|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <float.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "config/aom_scale_rtcd.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/binary_codes_writer.h" | 
|  | #include "aom_dsp/mathutils.h" | 
|  | #include "aom_dsp/psnr.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/system_state.h" | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/bru.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/restoration.h" | 
|  |  | 
|  | #include "av1/encoder/av1_quantize.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/picklpf.h" | 
|  | #include "av1/encoder/pickrst.h" | 
|  |  | 
|  | #include "third_party/vector/vector.h" | 
|  |  | 
|  | // Search level 0 - search all drl candidates | 
|  | // Search level 1 - search drl candidates 0 and the best one for the current RU | 
|  | // Search level 2 - search only the best drl candidate for the current RU | 
|  | #define MERGE_DRL_SEARCH_LEVEL 1 | 
|  |  | 
|  | // Number of Wiener iterations | 
|  | #define NUM_WIENER_ITERS 5 | 
|  |  | 
|  | // Working precision for Wiener filter coefficients | 
|  | #define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16) | 
|  |  | 
|  | // Number of elements needed in the temporary buffer for | 
|  | // compute_wienerns_filter | 
|  | #define WIENERNS_A_SIZE (WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX) | 
|  | #define WIENERNS_b_SIZE (WIENERNS_TAPS_MAX) | 
|  | #define WIENERNS_R_SIZE \ | 
|  | (WIENERNS_MAX_CLASSES * WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX) | 
|  | #define WIENERNS_B_SIZE (WIENERNS_MAX_CLASSES * WIENERNS_TAPS_MAX) | 
|  | #define WIENERNS_TMPBUF_SIZE (WIENERNS_R_SIZE + WIENERNS_B_SIZE + 1) | 
|  |  | 
|  | typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a, | 
|  | const YV12_BUFFER_CONFIG *b); | 
|  | typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a, | 
|  | const YV12_BUFFER_CONFIG *b, | 
|  | int hstart, int width, int vstart, | 
|  | int height); | 
|  | typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a, | 
|  | int hstart, int width, int vstart, | 
|  | int height); | 
|  |  | 
|  | #define NUM_EXTRACTORS 3 | 
|  |  | 
|  | static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = { | 
|  | aom_highbd_get_y_sse_part, | 
|  | aom_highbd_get_u_sse_part, | 
|  | aom_highbd_get_v_sse_part, | 
|  | }; | 
|  |  | 
|  | static int64_t sse_restoration_unit(const RestorationTileLimits *limits, | 
|  | const YV12_BUFFER_CONFIG *src, | 
|  | const YV12_BUFFER_CONFIG *dst, int plane) { | 
|  | return sse_part_extractors[plane]( | 
|  | src, dst, limits->h_start, limits->h_end - limits->h_start, | 
|  | limits->v_start, limits->v_end - limits->v_start); | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | // The best coefficients for Non-sep Wiener restoration. | 
|  | WienerNonsepInfo wienerns_info; | 
|  |  | 
|  | // The sum of squared errors for this rtype. | 
|  | int64_t sse[RESTORE_SWITCHABLE_TYPES]; | 
|  |  | 
|  | // The rtype to use for this unit given a frame rtype as | 
|  | // index. Indices: PC_WIENER, WIENER_NONSEP, SWITCHABLE. | 
|  | RestorationType best_rtype[RESTORE_TYPES - 1]; | 
|  |  | 
|  | // indicate the unit is skipped due to BRU (so no signaling) | 
|  | int bru_unit_skipped; | 
|  | } RestUnitSearchInfo; | 
|  |  | 
|  | typedef struct { | 
|  | const YV12_BUFFER_CONFIG *src; | 
|  | YV12_BUFFER_CONFIG *dst; | 
|  |  | 
|  | const AV1_COMMON *cm; | 
|  | const MACROBLOCK *x; | 
|  | int plane; | 
|  | int plane_width; | 
|  | int plane_height; | 
|  | RestUnitSearchInfo *rusi; | 
|  |  | 
|  | // Speed features | 
|  | const LOOP_FILTER_SPEED_FEATURES *lpf_sf; | 
|  |  | 
|  | uint16_t *dgd_buffer; | 
|  | int dgd_stride; | 
|  | const uint16_t *src_buffer; | 
|  | int src_stride; | 
|  | // Indicates whether classification has been computed and buffered. | 
|  | int classification_is_buffered; | 
|  | // Helps prevent search_switchable from punishing frame level filters | 
|  | int adjust_switchable_for_frame_filters; | 
|  |  | 
|  | // sse and bits are initialised by reset_rsc in search_rest_type | 
|  | int64_t sse; | 
|  | int64_t bits; | 
|  | int tile_y0, tile_stripe0; | 
|  | // Helps convert tile-localized RU indices to frame RU indices. | 
|  | int ru_idx_base; | 
|  | // Number of RUs in tile | 
|  | int num_rus_in_tile; | 
|  |  | 
|  | WienerNonsepInfoBank wienerns_bank; | 
|  |  | 
|  | // Vector storing statistics for all RUs. | 
|  | Vector *wienerns_stats; | 
|  |  | 
|  | // Number of classes in the initial wienerns stat calculation. | 
|  | int num_stats_classes; | 
|  | // Number of classes in the wienerns filtering calculation. | 
|  | int num_filter_classes; | 
|  | // Best number of classes for frame filters. | 
|  | int best_num_filter_classes; | 
|  | // Whether frame-level filters are on or off. | 
|  | int frame_filters_on; | 
|  |  | 
|  | WienerNonsepInfoBank frame_filter_bank; | 
|  | double frame_filter_cost; | 
|  | double frame_filters_total_cost; | 
|  | int num_wiener_nonsep;  // debug: number of RESTORE_WIENER_NONSEP RUs. | 
|  |  | 
|  | const uint16_t *luma; | 
|  | const uint16_t *luma_stat; | 
|  |  | 
|  | int luma_stride; | 
|  |  | 
|  | // Temporary storage used by compute_wienerns_filter | 
|  | double *wienerns_tmpbuf; | 
|  |  | 
|  | bool tskip_zero_flag; | 
|  |  | 
|  | // This vector holds the most recent list of units with merged coefficients. | 
|  | Vector *unit_stack; | 
|  | // This vector holds a list of rest_unit indices to be considered for merging | 
|  | // for a given drl candidate to be examined. Note that the unit_stack above | 
|  | // includes all previous RUs covering all entries in the drl list, but only | 
|  | // a subset needs to be considered for merging for a given drl candidate. | 
|  | Vector *unit_indices; | 
|  | // whether frame filter is predicted from a reference picture | 
|  | uint8_t temporal_pred_flag; | 
|  | // reference picture index for frame level filter prediction | 
|  | uint8_t rst_ref_pic_idx; | 
|  | WienerNonsepInfo frame_filters; | 
|  | AV1PixelRect tile_rect; | 
|  | } RestSearchCtxt; | 
|  |  | 
|  | // RU statistics for solving Wiener filters. | 
|  | typedef struct RstUnitStats { | 
|  | double A[WIENERNS_R_SIZE]; | 
|  | double b[WIENERNS_B_SIZE]; | 
|  | double weight;  // Importance of this stat in the frame. | 
|  | int64_t real_sse; | 
|  | int num_stats_classes; | 
|  | RestorationTileLimits limits; | 
|  | int num_pixels_in_class[WIENERNS_MAX_CLASSES];  // debug. | 
|  | int ru_idx;                                     // debug. | 
|  | int ru_idx_in_tile;                             // debug. | 
|  | int plane;                                      // debug. | 
|  | } RstUnitStats; | 
|  |  | 
|  | typedef struct RstUnitSnapshot { | 
|  | RestorationTileLimits limits; | 
|  | int rest_unit_idx;  // update filter value and sse as needed | 
|  | int64_t current_sse; | 
|  | int64_t current_bits; | 
|  | int64_t merge_sse; | 
|  | int64_t merge_bits; | 
|  | int64_t merge_sse_cand; | 
|  | int64_t merge_bits_cand; | 
|  | // Pointers to respective stats in RstUnitStats. | 
|  | const double *A; | 
|  | const double *b; | 
|  | // Nonseparable Wiener filter info. | 
|  | WienerNonsepInfoBank ref_wienerns_bank; | 
|  | } RstUnitSnapshot; | 
|  |  | 
|  | static AOM_INLINE void reset_all_banks(RestSearchCtxt *rsc) { | 
|  | av1_reset_wienerns_bank(&rsc->wienerns_bank, | 
|  | rsc->cm->quant_params.base_qindex, | 
|  | rsc->num_filter_classes, rsc->plane != AOM_PLANE_Y); | 
|  | } | 
|  |  | 
|  | static void get_ru_limits_in_tile(const AV1_COMMON *cm, int plane, int tile_row, | 
|  | int tile_col, int *ru_row_start, | 
|  | int *ru_row_end, int *ru_col_start, | 
|  | int *ru_col_end) { | 
|  | TileInfo tile_info; | 
|  | av1_tile_set_row(&tile_info, cm, tile_row); | 
|  | av1_tile_set_col(&tile_info, cm, tile_col); | 
|  | assert(tile_info.mi_row_start < tile_info.mi_row_end); | 
|  | assert(tile_info.mi_col_start < tile_info.mi_col_end); | 
|  |  | 
|  | *ru_row_start = 0; | 
|  | *ru_col_start = 0; | 
|  | *ru_row_end = 0; | 
|  | *ru_col_end = 0; | 
|  | int rrow0, rrow1, rcol0, rcol1; | 
|  | // Scan SBs row by row, left to right to find first SB that has RU info in it. | 
|  | int found = 0; | 
|  | for (int mi_row = tile_info.mi_row_start; | 
|  | mi_row < tile_info.mi_row_end && !found; mi_row += cm->mib_size) { | 
|  | for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
|  | mi_col += cm->mib_size) { | 
|  | if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, | 
|  | cm->sb_size, &rcol0, &rcol1, | 
|  | &rrow0, &rrow1)) { | 
|  | *ru_row_start = rrow0;  // this is the RU row start limit in RU terms. | 
|  | *ru_col_start = rcol0;  // this is the RU col start limit in RU terms. | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Scan SBs in reverse row by row, right to left to find first SB that has RU | 
|  | // info in it. | 
|  | found = 0; | 
|  | const int sb_mi_row_end = | 
|  | tile_info.mi_row_end - 1 - (tile_info.mi_row_end - 1) % cm->mib_size; | 
|  | const int sb_mi_col_end = | 
|  | tile_info.mi_col_end - 1 - (tile_info.mi_col_end - 1) % cm->mib_size; | 
|  | for (int mi_row = sb_mi_row_end; mi_row >= tile_info.mi_row_start && !found; | 
|  | mi_row -= cm->mib_size) { | 
|  | for (int mi_col = sb_mi_col_end; mi_col >= tile_info.mi_col_start; | 
|  | mi_col -= cm->mib_size) { | 
|  | if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, | 
|  | cm->sb_size, &rcol0, &rcol1, | 
|  | &rrow0, &rrow1)) { | 
|  | *ru_row_end = rrow1;  // this is the RU row end limit in RU terms. | 
|  | *ru_col_end = rcol1;  // this is the RU col end limit in RU terms. | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void rsc_on_tile(void *priv, int idx_base, int tile_row, | 
|  | int tile_col) { | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | reset_all_banks(rsc); | 
|  | const int is_uv = rsc->plane != AOM_PLANE_Y; | 
|  | #if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | TileInfo tile_info; | 
|  | av1_tile_init(&tile_info, rsc->cm, tile_row, tile_col); | 
|  | rsc->tile_rect = av1_get_tile_rect(&tile_info, rsc->cm, is_uv); | 
|  | rsc->tile_stripe0 = get_top_stripe_idx_in_tile(tile_row, tile_col, rsc->cm, | 
|  | RESTORATION_PROC_UNIT_SIZE, | 
|  | RESTORATION_UNIT_OFFSET); | 
|  | #else | 
|  | rsc->tile_rect = av1_whole_frame_rect(rsc->cm, is_uv); | 
|  | rsc->tile_stripe0 = 0; | 
|  | #endif  // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | rsc->ru_idx_base = idx_base; | 
|  | int ru_row_start, ru_row_end; | 
|  | int ru_col_start, ru_col_end; | 
|  | get_ru_limits_in_tile(rsc->cm, rsc->plane, tile_row, tile_col, &ru_row_start, | 
|  | &ru_row_end, &ru_col_start, &ru_col_end); | 
|  | rsc->num_rus_in_tile = | 
|  | (ru_row_end - ru_row_start) * (ru_col_end - ru_col_start); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void reset_rsc(RestSearchCtxt *rsc) { | 
|  | rsc->sse = 0; | 
|  | rsc->bits = 0; | 
|  | aom_vector_clear(rsc->unit_stack); | 
|  | aom_vector_clear(rsc->unit_indices); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void init_rsc(const YV12_BUFFER_CONFIG *src, | 
|  | const AV1_COMMON *cm, const MACROBLOCK *x, | 
|  | const LOOP_FILTER_SPEED_FEATURES *lpf_sf, | 
|  | int plane, RestUnitSearchInfo *rusi, | 
|  | Vector *unit_stack, Vector *unit_indices, | 
|  | YV12_BUFFER_CONFIG *dst, RestSearchCtxt *rsc) { | 
|  | rsc->src = src; | 
|  | rsc->dst = dst; | 
|  | rsc->cm = cm; | 
|  | rsc->x = x; | 
|  | rsc->plane = plane; | 
|  | rsc->rusi = rusi; | 
|  | rsc->lpf_sf = lpf_sf; | 
|  |  | 
|  | const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; | 
|  | const int is_uv = plane != AOM_PLANE_Y; | 
|  | rsc->plane_width = src->widths[is_uv]; | 
|  | rsc->plane_height = src->heights[is_uv]; | 
|  | rsc->src_buffer = src->buffers[plane]; | 
|  | rsc->src_stride = src->strides[is_uv]; | 
|  | rsc->dgd_buffer = dgd->buffers[plane]; | 
|  | rsc->dgd_stride = dgd->strides[is_uv]; | 
|  | rsc->tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | assert(src->widths[is_uv] == dgd->widths[is_uv]); | 
|  | assert(src->heights[is_uv] == dgd->heights[is_uv]); | 
|  | rsc->unit_stack = unit_stack; | 
|  | rsc->unit_indices = unit_indices; | 
|  | rsc->num_stats_classes = default_num_classes(plane); | 
|  | rsc->num_filter_classes = rsc->num_stats_classes; | 
|  | rsc->best_num_filter_classes = rsc->num_filter_classes; | 
|  | rsc->frame_filters_on = 0; | 
|  | rsc->num_wiener_nonsep = 0; | 
|  | rsc->tskip_zero_flag = 0; | 
|  | rsc->classification_is_buffered = 0; | 
|  | rsc->adjust_switchable_for_frame_filters = 0; | 
|  | reset_all_banks(rsc); | 
|  | } | 
|  |  | 
|  | static int64_t try_restoration_unit(const RestSearchCtxt *rsc, | 
|  | const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, | 
|  | const RestorationUnitInfo *rui) { | 
|  | const AV1_COMMON *const cm = rsc->cm; | 
|  | const int plane = rsc->plane; | 
|  | const int is_uv = plane > 0; | 
|  | const RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | RestorationLineBuffers *rlbs = aom_malloc(sizeof(RestorationLineBuffers)); | 
|  | if (rlbs == NULL) | 
|  | fprintf(stderr, "rlbs buffer does not allocate successfully\n"); | 
|  | const int bit_depth = cm->seq_params.bit_depth; | 
|  |  | 
|  | const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf; | 
|  | // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be | 
|  | // also used in encoder. | 
|  | const int optimized_lr = 0; | 
|  | av1_loop_restoration_filter_unit( | 
|  | limits, rui, &rsi->boundaries, rlbs, tile_rect, rsc->tile_stripe0, | 
|  | is_uv && cm->seq_params.subsampling_x, | 
|  | is_uv && cm->seq_params.subsampling_y, bit_depth, fts->buffers[plane], | 
|  | fts->strides[is_uv], rsc->dst->buffers[plane], rsc->dst->strides[is_uv], | 
|  | #if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | rsc->plane_width, cm->seq_params.disable_loopfilters_across_tiles, | 
|  | #endif  // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | optimized_lr); | 
|  |  | 
|  | if (rlbs != NULL) aom_free(rlbs); | 
|  | return sse_restoration_unit(limits, rsc->src, rsc->dst, plane); | 
|  | } | 
|  |  | 
|  | static void initialize_rui_for_nonsep_search(const RestSearchCtxt *rsc, | 
|  | RestorationUnitInfo *rui) { | 
|  | memset(rui, 0, sizeof(*rui)); | 
|  | rui->wiener_class_id_restrict = -1; | 
|  | rui->wiener_class_id = rsc->cm->mi_params.wiener_class_id[rsc->plane]; | 
|  | rui->wiener_class_id_stride = | 
|  | rsc->cm->mi_params.wiener_class_id_stride[rsc->plane]; | 
|  | rui->tskip = rsc->cm->mi_params.tx_skip[rsc->plane]; | 
|  | rui->tskip_stride = rsc->cm->mi_params.tx_skip_stride[rsc->plane]; | 
|  | rui->base_qindex = rsc->cm->quant_params.base_qindex; | 
|  | if (rsc->plane != AOM_PLANE_Y) | 
|  | rui->qindex_offset = rsc->plane == AOM_PLANE_U | 
|  | ? rsc->cm->quant_params.u_ac_delta_q | 
|  | : rsc->cm->quant_params.v_ac_delta_q; | 
|  | else | 
|  | rui->qindex_offset = 0; | 
|  | rui->luma = rsc->luma; | 
|  | rui->luma_stride = rsc->luma_stride; | 
|  | rui->plane = rsc->plane; | 
|  | rui->wienerns_info.num_classes = rsc->num_filter_classes; | 
|  | rui->tskip_zero_flag = rsc->tskip_zero_flag; | 
|  | rui->skip_pcwiener_filtering = 0; | 
|  | } | 
|  |  | 
|  | static int count_pc_wiener_bits() { | 
|  | // No side-information for now. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void search_pc_wiener_visitor( | 
|  | const RestorationTileLimits *limits, const AV1PixelRect *tile_rect, | 
|  | int rest_unit_idx, int rest_unit_idx_seq, void *priv, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)tile_rect; | 
|  | (void)rlbs; | 
|  | (void)rest_unit_idx_seq; | 
|  |  | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  |  | 
|  | const int bit_depth = rsc->cm->seq_params.bit_depth; | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const int64_t bits_none = x->mode_costs.pc_wiener_restore_cost[0]; | 
|  |  | 
|  | const int pcwiener_disabled = | 
|  | rsc->plane > 0 || | 
|  | (rsc->cm->seq_params.lr_tools_disable_mask[AOM_PLANE_Y] & | 
|  | (1 << RESTORE_PC_WIENER)); | 
|  |  | 
|  | // This routine is called (i) when the rtype = RESTORE_PC_WIENER or (ii) when | 
|  | // handling frame filters with rtype = RESTORE_WIENER_NONSEP. | 
|  | // (i) Run the full pc-wiener, i.e., don't skip, if pc-wiener is not disabled. | 
|  | // (Disabling can be accomplished by config or the plane being chroma.) | 
|  | // (ii) If disabled, skip only if frame-filters are off or the number of | 
|  | // filter classes for frame filters is one. | 
|  | bool skip_search = | 
|  | pcwiener_disabled && | 
|  | (!is_frame_filters_enabled(rsc->plane) || rsc->num_filter_classes == 1); | 
|  | if (rusi->bru_unit_skipped) { | 
|  | skip_search = true; | 
|  | } | 
|  | if (skip_search) { | 
|  | rsc->bits += bits_none; | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | rusi->best_rtype[RESTORE_PC_WIENER - 1] = RESTORE_NONE; | 
|  | rusi->sse[RESTORE_PC_WIENER] = INT64_MAX; | 
|  | return; | 
|  | } | 
|  |  | 
|  | RestorationUnitInfo rui; | 
|  | initialize_rui_for_nonsep_search(rsc, &rui); | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int start_mi_x = limits->h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int start_mi_y = limits->v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, start_mi_y, start_mi_x); | 
|  | rui.mbmi_ptr = rsc->cm->mi_params.mi_grid_base + mbmi_idx; | 
|  | rui.ss_x = ss_x; | 
|  | rui.ss_y = ss_y; | 
|  | rui.mi_stride = rsc->cm->mi_params.mi_stride; | 
|  | #if CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui.lossless_segment = rsc->cm->features.lossless_segment; | 
|  | rui.cm = rsc->cm; | 
|  | #endif  // CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | // Only need the classification if running for frame filters. | 
|  | rui.skip_pcwiener_filtering = pcwiener_disabled ? 1 : 0; | 
|  |  | 
|  | rui.restoration_type = RESTORE_PC_WIENER; | 
|  | rusi->sse[RESTORE_PC_WIENER] = | 
|  | try_restoration_unit(rsc, limits, &rsc->tile_rect, &rui); | 
|  |  | 
|  | double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE], bit_depth); | 
|  |  | 
|  | if (pcwiener_disabled) { | 
|  | rusi->best_rtype[RESTORE_PC_WIENER - 1] = RESTORE_NONE; | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | rsc->bits += bits_none; | 
|  | return; | 
|  | } | 
|  | const int64_t bits_pc_wiener = | 
|  | x->mode_costs.pc_wiener_restore_cost[1] + | 
|  | (count_pc_wiener_bits() << AV1_PROB_COST_SHIFT); | 
|  | double cost_pc_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_pc_wiener >> 4, rusi->sse[RESTORE_PC_WIENER], bit_depth); | 
|  |  | 
|  | RestorationType rtype = | 
|  | (cost_pc_wiener < cost_none) ? RESTORE_PC_WIENER : RESTORE_NONE; | 
|  | rusi->best_rtype[RESTORE_PC_WIENER - 1] = rtype; | 
|  |  | 
|  | rsc->sse += rusi->sse[rtype]; | 
|  | rsc->bits += (cost_pc_wiener < cost_none) ? bits_pc_wiener : bits_none; | 
|  | // No side-information for now to copy to info. | 
|  | } | 
|  |  | 
|  | // If limits != NULL, calculates error for current restoration unit. | 
|  | // Otherwise, calculates error for all units in the stack using stored limits. | 
|  | static int64_t calc_finer_tile_search_error(const RestSearchCtxt *rsc, | 
|  | const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile, | 
|  | RestorationUnitInfo *rui) { | 
|  | int64_t err = 0; | 
|  | if (limits != NULL) { | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int start_mi_x = limits->h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int start_mi_y = limits->v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, start_mi_y, start_mi_x); | 
|  | rui->mbmi_ptr = rsc->cm->mi_params.mi_grid_base + mbmi_idx; | 
|  | rui->ss_x = ss_x; | 
|  | rui->ss_y = ss_y; | 
|  | rui->mi_stride = rsc->cm->mi_params.mi_stride; | 
|  | #if CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui->lossless_segment = rsc->cm->features.lossless_segment; | 
|  | rui->cm = rsc->cm; | 
|  | #endif  // CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | err = try_restoration_unit(rsc, limits, tile, rui); | 
|  | } else { | 
|  | Vector *current_unit_stack = rsc->unit_stack; | 
|  | Vector *current_unit_indices = rsc->unit_indices; | 
|  | int n = 0; | 
|  | int idx = *(int *)aom_vector_const_get(current_unit_indices, n); | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | if (old_unit->rest_unit_idx == idx && !rsc->rusi[idx].bru_unit_skipped) { | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int start_mi_x = | 
|  | old_unit->limits.h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int start_mi_y = | 
|  | old_unit->limits.v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, start_mi_y, start_mi_x); | 
|  | rui->mbmi_ptr = rsc->cm->mi_params.mi_grid_base + mbmi_idx; | 
|  | rui->ss_x = ss_x; | 
|  | rui->ss_y = ss_y; | 
|  | rui->mi_stride = rsc->cm->mi_params.mi_stride; | 
|  | #if CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui->lossless_segment = rsc->cm->features.lossless_segment; | 
|  | rui->cm = rsc->cm; | 
|  | #endif  // CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | err += try_restoration_unit(rsc, &old_unit->limits, tile, rui); | 
|  | n++; | 
|  | if (n >= (int)current_unit_indices->size) break; | 
|  | idx = *(int *)aom_vector_const_get(current_unit_indices, n); | 
|  | } | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | // This function resets the dst buffers using the correct filters. | 
|  | static int64_t reset_unit_stack_dst_buffers(const RestSearchCtxt *rsc, | 
|  | const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile, | 
|  | RestorationUnitInfo *rui) { | 
|  | int64_t err = 0; | 
|  | if (limits != NULL) { | 
|  | err = try_restoration_unit(rsc, limits, tile, rui); | 
|  | } else { | 
|  | Vector *current_unit_stack = rsc->unit_stack; | 
|  | Vector *current_unit_indices = rsc->unit_indices; | 
|  | const int last_idx = | 
|  | ((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx; | 
|  |  | 
|  | // Will update filters in rui as we go along. Buffer the rui filters here. | 
|  | WienerNonsepInfo last_unit_filters = rui->wienerns_info; | 
|  | int n = 0; | 
|  | int idx = *(int *)aom_vector_const_get(current_unit_indices, n); | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx]; | 
|  |  | 
|  | if (old_unit->rest_unit_idx == idx) { | 
|  | if (idx == last_idx) { | 
|  | // Use the input filters on the last unit. | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &last_unit_filters); | 
