p, | 
|  | xd->left_partition_context[p] + (mi_row & MAX_MIB_MASK), | 
|  | sizeof(xd->left_partition_context[p][0]) * mi_height); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_partial_sb_partition(const AV1_COMMON *const cm, | 
|  | MB_MODE_INFO *mi, int bh_in, int bw_in, | 
|  | int mi_rows_remaining, | 
|  | int mi_cols_remaining, BLOCK_SIZE bsize, | 
|  | MB_MODE_INFO **mib) { | 
|  | int bh = bh_in; | 
|  | int r, c; | 
|  | for (r = 0; r < cm->mib_size; r += bh) { | 
|  | int bw = bw_in; | 
|  | for (c = 0; c < cm->mib_size; c += bw) { | 
|  | const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c); | 
|  | const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c); | 
|  | mib[grid_index] = mi + mi_index; | 
|  | mib[grid_index]->sb_type[PLANE_TYPE_Y] = | 
|  | mib[grid_index]->sb_type[PLANE_TYPE_UV] = find_partition_size( | 
|  | bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function attempts to set all mode info entries in a given superblock | 
|  | // to the same block partition size. | 
|  | // However, at the bottom and right borders of the image the requested size | 
|  | // may not be allowed in which case this code attempts to choose the largest | 
|  | // allowable partition. | 
|  | void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, | 
|  | MB_MODE_INFO **mib, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int mi_rows_remaining = tile->mi_row_end - mi_row; | 
|  | const int mi_cols_remaining = tile->mi_col_end - mi_col; | 
|  | MB_MODE_INFO *const mi_upper_left = | 
|  | mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col); | 
|  | int bh = mi_size_high[bsize]; | 
|  | int bw = mi_size_wide[bsize]; | 
|  |  | 
|  | assert(bsize >= mi_params->mi_alloc_bsize && | 
|  | "Attempted to use bsize < mi_params->mi_alloc_bsize"); | 
|  | assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); | 
|  |  | 
|  | // Apply the requested partition size to the SB if it is all "in image" | 
|  | if ((mi_cols_remaining >= cm->mib_size) && | 
|  | (mi_rows_remaining >= cm->mib_size)) { | 
|  | for (int block_row = 0; block_row < cm->mib_size; block_row += bh) { | 
|  | for (int block_col = 0; block_col < cm->mib_size; block_col += bw) { | 
|  | const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col); | 
|  | const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col); | 
|  | mib[grid_index] = mi_upper_left + mi_index; | 
|  | mib[grid_index]->sb_type[PLANE_TYPE_Y] = bsize; | 
|  | mib[grid_index]->sb_type[PLANE_TYPE_UV] = bsize; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Else this is a partial SB. | 
|  | set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, | 
|  | mi_cols_remaining, bsize, mib); | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col, int orig_rdmult) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | assert(IMPLIES(cpi->gf_group.size > 0, | 
|  | cpi->gf_group.index < cpi->gf_group.size)); | 
|  | const int tpl_idx = cpi->gf_group.index; | 
|  | TplParams *const tpl_data = &cpi->tpl_data; | 
|  | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
|  | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
|  | const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
|  | int tpl_stride = tpl_frame->stride; | 
|  | int64_t intra_cost = 0; | 
|  | int64_t mc_dep_cost = 0; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  |  | 
|  | if (tpl_frame->is_valid == 0) return orig_rdmult; | 
|  |  | 
|  | if (!is_frame_tpl_eligible(gf_group, gf_group->index)) return orig_rdmult; | 
|  |  | 
|  | if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return orig_rdmult; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | int mi_count = 0; | 
|  | #endif  // NDEBUG | 
|  | const int mi_col_sr = mi_col; | 
|  | const int mi_col_end_sr = mi_col + mi_wide; | 
|  | const int mi_cols_sr = av1_pixels_to_mi(cm->width); | 
|  | const int step = 1 << block_mis_log2; | 
|  | const int row_step = step; | 
|  | const int col_step_sr = step; | 
