blob: f8603f4d30d24ffb15a4c9effc26533dbb957b78 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "config/aom_config.h"
#include "aom_ports/system_state.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/misc_model_weights.h"
#include "av1/encoder/mv_prec.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconinter.h"
static AOM_INLINE int_mv get_ref_mv_for_mv_stats(
const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
int ref_idx) {
#if CONFIG_SEP_COMP_DRL
const int ref_mv_idx = get_ref_mv_idx(mbmi, ref_idx);
#else
const int ref_mv_idx = mbmi->ref_mv_idx;
#endif // CONFIG_SEP_COMP_DRL
assert(IMPLIES(have_nearmv_newmv_in_inter_mode(mbmi->mode),
has_second_ref(mbmi)));
const MV_REFERENCE_FRAME *ref_frames = mbmi->ref_frame;
const int8_t ref_frame_type = av1_ref_frame_type(ref_frames);
#if CONFIG_SEP_COMP_DRL
const CANDIDATE_MV *curr_ref_mv_stack =
has_second_drl(mbmi) ? mbmi_ext_frame->ref_mv_stack[ref_idx]
: mbmi_ext_frame->ref_mv_stack[0];
#else
const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
#endif // CONFIG_SEP_COMP_DRL
if (is_inter_ref_frame(ref_frames[1])) {
assert(ref_idx == 0 || ref_idx == 1);
#if CONFIG_SEP_COMP_DRL
return ref_idx && !has_second_drl(mbmi)
? curr_ref_mv_stack[ref_mv_idx].comp_mv
#else
return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
#endif // CONFIG_SEP_COMP_DRL
: curr_ref_mv_stack[ref_mv_idx].this_mv;
}
assert(ref_idx == 0);
#if CONFIG_SEP_COMP_DRL
if (ref_mv_idx < mbmi_ext_frame->ref_mv_count[0]) {
#else
if (ref_mv_idx < mbmi_ext_frame->ref_mv_count) {
#endif // CONFIG_SEP_COMP_DRL
return curr_ref_mv_stack[ref_mv_idx].this_mv;
} else if (is_tip_ref_frame(ref_frame_type)) {
int_mv zero_mv;
zero_mv.as_int = 0;
return zero_mv;
} else {
return mbmi_ext_frame->global_mvs[ref_frame_type];
}
}
static AOM_INLINE int get_symbol_cost(const aom_cdf_prob *cdf, int symbol) {
const aom_cdf_prob cur_cdf = AOM_ICDF(cdf[symbol]);
const aom_cdf_prob prev_cdf = symbol ? AOM_ICDF(cdf[symbol - 1]) : 0;
const aom_cdf_prob p15 = AOMMAX(cur_cdf - prev_cdf, EC_MIN_PROB);
return av1_cost_symbol(p15);
}
#if !CONFIG_VQ_MVD_CODING
static AOM_INLINE int keep_one_comp_stat_low_precision(
MV_STATS *mv_stats, int comp, int comp_idx, const AV1_COMP *cpi, int *rates,
const MvSubpelPrecision pb_mv_precision) {
assert(comp != 0 && "mv component should not have zero value!");
assert(pb_mv_precision < MV_PRECISION_ONE_PEL);
int offset;
const int nonZero_offset = (1 << (MV_PRECISION_ONE_PEL - pb_mv_precision));
const int sign = comp < 0;
const int mag_int_mv = (abs(comp) >> 3) - nonZero_offset;
assert(mag_int_mv >= 0);
const int mv_class = av1_get_mv_class_low_precision(mag_int_mv, &offset);
const int has_offset = (mv_class >= min_class_with_offset[pb_mv_precision]);
const int start_lsb = MV_PRECISION_ONE_PEL - pb_mv_precision;
int mv_class_coded_value = mv_class;
// There is no valid value of MV_CLASS_1 for MV_PRECISION_FOUR_PEL. So
// shifting the mv_class value before coding
// There is no valid value of MV_CLASS_1 and MV_CLASS_2 for
// MV_PRECISION_8_PEL. So shifting the mv_class value before coding
if (pb_mv_precision == MV_PRECISION_FOUR_PEL && mv_class > MV_CLASS_1)
mv_class_coded_value -= 1;
else if (pb_mv_precision == MV_PRECISION_8_PEL && mv_class > MV_CLASS_2)
mv_class_coded_value -= 2;
const int num_mv_classes = MV_CLASSES -
(pb_mv_precision <= MV_PRECISION_FOUR_PEL) -
(pb_mv_precision <= MV_PRECISION_8_PEL);
int r_idx = 0;
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
nmv_context *nmvc = &ec_ctx->nmvc;
nmv_component *mvcomp_ctx = nmvc->comps;
nmv_component *cur_mvcomp_ctx = &mvcomp_ctx[comp_idx];
aom_cdf_prob *sign_cdf = cur_mvcomp_ctx->sign_cdf;
#if CONFIG_ENTROPY_PARA
aom_cdf_prob(*bits_cdf)[CDF_SIZE(2)] = cur_mvcomp_ctx->bits_cdf;
#else
aom_cdf_prob(*bits_cdf)[3] = cur_mvcomp_ctx->bits_cdf;
#endif // CONFIG_ENTROPY_PARA
const int sign_rate = get_symbol_cost(sign_cdf, sign);
rates[r_idx++] = sign_rate;
update_cdf(sign_cdf, sign, 2);
// Class
const int class_rate = get_symbol_cost(
cur_mvcomp_ctx->classes_cdf[av1_get_mv_class_context(pb_mv_precision)],
mv_class_coded_value);
rates[r_idx++] = class_rate;
update_cdf(
cur_mvcomp_ctx->classes_cdf[av1_get_mv_class_context(pb_mv_precision)],
mv_class_coded_value, num_mv_classes);
int int_bit_rate = 0;
// Integer bits
if (has_offset) {
int i;
const int n = (mv_class == MV_CLASS_0) ? 1 : mv_class;
for (i = start_lsb; i < n; ++i) {
int_bit_rate += get_symbol_cost(bits_cdf[i], (offset >> i) & 1);
update_cdf(bits_cdf[i], (offset >> i) & 1, 2);
}
}
rates[r_idx++] = int_bit_rate;
mv_stats->last_bit_zero++; // LSB of MV is always 0;
mv_stats->last_bit_nonzero += 0;
const int total_rate = (sign_rate + class_rate + int_bit_rate);
return total_rate;
}
static AOM_INLINE int keep_one_comp_stat(MV_STATS *mv_stats, int comp_val,
int comp_idx, const AV1_COMP *cpi,
int is_adaptive_mvd, int *rates
,
const MvSubpelPrecision pb_mv_precision
) {
assert(comp_val != 0 && "mv component should not have zero value!");
if (pb_mv_precision < MV_PRECISION_ONE_PEL) {
assert(!is_adaptive_mvd);
return keep_one_comp_stat_low_precision(mv_stats, comp_val, comp_idx, cpi,
rates, pb_mv_precision);
}
const int sign = comp_val < 0;
const int mag = sign ? -comp_val : comp_val;
const int mag_minus_1 = mag - 1;
int offset;
const int mv_class = av1_get_mv_class(mag_minus_1, &offset);
const int int_part = offset >> 3; // int mv data
const int frac_part = (offset >> 1) & 3; // fractional mv data
const int high_part = offset & 1; // high precision mv data
const int use_hp = pb_mv_precision > MV_PRECISION_QTR_PEL;
int r_idx = 0;
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
nmv_context *nmvc = &ec_ctx->nmvc;
nmv_component *mvcomp_ctx = nmvc->comps;
nmv_component *cur_mvcomp_ctx = &mvcomp_ctx[comp_idx];
aom_cdf_prob *sign_cdf = cur_mvcomp_ctx->sign_cdf;
aom_cdf_prob *class0_cdf = cur_mvcomp_ctx->class0_cdf;
#if CONFIG_ENTROPY_PARA
aom_cdf_prob(*bits_cdf)[CDF_SIZE(2)] = cur_mvcomp_ctx->bits_cdf;
#else
aom_cdf_prob(*bits_cdf)[3] = cur_mvcomp_ctx->bits_cdf;
#endif // CONFIG_ENTROPY_PARA
aom_cdf_prob *high_part_cdf =
mv_class ? (cur_mvcomp_ctx->hp_cdf) : (cur_mvcomp_ctx->class0_hp_cdf);
const int sign_rate = get_symbol_cost(sign_cdf, sign);
rates[r_idx++] = sign_rate; // 0
update_cdf(sign_cdf, sign, 2);
const int class_rate =
is_adaptive_mvd
? get_symbol_cost(cur_mvcomp_ctx->amvd_classes_cdf, mv_class)
: get_symbol_cost(
cur_mvcomp_ctx
->classes_cdf[av1_get_mv_class_context(pb_mv_precision)],
mv_class);
rates[r_idx++] = class_rate; // 1
if (is_adaptive_mvd)
update_cdf(cur_mvcomp_ctx->amvd_classes_cdf, mv_class, MV_CLASSES);
else
update_cdf(
cur_mvcomp_ctx->classes_cdf[av1_get_mv_class_context(pb_mv_precision)],
mv_class, MV_CLASSES);
int int_bit_rate = 0;
if (mv_class == MV_CLASS_0) {
int_bit_rate = get_symbol_cost(class0_cdf, int_part);
update_cdf(class0_cdf, int_part, CLASS0_SIZE);
} else {
if (!is_adaptive_mvd) {
const int n = mv_class + CLASS0_BITS - 1; // number of bits
for (int i = 0; i < n; ++i) {
int_bit_rate += get_symbol_cost(bits_cdf[i], (int_part >> i) & 1);
update_cdf(bits_cdf[i], (int_part >> i) & 1, 2);
}
}
}
rates[r_idx++] = int_bit_rate;
int use_fractional_mv = !cpi->common.features.cur_frame_force_integer_mv;
if (is_adaptive_mvd && (mv_class != MV_CLASS_0 || int_part > 0))
use_fractional_mv = 0;
int frac_part_rate = 0, frac_part_rate_qpel = 0;
aom_cdf_prob *frac_part_cdf =
mv_class ? (cur_mvcomp_ctx->fp_cdf[0])
: (cur_mvcomp_ctx->class0_fp_cdf[int_part][0]);
if (use_fractional_mv) {
if (pb_mv_precision > MV_PRECISION_ONE_PEL) {
frac_part_rate = get_symbol_cost(frac_part_cdf, frac_part >> 1);
update_cdf(frac_part_cdf, frac_part >> 1, 2);
}
if (pb_mv_precision > MV_PRECISION_HALF_PEL) {
frac_part_cdf =
mv_class
? (cur_mvcomp_ctx->fp_cdf[1 + (frac_part >> 1)])
: (cur_mvcomp_ctx->class0_fp_cdf[int_part][1 + (frac_part >> 1)]);
frac_part_rate_qpel = get_symbol_cost(frac_part_cdf, frac_part & 1);
frac_part_rate += frac_part_rate_qpel;
update_cdf(frac_part_cdf, frac_part & 1, 2);
}
}
rates[r_idx++] = frac_part_rate;
const int high_part_rate = (use_hp && use_fractional_mv)
? get_symbol_cost(high_part_cdf, high_part)
: 0;
if (use_hp && use_fractional_mv) {
update_cdf(high_part_cdf, high_part, 2);
}
rates[r_idx++] = high_part_rate;
mv_stats->last_bit_zero += !high_part;
mv_stats->last_bit_nonzero += high_part;
const int total_rate =
(sign_rate + class_rate + int_bit_rate + frac_part_rate + high_part_rate);
return total_rate;
}
static AOM_INLINE void keep_one_mv_stat(
MV_STATS *mv_stats, const MV *ref_mv, const MV *cur_mv, const AV1_COMP *cpi,
const MvSubpelPrecision max_mv_precision, const int allow_pb_mv_precision,
const MvSubpelPrecision pb_mv_precision,
const int most_probable_pb_mv_precision, const MB_MODE_INFO *mbmi) {
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
nmv_context *nmvc = &ec_ctx->nmvc;
const AV1_COMMON *cm = &cpi->common;
const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi);
aom_cdf_prob *joint_cdf =
is_adaptive_mvd ? nmvc->amvd_joints_cdf : nmvc->joints_cdf;
const int use_hp = pb_mv_precision > MV_PRECISION_QTR_PEL;
const int pb_mv_precision_ctx =
av1_get_pb_mv_precision_down_context(&cpi->common, xd);
aom_cdf_prob *pb_mv_precision_cdf =
xd->tile_ctx
->pb_mv_precision_cdf[pb_mv_precision_ctx]
[max_mv_precision - MV_PRECISION_HALF_PEL];
MV low_prec_ref_mv = *ref_mv;
#if BUGFIX_AMVD_AMVR
if (!is_adaptive_mvd)
#endif
#if CONFIG_C071_SUBBLK_WARPMV
if (pb_mv_precision < MV_PRECISION_HALF_PEL)
#endif // CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&low_prec_ref_mv, pb_mv_precision);
const MV diff = { cur_mv->row - low_prec_ref_mv.row,
cur_mv->col - low_prec_ref_mv.col };
const int mv_joint = av1_get_mv_joint(&diff);
// TODO(chiyotsai@google.com): Estimate hp_diff when we are using lp
const MV hp_diff = diff;
const int hp_mv_joint = av1_get_mv_joint(&hp_diff);
const MV truncated_diff = { (diff.row / 2) * 2, (diff.col / 2) * 2 };
const MV lp_diff = use_hp ? truncated_diff : diff;
const int lp_mv_joint = av1_get_mv_joint(&lp_diff);
aom_clear_system_state();
const int mv_joint_rate = get_symbol_cost(joint_cdf, mv_joint);
const int hp_mv_joint_rate = get_symbol_cost(joint_cdf, hp_mv_joint);
const int lp_mv_joint_rate = get_symbol_cost(joint_cdf, lp_mv_joint);
if (is_adaptive_mvd)
update_cdf(joint_cdf, mv_joint, MV_JOINTS);
else
update_cdf(joint_cdf, mv_joint, MV_JOINTS);
int flex_mv_rate = 0;
if (allow_pb_mv_precision) {
const int mpp_flag = (pb_mv_precision == most_probable_pb_mv_precision);
const int mpp_flag_context = av1_get_mpp_flag_context(&cpi->common, xd);
aom_cdf_prob *pb_mv_mpp_flag_cdf =
xd->tile_ctx->pb_mv_mpp_flag_cdf[mpp_flag_context];
flex_mv_rate += get_symbol_cost(pb_mv_mpp_flag_cdf, mpp_flag);
update_cdf(pb_mv_mpp_flag_cdf, mpp_flag, 2);
if (!mpp_flag) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int down = av1_get_pb_mv_precision_index(mbmi);
int nsymbs = precision_def->num_precisions - 1;
flex_mv_rate += get_symbol_cost(pb_mv_precision_cdf, down);
update_cdf(pb_mv_precision_cdf, down, nsymbs);
}
mv_stats->precision_count[pb_mv_precision]++;
}
mv_stats->total_mv_rate += flex_mv_rate;
mv_stats->hp_total_mv_rate += flex_mv_rate;
mv_stats->lp_total_mv_rate += flex_mv_rate;
mv_stats->total_mv_rate += mv_joint_rate;
mv_stats->hp_total_mv_rate += hp_mv_joint_rate;
mv_stats->lp_total_mv_rate += lp_mv_joint_rate;
mv_stats->mv_joint_count[mv_joint]++;
for (int comp_idx = 0; comp_idx < 2; comp_idx++) {
const int comp_val = comp_idx ? diff.col : diff.row;
const int hp_comp_val = comp_idx ? hp_diff.col : hp_diff.row;
const int lp_comp_val = comp_idx ? lp_diff.col : lp_diff.row;
int rates[5];
av1_zero_array(rates, 5);
const int comp_rate = comp_val
? keep_one_comp_stat(mv_stats, comp_val, comp_idx,
cpi, is_adaptive_mvd, rates
,
pb_mv_precision
)
: 0;
// TODO(chiyotsai@google.com): Properly get hp rate when use_hp is false
const int hp_rate =
hp_comp_val ? rates[0] + rates[1] + rates[2] + rates[3] + rates[4] : 0;
const int lp_rate =
lp_comp_val ? rates[0] + rates[1] + rates[2] + rates[3] : 0;
mv_stats->total_mv_rate += comp_rate;
mv_stats->hp_total_mv_rate += hp_rate;
mv_stats->lp_total_mv_rate += lp_rate;
}
}
#else
// MVCost for quasi-uniform code
static INLINE int get_quniform_costs(uint16_t n, uint16_t v) {
if (n <= 1) return 0;
int total_bits = 0;
const int l = get_msb(n) + 1;
const int m = (1 << l) - n;
total_bits += (l - 1);
if (v >= m) {
total_bits++;
}
return av1_cost_literal(total_bits);
}
static AOM_INLINE int get_vq_col_mvd_rate(nmv_context *mvctx,
const int max_coded_value, int col,
int max_trunc_unary_value) {
int total_rate = 0;
int max_idx_bits = AOMMIN(max_coded_value, max_trunc_unary_value);
const int coded_col =
col > max_trunc_unary_value ? max_trunc_unary_value : col;
for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) {
int context_index =
bit_idx < NUM_CTX_COL_MV_GTX ? bit_idx : NUM_CTX_COL_MV_GTX - 1;
assert(context_index < NUM_CTX_COL_MV_GTX);
total_rate += get_symbol_cost(mvctx->col_mv_greter_flags_cdf[context_index],
coded_col != bit_idx);
update_cdf(mvctx->col_mv_greter_flags_cdf[context_index],
coded_col != bit_idx, 2);
if (coded_col == bit_idx) break;
}
if (max_coded_value > max_trunc_unary_value && col >= max_trunc_unary_value) {
int remainder = col - max_trunc_unary_value;
int remainder_max_value = max_coded_value - max_trunc_unary_value;
total_rate += get_quniform_costs(remainder_max_value + 1, remainder);
}
return total_rate;
}
static AOM_INLINE int get_truncated_unary_rate(nmv_context *mvctx,
const int max_coded_value,
int coded_value, int num_of_ctx,
int low_shell_class) {
(void)low_shell_class;
int total_rate = 0;
int max_idx_bits = max_coded_value;
for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) {
int context_index = bit_idx < num_of_ctx ? bit_idx : num_of_ctx - 1;
assert(context_index < num_of_ctx);
aom_cdf_prob *cdf = mvctx->shell_offset_class2_cdf[context_index];
total_rate += get_symbol_cost(cdf, coded_value != bit_idx);
update_cdf(cdf, coded_value != bit_idx, 2);
if (coded_value == bit_idx) break;
}
return total_rate;
}
static AOM_INLINE int get_vq_mvd_rate(nmv_context *mvctx, const MV mv_diff,
MvSubpelPrecision pb_mv_precision) {
int total_rate = 0;
int start_lsb = (MV_PRECISION_ONE_EIGHTH_PEL - pb_mv_precision);
const MV scaled_mv_diff = { abs(mv_diff.row) >> start_lsb,
abs(mv_diff.col) >> start_lsb };
int num_mv_class = get_default_num_shell_class(pb_mv_precision);
int shell_cls_offset;
const int shell_index = (scaled_mv_diff.row) + (scaled_mv_diff.col);
const int shell_class =
get_shell_class_with_precision(shell_index, &shell_cls_offset);
total_rate += get_symbol_cost(mvctx->joint_shell_class_cdf[pb_mv_precision],
shell_class);
update_cdf(mvctx->joint_shell_class_cdf[pb_mv_precision], shell_class,
num_mv_class);
assert(shell_class >= 0 && shell_class < num_mv_class);
if (shell_class < 2) {
assert(shell_cls_offset == 0 || shell_cls_offset == 1);
total_rate += get_symbol_cost(
mvctx->shell_offset_low_class_cdf[shell_class], shell_cls_offset);
update_cdf(mvctx->shell_offset_low_class_cdf[shell_class], shell_cls_offset,
2);
} else if (shell_class == 2) {
int max_coded_value = 3;
int coded_value = shell_cls_offset;
total_rate +=
get_truncated_unary_rate(mvctx, max_coded_value, coded_value, 3, 0);
} else {
const int num_of_bits_for_this_offset = shell_class;
for (int i = 0; i < num_of_bits_for_this_offset; ++i) {
total_rate += get_symbol_cost(mvctx->shell_offset_other_class_cdf[0][i],
(shell_cls_offset >> i) & 1);
update_cdf(mvctx->shell_offset_other_class_cdf[0][i],
(shell_cls_offset >> i) & 1, 2);
}
}
assert(scaled_mv_diff.col <= shell_index);
assert(IMPLIES(shell_index == 0, scaled_mv_diff.col == 0));
if (shell_index > 0) {
int max_trunc_unary_value = MAX_COL_TRUNCATED_UNARY_VAL;
// Coding the col here
int maximum_pair_index = shell_index >> 1;
int this_pair_index = scaled_mv_diff.col <= maximum_pair_index
? scaled_mv_diff.col
: shell_index - scaled_mv_diff.col;
assert(this_pair_index <= maximum_pair_index);
// Encode the pair index
if (maximum_pair_index > 0) {
total_rate += get_vq_col_mvd_rate(mvctx, maximum_pair_index,
this_pair_index, max_trunc_unary_value);
}
int skip_coding_col_bit =
(this_pair_index == maximum_pair_index) && ((shell_index % 2 == 0));
assert(
IMPLIES(skip_coding_col_bit, scaled_mv_diff.col == maximum_pair_index));
if (!skip_coding_col_bit) {
// aom_write_literal(w, scaled_mv_diff.col > maximum_pair_index, 1);
int context_index = shell_class < NUM_CTX_COL_MV_INDEX
? shell_class
: NUM_CTX_COL_MV_INDEX - 1;
assert(context_index < NUM_CTX_COL_MV_INDEX);
total_rate += get_symbol_cost(mvctx->col_mv_index_cdf[context_index],
scaled_mv_diff.col > maximum_pair_index);
update_cdf(mvctx->col_mv_index_cdf[context_index],
scaled_mv_diff.col > maximum_pair_index, 2);
}
}
// Encode signs
for (int component = 0; component < 2; component++) {
int value = component == 0 ? mv_diff.row : mv_diff.col;
if (value) {
int sign = value < 0;
total_rate += get_symbol_cost(mvctx->comps[component].sign_cdf, sign);
update_cdf(mvctx->comps[component].sign_cdf, sign, 2);
}
}
return total_rate;
}
static AOM_INLINE void keep_vq_one_mv_stat(
MV_STATS *mv_stats, const MV *ref_mv, const MV *cur_mv, const AV1_COMP *cpi,
const MvSubpelPrecision max_mv_precision, const int allow_pb_mv_precision,
const MvSubpelPrecision pb_mv_precision,
const int most_probable_pb_mv_precision, const MB_MODE_INFO *mbmi) {
const MACROBLOCK *const x = &cpi->td.mb;
const MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
nmv_context *nmvc = &ec_ctx->nmvc;
const AV1_COMMON *cm = &cpi->common;
const int use_hp = pb_mv_precision > MV_PRECISION_QTR_PEL;
const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi);
const int pb_mv_precision_ctx =
av1_get_pb_mv_precision_down_context(&cpi->common, xd);
aom_cdf_prob *pb_mv_precision_cdf =
xd->tile_ctx
->pb_mv_precision_cdf[pb_mv_precision_ctx]
[max_mv_precision - MV_PRECISION_HALF_PEL];
MV low_prec_ref_mv = *ref_mv;
#if BUGFIX_AMVD_AMVR
if (!is_adaptive_mvd)
#endif
#if CONFIG_C071_SUBBLK_WARPMV
if (pb_mv_precision < MV_PRECISION_HALF_PEL)
#endif // CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&low_prec_ref_mv, pb_mv_precision);
const MV diff = { cur_mv->row - low_prec_ref_mv.row,
cur_mv->col - low_prec_ref_mv.col };
const int mv_joint = av1_get_mv_joint(&diff);
const MV hp_diff = diff;
const MV truncated_diff = { (diff.row / 2) * 2, (diff.col / 2) * 2 };
const MV lp_diff = use_hp ? truncated_diff : diff;
aom_clear_system_state();
int flex_mv_rate = 0;
if (allow_pb_mv_precision) {
const int mpp_flag = (pb_mv_precision == most_probable_pb_mv_precision);
const int mpp_flag_context = av1_get_mpp_flag_context(&cpi->common, xd);
aom_cdf_prob *pb_mv_mpp_flag_cdf =
xd->tile_ctx->pb_mv_mpp_flag_cdf[mpp_flag_context];
flex_mv_rate += get_symbol_cost(pb_mv_mpp_flag_cdf, mpp_flag);
update_cdf(pb_mv_mpp_flag_cdf, mpp_flag, 2);
if (!mpp_flag) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int down = av1_get_pb_mv_precision_index(mbmi);
int nsymbs = precision_def->num_precisions - 1;
flex_mv_rate += get_symbol_cost(pb_mv_precision_cdf, down);
update_cdf(pb_mv_precision_cdf, down, nsymbs);
}
mv_stats->precision_count[pb_mv_precision]++;
}
mv_stats->total_mv_rate +=
flex_mv_rate + get_vq_mvd_rate(nmvc, diff, pb_mv_precision);
mv_stats->hp_total_mv_rate +=
flex_mv_rate + get_vq_mvd_rate(nmvc, hp_diff, pb_mv_precision);
mv_stats->lp_total_mv_rate +=
flex_mv_rate + get_vq_mvd_rate(nmvc, lp_diff, pb_mv_precision);
mv_stats->mv_joint_count[mv_joint]++;
for (int comp_idx = 0; comp_idx < 2; comp_idx++) {
const int comp_val = comp_idx ? diff.col : diff.row;
if (comp_val) {
int high_part = (comp_val % 2) == 1;
mv_stats->last_bit_zero += !high_part;
mv_stats->last_bit_nonzero += high_part;
}
}
}
#endif // !CONFIG_VQ_MVD_CODING
static AOM_INLINE void collect_mv_stats_b(MV_STATS *mv_stats,
const AV1_COMP *cpi, int mi_row,
int mi_col) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) {
return;
}
// While collecting the mv stats after encoding a frame, mbmi should be
// derived from mi_grid_base instead of using xd->mi[0].
const MB_MODE_INFO *mbmi =
mi_params->mi_grid_base[mi_row * mi_params->mi_stride + mi_col];
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame =
cpi->mbmi_ext_info.frame_base +
get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
cpi->mbmi_ext_info.stride);
if (!is_inter_block(mbmi, SHARED_PART)) {
mv_stats->intra_count++;
return;
}
mv_stats->inter_count++;
const PREDICTION_MODE mode = mbmi->mode;
const int is_compound = has_second_ref(mbmi);
const MvSubpelPrecision max_mv_precision = mbmi->max_mv_precision;
const int allow_pb_mv_precision =
is_pb_mv_precision_active(cm, mbmi, mbmi->sb_type[PLANE_TYPE_Y]);
MvSubpelPrecision pb_mv_precision = mbmi->pb_mv_precision;
const int most_probable_pb_mv_precision = mbmi->most_probable_pb_mv_precision;
if (mode == NEWMV || mode == AMVDNEWMV ||
#if CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEWMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
mode == NEW_NEWMV) {
// All mvs are new
for (int ref_idx = 0; ref_idx < 1 + is_compound; ++ref_idx) {
const MV ref_mv =
get_ref_mv_for_mv_stats(mbmi, mbmi_ext_frame, ref_idx).as_mv;
const MV cur_mv = mbmi->mv[ref_idx].as_mv;
#if CONFIG_VQ_MVD_CODING
keep_vq_one_mv_stat(mv_stats, &ref_mv, &cur_mv, cpi, max_mv_precision,
allow_pb_mv_precision, pb_mv_precision,
most_probable_pb_mv_precision, mbmi);
#else
keep_one_mv_stat(mv_stats, &ref_mv, &cur_mv, cpi, max_mv_precision,
allow_pb_mv_precision, pb_mv_precision,
most_probable_pb_mv_precision
,
mbmi);
#endif // CONFIG_VQ_MVD_CODING
}
} else if (have_nearmv_newmv_in_inter_mode(mode)) {
// has exactly one new_mv
mv_stats->default_mvs += 1;
#if CONFIG_OPTFLOW_REFINEMENT
int ref_idx = is_joint_mvd_coding_mode(mbmi->mode)
? get_joint_mvd_base_ref_list(cm, mbmi)
: (mode == NEAR_NEWMV || mode == NEAR_NEWMV_OPTFLOW);
#else
int ref_idx = is_joint_mvd_coding_mode(mbmi->mode)
? get_joint_mvd_base_ref_list(cm, mbmi)
: (mode == NEAR_NEWMV);
#endif // CONFIG_OPTFLOW_REFINEMENT
const MV ref_mv =
get_ref_mv_for_mv_stats(mbmi, mbmi_ext_frame, ref_idx).as_mv;
const MV cur_mv = mbmi->mv[ref_idx].as_mv;
#if CONFIG_VQ_MVD_CODING
keep_vq_one_mv_stat(mv_stats, &ref_mv, &cur_mv, cpi, max_mv_precision,
allow_pb_mv_precision, pb_mv_precision,
most_probable_pb_mv_precision, mbmi);
#else
keep_one_mv_stat(mv_stats, &ref_mv, &cur_mv, cpi
,
max_mv_precision, allow_pb_mv_precision, pb_mv_precision,
most_probable_pb_mv_precision
,
mbmi);
#endif // CONFIG_VQ_MVD_CODING
} else {
// No new_mv
mv_stats->default_mvs += 1 + is_compound;
}
// Add texture information
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
const int num_rows = block_size_high[bsize];
const int num_cols = block_size_wide[bsize];
const int y_stride = cpi->source->y_stride;
const int px_row = 4 * mi_row, px_col = 4 * mi_col;
const int bd = cm->seq_params.bit_depth;
uint16_t *source_buf = cpi->source->y_buffer + px_row * y_stride + px_col;
for (int row = 0; row < num_rows - 1; row++) {
for (int col = 0; col < num_cols - 1; col++) {
const int offset = row * y_stride + col;
const int horz_diff =
abs(source_buf[offset + 1] - source_buf[offset]) >> (bd - 8);
const int vert_diff =
abs(source_buf[offset + y_stride] - source_buf[offset]) >> (bd - 8);
mv_stats->horz_text += horz_diff;
mv_stats->vert_text += vert_diff;
mv_stats->diag_text += horz_diff * vert_diff;
}
}
}
// Split block
#if CONFIG_EXT_RECUR_PARTITIONS
static AOM_INLINE void collect_mv_stats_sb(MV_STATS *mv_stats,
const AV1_COMP *cpi, int mi_row,
int mi_col, BLOCK_SIZE bsize,
PARTITION_TREE *ptree) {
#else
static AOM_INLINE void collect_mv_stats_sb(MV_STATS *mv_stats,
const AV1_COMP *cpi, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
#endif // EXT_RECUR_PARTITIONS
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *cm = &cpi->common;
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
return;
#if CONFIG_EXT_RECUR_PARTITIONS
const PARTITION_TYPE partition = ptree->partition;
#else
const PARTITION_TYPE partition =
get_partition(cm, SHARED_PART, mi_row, mi_col, bsize);
#endif // CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
const int hbs_w = mi_size_wide[bsize] / 2;
const int hbs_h = mi_size_high[bsize] / 2;
#if CONFIG_EXT_RECUR_PARTITIONS
const int ebs_w = mi_size_wide[bsize] / 8;
const int ebs_h = mi_size_high[bsize] / 8;
#else
const int qbs_w = mi_size_wide[bsize] / 4;
const int qbs_h = mi_size_high[bsize] / 4;
#endif // CONFIG_EXT_RECUR_PARTITIONS
switch (partition) {
case PARTITION_NONE:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
break;
case PARTITION_HORZ:
#if CONFIG_EXT_RECUR_PARTITIONS
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize,
ptree->sub_tree[0]);
collect_mv_stats_sb(mv_stats, cpi, mi_row + hbs_h, mi_col, subsize,
ptree->sub_tree[1]);
#else
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs_h, mi_col);
#endif // CONFIG_EXT_RECUR_PARTITIONS
break;
case PARTITION_VERT:
#if CONFIG_EXT_RECUR_PARTITIONS
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize,
ptree->sub_tree[0]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + hbs_w, subsize,
ptree->sub_tree[1]);
#else
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs_w);
#endif // CONFIG_EXT_RECUR_PARTITIONS
break;
case PARTITION_SPLIT:
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize
#if CONFIG_EXT_RECUR_PARTITIONS
,
ptree->sub_tree[0]
#endif // CONFIG_EXT_RECUR_PARTITIONS
);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + hbs_w, subsize
#if CONFIG_EXT_RECUR_PARTITIONS
,
ptree->sub_tree[1]
#endif // CONFIG_EXT_RECUR_PARTITIONS
);
collect_mv_stats_sb(mv_stats, cpi, mi_row + hbs_h, mi_col, subsize
#if CONFIG_EXT_RECUR_PARTITIONS
,
ptree->sub_tree[2]
#endif // CONFIG_EXT_RECUR_PARTITIONS
);
collect_mv_stats_sb(mv_stats, cpi, mi_row + hbs_h, mi_col + hbs_w, subsize
#if CONFIG_EXT_RECUR_PARTITIONS
,
ptree->sub_tree[0]
#endif // CONFIG_EXT_RECUR_PARTITIONS
);
break;
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_4A: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ);
assert(bsize_big < BLOCK_SIZES_ALL);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big];
assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize,
ptree->sub_tree[0]);
collect_mv_stats_sb(mv_stats, cpi, mi_row + ebs_h, mi_col, bsize_med,
ptree->sub_tree[1]);
collect_mv_stats_sb(mv_stats, cpi, mi_row + 3 * ebs_h, mi_col, bsize_big,
ptree->sub_tree[2]);
collect_mv_stats_sb(mv_stats, cpi, mi_row + 7 * ebs_h, mi_col, subsize,
ptree->sub_tree[3]);
break;
}
case PARTITION_HORZ_4B: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ);
assert(bsize_big < BLOCK_SIZES_ALL);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big];
assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize,
ptree->sub_tree[0]);
collect_mv_stats_sb(mv_stats, cpi, mi_row + ebs_h, mi_col, bsize_big,
ptree->sub_tree[1]);
collect_mv_stats_sb(mv_stats, cpi, mi_row + 5 * ebs_h, mi_col, bsize_med,
ptree->sub_tree[2]);
collect_mv_stats_sb(mv_stats, cpi, mi_row + 7 * ebs_h, mi_col, subsize,
ptree->sub_tree[3]);
break;
}
case PARTITION_VERT_4A: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT);
assert(bsize_big < BLOCK_SIZES_ALL);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big];
assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize,
ptree->sub_tree[0]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + ebs_w, bsize_med,
ptree->sub_tree[1]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + 3 * ebs_w, bsize_big,
ptree->sub_tree[2]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + 7 * ebs_w, subsize,
ptree->sub_tree[3]);
break;
}
case PARTITION_VERT_4B: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT);
assert(bsize_big < BLOCK_SIZES_ALL);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big];
assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, subsize,
ptree->sub_tree[0]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + ebs_w, bsize_big,
ptree->sub_tree[1]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + 5 * ebs_w, bsize_med,
ptree->sub_tree[2]);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col + 7 * ebs_w, subsize,
ptree->sub_tree[3]);
break;
}
case PARTITION_HORZ_3:
case PARTITION_VERT_3: {
for (int i = 0; i < 4; ++i) {
const BLOCK_SIZE this_bsize =
get_h_partition_subsize(bsize, i, partition);
const int offset_mr =
get_h_partition_offset_mi_row(bsize, i, partition);
const int offset_mc =
get_h_partition_offset_mi_col(bsize, i, partition);
collect_mv_stats_sb(mv_stats, cpi, mi_row + offset_mr,
mi_col + offset_mc, this_bsize, ptree->sub_tree[i]);
}
break;
}
#else // CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_A:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs_w);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs_h, mi_col);
break;
case PARTITION_HORZ_B:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs_h, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs_h, mi_col + hbs_w);
break;
case PARTITION_VERT_A:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs_h, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs_w);
break;
case PARTITION_VERT_B:
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col);
collect_mv_stats_b(mv_stats, cpi, mi_row, mi_col + hbs_w);
collect_mv_stats_b(mv_stats, cpi, mi_row + hbs_h, mi_col + hbs_w);
break;
case PARTITION_HORZ_4:
for (int i = 0; i < 4; ++i) {
const int this_mi_row = mi_row + i * qbs_h;
collect_mv_stats_b(mv_stats, cpi, this_mi_row, mi_col);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < 4; ++i) {
const int this_mi_col = mi_col + i * qbs_w;
collect_mv_stats_b(mv_stats, cpi, mi_row, this_mi_col);
}
break;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default: assert(0);
}
}
static AOM_INLINE void collect_mv_stats_tile(MV_STATS *mv_stats,
const AV1_COMP *cpi,
const TileInfo *tile_info) {
const AV1_COMMON *cm = &cpi->common;
const int mi_row_start = tile_info->mi_row_start;
const int mi_row_end = tile_info->mi_row_end;
const int mi_col_start = tile_info->mi_col_start;
const int mi_col_end = tile_info->mi_col_end;
const int sb_size_mi = cm->mib_size;
BLOCK_SIZE sb_size = cm->sb_size;
for (int mi_row = mi_row_start; mi_row < mi_row_end; mi_row += sb_size_mi) {
for (int mi_col = mi_col_start; mi_col < mi_col_end; mi_col += sb_size_mi) {
#if CONFIG_EXT_RECUR_PARTITIONS
const SB_INFO *sb_info = av1_get_sb_info(cm, mi_row, mi_col);
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, sb_size,
sb_info->ptree_root[0]);
#else
collect_mv_stats_sb(mv_stats, cpi, mi_row, mi_col, sb_size);
#endif // EXT_RECUR_PARTITIONS
}
}
}
void av1_collect_mv_stats(AV1_COMP *cpi, int current_q) {
MV_STATS *mv_stats = &cpi->mv_stats;
const AV1_COMMON *cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, tile_row);
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
const int tile_idx = tile_row * tile_cols + tile_col;
av1_tile_set_col(&tile_info, cm, tile_col);
cpi->tile_data[tile_idx].tctx = *cm->fc;
cpi->td.mb.e_mbd.tile_ctx = &cpi->tile_data[tile_idx].tctx;
collect_mv_stats_tile(mv_stats, cpi, &tile_info);
}
}
mv_stats->q = current_q;
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
mv_stats->order = cpi->common.current_frame.display_order_hint;
#else
mv_stats->order = cpi->common.current_frame.order_hint;
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
mv_stats->valid = 1;
}
static AOM_INLINE int get_smart_mv_prec(AV1_COMP *cpi, const MV_STATS *mv_stats,
int current_q) {
const AV1_COMMON *cm = &cpi->common;
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
const int order_hint = cpi->common.current_frame.display_order_hint;
#else
const int order_hint = cpi->common.current_frame.order_hint;
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
const int order_diff = order_hint - mv_stats->order;
aom_clear_system_state();
const float area = (float)(cm->width * cm->height);
float features[MV_PREC_FEATURE_SIZE] = {
(float)current_q,
(float)mv_stats->q,
(float)order_diff,
mv_stats->inter_count / area,
mv_stats->intra_count / area,
mv_stats->default_mvs / area,
mv_stats->mv_joint_count[0] / area,
mv_stats->mv_joint_count[1] / area,
mv_stats->mv_joint_count[2] / area,
mv_stats->mv_joint_count[3] / area,
mv_stats->last_bit_zero / area,
mv_stats->last_bit_nonzero / area,
mv_stats->total_mv_rate / area,
mv_stats->hp_total_mv_rate / area,
mv_stats->lp_total_mv_rate / area,
mv_stats->horz_text / area,
mv_stats->vert_text / area,
mv_stats->diag_text / area,
};
for (int f_idx = 0; f_idx < MV_PREC_FEATURE_SIZE; f_idx++) {
features[f_idx] =
(features[f_idx] - av1_mv_prec_mean[f_idx]) / av1_mv_prec_std[f_idx];
}
float score = 0.0f;
av1_nn_predict(features, &av1_mv_prec_dnn_config, 1, &score);
const int use_high_hp = score >= 0.0f;
return use_high_hp;
}
void av1_pick_and_set_high_precision_mv(AV1_COMP *cpi, int qindex) {
int use_hp = qindex < HIGH_PRECISION_MV_QTHRESH;
if (cpi->sf.hl_sf.high_precision_mv_usage == QTR_ONLY) {
use_hp = 0;
} else if (cpi->sf.hl_sf.high_precision_mv_usage == LAST_MV_DATA &&
av1_frame_allows_smart_mv(cpi) && cpi->mv_stats.valid) {
use_hp = get_smart_mv_prec(cpi, &cpi->mv_stats, qindex);
}
MvSubpelPrecision prec = MV_PRECISION_QTR_PEL + use_hp;
if (cpi->common.features.cur_frame_force_integer_mv) {
prec = MV_PRECISION_ONE_PEL;
}
av1_set_high_precision_mv(cpi, prec);
cpi->common.features.use_pb_mv_precision =
cpi->common.seq_params.enable_flex_mvres;
cpi->common.features.most_probable_fr_mv_precision =
cpi->common.features.fr_mv_precision;
}