|  | } else { | 
|  | // Revert to old unit's filters. | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &old_rusi->wienerns_info); | 
|  | } | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int start_mi_x = | 
|  | old_unit->limits.h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int start_mi_y = | 
|  | old_unit->limits.v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, start_mi_y, start_mi_x); | 
|  | rui->mbmi_ptr = rsc->cm->mi_params.mi_grid_base + mbmi_idx; | 
|  | rui->ss_x = ss_x; | 
|  | rui->ss_y = ss_y; | 
|  | rui->mi_stride = rsc->cm->mi_params.mi_stride; | 
|  | #if CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui->lossless_segment = rsc->cm->features.lossless_segment; | 
|  | rui->cm = rsc->cm; | 
|  | #endif  // CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | err += try_restoration_unit(rsc, &old_unit->limits, tile, rui); | 
|  | n++; | 
|  | if (n >= (int)current_unit_indices->size) break; | 
|  | idx = *(int *)aom_vector_const_get(current_unit_indices, n); | 
|  | } | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | { | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | assert(check_wienerns_eq(&rui->wienerns_info, &last_unit_filters, | 
|  | nsfilter_params->ncoeffs, ALL_WIENERNS_CLASSES)); | 
|  | } | 
|  | #endif  // NDEBUG | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void search_norestore_visitor( | 
|  | const RestorationTileLimits *limits, const AV1PixelRect *tile_rect, | 
|  | int rest_unit_idx, int rest_unit_idx_seq, void *priv, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)tile_rect; | 
|  | (void)rlbs; | 
|  | (void)rest_unit_idx_seq; | 
|  |  | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  | if (rusi->bru_unit_skipped) { | 
|  | rusi->sse[RESTORE_NONE] = 0; | 
|  | return; | 
|  | } | 
|  | rusi->sse[RESTORE_NONE] = sse_restoration_unit( | 
|  | limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane); | 
|  |  | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | } | 
|  |  | 
|  | static int64_t count_wienerns_bits( | 
|  | int plane, const ModeCosts *mode_costs, | 
|  | const WienerNonsepInfo *wienerns_info, const WienerNonsepInfoBank *bank, | 
|  | const WienernsFilterParameters *nsfilter_params, int wiener_class_id) { | 
|  | (void)mode_costs; | 
|  | int is_uv = (plane != AOM_PLANE_Y); | 
|  | int64_t bits = 0; | 
|  | int skip_filter_write_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  |  | 
|  | int c_id_begin = 0; | 
|  | int c_id_end = wienerns_info->num_classes; | 
|  | if (wiener_class_id != ALL_WIENERNS_CLASSES) { | 
|  | c_id_begin = wiener_class_id; | 
|  | c_id_end = wiener_class_id + 1; | 
|  | } | 
|  | for (int c_id = c_id_begin; bank && c_id < c_id_end; ++c_id) { | 
|  | const int ref = wienerns_info->bank_ref_for_class[c_id]; | 
|  | const WienerNonsepInfo *ref_wienerns_info = | 
|  | av1_constref_from_wienerns_bank(bank, ref, c_id); | 
|  | const int equal_ref = check_wienerns_eq(wienerns_info, ref_wienerns_info, | 
|  | nsfilter_params->ncoeffs, c_id); | 
|  | for (int k = 0; k < bank->bank_size_for_class[c_id] - 1; ++k) { | 
|  | const int match = (k == ref); | 
|  | bits += (1 << AV1_PROB_COST_SHIFT); | 
|  | if (match) break; | 
|  | } | 
|  | bits += mode_costs->merged_param_cost[equal_ref]; | 
|  | skip_filter_write_for_class[c_id] = equal_ref; | 
|  | ref_for_class[c_id] = ref; | 
|  | } | 
|  | const int(*length_cost)[2] = mode_costs->wienerns_length_cost; | 
|  | const int *uv_sym_cost = mode_costs->wienerns_uv_sym_cost; | 
|  | const int(*cost_4part)[4] = mode_costs->wienerns_4part_cost; | 
|  | const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; | 
|  |  | 
|  | assert(c_id_begin >= 0); | 
|  | assert(c_id_end <= WIENERNS_MAX_CLASSES); | 
|  | WienerNonsepInfo def_wienerns_info; | 
|  | if (!bank) | 
|  | set_default_wienerns_fromparams(&def_wienerns_info, c_id_end, | 
|  | nsfilter_params); | 
|  | for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) { | 
|  | if (skip_filter_write_for_class[c_id]) continue; | 
|  | const WienerNonsepInfo *ref_wienerns_info; | 
|  | if (bank) { | 
|  | ref_wienerns_info = | 
|  | av1_constref_from_wienerns_bank(bank, ref_for_class[c_id], c_id); | 
|  | } else { | 
|  | ref_wienerns_info = &def_wienerns_info; | 
|  | } | 
|  |  | 
|  | const int16_t *wienerns_info_nsfilter = | 
|  | const_nsfilter_taps(wienerns_info, c_id); | 
|  | const int16_t *ref_wienerns_info_nsfilter = | 
|  | const_nsfilter_taps(ref_wienerns_info, c_id); | 
|  |  | 
|  | const int beg_feat = 0; | 
|  | int end_feat = nsfilter_params->ncoeffs; | 
|  | int ncoeffs1, ncoeffs2; | 
|  | int ncoeffs = | 
|  | config2ncoeffs(&nsfilter_params->nsfilter_config, &ncoeffs1, &ncoeffs2); | 
|  | assert(nsfilter_params->ncoeffs == ncoeffs); | 
|  | (void)ncoeffs; | 
|  | int s; | 
|  | for (s = 0; s < nsfilter_params->nsubsets; ++s) { | 
|  | int i; | 
|  | for (i = 0; i < end_feat; ++i) { | 
|  | if (nsfilter_params->subset_config[s][i] == 0 && | 
|  | wienerns_info_nsfilter[i] != 0) | 
|  | break; | 
|  | } | 
|  | if (i == end_feat) break; | 
|  | } | 
|  | assert(s < nsfilter_params->nsubsets); | 
|  | int s_ = s; | 
|  | for (int i = 0; i < nsfilter_params->nsubsets - 1; ++i) { | 
|  | const int filter_length_bit = (s_ > 0); | 
|  | bits += length_cost[is_uv][filter_length_bit]; | 
|  | if (!filter_length_bit) break; | 
|  | s_--; | 
|  | } | 
|  | assert((end_feat & 1) == 0); | 
|  |  | 
|  | int sym = 1; | 
|  | if (!skip_sym_bit(nsfilter_params, s)) { | 
|  | for (int i = beg_feat; i < end_feat; i++) { | 
|  | if (!nsfilter_params->subset_config[s][i]) continue; | 
|  | const int is_asym_coeff = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (!is_asym_coeff) continue; | 
|  | if (wienerns_info_nsfilter[i + 1] != wienerns_info_nsfilter[i]) { | 
|  | sym = 0; | 
|  | break; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | assert(is_uv); | 
|  | bits += uv_sym_cost[sym]; | 
|  | } | 
|  |  | 
|  | for (int i = beg_feat; i < end_feat; ++i) { | 
|  | if (!nsfilter_params->subset_config[s][i]) continue; | 
|  | const int is_asym_coeff = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | bits += aom_count_4part_wref( | 
|  | ref_wienerns_info_nsfilter[i] - | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
|  | wienerns_info_nsfilter[i] - | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
|  | cost_4part[wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID]], | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID], AV1_PROB_COST_SHIFT); | 
|  | if (sym && is_asym_coeff) { | 
|  | // Don't code symmetrical taps | 
|  | assert(wienerns_info_nsfilter[i + 1] == wienerns_info_nsfilter[i]); | 
|  | i += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | return bits; | 
|  | } | 
|  |  | 
|  | static int64_t count_wienerns_bits_set( | 
|  | int plane, const ModeCosts *mode_costs, WienerNonsepInfo *info, | 
|  | const WienerNonsepInfoBank *bank, | 
|  | const WienernsFilterParameters *nsfilter_params, int wiener_class_id) { | 
|  | // TODO: Add match_indices bits when needed. | 
|  | int64_t total_bits = 0; | 
|  | int c_id_begin = 0; | 
|  | int c_id_end = info->num_classes; | 
|  | if (wiener_class_id != ALL_WIENERNS_CLASSES) { | 
|  | c_id_begin = wiener_class_id; | 
|  | c_id_end = wiener_class_id + 1; | 
|  | } | 
|  | for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) { | 
|  | int64_t best_bits = INT64_MAX; | 
|  | int best_ref = -1; | 
|  | for (int ref = 0; | 
|  | ref < AOMMAX(1, bank ? bank->bank_size_for_class[c_id] : 0); ++ref) { | 
|  | info->bank_ref_for_class[c_id] = ref; | 
|  | const int64_t bits = count_wienerns_bits(plane, mode_costs, info, bank, | 
|  | nsfilter_params, c_id); | 
|  | if (bits < best_bits) { | 
|  | best_bits = bits; | 
|  | best_ref = ref; | 
|  | } | 
|  | } | 
|  | total_bits += best_bits; | 
|  | info->bank_ref_for_class[c_id] = AOMMAX(0, best_ref); | 
|  | } | 
|  | return total_bits; | 
|  | } | 
|  |  | 
|  | #define MAX(a, b) ((a) > (b) ? (a) : (b)) | 
|  | #define MIN(a, b) ((a) > (b) ? (b) : (a)) | 
|  |  | 
|  | #define FINER_UPDATE_BANK 1 | 
|  | #define FINER_REPLACE 1 | 
|  | static void initialize_bank_with_best_frame_filter_match( | 
|  | const RestSearchCtxt *rsc, WienerNonsepInfo *filter, | 
|  | WienerNonsepInfoBank *bank, int reset_dict); | 
|  |  | 
|  | static int get_subset_from_nsfilter( | 
|  | const WienernsFilterParameters *nsfilter_params, int16_t *nsfilter) { | 
|  | const int beg_feat = 0; | 
|  | const int end_feat = nsfilter_params->ncoeffs; | 
|  | for (int s = 0; s < nsfilter_params->nsubsets; ++s) { | 
|  | int i; | 
|  | for (i = beg_feat; i < end_feat; ++i) { | 
|  | if (!nsfilter_params->subset_config[s][i] && nsfilter[i]) break; | 
|  | } | 
|  | if (i == end_feat) return s; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int64_t finer_tile_search_wienerns( | 
|  | const RestSearchCtxt *rsc, const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, RestorationUnitInfo *rui, | 
|  | const WienernsFilterParameters *nsfilter_params, int ext_search, | 
|  | const WienerNonsepInfoBank *reference_wienerns_bank, int wiener_class_id) { | 
|  | assert(rsc->plane == rui->plane); | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | // WienerNonsepInfo curr = rui->wienerns_info; | 
|  | WienerNonsepInfo best = rui->wienerns_info; | 
|  | WienerNonsepInfoBank tmp_bank = *reference_wienerns_bank; | 
|  | WienerNonsepInfoBank *ref_bank_ptr = &tmp_bank; | 
|  | WienerNonsepInfoBank *cur_bank_ptr = ref_bank_ptr; | 
|  | // If frame filters are on ref_bank_ptr points to the bank matched to the | 
|  | // best filters. work_bank is used in trials and gets swapped with | 
|  | // ref_bank_ptr as needed. | 
|  | WienerNonsepInfoBank work_bank = *reference_wienerns_bank; | 
|  | if (rsc->frame_filters_on) { | 
|  | cur_bank_ptr = &work_bank; | 
|  | *cur_bank_ptr = *ref_bank_ptr; | 
|  | } | 
|  |  | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  | const int beg_feat = 0; | 
|  | const int end_feat = nsfilter_params->ncoeffs; | 
|  | int c_id_begin = wiener_class_id; | 
|  | int c_id_end = wiener_class_id + 1; | 
|  | rui->wiener_class_id_restrict = wiener_class_id; | 
|  | if (wiener_class_id == ALL_WIENERNS_CLASSES) { | 
|  | c_id_begin = 0; | 
|  | c_id_end = rui->wienerns_info.num_classes; | 
|  | rui->wiener_class_id_restrict = -1; | 
|  | } | 
|  | int64_t best_err = calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | // When wiener_class_id != ALL_WIENERNS_CLASSES we are calculating bits for | 
|  | // wiener_class_id only since that is the filter we are changing. Should be OK | 
|  | // since bits for classes outside wiener_class_id are not needed for decisions | 
|  | // in this fn. | 
|  | int64_t best_bits = | 
|  | count_wienerns_bits_set(rsc->plane, &x->mode_costs, &rui->wienerns_info, | 
|  | cur_bank_ptr, nsfilter_params, wiener_class_id); | 
|  | double best_cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, best_bits >> 4, best_err, rsc->cm->seq_params.bit_depth); | 
|  |  | 
|  | const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; | 
|  | int ncoeffs1, ncoeffs2; | 
|  | int ncoeffs = | 
|  | config2ncoeffs(&nsfilter_params->nsfilter_config, &ncoeffs1, &ncoeffs2); | 
|  | assert(nsfilter_params->ncoeffs == ncoeffs); | 
|  | (void)ncoeffs; | 
|  |  | 
|  | int reset_dict = 1; | 
|  | if (rsc->frame_filters_on) { | 
|  | assert(wiener_class_id == ALL_WIENERNS_CLASSES); | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | cur_bank_ptr = &work_bank; | 
|  | for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) { | 
|  | const int bank_ref = 0; | 
|  | copy_nsfilter_taps_for_class( | 
|  | &rui->wienerns_info, | 
|  | av1_constref_from_wienerns_bank(ref_bank_ptr, bank_ref, c_id), c_id); | 
|  | rui->wiener_class_id_restrict = c_id; | 
|  |  | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | initialize_bank_with_best_frame_filter_match(rsc, &rui->wienerns_info, | 
|  | cur_bank_ptr, reset_dict); | 
|  | reset_dict = 0; | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &x->mode_costs, &rui->wienerns_info, cur_bank_ptr, | 
|  | nsfilter_params, ALL_WIENERNS_CLASSES); | 
|  | const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth); | 
|  | if (cost < best_cost) { | 
|  | best_err = err; | 
|  | best_cost = cost; | 
|  | copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id); | 
|  | WienerNonsepInfoBank *tmp_ptr = ref_bank_ptr; | 
|  | ref_bank_ptr = cur_bank_ptr; | 
|  | cur_bank_ptr = tmp_ptr; | 
|  | } else { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | // Re-establish dst. | 
|  | if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) { | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | } | 
|  | } | 
|  | } | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | *cur_bank_ptr = *ref_bank_ptr; | 
|  | } | 
|  |  | 
|  | const int refine_iters = rsc->lpf_sf->wienerns_refine_iters; | 
|  | for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) { | 
|  | int16_t *best_nsfilter = nsfilter_taps(&best, c_id); | 
|  | // int16_t *curr_nsfilter = nsfilter_taps(&curr, c_id); | 
|  | int16_t *rui_wienerns_info_nsfilter = | 
|  | nsfilter_taps(&rui->wienerns_info, c_id); | 
|  |  | 
|  | const int subset = | 
|  | get_subset_from_nsfilter(nsfilter_params, rui_wienerns_info_nsfilter); | 
|  | assert(subset != -1); | 
|  |  | 
|  | // calc_finer_tile_search_error() above sets dst. Update only parts of dst | 
|  | // relevant to c_id. | 
|  | rui->wiener_class_id_restrict = c_id; | 
|  | int src_range = 2; | 
|  |  | 
|  | int sym = 1; | 
|  | int skip_sym = skip_sym_bit(nsfilter_params, subset); | 
|  | if (!skip_sym) { | 
|  | for (int i = beg_feat; i < end_feat; i++) { | 
|  | if (!nsfilter_params->subset_config[subset][i]) continue; | 
|  | const int is_asym_coeff = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (!is_asym_coeff) continue; | 
|  | if (is_asym_coeff && rui_wienerns_info_nsfilter[i + 1] != | 
|  | rui_wienerns_info_nsfilter[i]) { | 
|  | sym = 0; | 
|  | break; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | } | 
|  | if (skip_sym != 1 && sym) {  // Forced symmetry taps search | 
|  | int no_improv = 1; | 
|  | for (int s = 0; s < refine_iters; ++s) { | 
|  | for (int i = beg_feat; i < end_feat; i++) { | 
|  | if (!nsfilter_params->subset_config[subset][i]) continue; | 
|  | const int is_asym_coeff = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (!is_asym_coeff) continue; | 
|  | int cval = (rui_wienerns_info_nsfilter[i] + | 
|  | rui_wienerns_info_nsfilter[i + 1]) / | 
|  | 2; | 
|  | int cmin = MAX(cval - src_range, | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]); | 
|  | int cmax = | 
|  | MIN(cval + src_range, | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID] + | 
|  | (1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID])); | 
|  | for (int ci = cmin; ci < cmax; ++ci) { | 
|  | rui_wienerns_info_nsfilter[i] = ci; | 
|  | rui_wienerns_info_nsfilter[i + 1] = ci; | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | if (rsc->frame_filters_on) { | 
|  | initialize_bank_with_best_frame_filter_match( | 
|  | rsc, &rui->wienerns_info, cur_bank_ptr, reset_dict); | 
|  | reset_dict = 0; | 
|  | } | 
|  | const int c_id_for_bits = wiener_class_id == ALL_WIENERNS_CLASSES | 
|  | ? ALL_WIENERNS_CLASSES | 
|  | : c_id; | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &x->mode_costs, &rui->wienerns_info, cur_bank_ptr, | 
|  | nsfilter_params, c_id_for_bits); | 
|  | const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth); | 
|  | if (cost < best_cost) { | 
|  | no_improv = 0; | 
|  | best_err = err; | 
|  | best_cost = cost; | 
|  | copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id); | 
|  | if (rsc->frame_filters_on) { | 
|  | WienerNonsepInfoBank *tmp_ptr = ref_bank_ptr; | 
|  | ref_bank_ptr = cur_bank_ptr; | 
|  | cur_bank_ptr = tmp_ptr; | 
|  | } | 
|  | } | 
|  | } | 
|  | // copy_nsfilter_taps_for_class(&curr, &best, c_id); | 
|  | rui_wienerns_info_nsfilter[i] = best_nsfilter[i]; | 
|  | rui_wienerns_info_nsfilter[i + 1] = best_nsfilter[i + 1]; | 
|  | i++; | 
|  | } | 
|  | if (no_improv) { | 
|  | break; | 
|  | } | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int s = 0; s < refine_iters; ++s) { | 
|  | int no_improv = 1; | 
|  | for (int i = beg_feat; i < end_feat; ++i) { | 
|  | if (!nsfilter_params->subset_config[subset][i]) continue; | 
|  | const int is_asym_coeff = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff && skip_sym == 2) continue; | 
|  | int cval = rui_wienerns_info_nsfilter[i]; | 
|  | int cmin = MAX(rui_wienerns_info_nsfilter[i] - src_range, | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]); | 
|  | int cmax = | 
|  | MIN(rui_wienerns_info_nsfilter[i] + src_range, | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID] + | 
|  | (1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID])); | 
|  |  | 
|  | for (int ci = cmin; ci < cmax; ++ci) { | 
|  | if (ci == cval) { | 
|  | continue; | 
|  | } | 
|  | rui_wienerns_info_nsfilter[i] = ci; | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | if (rsc->frame_filters_on) { | 
|  | initialize_bank_with_best_frame_filter_match( | 
|  | rsc, &rui->wienerns_info, cur_bank_ptr, reset_dict); | 
|  | reset_dict = 0; | 
|  | } | 
|  | const int c_id_for_bits = wiener_class_id == ALL_WIENERNS_CLASSES | 
|  | ? ALL_WIENERNS_CLASSES | 
|  | : c_id; | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &x->mode_costs, &rui->wienerns_info, cur_bank_ptr, | 
|  | nsfilter_params, c_id_for_bits); | 
|  | const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth); | 
|  | if (cost < best_cost) { | 
|  | no_improv = 0; | 
|  | best_err = err; | 
|  | best_cost = cost; | 
|  | copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id); | 
|  | if (rsc->frame_filters_on) { | 
|  | WienerNonsepInfoBank *tmp_ptr = ref_bank_ptr; | 
|  | ref_bank_ptr = cur_bank_ptr; | 
|  | cur_bank_ptr = tmp_ptr; | 
|  | } | 
|  | } | 
|  | } | 
|  | // copy_nsfilter_taps_for_class(&curr, &best, c_id); | 
|  | rui_wienerns_info_nsfilter[i] = best_nsfilter[i]; | 
|  | } | 
|  | if (no_improv) { | 
|  | break; | 
|  | } | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | // copy_nsfilter_taps_for_class(&curr, &rui->wienerns_info, c_id); | 
|  | } | 
|  | // Re-establish dst. | 
|  | if (refine_iters && c_id_end - c_id_begin > 1 && | 
|  | rui->wiener_class_id_restrict != -1) { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | } | 
|  | } | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | if (rsc->frame_filters_on) { | 
|  | *cur_bank_ptr = *ref_bank_ptr; | 
|  | } | 
|  |  | 
|  | if (!ext_search) return best_err; | 
|  |  | 
|  | // Try reducing filter complexity by forcing asymmetrical parts | 
|  | // to be symmetrical | 
|  | if (nsfilter_params->nsfilter_config.asymmetric + | 
|  | nsfilter_params->nsfilter_config.asymmetric2 > | 
|  | 0) { | 
|  | for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) { | 
|  | int16_t *rui_wienerns_info_nsfilter = | 
|  | nsfilter_taps(&rui->wienerns_info, c_id); | 
|  | const int subset = | 
|  | get_subset_from_nsfilter(nsfilter_params, rui_wienerns_info_nsfilter); | 
|  | assert(subset != -1); | 
|  | rui->wiener_class_id_restrict = c_id; | 
|  | for (int i = beg_feat; i < end_feat; i++) { | 
|  | if (!nsfilter_params->subset_config[subset][i]) continue; | 
|  | const int is_asym_coeff = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (!is_asym_coeff) continue; | 
|  | int avg = ROUND_POWER_OF_TWO( | 
|  | rui_wienerns_info_nsfilter[i] + rui_wienerns_info_nsfilter[i + 1], | 
|  | 1); | 
|  | rui_wienerns_info_nsfilter[i] = avg; | 
|  | rui_wienerns_info_nsfilter[i + 1] = avg; | 
|  | i++; | 
|  | } | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | if (rsc->frame_filters_on) { | 
|  | initialize_bank_with_best_frame_filter_match(rsc, &rui->wienerns_info, | 
|  | cur_bank_ptr, reset_dict); | 
|  | reset_dict = 0; | 
|  | } | 
|  | const int c_id_for_bits = | 
|  | wiener_class_id == ALL_WIENERNS_CLASSES ? ALL_WIENERNS_CLASSES : c_id; | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &x->mode_costs, &rui->wienerns_info, cur_bank_ptr, | 
|  | nsfilter_params, c_id_for_bits); | 
|  | const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth); | 
|  | if (cost < best_cost) { | 
|  | best_err = err; | 
|  | best_cost = cost; | 
|  | copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id); | 
|  | if (rsc->frame_filters_on) { | 
|  | WienerNonsepInfoBank *tmp_ptr = ref_bank_ptr; | 
|  | ref_bank_ptr = cur_bank_ptr; | 
|  | cur_bank_ptr = tmp_ptr; | 
|  | } | 
|  | } else { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | } | 
|  | // Re-establish dst. | 
|  | if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | } | 
|  | } | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | if (rsc->frame_filters_on) { | 
|  | #if FINER_UPDATE_BANK | 
|  | *cur_bank_ptr = *ref_bank_ptr; | 
|  | #endif  // FINER_UPDATE_BANK | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try reduced filters by forcing trailing coeffs to 0 | 
|  | assert((end_feat & 1) == 0); | 
|  | for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) { | 
|  | int16_t *rui_wienerns_info_nsfilter = | 
|  | nsfilter_taps(&rui->wienerns_info, c_id); | 
|  | const int subset = | 
|  | get_subset_from_nsfilter(nsfilter_params, rui_wienerns_info_nsfilter); | 
|  | assert(subset != -1); | 
|  | rui->wiener_class_id_restrict = c_id; | 
|  | const int c_id_for_bits = | 
|  | wiener_class_id == ALL_WIENERNS_CLASSES ? ALL_WIENERNS_CLASSES : c_id; | 
|  |  | 
|  | for (int s = 0; s < subset; ++s) { | 
|  | for (int i = beg_feat; i < end_feat; ++i) { | 
|  | if (!nsfilter_params->subset_config[s][i]) | 
|  | rui_wienerns_info_nsfilter[i] = 0; | 
|  | } | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | if (rsc->frame_filters_on) { | 
|  | initialize_bank_with_best_frame_filter_match(rsc, &rui->wienerns_info, | 
|  | cur_bank_ptr, reset_dict); | 
|  | reset_dict = 0; | 
|  | } | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &x->mode_costs, &rui->wienerns_info, cur_bank_ptr, | 
|  | nsfilter_params, c_id_for_bits); | 
|  | const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth); | 
|  | if (cost < best_cost) { | 
|  | best_err = err; | 
|  | best_cost = cost; | 
|  | copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id); | 
|  | if (rsc->frame_filters_on) { | 
|  | WienerNonsepInfoBank *tmp_ptr = ref_bank_ptr; | 
|  | ref_bank_ptr = cur_bank_ptr; | 
|  | cur_bank_ptr = tmp_ptr; | 
|  | } | 
|  | } else { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | } | 
|  | } | 
|  | // Re-establish dst. | 
|  | if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | } | 
|  | } | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | if (rsc->frame_filters_on) { | 
|  | *cur_bank_ptr = *ref_bank_ptr; | 
|  | } | 
|  |  | 
|  | if (ext_search == 1) return best_err; | 
|  |  | 
|  | const int src_steps[][2] = { | 
|  | { 1, -1 }, { -1, 1 }, { 1, 1 },  { -1, -1 }, { 2, 1 },   { 1, 2 }, | 
|  | { -2, 1 }, { 1, -2 }, { 2, -1 }, { -1, 2 },  { -2, -1 }, { -1, -2 }, | 
|  | }; | 
|  | const int nsrc_steps = sizeof(src_steps) / (2 * sizeof(src_steps[0][0])); | 
|  | for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) { | 
|  | int16_t *rui_wienerns_info_nsfilter = | 
|  | nsfilter_taps(&rui->wienerns_info, c_id); | 
|  | // int16_t *curr_nsfilter = nsfilter_taps(&curr, c_id); | 
|  | int16_t *best_nsfilter = nsfilter_taps(&best, c_id); | 
|  | rui->wiener_class_id_restrict = c_id; | 
|  | for (int s = 0; s < refine_iters; ++s) { | 
|  | int no_improv = 1; | 
|  | for (int i = beg_feat + (num_feat & 1); i < end_feat; i += 2) { | 
|  | int cmin[2] = { wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], | 
|  | wienerns_coeffs[i + 1 - beg_feat][WIENERNS_MIN_ID] }; | 
|  | int cmax[2] = { | 
|  | wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID] + | 
|  | (1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]), | 
|  | wienerns_coeffs[i + 1 - beg_feat][WIENERNS_MIN_ID] + | 
|  | (1 << wienerns_coeffs[i + 1 - beg_feat][WIENERNS_BIT_ID]) | 
|  | }; | 
|  |  | 
|  | for (int ci = 0; ci < nsrc_steps; ++ci) { | 
|  | rui_wienerns_info_nsfilter[i] = best_nsfilter[i] + src_steps[ci][0]; | 
|  | rui_wienerns_info_nsfilter[i + 1] = | 
|  | best_nsfilter[i + 1] + src_steps[ci][1]; | 
|  | if (rui_wienerns_info_nsfilter[i] < cmin[0] || | 
|  | rui_wienerns_info_nsfilter[i] >= cmax[0] || | 
|  | rui_wienerns_info_nsfilter[i + 1] < cmin[1] || | 
|  | rui_wienerns_info_nsfilter[i + 1] >= cmax[1]) { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | continue; | 
|  | } | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | if (rsc->frame_filters_on) { | 
|  | initialize_bank_with_best_frame_filter_match( | 
|  | rsc, &rui->wienerns_info, cur_bank_ptr, reset_dict); | 
|  | reset_dict = 0; | 
|  | } | 
|  | const int c_id_for_bits = wiener_class_id == ALL_WIENERNS_CLASSES | 
|  | ? ALL_WIENERNS_CLASSES | 
|  | : c_id; | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &x->mode_costs, &rui->wienerns_info, cur_bank_ptr, | 
|  | nsfilter_params, c_id_for_bits); | 
|  | const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth); | 
|  | if (cost < best_cost) { | 
|  | no_improv = 0; | 
|  | best_err = err; | 
|  | best_cost = cost; | 
|  | copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id); | 
|  | if (rsc->frame_filters_on) { | 
|  | WienerNonsepInfoBank *tmp_ptr = ref_bank_ptr; | 
|  | ref_bank_ptr = cur_bank_ptr; | 
|  | cur_bank_ptr = tmp_ptr; | 
|  | } | 
|  | } | 
|  | } | 
|  | // copy_nsfilter_taps_for_class(&curr, &best, c_id); | 
|  | rui_wienerns_info_nsfilter[i] = best_nsfilter[i]; | 
|  | rui_wienerns_info_nsfilter[i + 1] = best_nsfilter[i + 1]; | 
|  | } | 
|  | if (no_improv) { | 
|  | break; | 
|  | } | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | // copy_nsfilter_taps_for_class(&curr, &rui->wienerns_info, c_id); | 
|  | } | 
|  | // Re-establish dst. | 
|  | if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) { | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id); | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | } | 
|  | } | 
|  |  | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | (void)count_wienerns_bits_set(rsc->plane, &x->mode_costs, &rui->wienerns_info, | 
|  | ref_bank_ptr, nsfilter_params, wiener_class_id); | 
|  | return best_err; | 
|  | } | 
|  |  | 
|  | typedef struct BestMatchResults { | 
|  | int use_one_match_index;      // Index of the best matching dictionary-filter. | 
|  | int64_t use_one_taps_score;   // debug: Bits to encode the filter with match. | 
|  | int64_t all_zero_taps_score;  // debug: Bits to encode with all zeros. | 
|  | } BestMatchResults; | 
|  |  | 
|  | // Returns the index of the dictionary-filter in frame_filter_bank that | 
|  | // best matches WienerNonsepInfo *filter. This is useful when encoding filter | 
|  | // where the match index is first encoded and then the filter is encoded | 
|  | // conditioned on the relevant dictionary-filter. | 
|  | static BestMatchResults find_best_match_for_class( | 
|  | const RestSearchCtxt *rsc, WienerNonsepInfo *filter, int class_id, | 
|  | const int16_t *frame_filter_dictionary, int dict_stride, | 
|  | const WienernsFilterParameters *nsfilter_params, | 
|  | WienerNonsepInfoBank *bank) { | 
|  | BestMatchResults best_match_results = { 0 }; | 
|  | const int bank_ref = 0; | 
|  | assert(bank->bank_size_for_class[class_id] == 0); | 
|  | WienerNonsepInfo tmp_filter; | 
|  | tmp_filter.num_classes = filter->num_classes; | 
|  |  | 
|  | int64_t best_scr = INT_MAX; | 
|  | int64_t all_zeros_score = 0;  // debug | 
|  | int best_filter_index = ILLEGAL_MATCH; | 
|  | const int zero_filter_index = 0; | 
|  | const int nopcw = | 
|  | disable_pcwiener_filters_in_framefilters(&rsc->cm->seq_params); | 
|  | const int max_filter_index = num_dictionary_slots(filter->num_classes, nopcw); | 
|  | for (int filter_index = 0; filter_index < max_filter_index; ++filter_index) { | 
|  | if (!is_match_allowed(filter_index, class_id, filter->num_classes)) | 
|  | continue; | 
|  | filter->match_indices[class_id] = filter_index; | 
|  | fill_filter_with_match(&tmp_filter, frame_filter_dictionary, dict_stride, | 
|  | filter->match_indices, nsfilter_params, class_id, | 
|  | nopcw); | 
|  | av1_upd_to_wienerns_bank(bank, bank_ref, &tmp_filter, class_id); | 
|  | bank->bank_size_for_class[class_id] = 1; | 
|  | const int64_t score = | 
|  | count_wienerns_bits_set(rsc->plane, &rsc->x->mode_costs, filter, bank, | 
|  | nsfilter_params, class_id); | 
|  | if (score < best_scr) { | 
|  | best_scr = score; | 
|  | best_filter_index = filter_index; | 
|  | } | 
|  | if (filter_index == zero_filter_index) all_zeros_score = score; | 
|  | } | 
|  | assert(best_filter_index != ILLEGAL_MATCH); | 
|  | best_match_results.use_one_match_index = best_filter_index; | 
|  | best_match_results.use_one_taps_score = best_scr; | 
|  | best_match_results.all_zero_taps_score = all_zeros_score; | 
|  | return best_match_results; | 
|  | } | 
|  |  | 
|  | // Filter will be encoded differentially wrto a matching filter. Finds the | 
|  | // matching-filter that minimizes the side-information bits for filter. Fills | 
|  | // filter->match_indices with the found match. | 
|  | static void find_best_match_for_filter(const RestSearchCtxt *rsc, | 
|  | WienerNonsepInfo *filter, | 
|  | int base_qindex, | 
|  | int16_t *frame_filter_dictionary, | 
|  | int dict_stride) { | 
|  | is_frame_filters_enabled(rsc->plane); | 
|  | const int is_uv = rsc->plane > 0; | 
|  | const int nopcw = | 
|  | disable_pcwiener_filters_in_framefilters(&rsc->cm->seq_params); | 
|  | const WienernsFilterParameters *nsfilter_params = | 
|  | get_wienerns_parameters(base_qindex, is_uv); | 
|  | WienerNonsepInfoBank tmp_bank; | 
|  | av1_reset_wienerns_bank(&tmp_bank, base_qindex, filter->num_classes, 0); | 
|  | BestMatchResults best_match_results[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | for (int c_id = 0; c_id < filter->num_classes; ++c_id) { | 
|  | best_match_results[c_id] = | 
|  | find_best_match_for_class(rsc, filter, c_id, frame_filter_dictionary, | 
|  | dict_stride, nsfilter_params, &tmp_bank); | 
|  | add_filter_to_dictionary(filter, c_id, nsfilter_params, | 
|  | frame_filter_dictionary, dict_stride, nopcw); | 
|  | } | 
|  |  | 
|  | int use_one_match_indices[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | for (int c_id = 0; c_id < filter->num_classes; ++c_id) { | 
|  | use_one_match_indices[c_id] = best_match_results[c_id].use_one_match_index; | 
|  | assert(best_match_results[c_id].use_one_match_index == | 
|  | get_first_match_index(use_one_match_indices[c_id], | 
|  | filter->num_classes, nopcw)); | 
|  | } | 
|  | int *best_match_indices = use_one_match_indices; | 
|  |  | 
|  | WienerNonsepInfo tmp_filter = *filter; | 
|  | for (int c_id = 0; c_id < filter->num_classes; ++c_id) { | 
|  | filter->match_indices[c_id] = best_match_indices[c_id]; | 
|  | // Debug. | 
|  | fill_filter_with_match(&tmp_filter, frame_filter_dictionary, dict_stride, | 
|  | filter->match_indices, nsfilter_params, c_id, nopcw); | 
|  | av1_upd_to_wienerns_bank(&tmp_bank, /*bank_ref=*/0, &tmp_filter, c_id); | 
|  | tmp_bank.bank_size_for_class[c_id] = 1; | 
|  | const int64_t taps_score = | 
|  | count_wienerns_bits_set(rsc->plane, &rsc->x->mode_costs, filter, | 
|  | &tmp_bank, nsfilter_params, c_id); | 
|  | (void)taps_score; | 
|  | assert(taps_score == best_match_results[c_id].use_one_taps_score); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void initialize_bank_with_best_frame_filter_match( | 
|  | const RestSearchCtxt *rsc, WienerNonsepInfo *filter, | 
|  | WienerNonsepInfoBank *bank, int reset_dict) { | 
|  | const int nopcw = | 
|  | disable_pcwiener_filters_in_framefilters(&rsc->cm->seq_params); | 
|  | const int base_qindex = rsc->cm->quant_params.base_qindex; | 
|  | int dict_stride = rsc->cm->frame_filter_dictionary_stride; | 
|  | assert(rsc->cm->frame_filter_dictionary != NULL); | 
|  | assert(rsc->cm->translated_pcwiener_filters != NULL); | 
|  | assert(rsc->cm->translation_done); | 
|  | int16_t *frame_filter_dictionary = rsc->cm->frame_filter_dictionary; | 
|  | if (reset_dict) { | 
|  | *rsc->cm->num_ref_filters = | 
|  | set_frame_filter_dictionary(rsc->plane, rsc->cm, filter->num_classes, | 
|  | frame_filter_dictionary, dict_stride); | 
|  | } | 
|  | filter->num_ref_filters = *rsc->cm->num_ref_filters; | 
|  | find_best_match_for_filter(rsc, filter, base_qindex, frame_filter_dictionary, | 
|  | dict_stride); | 
|  | av1_reset_wienerns_bank(bank, base_qindex, filter->num_classes, | 
|  | rsc->plane != AOM_PLANE_Y); | 
|  | fill_first_slot_of_bank_with_filter_match( | 
|  | rsc->plane, bank, filter, filter->match_indices, base_qindex, | 
|  | ALL_WIENERNS_CLASSES, frame_filter_dictionary, dict_stride, nopcw); | 
|  | } | 
|  |  | 
|  | static int compute_wienerns_filter_select_sym( | 
|  | int n, const int *select, const double *A, int stride, const double *b, | 
|  | double *tmpbuf, int16_t *nsfilter, | 
|  | const WienernsFilterParameters *nsfilter_params) { | 
|  | int ncoeffs1, ncoeffs2; | 
|  | int ncoeffs = | 
|  | config2ncoeffs(&nsfilter_params->nsfilter_config, &ncoeffs1, &ncoeffs2); | 
|  | (void)ncoeffs; | 
|  | if (nsfilter_params->nsfilter_config.asymmetric + | 
|  | nsfilter_params->nsfilter_config.asymmetric2 == | 
|  | 0) | 
|  | return 0; | 
|  | double sym_A[WIENERNS_A_SIZE] = { 0 }; | 
|  | double sym_b[WIENERNS_b_SIZE] = { 0 }; | 
|  | int stridep = n; | 
|  | int ip = 0; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | if (!select[i]) continue; | 
|  | const int is_asym_coeff_i = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_i && (i & 1) == 1) continue; | 
|  | const int is_merge_i = (is_asym_coeff_i && (i & 1) == 0); | 
|  | for (int j = i, jp = ip; j < n; ++j) { | 
|  | if (!select[j]) continue; | 
|  | const int is_asym_coeff_j = | 
|  | (j < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (j >= ncoeffs1 && | 
|  | j - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_j && (j & 1) == 1) continue; | 
|  | const int is_merge_j = is_asym_coeff_j && (j & 1) == 0; | 
|  | if (is_merge_i && is_merge_j) | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j] + A[i * stride + j + 1] + | 
|  | A[(i + 1) * stride + j] + | 
|  | A[(i + 1) * stride + j + 1]; | 
|  | else if (is_merge_i) | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j] + A[(i + 1) * stride + j]; | 
|  | else if (is_merge_j) | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j] + A[i * stride + j + 1]; | 
|  | else | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j]; | 
|  | if (ip != jp) sym_A[jp * stridep + ip] = sym_A[ip * stridep + jp]; | 
|  | jp++; | 
|  | } | 
|  | if (is_merge_i) | 
|  | sym_b[ip] = b[i] + b[i + 1]; | 
|  | else | 
|  | sym_b[ip] = b[i]; | 
|  | ip++; | 
|  | } | 
|  | int np = ip; | 
|  | assert(np > 0); | 
|  | assert(stridep > 0); | 
|  |  | 
|  | // Use temporary storage to avoid modifying A and b | 
|  | double *R = tmpbuf; | 
|  | double *tmp = tmpbuf + WIENERNS_R_SIZE; | 
|  |  | 
|  | // Set up quantization data | 
|  | double prec[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t min[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t max[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t scale[WIENERNS_TAPS_MAX] = { 0 }; | 
|  |  | 
|  | assert(np <= nsfilter_params->ncoeffs); | 
|  |  | 
|  | ip = 0; | 
|  | for (int i = 0; i < n; i++) { | 
|  | if (!select[i]) continue; | 
|  | const int is_asym_coeff_i = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_i && (i & 1) == 1) continue; | 
|  | int min_val = nsfilter_params->coeffs[i][WIENERNS_MIN_ID]; | 
|  | int range = 1 << nsfilter_params->coeffs[i][WIENERNS_BIT_ID]; | 
|  |  | 
|  | prec[ip] = (double)(1 << nsfilter_params->nsfilter_config.prec_bits); | 
|  | min[ip] = min_val; | 
|  | max[ip] = min_val + range - 1; | 
|  | scale[ip] = 1; | 
|  | ip++; | 
|  | } | 
|  | // Solve problem | 
|  | int32_t sym_x[WIENERNS_TAPS_MAX]; | 
|  | int ret = linsolve_spd_quantize(np, sym_A, R, stridep, sym_b, tmp, sym_x, | 
|  | prec, min, max, scale); | 
|  | if (!ret) goto finished; | 
|  |  | 
|  | // Convert results from 32-bit to 16-bit storage | 
|  | ip = 0; | 
|  | for (int i = 0; i < n; i++) { | 
|  | if (!select[i]) { | 
|  | nsfilter[i] = 0; | 
|  | continue; | 
|  | } | 
|  | const int is_asym_coeff_i = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_i && (i & 1) == 1) | 
|  | nsfilter[i] = nsfilter[i - 1]; | 
|  | else | 
|  | nsfilter[i] = sym_x[ip++]; | 
|  | } | 
|  |  | 
|  | finished: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int compute_wienerns_filter_select( | 
|  | int n, const int *select, const double *A, int stride, const double *b, | 
|  | double *tmpbuf, int16_t *nsfilter, | 
|  | const WienernsFilterParameters *nsfilter_params) { | 
|  | double sel_A[WIENERNS_A_SIZE] = { 0 }; | 
|  | double sel_b[WIENERNS_b_SIZE] = { 0 }; | 
|  | int stridep = n; | 
|  | int ip = 0; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | if (!select[i]) continue; | 
|  | int jp = 0; | 
|  | for (int j = 0; j < n; ++j) { | 
|  | if (!select[j]) continue; | 
|  | sel_A[ip * stridep + jp] = A[i * stride + j]; | 
|  | jp++; | 
|  | } | 
|  | sel_b[ip] = b[i]; | 
|  | ip++; | 
|  | } | 
|  | int np = ip; | 
|  |  | 
|  | // Use temporary storage to avoid modifying A and b | 
|  | double *R = tmpbuf; | 
|  | double *tmp = tmpbuf + WIENERNS_R_SIZE; | 
|  |  | 
|  | // Set up quantization data | 
|  | double prec[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t min[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t max[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t scale[WIENERNS_TAPS_MAX] = { 0 }; | 
|  |  | 
|  | assert(np <= nsfilter_params->ncoeffs); | 
|  |  | 
|  | ip = 0; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | if (!select[i]) continue; | 
|  | int min_val = nsfilter_params->coeffs[i][WIENERNS_MIN_ID]; | 
|  | int range = 1 << nsfilter_params->coeffs[i][WIENERNS_BIT_ID]; | 
|  | prec[ip] = (double)(1 << nsfilter_params->nsfilter_config.prec_bits); | 
|  | min[ip] = min_val; | 
|  | max[ip] = min_val + range - 1; | 
|  | scale[ip] = 1; | 
|  | ip++; | 
|  | } | 
|  | // Solve problem | 
|  | int32_t sel_x[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int ret = linsolve_spd_quantize(np, sel_A, R, stridep, sel_b, tmp, sel_x, | 
|  | prec, min, max, scale); | 
|  | if (!ret) return ret; | 
|  | ip = 0; | 
|  | for (int i = 0; i < n; i++) { | 
|  | nsfilter[i] = select[i] ? sel_x[ip++] : 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int compute_wienerns_filter_sym( | 
|  | int n, const double *A, int stride, const double *b, double *tmpbuf, | 
|  | int16_t *nsfilter, const WienernsFilterParameters *nsfilter_params) { | 
|  | int ncoeffs1, ncoeffs2; | 
|  | int ncoeffs = | 
|  | config2ncoeffs(&nsfilter_params->nsfilter_config, &ncoeffs1, &ncoeffs2); | 
|  | (void)ncoeffs; | 
|  | if (nsfilter_params->nsfilter_config.asymmetric + | 
|  | nsfilter_params->nsfilter_config.asymmetric2 == | 
|  | 0) | 
|  | return 0; | 
|  | double sym_A[WIENERNS_A_SIZE] = { 0 }; | 
|  | double sym_b[WIENERNS_b_SIZE] = { 0 }; | 
|  | int stridep = n; | 
|  | int ip = 0; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | const int is_asym_coeff_i = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_i && (i & 1) == 1) continue; | 
|  | const int is_merge_i = (is_asym_coeff_i && (i & 1) == 0); | 
|  | for (int j = i, jp = ip; j < n; ++j) { | 
|  | const int is_asym_coeff_j = | 
|  | (j < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (j >= ncoeffs1 && | 
|  | j - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_j && (j & 1) == 1) continue; | 
|  | const int is_merge_j = is_asym_coeff_j && (j & 1) == 0; | 
|  | if (is_merge_i && is_merge_j) | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j] + A[i * stride + j + 1] + | 
|  | A[(i + 1) * stride + j] + | 
|  | A[(i + 1) * stride + j + 1]; | 
|  | else if (is_merge_i) | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j] + A[(i + 1) * stride + j]; | 
|  | else if (is_merge_j) | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j] + A[i * stride + j + 1]; | 
|  | else | 
|  | sym_A[ip * stridep + jp] = A[i * stride + j]; | 
|  | if (ip != jp) sym_A[jp * stridep + ip] = sym_A[ip * stridep + jp]; | 
|  | jp++; | 
|  | } | 
|  | if (is_merge_i) | 
|  | sym_b[ip] = b[i] + b[i + 1]; | 
|  | else | 
|  | sym_b[ip] = b[i]; | 
|  | ip++; | 
|  | } | 
|  | int np = ip; | 
|  | assert(np > 0); | 
|  | assert(stridep > 0); | 
|  |  | 
|  | // Use temporary storage to avoid modifying A and b | 
|  | double *R = tmpbuf; | 
|  | double *tmp = tmpbuf + WIENERNS_R_SIZE; | 
|  |  | 
|  | // Set up quantization data | 
|  | double prec[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t min[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t max[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t scale[WIENERNS_TAPS_MAX] = { 0 }; | 
|  |  | 
|  | assert(np <= nsfilter_params->ncoeffs); | 
|  |  | 
|  | ip = 0; | 
|  | for (int i = 0; i < n; i++) { | 
|  | const int is_asym_coeff_i = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_i && (i & 1) == 1) continue; | 
|  | int min_val = nsfilter_params->coeffs[i][WIENERNS_MIN_ID]; | 
|  | int range = 1 << nsfilter_params->coeffs[i][WIENERNS_BIT_ID]; | 
|  |  | 
|  | prec[ip] = (double)(1 << nsfilter_params->nsfilter_config.prec_bits); | 
|  | min[ip] = min_val; | 
|  | max[ip] = min_val + range - 1; | 
|  | scale[ip] = 1; | 
|  | ip++; | 
|  | } | 
|  | // Solve problem | 
|  | int32_t sym_x[WIENERNS_TAPS_MAX]; | 
|  | int ret = linsolve_spd_quantize(np, sym_A, R, stridep, sym_b, tmp, sym_x, | 
|  | prec, min, max, scale); | 
|  | if (!ret) goto finished; | 
|  |  | 
|  | // Convert results from 32-bit to 16-bit storage | 
|  | ip = 0; | 
|  | for (int i = 0; i < n; i++) { | 
|  | const int is_asym_coeff_i = | 
|  | (i < nsfilter_params->nsfilter_config.asymmetric || | 
|  | (i >= ncoeffs1 && | 
|  | i - ncoeffs1 < nsfilter_params->nsfilter_config.asymmetric2)); | 
|  | if (is_asym_coeff_i && (i & 1) == 1) | 
|  | nsfilter[i] = nsfilter[i - 1]; | 
|  | else | 
|  | nsfilter[i] = sym_x[ip++]; | 
|  | } | 
|  |  | 
|  | finished: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int compute_wienerns_filter( | 
|  | int n, const double *A, int stride, const double *b, double *tmpbuf, | 
|  | int16_t *nsfilter, const WienernsFilterParameters *nsfilter_params) { | 
|  | assert(n > 0); | 
|  | assert(stride > 0); | 
|  |  | 
|  | // Use temporary storage to avoid modifying A and b | 
|  | double *R = tmpbuf; | 
|  | double *tmp = tmpbuf + WIENERNS_R_SIZE; | 
|  |  | 
|  | // Set up quantization data | 
|  | double prec[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t min[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t max[WIENERNS_TAPS_MAX] = { 0 }; | 
|  | int32_t scale[WIENERNS_TAPS_MAX] = { 0 }; | 
|  |  | 
|  | assert(n <= nsfilter_params->ncoeffs); | 
|  | for (int i = 0; i < n; i++) { | 
|  | int min_val = nsfilter_params->coeffs[i][WIENERNS_MIN_ID]; | 
|  | int range = 1 << nsfilter_params->coeffs[i][WIENERNS_BIT_ID]; | 
|  |  | 
|  | prec[i] = (double)(1 << nsfilter_params->nsfilter_config.prec_bits); | 
|  | min[i] = min_val; | 
|  | max[i] = min_val + range - 1; | 
|  | scale[i] = 1; | 
|  | } | 
|  |  | 
|  | // Solve problem | 
|  | int32_t x[WIENERNS_TAPS_MAX]; | 
|  | int ret = | 
|  | linsolve_spd_quantize(n, A, R, stride, b, tmp, x, prec, min, max, scale); | 
|  | if (!ret) goto finished; | 
|  |  | 
|  | // Convert results from 32-bit to 16-bit storage | 
|  | for (int i = 0; i < n; i++) { | 
|  | nsfilter[i] = x[i]; | 
|  | } | 
|  |  | 
|  | finished: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int compute_wienerns_filter_select_master_basic( | 
|  | const RestSearchCtxt *rsc, WienerNonsepInfo *filter, int c_id, int n, int s, | 
|  | const double *A, int stride, const double *b, double *tmpbuf, | 
|  | const WienernsFilterParameters *nsfilter_params, int do_sym_search) { | 
|  | double cost = DBL_MAX, cost_sym = DBL_MAX; | 
|  | int16_t *nsfilter = nsfilter_taps(filter, c_id); | 
|  | int16_t nsfilter_bak[WIENERNS_TAPS_MAX]; | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  |  | 
|  | memset(nsfilter, 0, num_feat * sizeof(*nsfilter)); | 
|  | int linsolve_successful = 0; | 
|  | if (skip_sym_bit(nsfilter_params, s) != 2) {  // If #taps > max allowed 18, | 
|  | // skip and go to sym search | 
|  | linsolve_successful = compute_wienerns_filter_select( | 
|  | n, nsfilter_params->subset_config[s], A, stride, b, tmpbuf, nsfilter, | 
|  | nsfilter_params); | 
|  | if (!do_sym_search) return linsolve_successful; | 
|  | if (nsfilter_params->nsfilter_config.asymmetric + | 
|  | nsfilter_params->nsfilter_config.asymmetric2 == | 
|  | 0) | 
|  | return linsolve_successful; | 
|  | if (linsolve_successful) { | 
|  | double err = 0; | 
|  | for (int i = 0; i < num_feat; ++i) err -= nsfilter[i] * b[i]; | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &rsc->x->mode_costs, filter, NULL, nsfilter_params, c_id); | 
|  | cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, | 
|  | (int64_t)err, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | memcpy(nsfilter_bak, nsfilter, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | memset(nsfilter, 0, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | int linsolve_successful_sym = compute_wienerns_filter_select_sym( | 
|  | n, nsfilter_params->subset_config[s], A, stride, b, tmpbuf, nsfilter, | 
|  | nsfilter_params); | 
|  | if (linsolve_successful_sym) { | 
|  | double err = 0; | 
|  | for (int i = 0; i < num_feat; ++i) err -= nsfilter[i] * b[i]; | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &rsc->x->mode_costs, filter, NULL, nsfilter_params, c_id); | 
|  | cost_sym = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, bits >> 4, (int64_t)err, rsc->cm->seq_params.bit_depth); | 
|  | } | 
|  | if (!linsolve_successful && !linsolve_successful_sym) return 0; | 
|  | if (cost < cost_sym || (linsolve_successful && !linsolve_successful_sym)) { | 
|  | memcpy(nsfilter, nsfilter_bak, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int compute_wienerns_filter_select_master( | 
|  | const RestSearchCtxt *rsc, const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, RestorationUnitInfo *rui, int c_id, int n, | 
|  | int s, const double *A, int stride, const double *b, double *tmpbuf, | 
|  | const WienernsFilterParameters *nsfilter_params, int do_sym_search) { | 
|  | double cost = DBL_MAX, cost_sym = DBL_MAX; | 
|  | int16_t *nsfilter = nsfilter_taps(&rui->wienerns_info, c_id); | 
|  | int16_t nsfilter_bak[WIENERNS_TAPS_MAX]; | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  | // const int ru_size = rsc->cm->rst_info[rsc->plane].restoration_unit_size; | 
|  |  | 
|  | memset(nsfilter, 0, num_feat * sizeof(*nsfilter)); | 
|  | int linsolve_successful = 0; | 
|  | if (skip_sym_bit(nsfilter_params, s) != 2) { | 
|  | linsolve_successful = compute_wienerns_filter_select( | 
|  | n, nsfilter_params->subset_config[s], A, stride, b, tmpbuf, nsfilter, | 
|  | nsfilter_params); | 
|  | if (!do_sym_search) return linsolve_successful; | 
|  | if (nsfilter_params->nsfilter_config.asymmetric + | 
|  | nsfilter_params->nsfilter_config.asymmetric2 == | 
|  | 0) | 
|  | return linsolve_successful; | 
|  | if (linsolve_successful) { | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &rsc->x->mode_costs, &rui->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, c_id); | 
|  | cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, err, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | // printf("[%d] Asym: e %" PRId64 " b %" PRId64 " cost %f\n", ru_size, | 
|  | // err, | 
|  | //        bits, cost); | 
|  | memcpy(nsfilter_bak, nsfilter, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | memset(nsfilter, 0, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | int linsolve_successful_sym = compute_wienerns_filter_select_sym( | 
|  | n, nsfilter_params->subset_config[s], A, stride, b, tmpbuf, nsfilter, | 
|  | nsfilter_params); | 
|  | if (linsolve_successful_sym) { | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &rsc->x->mode_costs, &rui->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, c_id); | 
|  | cost_sym = RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, err, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | // printf("[%d] Sym:  e %" PRId64 " b %" PRId64 " cost %f\n", ru_size, err, | 
|  | //        bits, cost_sym); | 
|  | } | 
|  | if (!linsolve_successful && !linsolve_successful_sym) return 0; | 
|  | if (cost < cost_sym || (linsolve_successful && !linsolve_successful_sym)) { | 
|  | memcpy(nsfilter, nsfilter_bak, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int compute_wienerns_filter_master_basic( | 
|  | const RestSearchCtxt *rsc, WienerNonsepInfo *filter, int c_id, int n, | 
|  | const double *A, int stride, const double *b, double *tmpbuf, | 
|  | const WienernsFilterParameters *nsfilter_params, int do_sym_search) { | 
|  | double cost = DBL_MAX, cost_sym = DBL_MAX; | 
|  | int16_t *nsfilter = nsfilter_taps(filter, c_id); | 
|  | int16_t nsfilter_bak[WIENERNS_TAPS_MAX]; | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  |  | 
|  | int linsolve_successful = compute_wienerns_filter(n, A, stride, b, tmpbuf, | 
|  | nsfilter, nsfilter_params); | 
|  | if (!do_sym_search) return linsolve_successful; | 
|  | if (linsolve_successful) { | 
|  | double err = 0; | 
|  | for (int i = 0; i < num_feat; ++i) err -= nsfilter[i] * b[i]; | 
|  | const int64_t bits = | 
|  | count_wienerns_bits_set(rsc->plane, &rsc->x->mode_costs, filter, | 
|  | &rsc->wienerns_bank, nsfilter_params, c_id); | 
|  | cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, bits >> 4, (int64_t)err, rsc->cm->seq_params.bit_depth); | 
|  | memcpy(nsfilter_bak, nsfilter, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | int linsolve_successful_sym = compute_wienerns_filter_sym( | 
|  | n, A, stride, b, tmpbuf, nsfilter, nsfilter_params); | 
|  | if (linsolve_successful_sym) { | 
|  | double err = 0; | 
|  | for (int i = 0; i < num_feat; ++i) err -= nsfilter[i] * b[i]; | 
|  | const int64_t bits = | 
|  | count_wienerns_bits_set(rsc->plane, &rsc->x->mode_costs, filter, | 
|  | &rsc->wienerns_bank, nsfilter_params, c_id); | 
|  | cost_sym = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, bits >> 4, (int64_t)err, rsc->cm->seq_params.bit_depth); | 
|  | } | 
|  | if (!linsolve_successful && !linsolve_successful_sym) return 0; | 
|  | if (cost < cost_sym || (linsolve_successful && !linsolve_successful_sym)) { | 
|  | memcpy(nsfilter, nsfilter_bak, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int compute_wienerns_filter_master( | 
|  | RestSearchCtxt *rsc, const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, RestorationUnitInfo *rui, int c_id, int n, | 
|  | const double *A, int stride, const double *b, double *tmpbuf, | 
|  | const WienernsFilterParameters *nsfilter_params, int do_sym_search) { | 
|  | double cost = DBL_MAX, cost_sym = DBL_MAX; | 
|  | int16_t *nsfilter = nsfilter_taps(&rui->wienerns_info, c_id); | 
|  | int16_t nsfilter_bak[WIENERNS_TAPS_MAX]; | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  |  | 
|  | int linsolve_successful = compute_wienerns_filter(n, A, stride, b, tmpbuf, | 
|  | nsfilter, nsfilter_params); | 
|  | if (!do_sym_search) return linsolve_successful; | 
|  | if (linsolve_successful) { | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &rsc->x->mode_costs, &rui->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, c_id); | 
|  | cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, err, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | memcpy(nsfilter_bak, nsfilter, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | int linsolve_successful_sym = compute_wienerns_filter_sym( | 
|  | n, A, stride, b, tmpbuf, nsfilter, nsfilter_params); | 
|  | if (linsolve_successful_sym) { | 
|  | const int64_t err = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | const int64_t bits = count_wienerns_bits_set( | 
|  | rsc->plane, &rsc->x->mode_costs, &rui->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, c_id); | 
|  | cost_sym = RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, err, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | } | 
|  | if (!linsolve_successful && !linsolve_successful_sym) return 0; | 
|  | if (cost < cost_sym || (linsolve_successful && !linsolve_successful_sym)) { | 
|  | memcpy(nsfilter, nsfilter_bak, num_feat * sizeof(*nsfilter)); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int64_t compute_stats_for_wienerns_filter( | 
|  | const uint16_t *dgd_hbd, const uint16_t *src_hbd, | 
|  | const RestorationTileLimits *limits, int dgd_stride, int src_stride, | 
|  | const RestorationUnitInfo *rui, int bit_depth, double *A, double *b, | 
|  | int *num_pixels_in_class, const WienernsFilterParameters *nsfilter_params, | 
|  | int num_classes) { | 
|  | (void)rui; | 
|  | const uint16_t *luma_hbd = rui->luma; | 
|  |  | 
|  | const int total_dim_A = num_classes * WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | const int stride_A = WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | const int total_dim_b = num_classes * WIENERNS_TAPS_MAX; | 
|  | const int stride_b = WIENERNS_TAPS_MAX; | 
|  |  | 
|  | const int set_index = | 
|  | get_filter_set_index(rui->base_qindex, rui->qindex_offset); | 
|  | const uint8_t *pc_wiener_sub_classify = | 
|  | get_pc_wiener_sub_classifier(num_classes, set_index); | 
|  |  | 
|  | int16_t buf[WIENERNS_TAPS_MAX]; | 
|  | memset(A, 0, sizeof(*A) * total_dim_A); | 
|  | memset(b, 0, sizeof(*b) * total_dim_b); | 
|  | memset(num_pixels_in_class, 0, sizeof(*num_pixels_in_class) * num_classes); | 
|  |  | 
|  | const int(*wienerns_config)[3] = nsfilter_params->nsfilter_config.config; | 
|  | int is_uv = (rui->plane != AOM_PLANE_Y); | 
|  | const int(*wienerns_config2)[3] = | 
|  | is_uv ? nsfilter_params->nsfilter_config.config2 : NULL; | 
|  | const int end_pixel = is_uv ? nsfilter_params->nsfilter_config.num_pixels + | 
|  | nsfilter_params->nsfilter_config.num_pixels2 | 
|  | : nsfilter_params->nsfilter_config.num_pixels; | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  |  | 
|  | int64_t real_sse = 0;  // for debuggung purposes | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | for (int i = limits->v_start; i < limits->v_end; ++i) { | 
|  | for (int j = limits->h_start; j < limits->h_end; ++j) { | 
|  | int dgd_id = i * dgd_stride + j; | 
|  | int src_id = i * src_stride + j; | 
|  |  | 
|  | // Skip pixel if not of sub_class_id. | 
|  | if (num_classes > 1) { | 
|  | const int full_class_id = | 
|  | rui->wiener_class_id[(i >> MI_SIZE_LOG2) * | 
|  | rui->wiener_class_id_stride + | 
|  | (j >> MI_SIZE_LOG2)]; | 
|  | const int sub_class_id = pc_wiener_sub_classify[full_class_id]; | 
|  | if (c_id != sub_class_id) continue; | 
|  | } | 
|  |  | 
|  | int luma_id = i * rui->luma_stride + j; | 
|  | memset(buf, 0, sizeof(buf)); | 
|  | for (int k = 0; k < end_pixel; ++k) { | 
|  | const int cross = | 
|  | (is_uv && k >= nsfilter_params->nsfilter_config.num_pixels); | 
|  |  | 
|  | if (!cross) { | 
|  | const int pos = wienerns_config[k][WIENERNS_BUF_POS]; | 
|  | const int r = wienerns_config[k][WIENERNS_ROW_ID]; | 
|  | const int c = wienerns_config[k][WIENERNS_COL_ID]; | 
|  | if (r == 0 && c == 0) { | 
|  | buf[pos] += 1; | 
|  | continue; | 
|  | } | 
|  | buf[pos] += | 
|  | clip_base((int16_t)dgd_hbd[(i + r) * dgd_stride + (j + c)] - | 
|  | (int16_t)dgd_hbd[dgd_id], | 
|  | bit_depth); | 
|  | } else { | 
|  | const int k2 = k - nsfilter_params->nsfilter_config.num_pixels; | 
|  | const int pos = wienerns_config2[k2][WIENERNS_BUF_POS]; | 
|  | const int r = wienerns_config2[k2][WIENERNS_ROW_ID]; | 
|  | const int c = wienerns_config2[k2][WIENERNS_COL_ID]; | 
|  |  | 
|  | buf[pos] += clip_base( | 
|  | (int16_t)luma_hbd[(i + r) * rui->luma_stride + (j + c)] - | 
|  | (int16_t)luma_hbd[luma_id], | 
|  | bit_depth); | 
|  | } | 
|  | } | 
|  | int16_t y; | 
|  | y = ((int64_t)src_hbd[src_id] - dgd_hbd[dgd_id]); | 
|  | for (int k = 0; k < num_feat; ++k) { | 
|  | for (int l = 0; l <= k; ++l) { | 
|  | A[k * num_feat + l + c_id * stride_A] += | 
|  | (double)buf[k] * (double)buf[l]; | 
|  | } | 
|  | b[k + c_id * stride_b] += (double)buf[k] * (double)y; | 
|  | } | 
|  | real_sse += (int64_t)y * (int64_t)y; | 
|  | ++num_pixels_in_class[c_id]; | 
|  | } | 
|  | } | 
|  | for (int k = 0; k < num_feat; ++k) { | 
|  | for (int l = k + 1; l < num_feat; ++l) { | 
|  | A[k * num_feat + l + c_id * stride_A] = | 
|  | A[l * num_feat + k + c_id * stride_A]; | 
|  | } | 
|  | } | 
|  | } | 
|  | return real_sse; | 
|  | } | 
|  |  | 
|  | static int compute_quantized_wienerns_filter( | 
|  | RestSearchCtxt *rsc, const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, RestorationUnitInfo *rui, const double *A, | 
|  | const double *b, int64_t real_sse, | 
|  | const WienernsFilterParameters *nsfilter_params) { | 
|  | const int num_classes = rsc->num_filter_classes; | 
|  | assert(num_classes == rsc->wienerns_bank.filter[0].num_classes); | 
|  | const int stride_A = WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | const int total_dim_b = num_classes * WIENERNS_TAPS_MAX; | 
|  | const int stride_b = WIENERNS_TAPS_MAX; | 
|  |  | 
|  | double solver_x[WIENERNS_MAX_CLASSES * WIENERNS_TAPS_MAX]; | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  |  | 
|  | int ret = 0; | 
|  | WienerNonsepInfo best = { 0 }; | 
|  | best.num_classes = num_classes; | 
|  | double best_cost = DBL_MAX; | 
|  |  | 
|  | assert((num_feat & 1) == 0); | 
|  | for (int s = nsfilter_params->nsubsets - 1; s >= 0; --s) { | 
|  | memset(solver_x, 0, sizeof(*solver_x) * total_dim_b); | 
|  | config2ncoeffs_select(&nsfilter_params->nsfilter_config, | 
|  | nsfilter_params->subset_config[s], NULL, NULL); | 
|  | int linsolve_successful = 0; | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | int16_t *nsfilter = nsfilter_taps(&rui->wienerns_info, c_id); | 
|  | memset(nsfilter, 0, num_feat * sizeof(*nsfilter)); | 
|  | linsolve_successful = compute_wienerns_filter_select_master( | 
|  | rsc, limits, tile_rect, rui, c_id, num_feat, s, A + c_id * stride_A, | 
|  | num_feat, b + c_id * stride_b, rsc->wienerns_tmpbuf, nsfilter_params, | 
|  | 0); | 
|  | } | 
|  | if (linsolve_successful) { | 
|  | do { | 
|  | assert(rui->wiener_class_id_restrict == -1); | 
|  | int64_t real_errq = | 
|  | calc_finer_tile_search_error(rsc, limits, tile_rect, rui); | 
|  | int64_t bits = count_wienerns_bits_set( | 
|  | rui->plane, &rsc->x->mode_costs, &rui->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, ALL_WIENERNS_CLASSES); | 
|  | double cost = | 
|  | RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, real_errq, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | // Check if found filter is worse than no filtering. | 
|  | if (real_errq <= real_sse && cost < best_cost) { | 
|  | best_cost = cost; | 
|  | copy_nsfilter_taps(&best, &rui->wienerns_info); | 
|  | ret = 1; | 
|  | } else { | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | } | 
|  | } while (0); | 
|  | } | 
|  | } | 
|  | if (ret) { | 
|  | copy_nsfilter_taps(&rui->wienerns_info, &best); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int get_merge_begin_index(const RestSearchCtxt *rsc, | 
|  | const WienernsFilterParameters *nsfilter_params, | 
|  | const WienerNonsepInfo *token_wienerns_info, | 
|  | Vector *current_unit_stack, | 
|  | WienerNonsepInfoBank **begin_bank, | 
|  | int wiener_class_id) { | 
|  | int begin_idx = -1; | 
|  | const int last_idx = | 
|  | ((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx; | 
|  | int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx]; | 
|  | if (old_unit->rest_unit_idx == last_idx) continue; | 
|  | if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == | 
|  | RESTORE_WIENER_NONSEP && | 
|  | check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info, | 
|  | nsfilter_params->ncoeffs, wiener_class_id)) { | 
|  | // Same filter as before. | 
|  | if (check_wienerns_bank_eq(&old_unit->ref_wienerns_bank, | 
|  | token_wienerns_info, nsfilter_params->ncoeffs, | 
|  | wiener_class_id, equal_ref_for_class) == -1) { | 
|  | // Head merge point for this filter. | 
|  | begin_idx = old_unit->rest_unit_idx; | 
|  | // Set merge-leader's bank. | 
|  | *begin_bank = &old_unit->ref_wienerns_bank; | 
|  | } | 
|  | } | 
|  | } | 
|  | return begin_idx; | 
|  | } | 
|  |  | 
|  | void populate_current_unit_indices( | 
|  | const RestSearchCtxt *rsc, const WienernsFilterParameters *nsfilter_params, | 
|  | const WienerNonsepInfo *token_wienerns_info, int begin_idx_cand, | 
|  | Vector *current_unit_stack, Vector *current_unit_indices, | 
|  | int wiener_class_id) { | 
|  | const int last_idx = | 
|  | ((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx; | 
|  | bool has_begun = false; | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx]; | 
|  | if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true; | 
|  | if (!has_begun) continue; | 
|  | if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == | 
|  | RESTORE_WIENER_NONSEP && | 
|  | old_unit->rest_unit_idx != last_idx && | 
|  | !check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info, | 
|  | nsfilter_params->ncoeffs, wiener_class_id)) | 
|  | continue; | 
|  | int index = old_unit->rest_unit_idx; | 
|  | aom_vector_push_back(current_unit_indices, &index); | 
|  | } | 
|  | } | 
|  |  | 
|  | double set_cand_merge_sse_and_bits( | 
|  | RestSearchCtxt *rsc, const WienernsFilterParameters *nsfilter_params, | 
|  | const AV1PixelRect *tile_rect, int begin_idx_cand, | 
|  | Vector *current_unit_stack, WienerNonsepInfo *token_wienerns_info_cand, | 
|  | RestorationUnitInfo *rui_merge_cand, int wiener_class_id) { | 
|  | const int last_idx = | 
|  | ((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx; | 
|  | const int is_uv = (rsc->plane != AOM_PLANE_Y); | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const int bit_depth = rsc->cm->seq_params.bit_depth; | 
|  |  | 
|  | double cost_merge_cand = 0; | 
|  | int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | rui_merge_cand->wiener_class_id_restrict = wiener_class_id; | 
|  | bool has_begun = false; | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx]; | 
|  | if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true; | 
|  | if (!has_begun) continue; | 
|  | if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == | 
|  | RESTORE_WIENER_NONSEP && | 
|  | old_unit->rest_unit_idx != last_idx && | 
|  | !check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info_cand, | 
|  | nsfilter_params->ncoeffs, wiener_class_id)) | 
|  | continue; | 
|  |  | 
|  | if (old_rusi->bru_unit_skipped) { | 
|  | old_unit->merge_sse_cand = 0; | 
|  | } else { | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int old_start_mi_x = | 
|  | old_unit->limits.h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int old_start_mi_y = | 
|  | old_unit->limits.v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int old_mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, old_start_mi_y, old_start_mi_x); | 
|  | rui_merge_cand->mbmi_ptr = rsc->cm->mi_params.mi_grid_base + old_mbmi_idx; | 
|  | old_unit->merge_sse_cand = try_restoration_unit( | 
|  | rsc, &old_unit->limits, tile_rect, rui_merge_cand); | 
|  | } | 
|  | // First unit in stack has larger unit_bits because the | 
|  | // merged coeffs are linked to it. | 
|  | if (old_unit->rest_unit_idx == begin_idx_cand) { | 
|  | // The first unit will have a different filter | 
|  | // (rui_merge_cand->wienerns_info) to signal at wiener_class_id, same | 
|  | // filters elsewhere. | 
|  | WienerNonsepInfo tmp_filters = old_rusi->wienerns_info; | 
|  | copy_nsfilter_taps_for_class(&tmp_filters, &rui_merge_cand->wienerns_info, | 
|  | wiener_class_id); | 
|  | const int new_bits = (int)count_wienerns_bits_set( | 
|  | is_uv, &x->mode_costs, &tmp_filters, &old_unit->ref_wienerns_bank, | 
|  | nsfilter_params, ALL_WIENERNS_CLASSES); | 
|  | old_unit->merge_bits_cand = | 
|  | x->mode_costs.wienerns_restore_cost[1] + new_bits; | 
|  | } else if (old_unit->rest_unit_idx != last_idx) { | 
|  | const int is_equal = check_wienerns_bank_eq( | 
|  | &old_unit->ref_wienerns_bank, token_wienerns_info_cand, | 
|  | nsfilter_params->ncoeffs, wiener_class_id, equal_ref_for_class); | 
|  | (void)is_equal; | 
|  | assert(is_equal >= 0);  // Must exist in bank | 
|  | const int merge_bits = (int)count_wienerns_bits( | 
|  | is_uv, &x->mode_costs, &old_rusi->wienerns_info, | 
|  | &old_unit->ref_wienerns_bank, nsfilter_params, ALL_WIENERNS_CLASSES); | 
|  | assert(merge_bits == count_wienerns_bits_set( | 
|  | is_uv, &x->mode_costs, &old_rusi->wienerns_info, | 
|  | &old_unit->ref_wienerns_bank, nsfilter_params, | 
|  | ALL_WIENERNS_CLASSES)); | 
|  | old_unit->merge_bits_cand = | 
|  | x->mode_costs.wienerns_restore_cost[1] + merge_bits; | 
|  | } else { | 
|  | // This should be the last RU in the chain we are optimizing. | 
|  | // Old bank is not updated. Use the old value in token_wienerns_info_cand | 
|  | // to calculate the merge-ref. | 
|  | const int is_equal = check_wienerns_bank_eq( | 
|  | &old_unit->ref_wienerns_bank, token_wienerns_info_cand, | 
|  | nsfilter_params->ncoeffs, wiener_class_id, equal_ref_for_class); | 
|  | (void)is_equal; | 
|  | assert(is_equal >= 0);  // Must exist in bank | 
|  |  | 
|  | // token_wienerns_info_cand has the best filters for classes < | 
|  | // wiener_class_id and the token filter at wiener_class_id. Remaining | 
|  | // filters are the computed RU filters that have not entered the merge | 
|  | // trial. | 
|  | token_wienerns_info_cand->bank_ref_for_class[wiener_class_id] = | 
|  | equal_ref_for_class[wiener_class_id]; | 
|  |  | 
|  | // Using count_wienerns_bits_set just in case. | 
|  | const int merge_bits = (int)count_wienerns_bits_set( | 
|  | is_uv, &x->mode_costs, token_wienerns_info_cand, | 
|  | &old_unit->ref_wienerns_bank, nsfilter_params, ALL_WIENERNS_CLASSES); | 
|  | old_unit->merge_bits_cand = | 
|  | x->mode_costs.wienerns_restore_cost[1] + merge_bits; | 
|  | } | 
|  | cost_merge_cand += RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, old_unit->merge_bits_cand >> 4, old_unit->merge_sse_cand, | 
|  | bit_depth); | 
|  | } | 
|  | return cost_merge_cand; | 
|  | } | 
|  |  | 
|  | double accumulate_merge_stats(const RestSearchCtxt *rsc, | 
|  | const WienernsFilterParameters *nsfilter_params, | 
|  | const WienerNonsepInfo *ref_wienerns_info_cand, | 
|  | int begin_idx_cand, Vector *current_unit_stack, | 
|  | Vector *current_unit_indices, | 
|  | double *solver_A_AVG, double *solver_b_AVG, | 
|  | int dim_A, int dim_b, int offset_A, int offset_b, | 
|  | int wiener_class_id) { | 
|  | (void)current_unit_indices; | 
|  | const int last_idx = | 
|  | ((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx; | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const int bit_depth = rsc->cm->seq_params.bit_depth; | 
|  | double cost_nomerge_cand = 0; | 
|  | bool has_begun = false; | 
|  | int num_units = 0; | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx]; | 
|  | if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true; | 
|  | if (!has_begun) continue; | 
|  | if (old_unit->rest_unit_idx == last_idx) continue; | 
|  | if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == | 
|  | RESTORE_WIENER_NONSEP && | 
|  | !check_wienerns_eq(&old_rusi->wienerns_info, ref_wienerns_info_cand, | 
|  | nsfilter_params->ncoeffs, wiener_class_id)) | 
|  | continue; | 
|  |  | 
|  | cost_nomerge_cand += | 
|  | RDCOST_DBL_WITH_NATIVE_BD_DIST(x->rdmult, old_unit->current_bits >> 4, | 
|  | old_unit->current_sse, bit_depth); | 
|  |  | 
|  | for (int index = 0; index < dim_A; ++index) { | 
|  | solver_A_AVG[index] += old_unit->A[index + offset_A]; | 
|  | } | 
|  | for (int index = 0; index < dim_b; ++index) { | 
|  | solver_b_AVG[index] += old_unit->b[index + offset_b]; | 
|  | } | 
|  | num_units++; | 
|  | } | 
|  | assert(num_units + 1 == (int)current_unit_indices->size); | 
|  | // Divide A and b by vector size + 1 to get average. | 
|  | for (int index = 0; index < dim_A; ++index) { | 
|  | solver_A_AVG[index] = DIVIDE_AND_ROUND(solver_A_AVG[index], num_units + 1); | 
|  | } | 
|  | for (int index = 0; index < dim_b; ++index) { | 
|  | solver_b_AVG[index] = DIVIDE_AND_ROUND(solver_b_AVG[index], num_units + 1); | 
|  | } | 
|  |  | 
|  | return cost_nomerge_cand; | 
|  | } | 
|  |  | 
|  | static void gather_stats_wienerns(const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, | 
|  | int rest_unit_idx, | 
|  | int rest_unit_idx_in_rutile, void *priv, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)rlbs; | 
|  | (void)rest_unit_idx_in_rutile; | 
|  | (void)tile_rect; | 
|  |  | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  |  | 
|  | RestorationUnitInfo rui; | 
|  | initialize_rui_for_nonsep_search(rsc, &rui); | 
|  | rui.luma = rsc->luma_stat; | 
|  | rui.restoration_type = RESTORE_WIENER_NONSEP; | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | assert(rsc->num_filter_classes == rsc->wienerns_bank.filter[0].num_classes); | 
|  |  | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int start_mi_x = limits->h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int start_mi_y = limits->v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, start_mi_y, start_mi_x); | 
|  | rui.mbmi_ptr = rsc->cm->mi_params.mi_grid_base + mbmi_idx; | 
|  | rui.ss_x = ss_x; | 
|  | rui.ss_y = ss_y; | 
|  | rui.mi_stride = rsc->cm->mi_params.mi_stride; | 
|  | #if CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui.lossless_segment = rsc->cm->features.lossless_segment; | 
|  | rui.cm = rsc->cm; | 
|  | #endif  // CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | // Calculate and save this RU's stats. | 
|  | RstUnitStats unit_stats; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  | unit_stats.real_sse = 0; | 
|  | if (!rusi->bru_unit_skipped) { | 
|  | unit_stats.real_sse = compute_stats_for_wienerns_filter( | 
|  | rsc->dgd_buffer, rsc->src_buffer, limits, rsc->dgd_stride, | 
|  | rsc->src_stride, &rui, rsc->cm->seq_params.bit_depth, unit_stats.A, | 
|  | unit_stats.b, unit_stats.num_pixels_in_class, nsfilter_params, | 
|  | rsc->num_stats_classes); | 
|  | } | 
|  | unit_stats.ru_idx = rest_unit_idx; | 
|  | unit_stats.ru_idx_in_tile = rest_unit_idx_in_rutile - rsc->ru_idx_base; | 
|  | unit_stats.limits = *limits; | 
|  | unit_stats.plane = rsc->plane; | 
|  | unit_stats.num_stats_classes = rsc->num_stats_classes; | 
|  | aom_vector_push_back(rsc->wienerns_stats, &unit_stats); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Returns the sse of using the frame filters on the RU specified with limits. | 
|  | static int64_t evaluate_frame_filter(RestSearchCtxt *rsc, | 
|  | const RestorationTileLimits *limits, | 
|  | RestorationUnitInfo *rui) { | 
|  | int num_classes = rsc->num_filter_classes; | 
|  | assert(rui->wienerns_info.num_classes == num_classes); | 
|  |  | 
|  | // Assume one set of filters for now. | 
|  | const int num_frame_filters = rsc->frame_filter_bank.bank_size_for_class[0]; | 
|  | (void)num_frame_filters; | 
|  | assert(num_frame_filters == 1); | 
|  | for (int c_id = 1; c_id < num_classes; ++c_id) { | 
|  | assert(rsc->frame_filter_bank.bank_size_for_class[c_id] == | 
|  | num_frame_filters); | 
|  | } | 
|  |  | 
|  | // Copy from bank to rui, all classes are at the same ref in the dictionary. | 
|  | const int frame_filter_ref = 0; | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | const WienerNonsepInfo *bank_info = av1_constref_from_wienerns_bank( | 
|  | &rsc->frame_filter_bank, frame_filter_ref, c_id); | 
|  | copy_nsfilter_taps_for_class(&rui->wienerns_info, bank_info, c_id); | 
|  | rui->wienerns_info.match_indices[c_id] = bank_info->match_indices[c_id]; | 
|  | rui->wienerns_info.bank_ref_for_class[c_id] = 0; | 
|  | } | 
|  |  | 
|  | // Evaluate on RU using all classes. | 
|  | rui->wiener_class_id_restrict = -1; | 
|  | const int64_t sse = | 
|  | calc_finer_tile_search_error(rsc, limits, &rsc->tile_rect, rui); | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | // Determines the cost of using the frame filters on an RU | 
|  | // (RESTORE_WIENER_NONSEP mode), compares the cost to none (RESTORE_NONE), and | 
|  | // updates the RU mode, sse, bits accordingly. | 
|  | static int64_t decide_wienerns_on_off(RestSearchCtxt *rsc, int rest_unit_idx, | 
|  | double cost_none, int64_t bits_none) { | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const int bit_depth = rsc->cm->seq_params.bit_depth; | 
|  |  | 
|  | const WienerNonsepInfoBank *bank_to_use = &rsc->frame_filter_bank; | 
|  |  | 
|  | int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | const int is_equal = check_wienerns_bank_eq( | 
|  | bank_to_use, &rusi->wienerns_info, nsfilter_params->ncoeffs, | 
|  | ALL_WIENERNS_CLASSES, equal_ref_for_class); | 
|  | (void)is_equal; | 
|  | assert(is_equal == 0); | 
|  |  | 
|  | const int num_frame_filters = rsc->frame_filter_bank.bank_size_for_class[0]; | 
|  | (void)num_frame_filters; | 
|  | for (int c_id = 1; c_id < rsc->num_filter_classes; ++c_id) { | 
|  | assert(rsc->frame_filter_bank.bank_size_for_class[c_id] == | 
|  | num_frame_filters); | 
|  | } | 
|  | // Assume one set of filters for now. | 
|  | assert(num_frame_filters == 1); | 
|  | const int64_t filter_tap_bits = 0; | 
|  | const int64_t bits_wienerns = | 
|  | x->mode_costs.wienerns_restore_cost[1] + filter_tap_bits; | 
|  | double cost_wienerns = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_wienerns >> 4, rusi->sse[RESTORE_WIENER_NONSEP], | 
|  | bit_depth); | 
|  |  | 
|  | const RestorationType rtype = | 
|  | (cost_wienerns < cost_none) ? RESTORE_WIENER_NONSEP : RESTORE_NONE; | 
|  | rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = rtype; | 
|  | rsc->sse += rusi->sse[rtype]; | 
|  | const int64_t bits = (cost_wienerns < cost_none) ? bits_wienerns : bits_none; | 
|  | rsc->bits += bits; | 
|  |  | 
|  | if (cost_wienerns < cost_none) | 
|  | av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info, | 
|  | ALL_WIENERNS_CLASSES); | 
|  | return bits; | 
|  | } | 
|  |  | 
|  | static void search_wienerns_visitor(const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, | 
|  | int rest_unit_idx, | 
|  | int rest_unit_idx_in_rutile, void *priv, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)tile_rect; | 
|  | (void)rlbs; | 
|  | (void)rest_unit_idx_in_rutile; | 
|  |  | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  |  | 
|  | if (rusi->bru_unit_skipped) { | 
|  | for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { | 
|  | rusi->best_rtype[r] = RESTORE_NONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const int64_t bits_none = x->mode_costs.wienerns_restore_cost[0]; | 
|  | const int bit_depth = rsc->cm->seq_params.bit_depth; | 
|  | double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE], bit_depth); | 
|  |  | 
|  | RestorationUnitInfo rui; | 
|  | initialize_rui_for_nonsep_search(rsc, &rui); | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int start_mi_x = limits->h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int start_mi_y = limits->v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, start_mi_y, start_mi_x); | 
|  | rui.mbmi_ptr = rsc->cm->mi_params.mi_grid_base + mbmi_idx; | 
|  | rui.ss_x = ss_x; | 
|  | rui.ss_y = ss_y; | 
|  | rui.mi_stride = rsc->cm->mi_params.mi_stride; | 
|  | #if CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui.lossless_segment = rsc->cm->features.lossless_segment; | 
|  | rui.cm = rsc->cm; | 
|  | #endif  // CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  |  | 
|  | // Classification has already been calculated by search_pc_wiener_visitor(). | 
|  | rui.compute_classification = 0; | 
|  | if (is_frame_filters_enabled(rsc->plane)) { | 
|  | // Ensure search_pc_wiener_visitor was done and classification was computed. | 
|  | assert(rsc->classification_is_buffered); | 
|  | } else { | 
|  | assert(!rsc->classification_is_buffered); | 
|  | } | 
|  |  | 
|  | rui.restoration_type = RESTORE_WIENER_NONSEP; | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  |  | 
|  | const RstUnitStats *unit_stats = (const RstUnitStats *)aom_vector_const_get( | 
|  | rsc->wienerns_stats, rest_unit_idx_in_rutile); | 
|  | assert(unit_stats->ru_idx == rest_unit_idx); | 
|  | assert(unit_stats->ru_idx_in_tile + rsc->ru_idx_base == | 
|  | rest_unit_idx_in_rutile); | 
|  | assert(unit_stats->plane == rsc->plane); | 
|  | assert(rusi->sse[RESTORE_NONE] == unit_stats->real_sse); | 
|  |  | 
|  | if (rsc->frame_filters_on && is_frame_filters_enabled(rsc->plane) && | 
|  | !rusi->bru_unit_skipped) { | 
|  | // Pick the best filter for this RU. | 
|  | rusi->sse[RESTORE_WIENER_NONSEP] = evaluate_frame_filter(rsc, limits, &rui); | 
|  |  | 
|  | assert(rusi->sse[RESTORE_WIENER_NONSEP] != INT64_MAX); | 
|  | rusi->wienerns_info = rui.wienerns_info; | 
|  | // Pick among filtering or RESTORE_NONE. | 
|  | decide_wienerns_on_off(rsc, rest_unit_idx, cost_none, bits_none); | 
|  | if (rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == RESTORE_WIENER_NONSEP) | 
|  | rsc->num_wiener_nonsep++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (rusi->bru_unit_skipped || | 
|  | !compute_quantized_wienerns_filter( | 
|  | rsc, limits, &rsc->tile_rect, &rui, unit_stats->A, unit_stats->b, | 
|  | unit_stats->real_sse, nsfilter_params)) { | 
|  | rsc->bits += bits_none; | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = RESTORE_NONE; | 
|  | rusi->sse[RESTORE_WIENER_NONSEP] = INT64_MAX; | 
|  | return; | 
|  | } | 
|  | aom_clear_system_state(); | 
|  | rusi->sse[RESTORE_WIENER_NONSEP] = finer_tile_search_wienerns( | 
|  | rsc, limits, &rsc->tile_rect, &rui, nsfilter_params, 1, | 
|  | &rsc->wienerns_bank, ALL_WIENERNS_CLASSES); | 
|  |  | 
|  | rusi->wienerns_info = rui.wienerns_info; | 
|  | assert(rusi->sse[RESTORE_WIENER_NONSEP] != INT64_MAX); | 
|  |  | 
|  | const int num_classes = rsc->num_filter_classes; | 
|  | assert(num_classes == rsc->wienerns_bank.filter[0].num_classes); | 
|  | if (num_classes > 1) { | 
|  | rui.wiener_class_id_restrict = -1; | 
|  | calc_finer_tile_search_error(rsc, limits, &rsc->tile_rect, &rui); | 
|  | } | 
|  | double solver_A_AVG[WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX]; | 
|  | const int class_dim_A = WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | double solver_b_AVG[WIENERNS_TAPS_MAX]; | 
|  | const int class_dim_b = WIENERNS_TAPS_MAX; | 
|  | const int coeffs_dim_A = nsfilter_params->ncoeffs * nsfilter_params->ncoeffs; | 
|  | const int coeffs_dim_b = nsfilter_params->ncoeffs; | 
|  |  | 
|  | int is_uv = (rsc->plane != AOM_PLANE_Y); | 
|  | Vector *current_unit_stack = rsc->unit_stack; | 
|  | int64_t bits_nomerge_base = | 
|  | x->mode_costs.wienerns_restore_cost[1] + | 
|  | count_wienerns_bits_set(rsc->plane, &x->mode_costs, &rusi->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, | 
|  | ALL_WIENERNS_CLASSES); | 
|  |  | 
|  | // Only test the reference in rusi->wienerns_info.bank_ref, generated from | 
|  | // the count call above. | 
|  | int ns_bank_ref_base[WIENERNS_MAX_CLASSES]; | 
|  | memcpy(ns_bank_ref_base, rusi->wienerns_info.bank_ref_for_class, | 
|  | num_classes * sizeof(*ns_bank_ref_base)); | 
|  |  | 
|  | // Copy the bank_refs to rui. | 
|  | memcpy(rui.wienerns_info.bank_ref_for_class, | 
|  | rusi->wienerns_info.bank_ref_for_class, | 
|  | num_classes * sizeof(*ns_bank_ref_base)); | 
|  | double cost_nomerge_base = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_nomerge_base >> 4, rusi->sse[RESTORE_WIENER_NONSEP], | 
|  | bit_depth); | 
|  | const int bits_min = x->mode_costs.wienerns_restore_cost[1] + | 
|  | x->mode_costs.merged_param_cost[1] + | 
|  | (1 << AV1_PROB_COST_SHIFT); | 
|  | const double cost_min = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_min >> 4, rusi->sse[RESTORE_WIENER_NONSEP], bit_depth); | 
|  | const double cost_nomerge_thr = (cost_nomerge_base + 3 * cost_min) / 4; | 
|  | const RestorationType rtype = | 
|  | (cost_none <= cost_nomerge_thr) ? RESTORE_NONE : RESTORE_WIENER_NONSEP; | 
|  | if (cost_none <= cost_nomerge_thr) { | 
|  | bits_nomerge_base = bits_none; | 
|  | cost_nomerge_base = cost_none; | 
|  | } | 
|  |  | 
|  | RstUnitSnapshot unit_snapshot; | 
|  | memset(&unit_snapshot, 0, sizeof(unit_snapshot)); | 
|  | unit_snapshot.limits = *limits; | 
|  | unit_snapshot.rest_unit_idx = rest_unit_idx; | 
|  | unit_snapshot.A = unit_stats->A; | 
|  | unit_snapshot.b = unit_stats->b; | 
|  | rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = rtype; | 
|  | rsc->sse += rusi->sse[rtype]; | 
|  | rsc->bits += bits_nomerge_base; | 
|  | unit_snapshot.current_sse = rusi->sse[rtype]; | 
|  | unit_snapshot.current_bits = bits_nomerge_base; | 
|  | // Only matters for first unit in stack. | 
|  | unit_snapshot.ref_wienerns_bank = rsc->wienerns_bank; | 
|  | // If current_unit_stack is empty, we can leave early. | 
|  | if (aom_vector_is_empty(current_unit_stack)) { | 
|  | if (rtype == RESTORE_WIENER_NONSEP) | 
|  | av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info, | 
|  | ALL_WIENERNS_CLASSES); | 
|  | aom_vector_push_back(current_unit_stack, &unit_snapshot); | 
|  | if (rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == RESTORE_WIENER_NONSEP) | 
|  | rsc->num_wiener_nonsep++; | 
|  | return; | 
|  | } | 
|  | // Handles special case where no-merge filter is equal to merged | 
|  | // filter for the stack - we don't want to perform another merge and | 
|  | // get a less optimal filter, but we want to continue building the stack. | 
|  | int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | if (rtype == RESTORE_WIENER_NONSEP && | 
|  | check_wienerns_bank_eq(&rsc->wienerns_bank, &rusi->wienerns_info, | 
|  | nsfilter_params->ncoeffs, ALL_WIENERNS_CLASSES, | 
|  | equal_ref_for_class) >= 0) { | 
|  | rsc->bits -= bits_nomerge_base; | 
|  | memcpy(rusi->wienerns_info.bank_ref_for_class, equal_ref_for_class, | 
|  | rusi->wienerns_info.num_classes * (*equal_ref_for_class)); | 
|  | unit_snapshot.current_bits = | 
|  | x->mode_costs.wienerns_restore_cost[1] + | 
|  | count_wienerns_bits_set(is_uv, &x->mode_costs, &rusi->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, | 
|  | ALL_WIENERNS_CLASSES); | 
|  | rsc->bits += unit_snapshot.current_bits; | 
|  | aom_vector_push_back(current_unit_stack, &unit_snapshot); | 
|  | if (rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == RESTORE_WIENER_NONSEP) | 
|  | rsc->num_wiener_nonsep++; | 
|  | return; | 
|  | } | 
|  | // Push current unit onto stack. | 
|  | aom_vector_push_back(current_unit_stack, &unit_snapshot); | 
|  | const int last_idx = | 
|  | ((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx; | 
|  |  | 
|  | double cost_merge = DBL_MAX; | 
|  | double cost_nomerge = 0; | 
|  | int begin_idx[WIENERNS_MAX_CLASSES]; | 
|  | int bank_ref[WIENERNS_MAX_CLASSES]; | 
|  |  | 
|  | // Set rui_merge_best as the current best filters with the best refs. | 
|  | RestorationUnitInfo rui_merge_best = rui; | 
|  |  | 
|  | // Trial start | 
|  | int merged_class_count = 0; | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | bank_ref[c_id] = -1; | 
|  | begin_idx[c_id] = -1; | 
|  | for (int bank_ref_cand = 0; | 
|  | bank_ref_cand < | 
|  | AOMMAX(1, rsc->wienerns_bank.bank_size_for_class[c_id]); | 
|  | bank_ref_cand++) { | 
|  | #if MERGE_DRL_SEARCH_LEVEL == 1 | 
|  | // Only check the best and zero references for the solved filter. | 
|  | if (bank_ref_cand != 0 && bank_ref_cand != ns_bank_ref_base[c_id]) | 
|  | continue; | 
|  | #elif MERGE_DRL_SEARCH_LEVEL == 2 | 
|  | // Only check the best reference for the solved filter. | 
|  | if (bank_ref_cand != ns_bank_ref_base[c_id]) continue; | 
|  | #else | 
|  | (void)ns_bank_ref_base; | 
|  | #endif | 
|  |  | 
|  | // Needed to track the set of merge candidate RUs. | 
|  | // set_merge_sse_and_bits() uses ALL_WIENERNS_CLASSES to calculate bits. | 
|  | // Hence initialize with the best filters we have from rui_merge_best but | 
|  | // use the c_id filter from the bank. The latter is needed to calculate | 
|  | // merge bits for c_id, the former all other bits. | 
|  | WienerNonsepInfo token_wienerns_info_cand = rui_merge_best.wienerns_info; | 
|  | copy_nsfilter_taps_for_class( | 
|  | &token_wienerns_info_cand, | 
|  | av1_constref_from_wienerns_bank(&rsc->wienerns_bank, bank_ref_cand, | 
|  | c_id), | 
|  | c_id); | 
|  | token_wienerns_info_cand.bank_ref_for_class[c_id] = bank_ref_cand; | 
|  |  | 
|  | // Keep track of would be merge leader's bank. | 
|  | WienerNonsepInfoBank *begin_wienerns_bank = NULL; | 
|  | // Get the begin unit of the run using the candidate taps. | 
|  | int begin_idx_cand = | 
|  | get_merge_begin_index(rsc, nsfilter_params, &token_wienerns_info_cand, | 
|  | current_unit_stack, &begin_wienerns_bank, c_id); | 
|  | if (begin_idx_cand == -1) continue; | 
|  | assert(begin_wienerns_bank != NULL); | 
|  | begin_wienerns_bank = begin_wienerns_bank != NULL ? &rsc->wienerns_bank | 
|  | : begin_wienerns_bank; | 
|  |  | 
|  | // Populate current_unit_indices with the indices of RUs using this | 
|  | // filter. | 
|  | Vector *current_unit_indices = rsc->unit_indices; | 
|  | aom_vector_clear(current_unit_indices); | 
|  | populate_current_unit_indices( | 
|  | rsc, nsfilter_params, &token_wienerns_info_cand, begin_idx_cand, | 
|  | current_unit_stack, current_unit_indices, c_id); | 
|  |  | 
|  | // Initialize stats. | 
|  | double cost_nomerge_cand = cost_nomerge_base; | 
|  | const int offset_A = c_id * class_dim_A; | 
|  | memcpy(solver_A_AVG, unit_stats->A + offset_A, | 
|  | coeffs_dim_A * sizeof(*unit_stats->A)); | 
|  |  | 
|  | const int offset_b = c_id * class_dim_b; | 
|  | memcpy(solver_b_AVG, unit_stats->b + offset_b, | 
|  | coeffs_dim_b * sizeof(*unit_stats->b)); | 
|  |  | 
|  | // Get current cost and the average of A and b. | 
|  | cost_nomerge_cand += accumulate_merge_stats( | 
|  | rsc, nsfilter_params, &token_wienerns_info_cand, begin_idx_cand, | 
|  | current_unit_stack, current_unit_indices, solver_A_AVG, solver_b_AVG, | 
|  | coeffs_dim_A, coeffs_dim_b, offset_A, offset_b, c_id); | 
|  |  | 
|  | // Generate new filter. | 
|  | RestorationUnitInfo rui_merge_cand = rui_merge_best; | 
|  | rui_merge_cand.restoration_type = RESTORE_WIENER_NONSEP; | 
|  |  | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  | int linsolve_successful = compute_wienerns_filter_select_master( | 
|  | rsc, limits, &rsc->tile_rect, &rui_merge_cand, c_id, num_feat, | 
|  | nsfilter_params->nsubsets - 1, solver_A_AVG, num_feat, solver_b_AVG, | 
|  | rsc->wienerns_tmpbuf, nsfilter_params, 0); | 
|  | if (!linsolve_successful) continue; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // After this call rsc will have updated buffers. We will reset below if | 
|  | // not merging. | 
|  | finer_tile_search_wienerns(rsc, NULL, &rsc->tile_rect, &rui_merge_cand, | 
|  | nsfilter_params, 1, begin_wienerns_bank, c_id); | 
|  |  | 
|  | // Iterate through vector to set candidate merge sse and bits on | 
|  | // current_unit_stack. | 
|  | const double cost_merge_cand = set_cand_merge_sse_and_bits( | 
|  | rsc, nsfilter_params, &rsc->tile_rect, begin_idx_cand, | 
|  | current_unit_stack, &token_wienerns_info_cand, &rui_merge_cand, c_id); | 
|  |  | 
|  | // Find the candidate that brings the largest improvement over touched | 
|  | // RUs. The best such candidate can still be worse than nomerge. | 
|  | if (cost_merge_cand - cost_nomerge_cand < cost_merge - cost_nomerge) { | 
|  | begin_idx[c_id] = begin_idx_cand; | 
|  | bank_ref[c_id] = bank_ref_cand; | 
|  | cost_merge = cost_merge_cand; | 
|  | cost_nomerge = cost_nomerge_cand; | 
|  | bool has_begun = false; | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx]; | 
|  | if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true; | 
|  | if (!has_begun) continue; | 
|  | if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == | 
|  | RESTORE_WIENER_NONSEP && | 
|  | old_unit->rest_unit_idx != last_idx && | 
|  | !check_wienerns_eq(&old_rusi->wienerns_info, | 
|  | &token_wienerns_info_cand, | 
|  | nsfilter_params->ncoeffs, c_id)) | 
|  | continue; | 
|  | old_unit->merge_sse = old_unit->merge_sse_cand; | 
|  | old_unit->merge_bits = old_unit->merge_bits_cand; | 
|  | } | 
|  |  | 
|  | if (cost_merge < cost_nomerge) { | 
|  | // We found a better merge candidate that will be merged. Update best | 
|  | // filters. | 
|  | // Keep track of bank_ref_for_class as we will assign rui_merge_best | 
|  | // to token_wienerns_info_cand which in turn will be used to calculate | 
|  | // bits in set_cand_merge_sse_and_bits(). | 
|  | rui_merge_cand.wienerns_info.bank_ref_for_class[c_id] = bank_ref_cand; | 
|  | copy_nsfilter_taps_for_class(&rui_merge_best.wienerns_info, | 
|  | &rui_merge_cand.wienerns_info, c_id); | 
|  | } | 
|  | } | 
|  | if (num_classes > 1 && | 
|  | (begin_idx[c_id] != begin_idx_cand || cost_merge >= cost_nomerge)) { | 
|  | // We will not be merging this trial even if it is the best cand. Reset | 
|  | // rsc buffers to the best solution so far. Re-establish dst. | 
|  | rui_merge_best.wiener_class_id_restrict = c_id; | 
|  | reset_unit_stack_dst_buffers(rsc, NULL, &rsc->tile_rect, | 
|  | &rui_merge_best); | 
|  | } | 
|  | aom_vector_clear(current_unit_indices); | 
|  | } | 
|  | // Trial end | 
|  |  | 
|  | RstUnitSnapshot *last_unit = aom_vector_back(current_unit_stack); | 
|  | RestUnitSearchInfo *last_rusi = &rsc->rusi[last_unit->rest_unit_idx]; | 
|  | (void)last_rusi; | 
|  | if (cost_merge < cost_nomerge && begin_idx[c_id] != -1) { | 
|  | ++merged_class_count; | 
|  | const WienerNonsepInfo *token_wienerns_info = | 
|  | av1_constref_from_wienerns_bank(&rsc->wienerns_bank, bank_ref[c_id], | 
|  | c_id); | 
|  | // Update data within the stack. | 
|  | bool has_begun = false; | 
|  | VECTOR_FOR_EACH(current_unit_stack, listed_unit) { | 
|  | RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer); | 
|  | RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx]; | 
|  | if (old_unit->rest_unit_idx == begin_idx[c_id]) has_begun = true; | 
|  | if (!has_begun) continue; | 
|  | if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == | 
|  | RESTORE_WIENER_NONSEP && | 
|  | old_unit->rest_unit_idx != last_idx && | 
|  | !check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info, | 
|  | nsfilter_params->ncoeffs, c_id)) | 
|  | continue; | 
|  |  | 
|  | if (old_unit->rest_unit_idx != begin_idx[c_id]) { | 
|  | const int is_equal = check_wienerns_bank_eq( | 
|  | &old_unit->ref_wienerns_bank, token_wienerns_info, | 
|  | nsfilter_params->ncoeffs, c_id, equal_ref_for_class); | 
|  | (void)is_equal; | 
|  | assert(is_equal >= 0);  // Must exist in bank | 
|  | // Update bank. | 
|  | av1_upd_to_wienerns_bank(&old_unit->ref_wienerns_bank, | 
|  | equal_ref_for_class[c_id], | 
|  | &rui_merge_best.wienerns_info, c_id); | 
|  | // Copy filter taps. | 
|  | copy_nsfilter_taps_for_class(&old_rusi->wienerns_info, | 
|  | &rui_merge_best.wienerns_info, c_id); | 
|  | // Keep track of bank_ref as copy_nsfilter_taps_for_class updates it. | 
|  | old_rusi->wienerns_info.bank_ref_for_class[c_id] = | 
|  | equal_ref_for_class[c_id]; | 
|  | } else { | 
|  | // Merge leader. Copy filter taps. | 
|  | copy_nsfilter_taps_for_class(&old_rusi->wienerns_info, | 
|  | &rui_merge_best.wienerns_info, c_id); | 
|  | // Keep track of bank_ref as copy_nsfilter_taps_for_class updates it. | 
|  | count_wienerns_bits_set( | 
|  | is_uv, &x->mode_costs, &old_rusi->wienerns_info, | 
|  | &old_unit->ref_wienerns_bank, nsfilter_params, c_id); | 
|  | } | 
|  | old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = RESTORE_WIENER_NONSEP; | 
|  | old_rusi->sse[RESTORE_WIENER_NONSEP] = old_unit->merge_sse; | 
|  | rsc->sse -= old_unit->current_sse; | 
|  | rsc->sse += old_unit->merge_sse; | 
|  | rsc->bits -= old_unit->current_bits; | 
|  | rsc->bits += old_unit->merge_bits; | 
|  | old_unit->current_sse = old_unit->merge_sse; | 
|  | old_unit->current_bits = old_unit->merge_bits; | 
|  | } | 
|  | // Above we updated the entire stack. Here we update rsc->wienerns_bank. | 
|  | const int is_equal = check_wienerns_bank_eq( | 
|  | &last_unit->ref_wienerns_bank, &rui_merge_best.wienerns_info, | 
|  | nsfilter_params->ncoeffs, c_id, equal_ref_for_class); | 
|  | (void)is_equal; | 
|  | assert(is_equal >= 0);  // Must exist in bank | 
|  | assert(rui_merge_best.wienerns_info.bank_ref_for_class[c_id] == | 
|  | equal_ref_for_class[c_id]); | 
|  | av1_upd_to_wienerns_bank(&rsc->wienerns_bank, equal_ref_for_class[c_id], | 
|  | &rui_merge_best.wienerns_info, c_id); | 
|  | } else { | 
|  | assert(check_wienerns_eq(&last_rusi->wienerns_info, | 
|  | &rui_merge_best.wienerns_info, | 
|  | nsfilter_params->ncoeffs, c_id)); | 
|  | // Copy current unit from the top of the stack. | 
|  | // memset(&unit_snapshot, 0, sizeof(unit_snapshot)); | 
|  | // unit_snapshot = *(RstUnitSnapshot | 
|  | // *)aom_vector_back(current_unit_stack); RESTORE_WIENER_NONSEP units | 
|  | // become start of new stack, and RESTORE_NONE units are discarded. | 
|  | if (rtype == RESTORE_WIENER_NONSEP) { | 
|  | // We may be merging some c_ids but not this one. | 
|  | av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info, | 
|  | c_id); | 
|  | // aom_vector_clear(current_unit_stack); | 
|  | // aom_vector_push_back(current_unit_stack, &unit_snapshot); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (merged_class_count == 0 && rtype != RESTORE_WIENER_NONSEP) { | 
|  | aom_vector_pop_back(current_unit_stack); | 
|  | } | 
|  | if (rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] == RESTORE_WIENER_NONSEP) | 
|  | rsc->num_wiener_nonsep++; | 
|  | } | 
|  |  | 
|  | static int get_switchable_restore_cost(const AV1_COMMON *const cm, | 
|  | const MACROBLOCK *const x, int plane, | 
|  | int rest_type) { | 
|  | (void)cm; | 
|  | int cost = 0; | 
|  | if (plane) return 0; | 
|  | for (int re = 0; re <= RESTORE_SWITCHABLE - 2; re++) { | 
|  | if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue; | 
|  | const int found = (re == rest_type); | 
|  | cost += x->mode_costs.switchable_flex_restore_cost[re][plane][found]; | 
|  | if (found) break; | 
|  | } | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | static int64_t count_switchable_bits(int rest_type, RestSearchCtxt *rsc, | 
|  | RestUnitSearchInfo *rusi) { | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  |  | 
|  | // Ensure search_switchable does not punish frame level filters. | 
|  | const WienerNonsepInfoBank *bank_to_use = | 
|  | rsc->adjust_switchable_for_frame_filters && | 
|  | is_frame_filters_enabled(rsc->plane) | 
|  | ? &rsc->frame_filter_bank | 
|  | : &rsc->wienerns_bank; | 
|  |  | 
|  | if (rest_type > RESTORE_NONE) { | 
|  | if (rusi->best_rtype[rest_type - 1] == RESTORE_NONE) | 
|  | rest_type = RESTORE_NONE; | 
|  | } | 
|  | int64_t coeff_bits = 0; | 
|  | switch (rest_type) { | 
|  | case RESTORE_NONE: coeff_bits = 0; break; | 
|  | case RESTORE_PC_WIENER: | 
|  | // No side-information for now. | 
|  | coeff_bits = 0; | 
|  | break; | 
|  | case RESTORE_WIENER_NONSEP: | 
|  | coeff_bits = count_wienerns_bits_set( | 
|  | rsc->plane, &x->mode_costs, &rusi->wienerns_info, bank_to_use, | 
|  | nsfilter_params, ALL_WIENERNS_CLASSES); | 
|  | break; | 
|  | default: assert(0); break; | 
|  | } | 
|  |  | 
|  | if (rsc->adjust_switchable_for_frame_filters && | 
|  | is_frame_filters_enabled(rsc->plane) && | 
|  | rest_type == RESTORE_WIENER_NONSEP && | 
|  | rsc->frame_filter_bank.bank_size_for_class[0] == 1) { | 
|  | coeff_bits = 0; | 
|  | } | 
|  |  | 
|  | const int64_t bits = | 
|  | get_switchable_restore_cost(rsc->cm, x, rsc->plane, rest_type) + | 
|  | coeff_bits; | 
|  | return bits; | 
|  | } | 
|  |  | 
|  | static void search_switchable_visitor(const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, | 
|  | int rest_unit_idx, int rest_unit_idx_seq, | 
|  | void *priv, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)limits; | 
|  | (void)tile_rect; | 
|  | (void)rlbs; | 
|  | (void)rest_unit_idx_seq; | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  |  | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  |  | 
|  | bool skip_search = rsc->plane > 0; | 
|  | if (rusi->bru_unit_skipped) { | 
|  | skip_search = true; | 
|  | } | 
|  | if (skip_search) { | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | rusi->best_rtype[RESTORE_SWITCHABLE - 1] = RESTORE_NONE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!rsc->adjust_switchable_for_frame_filters && rsc->frame_filters_on && | 
|  | is_frame_filters_enabled(rsc->plane) && | 
|  | rsc->wienerns_bank.bank_size_for_class[0] == 1) { | 
|  | assert(rsc->cm->frame_filter_dictionary != NULL); | 
|  | assert(rsc->cm->translated_pcwiener_filters != NULL); | 
|  | assert(rsc->cm->translation_done); | 
|  | int dict_stride = rsc->cm->frame_filter_dictionary_stride; | 
|  | int16_t *frame_filter_dictionary = rsc->cm->frame_filter_dictionary; | 
|  | *rsc->cm->num_ref_filters = set_frame_filter_dictionary( | 
|  | rsc->plane, rsc->cm, rsc->frame_filter_bank.filter->num_classes, | 
|  | frame_filter_dictionary, dict_stride); | 
|  | rsc->frame_filter_bank.filter->num_ref_filters = *rsc->cm->num_ref_filters; | 
|  |  | 
|  | // Initialize bank for first call. | 
|  | const int nopcw = | 
|  | disable_pcwiener_filters_in_framefilters(&rsc->cm->seq_params); | 
|  | const int base_qindex = rsc->cm->quant_params.base_qindex; | 
|  | fill_first_slot_of_bank_with_filter_match( | 
|  | rsc->plane, &rsc->wienerns_bank, rsc->frame_filter_bank.filter, | 
|  | rsc->frame_filter_bank.filter->match_indices, base_qindex, | 
|  | ALL_WIENERNS_CLASSES, frame_filter_dictionary, dict_stride, nopcw); | 
|  | } | 
|  |  | 
|  | double best_cost = 0; | 
|  | int64_t best_bits = 0; | 
|  | RestorationType best_rtype = RESTORE_NONE; | 
|  |  | 
|  | for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { | 
|  | if (rusi->bru_unit_skipped) { | 
|  | assert(r == 0); | 
|  | // only none case exists in RU skip | 
|  | break; | 
|  | } | 
|  | // Check for the condition that non-sep wiener search could not | 
|  | // find a solution or the solution was worse than RESTORE_NONE. | 
|  | // In either case the best_rtype will be set as RESTORE_NONE. These | 
|  | // should be skipped from the test below. | 
|  | if (r > RESTORE_NONE) { | 
|  | if (rusi->best_rtype[r - 1] == RESTORE_NONE) continue; | 
|  | } | 
|  | if (rsc->cm->features.lr_tools_disable_mask[rsc->plane] & (1 << r)) | 
|  | continue; | 
|  | if (rsc->plane != AOM_PLANE_Y && r == RESTORE_PC_WIENER) continue; | 
|  |  | 
|  | const int64_t sse = rusi->sse[r]; | 
|  | int64_t bits = count_switchable_bits(r, rsc, rusi); | 
|  | double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(x->rdmult, bits >> 4, sse, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | if (r == 0 || cost < best_cost) { | 
|  | best_cost = cost; | 
|  | best_bits = bits; | 
|  | best_rtype = r; | 
|  | } | 
|  | } | 
|  |  | 
|  | rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype; | 
|  | rsc->sse += rusi->sse[best_rtype]; | 
|  | rsc->bits += best_bits; | 
|  |  | 
|  | if (best_rtype == RESTORE_PC_WIENER) { | 
|  | // No side-information for now. | 
|  | } else if (best_rtype == RESTORE_WIENER_NONSEP) { | 
|  | rsc->num_wiener_nonsep++; | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | for (int c_id = 0; c_id < rusi->wienerns_info.num_classes; ++c_id) { | 
|  | const int is_equal = check_wienerns_bank_eq( | 
|  | &rsc->wienerns_bank, &rusi->wienerns_info, nsfilter_params->ncoeffs, | 
|  | c_id, equal_ref_for_class); | 
|  | if (is_equal == -1) { | 
|  | av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info, | 
|  | c_id); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (rsc->frame_filters_on) { | 
|  | for (int c_id = 0; c_id < rsc->num_filter_classes; ++c_id) | 
|  | assert(rsc->wienerns_bank.bank_size_for_class[c_id] <= 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void adjust_frame_rtype(RestorationInfo *rsi, int plane_ntiles, | 
|  | RestSearchCtxt *rsc, const ToolCfg *tool_cfg) { | 
|  | (void)rsc; | 
|  | (void)tool_cfg; | 
|  | if (rsi->frame_restoration_type == RESTORE_NONE) return; | 
|  | int tool_count[RESTORE_SWITCHABLE_TYPES] = { 0 }; | 
|  | for (int u = 0; u < plane_ntiles; ++u) { | 
|  | RestorationType rt = rsi->unit_info[u].restoration_type; | 
|  | tool_count[rt]++; | 
|  | } | 
|  | int ntools = 0; | 
|  | RestorationType rused = RESTORE_NONE; | 
|  | for (int j = 1; j < RESTORE_SWITCHABLE_TYPES; ++j) { | 
|  | if (tool_count[j] > 0) { | 
|  | ntools++; | 
|  | rused = j; | 
|  | assert((rsc->cm->features.lr_tools_disable_mask[rsc->plane] & (1 << j)) == | 
|  | 0); | 
|  | } | 
|  | } | 
|  | rsi->frame_restoration_type = ntools < 2 ? rused : RESTORE_SWITCHABLE; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void copy_unit_info(RestorationType frame_rtype, | 
|  | const RestUnitSearchInfo *rusi, | 
|  | RestorationUnitInfo *rui, | 
|  | RestSearchCtxt *rsc) { | 
|  | const ModeCosts *mode_costs = &rsc->x->mode_costs; | 
|  | assert(frame_rtype > 0); | 
|  | rui->restoration_type = frame_rtype == RESTORE_NONE | 
|  | ? RESTORE_NONE | 
|  | : rusi->best_rtype[frame_rtype - 1]; | 
|  | if (rusi->bru_unit_skipped) { | 
|  | rui->restoration_type = RESTORE_NONE; | 
|  | return; | 
|  | } | 
|  | if (rui->restoration_type == RESTORE_PC_WIENER) { | 
|  | // No side-information for now. | 
|  | } else if (rui->restoration_type == RESTORE_WIENER_NONSEP) { | 
|  | rui->wienerns_info = rusi->wienerns_info; | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | count_wienerns_bits_set(rsc->plane, mode_costs, &rui->wienerns_info, | 
|  | &rsc->wienerns_bank, nsfilter_params, | 
|  | ALL_WIENERNS_CLASSES); | 
|  | for (int c_id = 0; c_id < rui->wienerns_info.num_classes; ++c_id) { | 
|  | const int is_equal = check_wienerns_bank_eq( | 
|  | &rsc->wienerns_bank, &rui->wienerns_info, nsfilter_params->ncoeffs, | 
|  | c_id, equal_ref_for_class); | 
|  | if (is_equal == -1) { | 
|  | av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rui->wienerns_info, | 
|  | c_id); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void bru_set_sru_skip(RestSearchCtxt *rsc, int rrow0, | 
|  | int rrow1, int rcol0, int rcol1) { | 
|  | const RestorationInfo *rsi = &rsc->cm->rst_info[rsc->plane]; | 
|  | const int ru_size = rsi->restoration_unit_size; | 
|  | const int is_uv = rsc->plane > 0; | 
|  | const int ss_x = is_uv && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = is_uv && rsc->cm->seq_params.subsampling_y; | 
|  | const int rstride = rsi->horz_units_per_frame; | 
|  | for (int rrow = rrow0; rrow < rrow1; ++rrow) { | 
|  | for (int rcol = rcol0; rcol < rcol1; ++rcol) { | 
|  | const int runit_idx = rcol + rrow * rstride; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[runit_idx]; | 
|  | if (rsc->cm->bru.enabled) { | 
|  | AV1PixelRect ru_sb_rect = av1_get_rutile_rect( | 
|  | rsc->cm, is_uv, rrow, rrow + 1, rcol, rcol + 1, ru_size, ru_size); | 
|  | ru_sb_rect.top <<= (is_uv && ss_y); | 
|  | ru_sb_rect.bottom <<= (is_uv && ss_y); | 
|  | ru_sb_rect.left <<= (is_uv && ss_x); | 
|  | ru_sb_rect.right <<= (is_uv && ss_x); | 
|  | // very similar to bru_is_fu_skipped_mbmi(), but this one uses rect | 
|  | if (is_ru_bru_skip(rsc->cm, &ru_sb_rect)) { | 
|  | rusi->bru_unit_skipped = 1; | 
|  | } else { | 
|  | rusi->bru_unit_skipped = 0; | 
|  | } | 
|  | } else { | 
|  | rusi->bru_unit_skipped = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calls visitor function fun() for one specific RU in frame | 
|  | // Note that RU-tiles are different from coded tiles since the RU sizes can be | 
|  | // different from Sb sizes and also because there could be super-resolution. | 
|  | // A RU-tile is a rectangle in the upsampled domain that includes all RUs | 
|  | // that are signaled for the SBs in a given tile in the coded domain. | 
|  | // This function processes the vistor function fun() for all RUs within | 
|  | // the Ru-tile in the order in which they are signaled in the bit-stream. | 
|  | static void process_one_rutile(RestSearchCtxt *rsc, int tile_row, int tile_col, | 
|  | int *processed, rest_unit_visitor_t fun) { | 
|  | const int is_uv = rsc->plane > 0; | 
|  | const int ss_y = is_uv && rsc->cm->seq_params.subsampling_y; | 
|  | const RestorationInfo *rsi = &rsc->cm->rst_info[rsc->plane]; | 
|  | const int ru_size = rsi->restoration_unit_size; | 
|  | TileInfo tile_info; | 
|  | av1_tile_set_row(&tile_info, rsc->cm, tile_row); | 
|  | av1_tile_set_col(&tile_info, rsc->cm, tile_col); | 
|  | assert(tile_info.mi_row_start < tile_info.mi_row_end); | 
|  | assert(tile_info.mi_col_start < tile_info.mi_col_end); | 
|  | AV1PixelRect indep_tile_rect; | 
|  | #if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | indep_tile_rect = av1_get_tile_rect(&tile_info, rsc->cm, is_uv); | 
|  | #else | 
|  | indep_tile_rect = av1_whole_frame_rect(rsc->cm, is_uv); | 
|  | #endif  // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  |  | 
|  | reset_rsc(rsc); | 
|  | rsc_on_tile(rsc, *processed, tile_row, tile_col); | 
|  | for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; | 
|  | mi_row += rsc->cm->mib_size) { | 
|  | for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
|  | mi_col += rsc->cm->mib_size) { | 
|  | int rrow0, rrow1, rcol0, rcol1; | 
|  | if (av1_loop_restoration_corners_in_sb(rsc->cm, rsc->plane, mi_row, | 
|  | mi_col, rsc->cm->sb_size, &rcol0, | 
|  | &rcol1, &rrow0, &rrow1)) { | 
|  | if (rsc->cm->bru.enabled) { | 
|  | bru_set_sru_skip(rsc, rrow0, rrow1, rcol0, rcol1); | 
|  | } | 
|  | // RU domain rectangle for the coded SB | 
|  | AV1PixelRect ru_sb_rect = av1_get_rutile_rect( | 
|  | rsc->cm, is_uv, rrow0, rrow1, rcol0, rcol1, ru_size, ru_size); | 
|  | const int unit_idx0 = rrow0 * rsi->horz_units_per_frame + rcol0; | 
|  | av1_foreach_rest_unit_in_sb(&indep_tile_rect, &ru_sb_rect, unit_idx0, | 
|  | rcol1 - rcol0, rrow1 - rrow0, | 
|  | rsi->horz_units_per_frame, ru_size, ss_y, | 
|  | rsc->plane, fun, rsc, NULL, processed); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calls visitor function fun() for all RUs in frame in RUtile-by-RUtile order | 
|  | static void process_by_rutile(RestSearchCtxt *rsc, rest_unit_visitor_t fun) { | 
|  | int processed = 0; | 
|  | for (int tile_row = 0; tile_row < rsc->cm->tiles.rows; tile_row++) { | 
|  | for (int tile_col = 0; tile_col < rsc->cm->tiles.cols; tile_col++) { | 
|  | process_one_rutile(rsc, tile_row, tile_col, &processed, fun); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calls visitor function fun() for all RUs in frame in RUtile-by-RUtile order, | 
|  | // aggregates the bits and sse returned in rsc for each RUtile, and returns | 
|  | // the overall RD cost for the frame over all RUs in all RUtiles. | 
|  | static double process_rd_by_rutile(RestSearchCtxt *rsc, | 
|  | rest_unit_visitor_t fun) { | 
|  | int processed = 0; | 
|  | int64_t total_bits = 0; | 
|  | int64_t total_sse = 0; | 
|  | for (int tile_row = 0; tile_row < rsc->cm->tiles.rows; tile_row++) { | 
|  | for (int tile_col = 0; tile_col < rsc->cm->tiles.cols; tile_col++) { | 
|  | process_one_rutile(rsc, tile_row, tile_col, &processed, fun); | 
|  | total_bits += rsc->bits; | 
|  | total_sse += rsc->sse; | 
|  | } | 
|  | } | 
|  | return RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, total_bits >> 4, | 
|  | total_sse, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | } | 
|  |  | 
|  | static void gather_stats_rest_type(RestSearchCtxt *rsc, RestorationType rtype) { | 
|  | static const rest_unit_visitor_t funs[RESTORE_TYPES] = { | 
|  | NULL, NULL, gather_stats_wienerns, NULL | 
|  | }; | 
|  | if (rtype == RESTORE_WIENER_NONSEP) aom_vector_clear(rsc->wienerns_stats); | 
|  |  | 
|  | if (funs[rtype]) process_by_rutile(rsc, funs[rtype]); | 
|  | } | 
|  |  | 
|  | static double search_rest_type(RestSearchCtxt *rsc, RestorationType rtype) { | 
|  | static const rest_unit_visitor_t funs[RESTORE_TYPES] = { | 
|  | search_norestore_visitor, search_pc_wiener_visitor, search_wienerns_visitor, | 
|  | search_switchable_visitor | 
|  | }; | 
|  |  | 
|  | if (funs[rtype]) | 
|  | return process_rd_by_rutile(rsc, funs[rtype]); | 
|  | else | 
|  | return DBL_MAX; | 
|  | } | 
|  |  | 
|  | static void copy_unit_info_visitor(const RestorationTileLimits *limits, | 
|  | const AV1PixelRect *tile_rect, | 
|  | int rest_unit_idx, int rest_unit_idx_seq, | 
|  | void *priv, RestorationLineBuffers *rlbs) { | 
|  | (void)limits; | 
|  | (void)tile_rect; | 
|  | (void)rest_unit_idx_seq; | 
|  | (void)rlbs; | 
|  |  | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | const RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  | const RestorationInfo *rsi = &rsc->cm->rst_info[rsc->plane]; | 
|  | assert(rest_unit_idx < rsi->vert_units_per_frame * rsi->horz_units_per_frame); | 
|  | copy_unit_info(rsi->frame_restoration_type, rusi, | 
|  | &rsi->unit_info[rest_unit_idx], rsc); | 
|  | assert(rsi->temporal_pred_flag == rsc->temporal_pred_flag); | 
|  | } | 
|  |  | 
|  | static void finalize_frame_and_unit_info(RestorationType frame_rtype, | 
|  | RestorationInfo *rsi, | 
|  | RestSearchCtxt *rsc) { | 
|  | rsi->frame_restoration_type = frame_rtype; | 
|  | rsi->frame_filters_on = rsc->frame_filters_on; | 
|  | rsi->frame_filters_initialized = 0; | 
|  | rsi->num_filter_classes = rsc->num_filter_classes; | 
|  | rsi->frame_filters = rsc->frame_filter_bank.filter[0]; | 
|  | rsi->frame_filters = rsc->frame_filters; | 
|  | if (is_frame_filters_enabled(rsc->plane)) { | 
|  | rsi->temporal_pred_flag = rsc->temporal_pred_flag; | 
|  | rsi->rst_ref_pic_idx = rsc->rst_ref_pic_idx; | 
|  | } | 
|  |  | 
|  | if (frame_rtype != RESTORE_NONE) { | 
|  | process_by_rutile(rsc, copy_unit_info_visitor); | 
|  | } | 
|  | } | 
|  |  | 
|  | const uint8_t *get_class_converter(const RestSearchCtxt *rsc, | 
|  | int num_stats_classes, | 
|  | int num_target_classes) { | 
|  | int qindex_offset = 0; | 
|  | if (rsc->plane != AOM_PLANE_Y) | 
|  | qindex_offset = | 
|  | (rsc->plane == AOM_PLANE_U ? rsc->cm->quant_params.u_ac_delta_q | 
|  | : rsc->cm->quant_params.v_ac_delta_q) + | 
|  | rsc->cm->seq_params.base_uv_ac_delta_q; | 
|  | else | 
|  | qindex_offset = 0; | 
|  | const int set_index = | 
|  | get_filter_set_index(rsc->cm->quant_params.base_qindex, qindex_offset); | 
|  | return get_converter(set_index, num_stats_classes, num_target_classes); | 
|  | } | 
|  |  | 
|  | // Reduces the class granularity of the stats to target_classes. Stats are | 
|  | // initially calculated for WIENERNS_MAX_CLASSES. Frame-level filters are then | 
|  | // derived for num_classes <= WIENERNS_MAX_CLASSES. Once stats are used at a | 
|  | // particular num_classes they are used to calculate the stats for the next | 
|  | // target_classes < num_classes (without recalculating stats from data). This is | 
|  | // possible since the classification design resuls in class labels over a tree | 
|  | // having WIENERNS_MAX_CLASSES leaves reduced to the single-class root. | 
|  | static void collapse_stats_to_target_classes(int target_classes, | 
|  | const uint8_t *class_converter, | 
|  | RstUnitStats *unit_stats) { | 
|  | assert(unit_stats->num_stats_classes >= target_classes); | 
|  | if (unit_stats->num_stats_classes == target_classes) return; | 
|  |  | 
|  | // TODO: Reduce buffer/copy size. | 
|  | RstUnitStats collapsed_unit_stats; | 
|  | memset(&collapsed_unit_stats, 0, sizeof(collapsed_unit_stats)); | 
|  | collapsed_unit_stats.ru_idx = unit_stats->ru_idx; | 
|  | collapsed_unit_stats.ru_idx_in_tile = unit_stats->ru_idx_in_tile; | 
|  | collapsed_unit_stats.plane = unit_stats->plane; | 
|  | collapsed_unit_stats.real_sse = unit_stats->real_sse; | 
|  | collapsed_unit_stats.limits = unit_stats->limits; | 
|  | collapsed_unit_stats.weight = unit_stats->weight; | 
|  | collapsed_unit_stats.num_stats_classes = target_classes; | 
|  |  | 
|  | const int stride_A = WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | const int stride_b = WIENERNS_TAPS_MAX; | 
|  | for (int c_id = 0; c_id < unit_stats->num_stats_classes; ++c_id) { | 
|  | const int tc_id = class_converter[c_id]; | 
|  | for (int i = 0; i < stride_A; ++i) { | 
|  | collapsed_unit_stats.A[tc_id * stride_A + i] += | 
|  | unit_stats->A[c_id * stride_A + i]; | 
|  | } | 
|  | for (int i = 0; i < stride_b; ++i) { | 
|  | collapsed_unit_stats.b[tc_id * stride_b + i] += | 
|  | unit_stats->b[c_id * stride_b + i]; | 
|  | } | 
|  | collapsed_unit_stats.num_pixels_in_class[tc_id] += | 
|  | unit_stats->num_pixels_in_class[c_id]; | 
|  | } | 
|  | *unit_stats = collapsed_unit_stats; | 
|  | } | 
|  |  | 
|  | // Initial set of stats are determined using num_stats_classes classes. This | 
|  | // routine collapses the initial set of stats to num_target_classes for | 
|  | // downstream use. | 
|  | static void collapse_all_stats(RestSearchCtxt *rsc, int num_stats_classes, | 
|  | int num_target_classes) { | 
|  | const uint8_t *class_converter = | 
|  | get_class_converter(rsc, num_stats_classes, num_target_classes); | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | RstUnitStats *unit_stats_ptr = (RstUnitStats *)unit_stats.pointer; | 
|  | assert(unit_stats_ptr->num_stats_classes == num_stats_classes); | 
|  | collapse_stats_to_target_classes(num_target_classes, class_converter, | 
|  | unit_stats_ptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the number of classes that are not active on a given picture. While | 
|  | // all class labels tend to be active at high rates at lower rates some class | 
|  | // labels are no longer active as the picture loses detail. Useful in debugging. | 
|  | static int count_classes_with_no_pixels(const RestSearchCtxt *rsc) { | 
|  | int pixel_count[WIENERNS_MAX_CLASSES] = { 0 }; | 
|  | int num_classes = -1; | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | RstUnitStats *unit_stats_ptr = (RstUnitStats *)unit_stats.pointer; | 
|  | num_classes = | 
|  | num_classes == -1 ? unit_stats_ptr->num_stats_classes : num_classes; | 
|  | assert(unit_stats_ptr->num_stats_classes == num_classes); | 
|  | for (int c_id = 0; c_id < unit_stats_ptr->num_stats_classes; ++c_id) { | 
|  | pixel_count[c_id] += unit_stats_ptr->num_pixels_in_class[c_id]; | 
|  | } | 
|  | } | 
|  | int unoccupied = num_classes; | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) | 
|  | if (pixel_count[c_id]) --unoccupied; | 
|  | return unoccupied; | 
|  | } | 
|  |  | 
|  | // Calculates the weighted sum of all frame-level statistics. Useful in deriving | 
|  | // frame-level Wiener filters. | 
|  | static void weighted_sum_all_stats(const RestSearchCtxt *rsc, | 
|  | RstUnitStats *sum_stats, int num_feat) { | 
|  | memset(sum_stats, 0, sizeof(*sum_stats)); | 
|  |  | 
|  | // Get a sample to fill the basic fields of sum_stats; | 
|  | const RstUnitStats *sample_stat = | 
|  | aom_vector_begin(rsc->wienerns_stats).pointer; | 
|  | sum_stats->ru_idx = sample_stat->ru_idx; | 
|  | sum_stats->plane = sample_stat->plane; | 
|  | sum_stats->num_stats_classes = sample_stat->num_stats_classes; | 
|  |  | 
|  | const int stride_A = WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | const int stride_b = WIENERNS_TAPS_MAX; | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | const RstUnitStats *unit_stat = (const RstUnitStats *)unit_stats.pointer; | 
|  | const double weight = unit_stat->weight; | 
|  |  | 
|  | // Begin: not really needed. | 
|  | sum_stats->real_sse += (int64_t)(weight * unit_stat->real_sse); | 
|  | sum_stats->weight += weight; | 
|  | // End: not really needed. | 
|  |  | 
|  | for (int c_id = 0; c_id < sum_stats->num_stats_classes; ++c_id) { | 
|  | for (int i = 0; i < num_feat * num_feat; ++i) { | 
|  | sum_stats->A[c_id * stride_A + i] += | 
|  | weight * unit_stat->A[c_id * stride_A + i]; | 
|  | } | 
|  | for (int i = 0; i < num_feat; ++i) { | 
|  | sum_stats->b[c_id * stride_b + i] += | 
|  | weight * unit_stat->b[c_id * stride_b + i]; | 
|  | } | 
|  | sum_stats->num_pixels_in_class[c_id] += | 
|  | (int)(weight * unit_stat->num_pixels_in_class[c_id]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int count_match_indices_bits(int plane, int num_classes, int num_ref_frames, | 
|  | const int *match_indices, int nopcw) { | 
|  | assert(NUM_MATCH_GROUPS == 3); | 
|  | int group_counts[NUM_MATCH_GROUPS]; | 
|  | set_group_counts(plane, num_classes, num_ref_frames, group_counts, nopcw); | 
|  | int total_bits = 0; | 
|  | for (int c_id = 0; c_id < num_classes; ++c_id) { | 
|  | int only; | 
|  | const int pred_group = | 
|  | predict_group(c_id, match_indices, group_counts, &only); | 
|  | const int group = index_to_group(match_indices[c_id], group_counts); | 
|  | if (!only) ++total_bits; | 
|  | if (group != pred_group) { | 
|  | const int other_group = 3 - (group + pred_group); | 
|  | if (group_counts[other_group]) ++total_bits; | 
|  | } | 
|  | const int ref = | 
|  | predict_within_group(group, c_id, match_indices, group_counts); | 
|  | const int base = get_group_base(group, group_counts); | 
|  | const int n = group == 0 ? c_id + 1 : group_counts[group]; | 
|  | if (n > 1) { | 
|  | #if CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
|  | total_bits += aom_wb_count_primitive_refsubexpfin( | 
|  | n, 4, ref - base, match_indices[c_id] - base); | 
|  | #else | 
|  | total_bits += aom_count_primitive_refsubexpfin( | 
|  | n, 4, ref - base, match_indices[c_id] - base); | 
|  | #endif  // CONFIG_LR_FRAMEFILTERS_IN_HEADER | 
|  | } | 
|  | } | 
|  | return total_bits; | 
|  | } | 
|  |  | 
|  | static double calculate_frame_filters_cost(const RestSearchCtxt *rsc, | 
|  | const WienerNonsepInfoBank *bank, | 
|  | WienerNonsepInfo *filter, | 
|  | int64_t *filter_bits) { | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | int64_t bits = | 
|  | count_wienerns_bits_set(rsc->plane, &rsc->x->mode_costs, filter, bank, | 
|  | nsfilter_params, ALL_WIENERNS_CLASSES); | 
|  | assert(filter->num_ref_filters == *rsc->cm->num_ref_filters); | 
|  | const int nopcw = | 
|  | disable_pcwiener_filters_in_framefilters(&rsc->cm->seq_params); | 
|  |  | 
|  | bits += count_match_indices_bits(rsc->plane, filter->num_classes, | 
|  | filter->num_ref_filters, | 
|  | filter->match_indices, nopcw) * | 
|  | (1 << AV1_PROB_COST_SHIFT); | 
|  |  | 
|  | *filter_bits = bits; | 
|  | double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, 0, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | static int cost_compar(const void *left, const void *right) { | 
|  | return *((double *)left) <= *((double *)right) ? -1 : 1; | 
|  | } | 
|  |  | 
|  | typedef struct RdResults { | 
|  | int utilization; | 
|  | int64_t total_distortion; | 
|  | int64_t total_bits; | 
|  | int64_t total_stat_distortion; | 
|  | int64_t total_sse; | 
|  | double total_cost; | 
|  | } RdResults; | 
|  |  | 
|  | // Distortion is given by, d = sse - 2 * b^T f + f^T A f. For an optimized | 
|  | // filter the distortion improvement del_d = - 2 * b^T f + f^T A f, should be | 
|  | // negative. This routine calculates del_d giving the caller the opportunity to | 
|  | // (i) calculate d, (ii) detect a suboptimal filter and set it to zero. | 
|  | // (Suboptimal filters can result during discretization of filter-taps.) | 
|  | // Returned result is scaled up by tap_qstep * tap_qstep. | 
|  | static double calculate_distortion_improvement(const double *A, int stride, | 
|  | const double *b, int num_feat, | 
|  | const int16_t *filter_taps, | 
|  | int tap_qstep) { | 
|  | double del_d = 0; | 
|  | for (int i = 0; i < num_feat; ++i) { | 
|  | // f^T A f. | 
|  | double tmp_sum = 0; | 
|  | for (int j = 0; j < num_feat; ++j) { | 
|  | tmp_sum += A[i * stride + j] * filter_taps[j]; | 
|  | } | 
|  | // f^T A f - 2 * b^T f. | 
|  | del_d += (tmp_sum - 2 * b[i] * tap_qstep) * filter_taps[i]; | 
|  | } | 
|  | return del_d; | 
|  | } | 
|  |  | 
|  | // Distortion is given by, d = sse - 2 * b^T f + f^T A f. Returned result is | 
|  | // scaled up by tap_qstep * tap_qstep. | 
|  | static double get_scaled_filter_distortion(const RstUnitStats *stats, | 
|  | WienerNonsepInfo *filter, | 
|  | int num_feat, int tap_qstep) { | 
|  | assert(filter->num_classes == stats->num_stats_classes); | 
|  | const int stride_A = WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | const int stride_b = WIENERNS_TAPS_MAX; | 
|  |  | 
|  | double distortion = stats->real_sse * tap_qstep * tap_qstep; | 
|  | for (int c_id = 0; c_id < stats->num_stats_classes; ++c_id) { | 
|  | const int16_t *filter_taps = const_nsfilter_taps(filter, c_id); | 
|  |  | 
|  | // - 2 * b^T f + f^T A f | 
|  | double del_d_for_class = calculate_distortion_improvement( | 
|  | stats->A + c_id * stride_A, num_feat, stats->b + c_id * stride_b, | 
|  | num_feat, filter_taps, tap_qstep); | 
|  |  | 
|  | distortion += del_d_for_class; | 
|  | } | 
|  | return distortion; | 
|  | } | 
|  |  | 
|  | // Solves frame-filters with the help of sum_stats using least-squares and basic | 
|  | // integerization. Solution is returned in WienerNonsepInfo *filter. If no | 
|  | // solution is found for a particular class, correspondinf filter is set to | 
|  | // zeros. | 
|  | static void solve_filters_from_stats_wienerns(const RestSearchCtxt *rsc, | 
|  | const RstUnitStats *sum_stats, | 
|  | WienerNonsepInfo *filter) { | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  | const int stride_A = WIENERNS_TAPS_MAX * WIENERNS_TAPS_MAX; | 
|  | const int stride_b = WIENERNS_TAPS_MAX; | 
|  | const int num_target_classes = filter->num_classes; | 
|  | int linsolve_successful = 0; | 
|  | for (int c_id = 0; c_id < num_target_classes; ++c_id) { | 
|  | linsolve_successful = compute_wienerns_filter_select_master_basic( | 
|  | rsc, filter, c_id, num_feat, nsfilter_params->nsubsets - 1, | 
|  | sum_stats->A + c_id * stride_A, num_feat, | 
|  | sum_stats->b + c_id * stride_b, rsc->wienerns_tmpbuf, nsfilter_params, | 
|  | 0); | 
|  | /* | 
|  | linsolve_successful = compute_wienerns_filter_select( | 
|  | num_feat, nsfilter_params->subset_config[nsfilter_params->nsubsets - 1], | 
|  | sum_stats->A + c_id * stride_A, num_feat, | 
|  | sum_stats->b + c_id * stride_b, rsc->wienerns_tmpbuf, | 
|  | nsfilter_taps(filter, c_id), nsfilter_params); | 
|  | */ | 
|  | /* | 
|  | linsolve_successful = compute_wienerns_filter( | 
|  | num_feat, sum_stats->A + c_id * stride_A, num_feat, | 
|  | sum_stats->b + c_id * stride_b, rsc->wienerns_tmpbuf, | 
|  | nsfilter_taps(filter, c_id), nsfilter_params); | 
|  | */ | 
|  | if (!linsolve_successful) { | 
|  | memset(nsfilter_taps(filter, c_id), 0, | 
|  | num_feat * sizeof(*filter->allfiltertaps)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define RU_ON_WEIGHT 1 | 
|  | #define RU_OFF_WEIGHT 1e-10 | 
|  |  | 
|  | // Calculates the cost of using frame-level filters on a picture by | 
|  | //   (i) determining per RU on-off mode based on R-D, | 
|  | //  (ii) calculating resulting per RU cost. | 
|  | // Results are returned in the RdResults struct. RUs with on-mode are assigned | 
|  | // the weight RU_ON_WEIGHT, off-mode RU_OFF_WEIGHT. Useful in optimizing | 
|  | // frame-level filters in conjunction with on-off mode-decisions. | 
|  | static RdResults update_cost_and_weights_wienerns(RestSearchCtxt *rsc, | 
|  | RestorationUnitInfo *rui, | 
|  | double *work_cost_array, | 
|  | int fill_stat_distortion) { | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  | const int tap_shift = nsfilter_params->nsfilter_config.prec_bits; | 
|  | const int tap_qstep = 1 << tap_shift; | 
|  | const int use_rate = 1; | 
|  |  | 
|  | const int64_t bits_none = | 
|  | use_rate ? rsc->x->mode_costs.wienerns_restore_cost[0] : 0; | 
|  | const int64_t bits_wienerns = | 
|  | use_rate ? rsc->x->mode_costs.wienerns_restore_cost[1] : 0; | 
|  |  | 
|  | RdResults results = { 0 }; | 
|  | int stat_slot = -1; | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | stat_slot++; | 
|  | RstUnitStats *unit_stats_ptr = (RstUnitStats *)(unit_stats.pointer); | 
|  | int64_t distortion = INT64_MAX; | 
|  | int64_t distortion_none = 0; | 
|  | if (!rsc->rusi[unit_stats_ptr->ru_idx].bru_unit_skipped) { | 
|  | const int ss_x = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_x; | 
|  | const int ss_y = (rsc->plane > 0) && rsc->cm->seq_params.subsampling_y; | 
|  | const int start_mi_x = | 
|  | unit_stats_ptr->limits.h_start >> (MI_SIZE_LOG2 - ss_x); | 
|  | const int start_mi_y = | 
|  | unit_stats_ptr->limits.v_start >> (MI_SIZE_LOG2 - ss_y); | 
|  | const int mbmi_idx = | 
|  | get_mi_grid_idx(&rsc->cm->mi_params, start_mi_y, start_mi_x); | 
|  | #if CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui->lossless_segment = rsc->cm->features.lossless_segment; | 
|  | rui->cm = rsc->cm; | 
|  | #endif  // CONFIG_DISABLE_LOOP_FILTERS_LOSSLESS | 
|  | rui->mbmi_ptr = rsc->cm->mi_params.mi_grid_base + mbmi_idx; | 
|  | rui->ss_x = ss_x; | 
|  | rui->ss_y = ss_y; | 
|  | rui->mi_stride = rsc->cm->mi_params.mi_stride; | 
|  | distortion = calc_finer_tile_search_error(rsc, &unit_stats_ptr->limits, | 
|  | &rsc->tile_rect, rui); | 
|  | distortion_none = unit_stats_ptr->real_sse; | 
|  | } | 
|  |  | 
|  | const double cost_wienerns = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, bits_wienerns >> 4, distortion, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | const double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, bits_none >> 4, distortion_none, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  |  | 
|  | const double cost_diff = cost_wienerns - cost_none; | 
|  | work_cost_array[stat_slot] = cost_diff; | 
|  | const int condn = cost_wienerns < cost_none; | 
|  |  | 
|  | if (condn) { | 
|  | results.total_distortion += distortion; | 
|  | results.total_bits += bits_wienerns; | 
|  | results.utilization++; | 
|  | results.total_cost += cost_wienerns; | 
|  | unit_stats_ptr->weight = RU_ON_WEIGHT; | 
|  |  | 
|  | if (fill_stat_distortion) { | 
|  | const double scaled_distortion = get_scaled_filter_distortion( | 
|  | unit_stats_ptr, &rui->wienerns_info, num_feat, tap_qstep); | 
|  | results.total_stat_distortion += | 
|  | ROUND_POWER_OF_TWO((int64_t)scaled_distortion, 2 * tap_shift); | 
|  | } | 
|  | } else { | 
|  | results.total_distortion += distortion_none; | 
|  | results.total_bits += bits_none; | 
|  | results.total_cost += cost_none; | 
|  | unit_stats_ptr->weight = RU_OFF_WEIGHT; | 
|  |  | 
|  | if (fill_stat_distortion) { | 
|  | results.total_stat_distortion += distortion_none; | 
|  | } | 
|  | } | 
|  | results.total_sse += distortion_none; | 
|  | } | 
|  | return results; | 
|  | } | 
|  |  | 
|  | // Returns the cost of using frame-level filters directly obtained from | 
|  | // reference frames. | 
|  | static double obtain_temp_pred_frame_filters_cost(RestSearchCtxt *rsc, | 
|  | WienerNonsepInfo *filter) { | 
|  | assert(rsc->temporal_pred_flag); | 
|  |  | 
|  | const int work_array_dim = (int)rsc->wienerns_stats->size; | 
|  | double *work_cost_array = | 
|  | (double *)(aom_malloc(work_array_dim * sizeof(*work_cost_array))); | 
|  | RestorationUnitInfo rui; | 
|  | initialize_rui_for_nonsep_search(rsc, &rui); | 
|  | rui.restoration_type = RESTORE_WIENER_NONSEP; | 
|  |  | 
|  | rui.wienerns_info = *filter; | 
|  | RdResults rd_results = | 
|  | update_cost_and_weights_wienerns(rsc, &rui, work_cost_array, 0); | 
|  |  | 
|  | double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, rd_results.total_bits >> 4, rd_results.total_distortion, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | // cost += frame level infor cos, to be added; | 
|  | aom_free(work_cost_array); | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | // Optimizes frame-level filters for a given num_target_classes. Optimization | 
|  | // progresses by weighting the stats of all RUs with RU_ON_WEIGHT and including | 
|  | // all RUs when solving for the filters. Then fewer and fewer RUs are included | 
|  | // to solve for filters more specialized on the included RUs. Once the reduction | 
|  | // process is completed the overall best is determined and the relevant cost | 
|  | // returned. | 
|  | static double optimize_frame_filters_for_target_classes( | 
|  | RestSearchCtxt *rsc, WienerNonsepInfo *filter, int *best_utilization, | 
|  | double *best_cost_array) { | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  | const int num_feat = nsfilter_params->ncoeffs; | 
|  | const int num_target_classes = filter->num_classes; | 
|  | WienerNonsepInfoBank bank = { 0 }; | 
|  | WienerNonsepInfo tmp_filter = { 0 }; | 
|  | tmp_filter.num_classes = num_target_classes; | 
|  |  | 
|  | double fraction_rus_to_include[][2] = { { .9, .0 }, { .8, .0 }, { .7, .0 }, | 
|  | { .6, .0 }, { .5, .0 }, { .4, .0 }, | 
|  | { .3, .0 }, { .2, .0 }, { .1, 0 } }; | 
|  | const int num_ru_perc_to_try = | 
|  | sizeof(fraction_rus_to_include) / sizeof(*fraction_rus_to_include); | 
|  | const int solve_iterations = 1; | 
|  | double best_cost = DBL_MAX; | 
|  |  | 
|  | RstUnitStats sum_stats; | 
|  | RestorationUnitInfo rui; | 
|  | initialize_rui_for_nonsep_search(rsc, &rui); | 
|  | rui.restoration_type = RESTORE_WIENER_NONSEP; | 
|  |  | 
|  | const int work_array_dim = (int)rsc->wienerns_stats->size; | 
|  | double *work_cost_array = | 
|  | (double *)(aom_malloc(work_array_dim * sizeof(*work_cost_array))); | 
|  |  | 
|  | // First run is with the initial stats. Then we try to refine | 
|  | // num_ru_perc_to_try times. Then a final round to better optimize the best | 
|  | // filter. | 
|  | int cnt = 0; | 
|  | while (cnt < num_ru_perc_to_try + 2) { | 
|  | ++cnt; | 
|  | RdResults rd_results = { 0 }; | 
|  | for (int n = 0; n < solve_iterations; ++n) { | 
|  | weighted_sum_all_stats(rsc, &sum_stats, num_feat); | 
|  | assert(sum_stats.num_stats_classes == num_target_classes); | 
|  | solve_filters_from_stats_wienerns(rsc, &sum_stats, &tmp_filter); | 
|  | rui.wienerns_info = tmp_filter; | 
|  | RdResults iter_rd_results = | 
|  | update_cost_and_weights_wienerns(rsc, &rui, work_cost_array, 1); | 
|  | if (iter_rd_results.total_distortion == rd_results.total_distortion && | 
|  | iter_rd_results.total_bits == rd_results.total_bits) | 
|  | break; | 
|  | rd_results = iter_rd_results; | 
|  | } | 
|  |  | 
|  | double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, rd_results.total_bits >> 4, rd_results.total_distortion, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | initialize_bank_with_best_frame_filter_match(rsc, &tmp_filter, &bank, 1); | 
|  | int64_t filter_bits = 0; | 
|  | cost += calculate_frame_filters_cost(rsc, &bank, &tmp_filter, &filter_bits); | 
|  |  | 
|  | if (cost < best_cost) { | 
|  | best_cost = cost; | 
|  | *best_utilization = rd_results.utilization; | 
|  | *filter = tmp_filter; | 
|  | for (int i = 0; i < work_array_dim; ++i) | 
|  | best_cost_array[i] = work_cost_array[i]; | 
|  | } else { | 
|  | tmp_filter = *filter; | 
|  | } | 
|  | if (cnt <= num_ru_perc_to_try) { | 
|  | // Sorting will change the order in the arrays. Preserve data and ordering | 
|  | // in best_cost_array. | 
|  | for (int i = 0; i < work_array_dim; ++i) | 
|  | work_cost_array[i] = best_cost_array[i]; | 
|  | qsort(work_cost_array, work_array_dim, sizeof(*work_cost_array), | 
|  | cost_compar); | 
|  |  | 
|  | const int pnt = (int)round(fraction_rus_to_include[cnt - 1][0] * | 
|  | (work_array_dim - 1)); | 
|  | const double max_cost_allowed = work_cost_array[pnt]; | 
|  |  | 
|  | int stat_slot = -1; | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | stat_slot++; | 
|  | RstUnitStats *unit_stats_ptr = (RstUnitStats *)(unit_stats.pointer); | 
|  | if (best_cost_array[stat_slot] < max_cost_allowed) { | 
|  | unit_stats_ptr->weight = RU_ON_WEIGHT; | 
|  | } else { | 
|  | unit_stats_ptr->weight = RU_OFF_WEIGHT; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Recover the weights for the best filter. | 
|  | int stat_slot = -1; | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | stat_slot++; | 
|  | RstUnitStats *unit_stats_ptr = (RstUnitStats *)(unit_stats.pointer); | 
|  | unit_stats_ptr->weight = | 
|  | best_cost_array[stat_slot] < 0 ? RU_ON_WEIGHT : RU_OFF_WEIGHT; | 
|  | } | 
|  | } | 
|  | } | 
|  | aom_free(work_cost_array); | 
|  |  | 
|  | if (*best_utilization == 0) { | 
|  | for (int c_id = 0; c_id < num_target_classes; ++c_id) { | 
|  | memset(nsfilter_taps(filter, c_id), 0, | 
|  | WIENERNS_TAPS_MAX * sizeof(*filter->allfiltertaps)); | 
|  | } | 
|  | } | 
|  | return best_cost; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void initialize_stat_weights(RestSearchCtxt *rsc) { | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | RstUnitStats *unit_stats_ptr = (RstUnitStats *)(unit_stats.pointer); | 
|  | unit_stats_ptr->weight = RU_ON_WEIGHT; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define USE_FINER_TILE 1 | 
|  |  | 
|  | #if USE_FINER_TILE | 
|  |  | 
|  | // Uses finer_tile_search_wienerns() to fine-tune the frame-level filters over | 
|  | // the RUs using them. Without this routine the frame-level filters are | 
|  | // optimized with aggregate stats which do not incorporate rounding. This | 
|  | // routine establishes fine-grain optimization that also accounts for rounding | 
|  | // that follows the filtering process, i.e., the actual final distortion after | 
|  | // rounding is used to guide the optimization. | 
|  | static double optimize_frame_filters_with_rounding( | 
|  | RestSearchCtxt *rsc, WienerNonsepInfo *best_filter, double *cost_array) { | 
|  | const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters( | 
|  | rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y); | 
|  |  | 
|  | Vector *current_unit_stack = rsc->unit_stack; | 
|  | Vector *current_unit_indices = rsc->unit_indices; | 
|  | aom_vector_clear(current_unit_indices); | 
|  | aom_vector_clear(current_unit_stack); | 
|  |  | 
|  | WienerNonsepInfoBank tmp_bank = { 0 }; | 
|  | initialize_bank_with_best_frame_filter_match(rsc, best_filter, &tmp_bank, 1); | 
|  |  | 
|  | int cnt = 0; | 
|  | int stat_slot = -1; | 
|  | VECTOR_FOR_EACH(rsc->wienerns_stats, unit_stats) { | 
|  | stat_slot++; | 
|  | if (cost_array[stat_slot] >= 0) continue; | 
|  |  | 
|  | cnt++; | 
|  | const RstUnitStats *unit_stat = (const RstUnitStats *)unit_stats.pointer; | 
|  |  | 
|  | RstUnitSnapshot unit_snapshot; | 
|  | memset(&unit_snapshot, 0, sizeof(unit_snapshot)); | 
|  | unit_snapshot.limits = unit_stat->limits; | 
|  |  | 
|  | unit_snapshot.rest_unit_idx = stat_slot; | 
|  | unit_snapshot.ref_wienerns_bank = tmp_bank; | 
|  | aom_vector_push_back(current_unit_stack, &unit_snapshot); | 
|  | aom_vector_push_back(current_unit_indices, &stat_slot); | 
|  | } | 
|  | if (cnt == 0) return -1; | 
|  |  | 
|  | RestorationUnitInfo rui; | 
|  | initialize_rui_for_nonsep_search(rsc, &rui); | 
|  | rui.restoration_type = RESTORE_WIENER_NONSEP; | 
|  | rui.wienerns_info = *best_filter; | 
|  | rui.wiener_class_id_restrict = -1; | 
|  | finer_tile_search_wienerns(rsc, NULL, &rsc->tile_rect, &rui, nsfilter_params, | 
|  | 1, &tmp_bank, ALL_WIENERNS_CLASSES); | 
|  | *best_filter = rui.wienerns_info; | 
|  | RdResults rd_results = | 
|  | update_cost_and_weights_wienerns(rsc, &rui, cost_array, 0); | 
|  | initialize_bank_with_best_frame_filter_match(rsc, best_filter, &tmp_bank, 1); | 
|  | double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, rd_results.total_bits >> 4, rd_results.total_distortion, | 
|  | rsc->cm->seq_params.bit_depth); | 
|  | int64_t filter_bits = 0; | 
|  | const double filter_cost = | 
|  | calculate_frame_filters_cost(rsc, &tmp_bank, best_filter, &filter_bits); | 
|  | cost += filter_cost; | 
|  |  | 
|  | return cost; | 
|  | } | 
|  | #endif  // USE_FINER_TILE | 
|  |  | 
|  | // At the end of this routine all stats will be collapsed to one. | 
|  | static void find_optimal_num_classes_and_frame_filters(RestSearchCtxt *rsc) { | 
|  | const int max_num_classes_allowed = max_num_classes(rsc->plane); | 
|  | const int num_classes_to_try[] = { 16, 12, 8, 6, 4, 3, 2, 1 }; | 
|  | const int num_try = sizeof(num_classes_to_try) / sizeof(*num_classes_to_try); | 
|  |  | 
|  | WienerNonsepInfoBank tmp_bank = { 0 };  // Needed for filter rate calculation. | 
|  | WienerNonsepInfo tmp_filter = { 0 };    // Set all including bank ref to 0. | 
|  | WienerNonsepInfo best_filter; | 
|  |  | 
|  | const int work_array_dim = (int)rsc->wienerns_stats->size; | 
|  | double *best_cost_array = | 
|  | (double *)(aom_malloc(work_array_dim * sizeof(*best_cost_array))); | 
|  | double *work_cost_array = | 
|  | (double *)(aom_malloc(work_array_dim * sizeof(*work_cost_array))); | 
|  | double best_cost = DBL_MAX; | 
|  | int best_utilization = 0; | 
|  | int best_num_classes = -1; | 
|  | int num_stats_classes = rsc->num_stats_classes; | 
|  | initialize_stat_weights(rsc); | 
|  | rsc->temporal_pred_flag = 0; | 
|  | for (int i = 0; i < num_try; ++i) { | 
|  | const int num_target_classes = num_classes_to_try[i]; | 
|  | assert(decode_num_filter_classes(encode_num_filter_classes( | 
|  | num_target_classes)) == num_target_classes); | 
|  | if (num_target_classes > max_num_classes_allowed) continue; | 
|  |  | 
|  | if (num_stats_classes > num_target_classes) | 
|  | collapse_all_stats(rsc, num_stats_classes, num_target_classes); | 
|  | const int unoccupied = count_classes_with_no_pixels(rsc); | 
|  | (void)unoccupied; | 
|  | num_stats_classes = num_target_classes; | 
|  | tmp_filter.num_classes = num_target_classes; | 
|  | tmp_filter.num_ref_filters = *rsc->cm->num_ref_filters; | 
|  | int utilization = 0; | 
|  | const double cost = optimize_frame_filters_for_target_classes( | 
|  | rsc, &tmp_filter, &utilization, work_cost_array); | 
|  |  | 
|  | if (cost < best_cost) { | 
|  | best_cost = cost; | 
|  | best_utilization = utilization; | 
|  | best_num_classes = num_target_classes; | 
|  | best_filter = tmp_filter; | 
|  | for (int n = 0; n < work_array_dim; ++n) { | 
|  | best_cost_array[n] = work_cost_array[n]; | 
|  | } | 
|  | //      double *tmp_array = work_cost_array; | 
|  | //      work_cost_array = best_cost_array; | 
|  | //      best_cost_array = tmp_array; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(best_num_classes != -1); | 
|  | (void)best_utilization; | 
|  |  | 
|  | rsc->num_filter_classes = best_num_classes; | 
|  | rsc->best_num_filter_classes = best_num_classes; | 
|  |  | 
|  | #if USE_FINER_TILE | 
|  | tmp_filter = best_filter; | 
|  | const double tmp_cost = | 
|  | optimize_frame_filters_with_rounding(rsc, &best_filter, best_cost_array); | 
|  | if (tmp_cost >= 0 && tmp_cost < best_cost) { | 
|  | best_cost = tmp_cost; | 
|  | } else { | 
|  | best_filter = tmp_filter; | 
|  | } | 
|  | #endif  // USE_FINER_TILE | 
|  | assert(best_filter.num_classes == best_num_classes); | 
|  | initialize_bank_with_best_frame_filter_match(rsc, &best_filter, &tmp_bank, 1); | 
|  |  | 
|  | int64_t filter_bits = 0; | 
|  | rsc->frame_filter_cost = | 
|  | calculate_frame_filters_cost(rsc, &tmp_bank, &best_filter, &filter_bits); | 
|  |  | 
|  | int8_t best_ref_idx = -1; | 
|  | const int num_ref_frames = (frame_is_intra_only(rsc->cm) || | 
|  | #if CONFIG_F322_OBUER_ERM | 
|  | frame_is_sframe(rsc->cm) | 
|  | #else | 
|  | rsc->cm->features.error_resilient_mode | 
|  | #endif | 
|  | ) | 
|  | ? 0 | 
|  | : rsc->cm->ref_frames_info.num_total_refs; | 
|  | for (int ref_idx = 0; ref_idx < num_ref_frames; ref_idx++) { | 
|  | RestorationInfo rsi = | 
|  | get_ref_frame_buf(rsc->cm, ref_idx)->rst_info[rsc->plane]; | 
|  | if (!rsi.frame_filters_on) { | 
|  | const int alternate_plane = alternate_ref_plane(rsc->plane); | 
|  | if (alternate_plane != -1) { | 
|  | rsi = get_ref_frame_buf(rsc->cm, ref_idx)->rst_info[alternate_plane]; | 
|  | } | 
|  | if (!rsi.frame_filters_on) continue; | 
|  | } | 
|  | // cannot use BRU frame as bank, theoratically OK, but disable for now | 
|  | if (ref_idx == rsc->cm->bru.update_ref_idx) { | 
|  | continue; | 
|  | } | 
|  | rsc->temporal_pred_flag = 1; | 
|  | tmp_filter = rsi.frame_filters; | 
|  | rsc->num_filter_classes = tmp_filter.num_classes; | 
|  |  | 
|  | double cost = obtain_temp_pred_frame_filters_cost(rsc, &tmp_filter); | 
|  |  | 
|  | // Reset this bank to account for bits that signal the frame level filters. | 
|  | initialize_bank_with_best_frame_filter_match(rsc, &tmp_filter, &tmp_bank, | 
|  | 1); | 
|  |  | 
|  | if (cost < best_cost) { | 
|  | best_cost = cost; | 
|  | best_ref_idx = ref_idx; | 
|  | best_filter = tmp_filter; | 
|  | } | 
|  | } | 
|  |  | 
|  | best_num_classes = best_filter.num_classes; | 
|  | rsc->num_filter_classes = best_filter.num_classes; | 
|  | rsc->best_num_filter_classes = best_filter.num_classes; | 
|  |  | 
|  | if (best_ref_idx >= 0) { | 
|  | rsc->temporal_pred_flag = 1; | 
|  | rsc->rst_ref_pic_idx = best_ref_idx; | 
|  | rsc->frame_filter_cost = 0; | 
|  |  | 
|  | } else { | 
|  | rsc->temporal_pred_flag = 0; | 
|  | } | 
|  |  | 
|  | rsc->frame_filters_total_cost = best_cost; | 
|  | av1_reset_wienerns_bank(&rsc->frame_filter_bank, | 
|  | rsc->cm->quant_params.base_qindex, best_num_classes, | 
|  | rsc->plane != AOM_PLANE_Y); | 
|  |  | 
|  | for (int c_id = 0; c_id < best_num_classes; ++c_id) { | 
|  | // Park best filter in the bank, first slot. | 
|  | av1_add_to_wienerns_bank(&rsc->frame_filter_bank, &best_filter, c_id); | 
|  | rsc->frame_filter_bank.filter->match_indices[c_id] = | 
|  | best_filter.match_indices[c_id]; | 
|  | assert(rsc->frame_filter_bank.bank_size_for_class[c_id] == 1); | 
|  | } | 
|  |  | 
|  | rsc->frame_filters = best_filter; | 
|  |  | 
|  | aom_free(best_cost_array); | 
|  | aom_free(work_cost_array); | 
|  | } | 
|  |  | 
|  | static int rest_tiles_in_plane(const AV1_COMMON *cm, int plane) { | 
|  | const RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | return rsi->horz_units_per_frame * rsi->vert_units_per_frame; | 
|  | } | 
|  |  | 
|  | // Set the value of number of units, for a given unit size. | 
|  | void av1_reset_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi, | 
|  | int is_uv) { | 
|  | const int unit_size = rsi->restoration_unit_size; | 
|  | const int ss_y = is_uv && cm->seq_params.subsampling_y; | 
|  | AV1PixelRect tile_rect; | 
|  | #if CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | TileInfo tile_info; | 
|  | rsi->vert_units_per_frame = 0; | 
|  | rsi->vert_stripes_per_frame = 0; | 
|  | for (int tr = 0; tr < cm->tiles.rows; ++tr) { | 
|  | av1_tile_init(&tile_info, cm, tr, 0); | 
|  | tile_rect = av1_get_tile_rect(&tile_info, cm, is_uv); | 
|  | const int tile_h = tile_rect.bottom - tile_rect.top; | 
|  | rsi->vert_units_per_tile[tr] = | 
|  | av1_lr_count_units_in_tile(unit_size, tile_h); | 
|  | rsi->vert_units_per_frame += rsi->vert_units_per_tile[tr]; | 
|  | rsi->vert_stripes_per_frame += av1_lr_count_stripes_in_tile(tile_h, ss_y); | 
|  | } | 
|  | rsi->horz_units_per_frame = 0; | 
|  | for (int tc = 0; tc < cm->tiles.cols; ++tc) { | 
|  | av1_tile_init(&tile_info, cm, 0, tc); | 
|  | tile_rect = av1_get_tile_rect(&tile_info, cm, is_uv); | 
|  | const int tile_w = tile_rect.right - tile_rect.left; | 
|  | rsi->horz_units_per_tile[tc] = | 
|  | av1_lr_count_units_in_tile(unit_size, tile_w); | 
|  | rsi->horz_units_per_frame += rsi->horz_units_per_tile[tc]; | 
|  | } | 
|  | #else | 
|  | tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | const int tile_w = tile_rect.right - tile_rect.left; | 
|  | const int tile_h = tile_rect.bottom - tile_rect.top; | 
|  | // To calculate hpertile and vpertile (horizontal and vertical units per | 
|  | // tile), we basically want to divide the largest tile width or height by the | 
|  | // size of a restoration unit. Rather than rounding up unconditionally as you | 
|  | // might expect, we round to nearest, which models the way a right or bottom | 
|  | // restoration unit can extend to up to 150% its normal width or height. The | 
|  | // max with 1 is to deal with tiles that are smaller than half of a | 
|  | // restoration unit. | 
|  | rsi->vert_units_per_tile[0] = av1_lr_count_units_in_tile(unit_size, tile_h); | 
|  | rsi->vert_units_per_frame = rsi->vert_units_per_tile[0]; | 
|  | rsi->horz_units_per_tile[0] = av1_lr_count_units_in_tile(unit_size, tile_w); | 
|  | rsi->horz_units_per_frame = rsi->horz_units_per_tile[0]; | 
|  | rsi->vert_stripes_per_frame = av1_lr_count_stripes_in_tile(tile_h, ss_y); | 
|  | #endif  // CONFIG_CONTROL_LOOPFILTERS_ACROSS_TILES | 
|  | const int nunits = rsi->horz_units_per_frame * rsi->vert_units_per_frame; | 
|  | if (nunits > rsi->nunits_alloc) { | 
|  | aom_free(rsi->unit_info); | 
|  | CHECK_MEM_ERROR(cm, rsi->unit_info, | 
|  | (RestorationUnitInfo *)aom_memalign( | 
|  | 16, sizeof(*rsi->unit_info) * nunits)); | 
|  | rsi->nunits_alloc = nunits; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Incorporates frame-level filters into the decision flow that compares | 
|  | // RESTORE_WIENER_NONSEP and RESTORE_SWITCHABLE by replacing | 
|  | // per-RU-specified filters (regular-RESTORE_WIENER_NONSEP) with | 
|  | // frame-level-specified filters (frame-level-RESTORE_WIENER_NONSEP.) | 
|  | // | 
|  | // av1_pick_filter_restoration() proceeds by evaluating the cost of frame-level | 
|  | // filters followed by regular-RESTORE_WIENER_NONSEP and RESTORE_SWITCHABLE with | 
|  | // regular-RESTORE_WIENER_NONSEP. This routine decides whether the final mode | 
|  | // should be frame-level-RESTORE_WIENER_NONSEP or RESTORE_SWITCHABLE with | 
|  | // frame-level-RESTORE_WIENER_NONSEP. | 
|  | static int replace_with_frame_filters(RestSearchCtxt *rsc, double *best_cost) { | 
|  | rsc->frame_filters_on = 1; | 
|  | rsc->num_filter_classes = rsc->best_num_filter_classes; | 
|  |  | 
|  | // Update RESTORE_WIENER_NONSEP to use frame-level filters. | 
|  | rsc->num_wiener_nonsep = 0; | 
|  | double cost_again = search_rest_type(rsc, RESTORE_WIENER_NONSEP); | 
|  | if (rsc->num_wiener_nonsep) cost_again += rsc->frame_filter_cost; | 
|  | (void)cost_again; | 
|  | // should match the earlier calculated cost. | 
|  | #if 0  // debug_point | 
|  | assert(fabs(cost_again - rsc->frame_filters_total_cost) < 1e-3); | 
|  | #endif | 
|  | cost_again = rsc->frame_filters_total_cost; | 
|  | const int num_wiener_nonsep = rsc->num_wiener_nonsep; | 
|  |  | 
|  | // Update RESTORE_SWITCHABLE to use frame-level filters. | 
|  | rsc->adjust_switchable_for_frame_filters = 1; | 
|  | rsc->num_wiener_nonsep = 0; | 
|  | double cost = search_rest_type(rsc, RESTORE_SWITCHABLE); | 
|  | if (rsc->num_wiener_nonsep) cost += rsc->frame_filter_cost; | 
|  | rsc->adjust_switchable_for_frame_filters = 0; | 
|  |  | 
|  | int final_r = RESTORE_SWITCHABLE; | 
|  | if (cost > cost_again) { | 
|  | final_r = RESTORE_WIENER_NONSEP; | 
|  | rsc->num_wiener_nonsep = num_wiener_nonsep; | 
|  | cost = cost_again; | 
|  | } | 
|  | *best_cost = cost; | 
|  | return final_r; | 
|  | } | 
|  |  | 
|  | void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | assert(!cm->features.all_lossless); | 
|  |  | 
|  | av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx); | 
|  |  | 
|  | int ntiles[2]; | 
|  | for (int is_uv = 0; is_uv < 2; ++is_uv) { | 
|  | cm->rst_info[is_uv].restoration_unit_size = | 
|  | cm->rst_info[is_uv].min_restoration_unit_size; | 
|  | av1_reset_restoration_struct(cm, &cm->rst_info[is_uv], is_uv); | 
|  | ntiles[is_uv] = rest_tiles_in_plane(cm, is_uv); | 
|  | } | 
|  | int max_ntile = AOMMAX(ntiles[0], ntiles[1]); | 
|  | RestUnitSearchInfo *rusi = | 
|  | (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_ntile); | 
|  |  | 
|  | // If the restoration unit dimensions are not multiples of | 
|  | // rsi->restoration_unit_size then some elements of the rusi array may be | 
|  | // left uninitialised when we reach copy_unit_info(...). This is not a | 
|  | // problem, as these elements are ignored later, but in order to quiet | 
|  | // Valgrind's warnings we initialise the array below. | 
|  | memset(rusi, 0, sizeof(*rusi) * ntiles[0]); | 
|  | x->rdmult = cpi->rd.RDMULT; | 
|  |  | 
|  | Vector unit_stack; | 
|  | aom_vector_setup(&unit_stack, | 
|  | 1,                                // resizable capacity | 
|  | sizeof(struct RstUnitSnapshot));  // element size | 
|  | Vector unit_indices; | 
|  | aom_vector_setup(&unit_indices, | 
|  | 1,             // resizable capacity | 
|  | sizeof(int));  // element size | 
|  |  | 
|  | RestSearchCtxt rsc; | 
|  | const int plane_start = AOM_PLANE_Y; | 
|  | const int plane_end = num_planes > 1 ? AOM_PLANE_V : AOM_PLANE_Y; | 
|  |  | 
|  | Vector wienerns_stats; | 
|  | aom_vector_setup(&wienerns_stats, | 
|  | 1,                             // resizable capacity | 
|  | sizeof(struct RstUnitStats));  // element size | 
|  | rsc.wienerns_stats = &wienerns_stats; | 
|  | WienerNonsepInfoBank frame_filter_dict; | 
|  | double frame_filter_cost = DBL_MAX; | 
|  | int best_frame_filters_state = 0; | 
|  | int8_t best_temp_pred_flag = 0; | 
|  | int8_t best_temp_ref_idx = -1; | 
|  |  | 
|  | uint16_t *luma = NULL; | 
|  | uint16_t *luma_buf; | 
|  | const YV12_BUFFER_CONFIG *dgd = &cpi->common.cur_frame->buf; | 
|  | rsc.luma_stride = dgd->widths[1] + 2 * WIENERNS_UV_BRD; | 
|  | luma_buf = wienerns_copy_luma_highbd( | 
|  | dgd->buffers[AOM_PLANE_Y], dgd->heights[AOM_PLANE_Y], | 
|  | dgd->widths[AOM_PLANE_Y], dgd->strides[AOM_PLANE_Y], &luma, | 
|  | dgd->heights[1], dgd->widths[1], WIENERNS_UV_BRD, rsc.luma_stride, | 
|  | cm->seq_params.bit_depth | 
|  | #if WIENERNS_CROSS_FILT_LUMA_TYPE == 2 | 
|  | , | 
|  | cm->seq_params.cfl_ds_filter_index | 
|  | #endif | 
|  | ); | 
|  | assert(luma_buf != NULL); | 
|  |  | 
|  | rsc.luma_stat = luma; | 
|  |  | 
|  | uint16_t *luma_virtual = NULL; | 
|  | uint16_t *luma_virtual_buf; | 
|  |  | 
|  | luma_virtual_buf = wienerns_copy_luma_with_virtual_lines(cm, &luma_virtual); | 
|  | rsc.luma = luma_virtual; | 
|  |  | 
|  | rsc.wienerns_tmpbuf = | 
|  | (double *)aom_malloc(WIENERNS_TMPBUF_SIZE * sizeof(*rsc.wienerns_tmpbuf)); | 
|  |  | 
|  | for (int plane = plane_start; plane <= plane_end; ++plane) { | 
|  | init_rsc(src, &cpi->common, x, &cpi->sf.lpf_sf, plane, rusi, &unit_stack, | 
|  | &unit_indices, &cpi->trial_frame_rst, &rsc); | 
|  |  | 
|  | const int plane_ntiles = ntiles[plane > 0]; | 
|  | const RestorationType num_rtypes = | 
|  | (plane_ntiles > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; | 
|  |  | 
|  | double best_cost = DBL_MAX; | 
|  | RestorationType best_rtype = RESTORE_NONE; | 
|  | best_frame_filters_state = 0; | 
|  | best_temp_pred_flag = 0; | 
|  | best_temp_ref_idx = -1; | 
|  | rsc.temporal_pred_flag = 0; | 
|  | const int frame_filters_configured = | 
|  | cpi->common.features.lr_tools_disable_mask[plane > 0] & | 
|  | (1 << RESTORE_WIENER_NONSEP) | 
|  | ? 0 | 
|  | : 1; | 
|  | RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | const int max_unit_size = rsi->max_restoration_unit_size; | 
|  | const int min_unit_size = rsi->min_restoration_unit_size; | 
|  |  | 
|  | int best_unit_size = min_unit_size; | 
|  |  | 
|  | for (int unit_size = min_unit_size; unit_size <= max_unit_size; | 
|  | unit_size <<= 1) { | 
|  | // ru_size can be not smaller than stripe size, this process could only be | 
|  | // triggered for 422 coding. | 
|  | if (plane > 0 && unit_size < (64 >> cm->seq_params.subsampling_y)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (plane == 2 && unit_size != cm->rst_info[1].restoration_unit_size) { | 
|  | continue; | 
|  | } | 
|  | aom_vector_clear(&wienerns_stats); | 
|  |  | 
|  | rsi->restoration_unit_size = unit_size; | 
|  |  | 
|  | av1_reset_restoration_struct(cm, rsi, plane > 0); | 
|  | if (!cpi->sf.lpf_sf.disable_loop_restoration_chroma || !plane) { | 
|  | av1_extend_frame(rsc.dgd_buffer, rsc.plane_width, rsc.plane_height, | 
|  | rsc.dgd_stride, RESTORATION_BORDER_HORZ, | 
|  | RESTORATION_BORDER_VERT); | 
|  |  | 
|  | assert(rsc.adjust_switchable_for_frame_filters == 0); | 
|  | for (RestorationType r = 0; r < num_rtypes; ++r) { | 
|  | if ( | 
|  | // Need classification and related stats. Run | 
|  | // search_pc_wiener_visitor without any filtering. (Follow | 
|  | // pcwiener_disabled.) | 
|  | (r != RESTORE_PC_WIENER) && | 
|  | cpi->common.features.lr_tools_disable_mask[plane > 0] & (1 << r)) | 
|  | continue; | 
|  |  | 
|  | gather_stats_rest_type(&rsc, r); | 
|  |  | 
|  | if (r == RESTORE_WIENER_NONSEP) { | 
|  | rsc.num_filter_classes = default_num_classes(rsc.plane); | 
|  | } | 
|  |  | 
|  | if (r == RESTORE_WIENER_NONSEP && !cm->bru.enabled && | 
|  | is_frame_filters_enabled(rsc.plane) && frame_filters_configured) { | 
|  | // Find RDO-num_classes and frame-level filters. After this call | 
|  | // multiclass stats collapse to a single class. If that is not | 
|  | // desired make a copy of stats. | 
|  |  | 
|  | rsc.frame_filters_on = 1; | 
|  | find_optimal_num_classes_and_frame_filters(&rsc); | 
|  |  | 
|  | // Store for later copy into SWITCHABLE. | 
|  | frame_filter_dict = rsc.frame_filter_bank; | 
|  | frame_filter_cost = rsc.frame_filter_cost; | 
|  | } | 
|  | if (r == RESTORE_SWITCHABLE && is_frame_filters_enabled(rsc.plane) && | 
|  | frame_filters_configured) { | 
|  | assert(RESTORE_WIENER_NONSEP < RESTORE_SWITCHABLE); | 
|  | rsc.frame_filter_bank = frame_filter_dict; | 
|  | rsc.frame_filter_cost = frame_filter_cost; | 
|  | } | 
|  | rsc.frame_filters_on = 0; | 
|  | rsc.num_filter_classes = 1; | 
|  | if (r == RESTORE_WIENER_NONSEP || r == RESTORE_SWITCHABLE) | 
|  | rsc.num_wiener_nonsep = 0; | 
|  | // If the full frame is skipped, no need to search other type | 
|  | if (cm->current_frame.frame_type != KEY_FRAME && | 
|  | cm->bru.frame_inactive_flag && r != 0) | 
|  | continue; | 
|  |  | 
|  | double cost = search_rest_type(&rsc, r); | 
|  | int real_r = r; | 
|  | if (r == RESTORE_SWITCHABLE && is_frame_filters_enabled(plane) && | 
|  | !cm->bru.enabled && frame_filters_configured && | 
|  | cost > rsc.frame_filters_total_cost && | 
|  | best_cost > rsc.frame_filters_total_cost) { | 
|  | real_r = replace_with_frame_filters(&rsc, &cost); | 
|  | } | 
|  | assert(RESTORE_PC_WIENER < RESTORE_WIENER_NONSEP); | 
|  | if (r == RESTORE_PC_WIENER && is_frame_filters_enabled(plane) && | 
|  | frame_filters_configured) { | 
|  | rsc.classification_is_buffered = 1;  // Buffer is set. | 
|  | } | 
|  | int invalid_result = 0; | 
|  | if (r == RESTORE_PC_WIENER && plane != AOM_PLANE_Y) { | 
|  | invalid_result = 1; | 
|  | assert(cost >= best_cost); | 
|  | } | 
|  | const int found_best = cost < best_cost && !invalid_result; | 
|  | if (found_best) { | 
|  | best_cost = cost; | 
|  | best_rtype = real_r; | 
|  | best_unit_size = unit_size; | 
|  | if (is_frame_filters_enabled(rsc.plane) && | 
|  | frame_filters_configured) { | 
|  | best_frame_filters_state = rsc.frame_filters_on; | 
|  | if (rsc.frame_filters_on) { | 
|  | best_temp_pred_flag = rsc.temporal_pred_flag; | 
|  | best_temp_ref_idx = rsc.rst_ref_pic_idx; | 
|  | } else { | 
|  | best_temp_pred_flag = 0; | 
|  | best_temp_ref_idx = -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | rsc.classification_is_buffered = 0;  // Buffer is consumed. | 
|  | } | 
|  | if (is_frame_filters_enabled(rsc.plane)) { | 
|  | rsc.frame_filters_on = best_frame_filters_state; | 
|  | rsc.temporal_pred_flag = best_temp_pred_flag; | 
|  | rsc.rst_ref_pic_idx = best_temp_ref_idx; | 
|  | if (!frame_filters_configured) { | 
|  | assert(best_temp_ref_idx == -1); | 
|  | assert(best_temp_pred_flag == 0); | 
|  | assert(best_frame_filters_state == 0); | 
|  | } | 
|  | } | 
|  | if (rsi->restoration_unit_size == min_unit_size || | 
|  | best_unit_size == rsi->restoration_unit_size) { | 
|  | finalize_frame_and_unit_info(best_rtype, &cm->rst_info[plane], &rsc); | 
|  | } | 
|  | } | 
|  | assert(IMPLIES( | 
|  | cm->features.lr_tools_count[plane] < 2, | 
|  | cm->rst_info[plane].frame_restoration_type != RESTORE_SWITCHABLE)); | 
|  | rsi->restoration_unit_size = best_unit_size; | 
|  | av1_reset_restoration_struct(cm, rsi, plane > 0); | 
|  | int ru_num = rest_tiles_in_plane(cm, plane > 0); | 
|  | adjust_frame_rtype(&cm->rst_info[plane], ru_num, &rsc, &cpi->oxcf.tool_cfg); | 
|  | /* | 
|  | printf("[Frame %d][%d]: unit_size %d best_frame_filters_state %d(%d)\n", | 
|  | cm->current_frame.order_hint, plane, best_unit_size, | 
|  | best_frame_filters_state, rsc.best_num_filter_classes); | 
|  | */ | 
|  | } | 
|  |  | 
|  | aom_free(rusi); | 
|  | free(luma_buf); | 
|  | free(luma_virtual_buf); | 
|  | aom_free(rsc.wienerns_tmpbuf); | 
|  | aom_vector_destroy(&wienerns_stats); | 
|  | aom_vector_destroy(&unit_stack); | 
|  | aom_vector_destroy(&unit_indices); | 
|  | } |