|  | for (int row = mi_row; row < mi_row + mi_high; row += row_step) { | 
|  | for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
|  | if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; | 
|  | TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; | 
|  | int64_t mc_dep_delta = | 
|  | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
|  | this_stats->mc_dep_dist); | 
|  | intra_cost += this_stats->recrf_dist << RDDIV_BITS; | 
|  | mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; | 
|  | #ifndef NDEBUG | 
|  | mi_count++; | 
|  | #endif  // NDEBUG | 
|  | } | 
|  | } | 
|  | assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | double beta = 1.0; | 
|  | if (mc_dep_cost > 0 && intra_cost > 0) { | 
|  | const double r0 = cpi->rd.r0; | 
|  | const double rk = (double)intra_cost / mc_dep_cost; | 
|  | beta = (r0 / rk); | 
|  | } | 
|  |  | 
|  | int rdmult = av1_get_adaptive_rdmult(cpi, beta); | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2); | 
|  | rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2); | 
|  |  | 
|  | rdmult = AOMMAX(1, rdmult); | 
|  |  | 
|  | return rdmult; | 
|  | } | 
|  |  | 
|  | // Checks to see if a super block is on a horizontal image edge. | 
|  | // In most cases this is the "real" edge unless there are formatting | 
|  | // bars embedded in the stream. | 
|  | int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { | 
|  | int top_edge = 0; | 
|  | int bottom_edge = cpi->common.mi_params.mi_rows; | 
|  | int is_active_h_edge = 0; | 
|  |  | 
|  | if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || | 
|  | ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { | 
|  | is_active_h_edge = 1; | 
|  | } | 
|  | return is_active_h_edge; | 
|  | } | 
|  |  | 
|  | // Checks to see if a super block is on a vertical image edge. | 
|  | // In most cases this is the "real" edge unless there are formatting | 
|  | // bars embedded in the stream. | 
|  | int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { | 
|  | int left_edge = 0; | 
|  | int right_edge = cpi->common.mi_params.mi_cols; | 
|  | int is_active_v_edge = 0; | 
|  |  | 
|  | if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || | 
|  | ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { | 
|  | is_active_v_edge = 1; | 
|  | } | 
|  | return is_active_v_edge; | 
|  | } | 
|  |  | 
|  | void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col, SuperBlockEnc *sb_enc) { | 
|  | sb_enc->tpl_data_count = 0; | 
|  |  | 
|  | if (!cpi->oxcf.algo_cfg.enable_tpl_model) return; | 
|  | if (cpi->common.current_frame.frame_type == KEY_FRAME) return; | 
|  | const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group); | 
|  | if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE || | 
|  | update_type == KFFLT_OVERLAY_UPDATE) | 
|  | return; | 
|  | assert(IMPLIES(cpi->gf_group.size > 0, | 
|  | cpi->gf_group.index < cpi->gf_group.size)); | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int gf_group_index = cpi->gf_group.index; | 
|  | TplParams *const tpl_data = &cpi->tpl_data; | 
|  | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index]; | 
|  | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
|  | int tpl_stride = tpl_frame->stride; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  |  | 
|  | if (tpl_frame->is_valid == 0) return; | 
|  | if (gf_group_index >= MAX_TPL_FRAME_IDX) return; | 
|  |  | 
|  | int mi_count = 0; | 
|  | int count = 0; | 
|  | const int mi_col_sr = mi_col; | 
|  | const int mi_col_end_sr = mi_col + mi_wide; | 
|  | // mi_cols_sr is mi_cols at superres case. | 
|  | const int mi_cols_sr = av1_pixels_to_mi(cm->width); | 
|  | // TPL store unit size is not the same as the motion estimation unit size. | 
|  | // Here always use motion estimation size to avoid getting repetitive inter/ | 
|  | // intra cost. | 
|  | const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); | 
|  | assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]); | 
|  | const int row_step = mi_size_high[tpl_bsize]; | 
|  | const int col_step_sr = mi_size_wide[tpl_bsize]; | 
|  |  | 
|  | // Stride is only based on SB size, and we fill in values for every 16x16 | 
|  | // block in a SB. | 
|  | sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr; | 
|  |  | 
|  | for (int row = mi_row; row < mi_row + mi_high; row += row_step) { | 
|  | for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
|  | assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
|  | // Handle partial SB, so that no invalid values are used later. | 
|  | if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) { | 
|  | sb_enc->tpl_inter_cost[count] = INT64_MAX; | 
|  | sb_enc->tpl_intra_cost[count] = INT64_MAX; | 
|  | for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
|  | sb_enc->tpl_mv[count][i].as_int = INVALID_MV; | 
|  | } | 
|  | count++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( | 
|  | row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; | 
|  | sb_enc->tpl_inter_cost[count] = this_stats->inter_cost; | 
|  | sb_enc->tpl_intra_cost[count] = this_stats->intra_cost; | 
|  | memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv)); | 
|  | mi_count++; | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
|  | sb_enc->tpl_data_count = mi_count; | 
|  | } | 
|  |  | 
|  | // analysis_type 0: Use mc_dep_cost and intra_cost | 
|  | // analysis_type 1: Use count of best inter predictor chosen | 
|  | // analysis_type 2: Use cost reduction from intra to inter for best inter | 
|  | //                  predictor chosen | 
|  | int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | assert(IMPLIES(cpi->gf_group.size > 0, | 
|  | cpi->gf_group.index < cpi->gf_group.size)); | 
|  | const int tpl_idx = cpi->gf_group.index; | 
|  | TplParams *const tpl_data = &cpi->tpl_data; | 
|  | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
|  | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
|  | const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
|  | int tpl_stride = tpl_frame->stride; | 
|  | int64_t intra_cost = 0; | 
|  | int64_t mc_dep_cost = 0; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  | const int base_qindex = cm->quant_params.base_qindex; | 
|  |  | 
|  | if (tpl_frame->is_valid == 0) return base_qindex; | 
|  |  | 
|  | if (!is_frame_tpl_eligible(gf_group, gf_group->index)) return base_qindex; | 
|  |  | 
|  | if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return base_qindex; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | int mi_count = 0; | 
|  | #endif  // NDEBUG | 
|  | const int mi_col_sr = mi_col; | 
|  | const int mi_col_end_sr = mi_col + mi_wide; | 
|  | const int mi_cols_sr = av1_pixels_to_mi(cm->width); | 
|  | const int step = 1 << block_mis_log2; | 
|  | const int row_step = step; | 
|  | const int col_step_sr = step; | 
|  | for (int row = mi_row; row < mi_row + mi_high; row += row_step) { | 
|  | for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
|  | if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; | 
|  | TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; | 
|  | int64_t mc_dep_delta = | 
|  | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
|  | this_stats->mc_dep_dist); | 
|  | intra_cost += this_stats->recrf_dist << RDDIV_BITS; | 
|  | mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; | 
|  | #ifndef NDEBUG | 
|  | mi_count++; | 
|  | #endif  // NDEBUG | 
|  | } | 
|  | } | 
|  | assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | int offset = 0; | 
|  | double beta = 1.0; | 
|  | if (mc_dep_cost > 0 && intra_cost > 0) { | 
|  | const double r0 = cpi->rd.r0; | 
|  | const double rk = (double)intra_cost / mc_dep_cost; | 
|  | beta = (r0 / rk); | 
|  | assert(beta > 0.0); | 
|  | } | 
|  | offset = av1_get_deltaq_offset(cpi, base_qindex, beta); | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); | 
|  | offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); | 
|  | int qindex = cm->quant_params.base_qindex + offset; | 
|  |  | 
|  | qindex = | 
|  | AOMMIN(qindex, cm->seq_params.bit_depth == AOM_BITS_8    ? MAXQ_8_BITS | 
|  | : cm->seq_params.bit_depth == AOM_BITS_10 ? MAXQ_10_BITS | 
|  | : MAXQ); | 
|  | qindex = AOMMAX(qindex, MINQ); | 
|  |  | 
|  | return qindex; | 
|  | } | 
|  |  | 
|  | void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | BLOCK_SIZE bsize) { | 
|  | sms_tree->partitioning = PARTITION_NONE; | 
|  |  | 
|  | if (bsize >= BLOCK_8X8) { | 
|  | BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | assert(subsize < BLOCK_SIZES_ALL); | 
|  | assert(is_square_block(subsize)); | 
|  | for (int idx = 0; idx < 4; ++idx) | 
|  | av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record the ref frames that have been selected by square partition blocks. | 
|  | void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type, | 
|  | BLOCK_SIZE bsize, int mib_size, | 
|  | int mi_row, int mi_col) { | 
|  | const int sb_size_mask = mib_size - 1; | 
|  | const int mi_row_in_sb = mi_row & sb_size_mask; | 
|  | const int mi_col_in_sb = mi_col & sb_size_mask; | 
|  | const int mi_size_h = mi_size_high[bsize]; | 
|  | const int mi_size_w = mi_size_wide[bsize]; | 
|  | for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size_h; ++i) { | 
|  | for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size_w; ++j) { | 
|  | x->picked_ref_frames_mask[i * mib_size + j] |= 1ULL << ref_type; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Memset the mbmis at the current superblock to 0 | 
|  | void av1_reset_mbmi(const CommonModeInfoParams *const mi_params, | 
|  | BLOCK_SIZE sb_size, int mi_row, int mi_col) { | 
|  | // size of sb in unit of mi (BLOCK_4X4) | 
|  | const int sb_size_mi = mi_size_wide[sb_size]; | 
|  | const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; | 
|  | // size of sb in unit of allocated mi size | 
|  | const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d; | 
|  | assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 && | 
|  | "mi is not allocated as a multiple of sb!"); | 
|  | assert(mi_params->mi_stride % sb_size_mi == 0 && | 
|  | "mi_grid_base is not allocated as a multiple of sb!"); | 
|  |  | 
|  | const int mi_rows = mi_size_high[sb_size]; | 
|  | for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) { | 
|  | assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) < | 
|  | mi_params->mi_stride); | 
|  | const int mi_grid_idx = | 
|  | get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col); | 
|  | const int alloc_mi_idx = | 
|  | get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col); | 
|  | memset(&mi_params->mi_grid_base[mi_grid_idx], 0, | 
|  | sb_size_mi * sizeof(*mi_params->mi_grid_base)); | 
|  | memset(&mi_params->tx_type_map[mi_grid_idx], 0, | 
|  | sb_size_mi * sizeof(*mi_params->tx_type_map)); | 
|  | memset(&mi_params->submi_grid_base[mi_grid_idx], 0, | 
|  | sb_size_mi * sizeof(*mi_params->submi_grid_base)); | 
|  | memset(&mi_params->cctx_type_map[mi_grid_idx], 0, | 
|  | sb_size_mi * sizeof(*mi_params->cctx_type_map)); | 
|  | if (cur_mi_row % mi_alloc_size_1d == 0) { | 
|  | memset(&mi_params->mi_alloc[alloc_mi_idx], 0, | 
|  | sb_size_alloc_mi * sizeof(*mi_params->mi_alloc)); | 
|  | memset(&mi_params->mi_alloc_sub[alloc_mi_idx], 0, | 
|  | sb_size_alloc_mi * sizeof(*mi_params->mi_alloc_sub)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi, | 
|  | ThreadData *td, const TileDataEnc *tile_data, | 
|  | int mi_row, int mi_col) { | 
|  | MACROBLOCK *x = &td->mb; | 
|  |  | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const BLOCK_SIZE sb_size = cm->sb_size; | 
|  | av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); | 
|  |  | 
|  | sb_fp_stats->rd_count = td->rd_counts; | 
|  | sb_fp_stats->split_count = x->txfm_search_info.txb_split_count; | 
|  |  | 
|  | sb_fp_stats->fc = *td->counts; | 
|  |  | 
|  | memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models, | 
|  | sizeof(sb_fp_stats->inter_mode_rd_models)); | 
|  |  | 
|  | memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact, | 
|  | sizeof(sb_fp_stats->thresh_freq_fact)); | 
|  |  | 
|  | const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
|  | sb_fp_stats->current_qindex = | 
|  | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; | 
|  | sb_fp_stats->ref_mv_bank = td->mb.e_mbd.ref_mv_bank; | 
|  | #if WARP_CU_BANK | 
|  | sb_fp_stats->warp_param_bank = td->mb.e_mbd.warp_param_bank; | 
|  | #endif  // WARP_CU_BANK | 
|  | sb_fp_stats->min_partition_size = x->sb_enc.min_partition_size; | 
|  | } | 
|  |  | 
|  | void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi, | 
|  | ThreadData *td, TileDataEnc *tile_data, int mi_row, | 
|  | int mi_col) { | 
|  | MACROBLOCK *x = &td->mb; | 
|  |  | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const BLOCK_SIZE sb_size = cm->sb_size; | 
|  |  | 
|  | av1_restore_context(cm, x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, | 
|  | num_planes); | 
|  |  | 
|  | td->rd_counts = sb_fp_stats->rd_count; | 
|  | x->txfm_search_info.txb_split_count = sb_fp_stats->split_count; | 
|  |  | 
|  | *td->counts = sb_fp_stats->fc; | 
|  |  | 
|  | memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models, | 
|  | sizeof(sb_fp_stats->inter_mode_rd_models)); | 
|  | memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact, | 
|  | sizeof(sb_fp_stats->thresh_freq_fact)); | 
|  |  | 
|  | const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
|  | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = | 
|  | sb_fp_stats->current_qindex; | 
|  | x->e_mbd.ref_mv_bank = sb_fp_stats->ref_mv_bank; | 
|  | #if WARP_CU_BANK | 
|  | x->e_mbd.warp_param_bank = sb_fp_stats->warp_param_bank; | 
|  | #endif  // WARP_CU_BANK | 
|  | x->sb_enc.min_partition_size = sb_fp_stats->min_partition_size; | 
|  | } | 
|  |  | 
|  | // Update the rate costs of some symbols according to the frequency directed | 
|  | // by speed features | 
|  | void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td, | 
|  | const TileInfo *const tile_info, const int mi_row, | 
|  | const int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  |  | 
|  | switch (cpi->oxcf.cost_upd_freq.coeff) { | 
|  | case COST_UPD_TILE:  // Tile level | 
|  | if (mi_row != tile_info->mi_row_start) break; | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case COST_UPD_SBROW:  // SB row level in tile | 
|  | if (mi_col != tile_info->mi_col_start) break; | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case COST_UPD_SB:  // SB level | 
|  | if (cpi->sf.inter_sf.disable_sb_level_coeff_cost_upd && | 
|  | mi_col != tile_info->mi_col_start) | 
|  | break; | 
|  | av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  |  | 
|  | switch (cpi->oxcf.cost_upd_freq.mode) { | 
|  | case COST_UPD_TILE:  // Tile level | 
|  | if (mi_row != tile_info->mi_row_start) break; | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case COST_UPD_SBROW:  // SB row level in tile | 
|  | if (mi_col != tile_info->mi_col_start) break; | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case COST_UPD_SB:  // SB level | 
|  | av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | switch (cpi->oxcf.cost_upd_freq.mv) { | 
|  | case COST_UPD_OFF: break; | 
|  | case COST_UPD_TILE:  // Tile level | 
|  | if (mi_row != tile_info->mi_row_start) break; | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case COST_UPD_SBROW:  // SB row level in tile | 
|  | if (mi_col != tile_info->mi_col_start) break; | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case COST_UPD_SB:  // SB level | 
|  | if (cpi->sf.inter_sf.disable_sb_level_mv_cost_upd && | 
|  | mi_col != tile_info->mi_col_start) | 
|  | break; | 
|  | av1_fill_mv_costs(xd->tile_ctx, cm->features.cur_frame_force_integer_mv, | 
|  | cm->features.fr_mv_precision, &x->mv_costs); | 
|  | if (cm->features.allow_intrabc) { | 
|  | fill_dv_costs(&x->dv_costs, xd->tile_ctx, &x->mv_costs); | 
|  | } | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | } |