| /* |
| * Copyright (c) 2024, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include "av1/encoder/trellis_quant.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/cost.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/scan.h" |
| #include "av1/encoder/bitstream.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/tokenize.h" |
| |
| typedef struct { |
| uint8_t *base; |
| int bufsize; |
| int idx; |
| } tcq_levels_t; |
| |
| static void tcq_levels_init(tcq_levels_t *lev, uint8_t *mem_tcq, int bufsize) { |
| lev->base = mem_tcq; |
| lev->idx = 0; |
| lev->bufsize = bufsize; |
| } |
| |
| static void tcq_levels_swap(tcq_levels_t *lev) { lev->idx ^= 1; } |
| |
| static uint8_t *tcq_levels_prev(const tcq_levels_t *lev, int st) { |
| return &lev->base[(2 * st + lev->idx) * lev->bufsize]; |
| } |
| |
| static uint8_t *tcq_levels_cur(const tcq_levels_t *lev, int st) { |
| return &lev->base[(2 * st + !lev->idx) * lev->bufsize]; |
| } |
| |
| static AOM_INLINE void init_tcq_decision(tcq_node_t *decision) { |
| static const tcq_node_t def = { INT64_MAX >> 10, 0, -1, -2 }; |
| for (int state = 0; state < TCQ_N_STATES; state++) { |
| memcpy(&decision[state], &def, sizeof(def)); |
| } |
| } |
| |
| // Initialize coeff neighbor magnitudes to zero before starting trellis |
| // optimization for a coeff block. |
| // Initialize previous state storage to identity mapping. |
| // As trellis decisions are made, magnitudes and |
| // state transitions will be updated. |
| static AOM_INLINE void init_tcq_ctx(struct tcq_ctx_t *tcq_ctx) { |
| static const int8_t init_st[4][TCQ_MAX_STATES] = { |
| { 0, 1, 2, 3, 4, 5, 6, 7 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7 }, |
| }; |
| memset(&tcq_ctx->mag_base, 0, sizeof(tcq_ctx->mag_base)); |
| memset(&tcq_ctx->mag_mid, 0, sizeof(tcq_ctx->mag_mid)); |
| memset(&tcq_ctx->ctx, 0, sizeof(tcq_ctx->ctx)); |
| memset(&tcq_ctx->lev_new, 0, sizeof(tcq_ctx->lev_new)); |
| int n_elem = sizeof(tcq_ctx->prev_st) / sizeof(tcq_ctx->prev_st[0]); |
| for (int i = 0; i < n_elem; i += 4) { |
| memcpy(tcq_ctx->prev_st[i], init_st, sizeof(init_st)); |
| } |
| } |
| |
| // Update context buffer for the current node |
| static AOM_INLINE void set_levels_buf(int prevId, int absLevel, uint8_t *levels, |
| const int16_t *scan, const int eob_minus1, |
| const int scan_pos, const int bwl, |
| const int sharpness) { |
| if (prevId == -2) { |
| return; |
| } |
| // update current abs level |
| levels[get_padded_idx(scan[scan_pos], bwl)] = AOMMIN(absLevel, INT8_MAX); |
| // check current node is a new start position? if so, set all previous |
| // position to 0. prevId == -1 means a new start, prevId == -2 ? |
| bool new_eob = prevId < 0 && scan_pos + 1 <= eob_minus1 && sharpness == 0; |
| if (new_eob) { |
| for (int si = scan_pos + 1; si <= eob_minus1; si++) { |
| levels[get_padded_idx(scan[si], bwl)] = 0; |
| } |
| } |
| } |
| |
| static AOM_FORCE_INLINE int get_dqv(const int32_t *dequant, int coeff_idx, |
| const qm_val_t *iqmatrix) { |
| int dqv = dequant[!!coeff_idx]; |
| if (iqmatrix != NULL) |
| dqv = |
| ((iqmatrix[coeff_idx] * dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; |
| return dqv; |
| } |
| |
| static AOM_FORCE_INLINE int64_t get_coeff_dist(tran_low_t tcoeff, |
| tran_low_t dqcoeff, int shift) { |
| const int64_t diff = (tcoeff - dqcoeff) * (1 << shift); |
| const int64_t error = diff * diff; |
| return error; |
| } |
| |
| static INLINE int get_coeff_cost_eob(int ci, tran_low_t abs_qc, int sign, |
| int coeff_ctx, int dc_sign_ctx, |
| const LV_MAP_COEFF_COST *txb_costs, |
| int bwl, TX_CLASS tx_class, int32_t t_sign, |
| int plane) { |
| int cost = 0; |
| const int row = ci >> bwl; |
| const int col = ci - (row << bwl); |
| int limits = get_lf_limits(row, col, tx_class, plane); |
| const int(*base_lf_eob_cost_ptr)[LF_BASE_SYMBOLS - 1] = |
| plane > 0 ? txb_costs->base_lf_eob_cost_uv : txb_costs->base_lf_eob_cost; |
| const int(*base_eob_cost_ptr)[3] = |
| plane > 0 ? txb_costs->base_eob_cost_uv : txb_costs->base_eob_cost; |
| |
| cost += limits ? base_lf_eob_cost_ptr[coeff_ctx] |
| [AOMMIN(abs_qc, LF_BASE_SYMBOLS - 1) - 1] |
| : base_eob_cost_ptr[coeff_ctx][AOMMIN(abs_qc, 3) - 1]; |
| if (abs_qc != 0) { |
| const int dc_ph_group = 0; // PH disabled |
| const bool dc_2dtx = (ci == 0); |
| const bool dc_hor = (col == 0) && tx_class == TX_CLASS_HORIZ; |
| const bool dc_ver = (row == 0) && tx_class == TX_CLASS_VERT; |
| if (dc_2dtx || dc_hor || dc_ver) { |
| if (plane == AOM_PLANE_V) |
| cost += txb_costs->v_dc_sign_cost[t_sign][dc_sign_ctx][sign]; |
| else |
| cost += txb_costs->dc_sign_cost[dc_ph_group][dc_sign_ctx][sign]; |
| } else { |
| cost += av1_cost_literal(1); |
| } |
| if (plane > 0) { |
| if (limits) { |
| if (abs_qc > LF_NUM_BASE_LEVELS) { |
| #if CONFIG_COEFF_BR_LF_UV_BYPASS |
| cost += get_br_lf_cost_tcq_uv(abs_qc); |
| #else |
| int br_ctx = get_br_ctx_lf_eob_chroma(ci, tx_class); |
| cost += get_br_lf_cost_tcq(abs_qc, txb_costs->lps_lf_cost_uv[br_ctx]); |
| #endif // CONFIG_COEFF_BR_LF_UV_BYPASS |
| } |
| } else { |
| if (abs_qc > NUM_BASE_LEVELS) { |
| int br_ctx = 0; /* get_br_ctx_eob_chroma */ |
| cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost_uv[br_ctx]); |
| } |
| } |
| } else { |
| if (limits) { |
| if (abs_qc > LF_NUM_BASE_LEVELS) { |
| int br_ctx = get_br_ctx_lf_eob(ci, tx_class); |
| cost += get_br_lf_cost_tcq(abs_qc, txb_costs->lps_lf_cost[br_ctx]); |
| } |
| } else { |
| if (abs_qc > NUM_BASE_LEVELS) { |
| int br_ctx = 0; /* get_br_ctx_eob */ |
| cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost[br_ctx]); |
| } |
| } |
| } |
| } |
| return cost; |
| } |
| |
| static INLINE int get_coeff_cost_def(tran_low_t abs_qc, int coeff_ctx, |
| int diag_ctx, int plane, |
| const LV_MAP_COEFF_COST *txb_costs, |
| int q_i, int t_sign, int sign) { |
| (void)t_sign; |
| (void)sign; |
| int base_ctx = get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx); |
| int mid_ctx = get_mid_ctx(coeff_ctx); |
| const int(*base_cost_ptr)[TCQ_CTXS][8] = |
| plane > 0 ? txb_costs->base_cost_uv : txb_costs->base_cost; |
| int cost = base_cost_ptr[base_ctx][q_i][AOMMIN(abs_qc, 3)]; |
| if (abs_qc != 0) { |
| cost += av1_cost_literal(1); |
| if (abs_qc > NUM_BASE_LEVELS) { |
| if (plane == 0) { |
| cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost[mid_ctx]); |
| } else { |
| cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost_uv[mid_ctx]); |
| } |
| } |
| } |
| return cost; |
| } |
| |
| static INLINE int get_coeff_cost_general(int ci, tran_low_t abs_qc, int sign, |
| int coeff_ctx, int mid_ctx, |
| int dc_sign_ctx, |
| const LV_MAP_COEFF_COST *txb_costs, |
| int bwl, TX_CLASS tx_class, |
| const int32_t *tmp_sign, int plane, |
| int limits, int q_i) { |
| int cost = 0; |
| const int(*base_lf_cost_ptr)[TCQ_CTXS][LF_BASE_SYMBOLS * 2] = |
| plane > 0 ? txb_costs->base_lf_cost_uv : txb_costs->base_lf_cost; |
| const int(*base_cost_ptr)[TCQ_CTXS][8] = |
| plane > 0 ? txb_costs->base_cost_uv : txb_costs->base_cost; |
| cost += limits ? base_lf_cost_ptr[coeff_ctx][q_i] |
| [AOMMIN(abs_qc, LF_BASE_SYMBOLS - 1)] |
| : base_cost_ptr[coeff_ctx][q_i][AOMMIN(abs_qc, 3)]; |
| if (abs_qc != 0) { |
| const int dc_ph_group = 0; // PH disabled |
| const int row = ci >> bwl; |
| const int col = ci - (row << bwl); |
| const bool dc_2dtx = (ci == 0); |
| const bool dc_hor = (col == 0) && tx_class == TX_CLASS_HORIZ; |
| const bool dc_ver = (row == 0) && tx_class == TX_CLASS_VERT; |
| if (limits && (dc_2dtx || dc_hor || dc_ver)) { |
| if (plane == AOM_PLANE_V) |
| cost += txb_costs->v_dc_sign_cost[tmp_sign[ci]][dc_sign_ctx][sign]; |
| else |
| cost += txb_costs->dc_sign_cost[dc_ph_group][dc_sign_ctx][sign]; |
| } else { |
| cost += av1_cost_literal(1); |
| } |
| if (plane > 0) { |
| if (limits) { |
| if (abs_qc > LF_NUM_BASE_LEVELS) { |
| #if CONFIG_COEFF_BR_LF_UV_BYPASS |
| cost += get_br_lf_cost_tcq_uv(abs_qc); |
| #else |
| cost += |
| get_br_lf_cost_tcq(abs_qc, txb_costs->lps_lf_cost_uv[mid_ctx]); |
| #endif // CONFIG_COEFF_BR_LF_UV_BYPASS |
| } |
| } else { |
| if (abs_qc > NUM_BASE_LEVELS) { |
| cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost_uv[mid_ctx]); |
| } |
| } |
| } else { |
| if (limits) { |
| if (abs_qc > LF_NUM_BASE_LEVELS) { |
| cost += get_br_lf_cost_tcq(abs_qc, txb_costs->lps_lf_cost[mid_ctx]); |
| } |
| } else { |
| if (abs_qc > NUM_BASE_LEVELS) { |
| cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost[mid_ctx]); |
| } |
| } |
| } |
| } |
| return cost; |
| } |
| |
| // Compare and update nodes info for current position, only used by pos eob - 1 |
| static void update_node_eob(int64_t rdCost, int64_t distA, int64_t distB, |
| int64_t rdmult, int rateA, int rateB, |
| tran_low_t absA, tran_low_t absB, int limits, |
| int prev_rate, int prev_state, |
| tcq_node_t *decision_0, tcq_node_t *decision_1) { |
| (void)limits; |
| int parityA = 0; |
| int parityB = 1; |
| assert(parityA == tcq_parity(absA)); |
| assert(parityB == tcq_parity(absB)); |
| int64_t costA = rdCost + RDCOST(rdmult, rateA, distA); |
| int64_t costB = rdCost + RDCOST(rdmult, rateB, distB); |
| rateA += prev_rate; |
| rateB += prev_rate; |
| if (parityA) { |
| if (costA < decision_1->rdCost) { |
| decision_1->rdCost = costA; |
| decision_1->rate = rateA; |
| decision_1->prevId = prev_state; |
| decision_1->absLevel = absA; |
| } |
| } else { |
| if (costA < decision_0->rdCost) { |
| decision_0->rdCost = costA; |
| decision_0->rate = rateA; |
| decision_0->prevId = prev_state; |
| decision_0->absLevel = absA; |
| } |
| } |
| |
| if (parityB) { |
| if (costB < decision_1->rdCost) { |
| decision_1->rdCost = costB; |
| decision_1->rate = rateB; |
| decision_1->prevId = prev_state; |
| decision_1->absLevel = absB; |
| } |
| } else { |
| if (costB < decision_0->rdCost) { |
| decision_0->rdCost = costB; |
| decision_0->rate = rateB; |
| decision_0->prevId = prev_state; |
| decision_0->absLevel = absB; |
| } |
| } |
| } |
| |
| // Compare and update nodes info for current position |
| static void update_node_general(int64_t costA, int64_t costB, int64_t cost_zero, |
| int rateA, int rateB, int rate_zero, |
| tran_low_t absA, tran_low_t absB, int limits, |
| int prev_rate, int prev_state, |
| tcq_node_t *decision_0, |
| tcq_node_t *decision_1) { |
| assert(tcq_parity(absA) == 0); |
| assert(tcq_parity(absB) == 1); |
| |
| (void)limits; |
| int even_bias = 1; |
| rateA += prev_rate; |
| rateB += prev_rate; |
| rate_zero += prev_rate; |
| |
| if (cost_zero < costA && cost_zero < decision_0->rdCost + even_bias) { |
| decision_0->rdCost = cost_zero; |
| decision_0->rate = rate_zero; |
| decision_0->prevId = prev_state; |
| decision_0->absLevel = 0; |
| } else if (costA < decision_0->rdCost + even_bias) { |
| decision_0->rdCost = costA; |
| decision_0->rate = rateA; |
| decision_0->prevId = prev_state; |
| decision_0->absLevel = absA; |
| } |
| |
| if (costB < decision_1->rdCost) { |
| decision_1->rdCost = costB; |
| decision_1->rate = rateB; |
| decision_1->prevId = prev_state; |
| decision_1->absLevel = absB; |
| } |
| } |
| |
| // Evaluate NEW_EOB at the current position |
| static void decide_eob(int64_t costA, int64_t costB, int rateA, int rateB, |
| tran_low_t absA, tran_low_t absB, tcq_node_t *decision_0, |
| tcq_node_t *decision_1) { |
| if (costA < decision_0->rdCost) { |
| decision_0->rdCost = costA; |
| decision_0->rate = rateA; |
| decision_0->prevId = -1; |
| decision_0->absLevel = absA; |
| } |
| if (costB < decision_1->rdCost) { |
| decision_1->rdCost = costB; |
| decision_1->rate = rateB; |
| decision_1->prevId = -1; |
| decision_1->absLevel = absB; |
| } |
| } |
| |
| // Populate the trellis from current position to next |
| void av1_decide_states_c(const struct tcq_node_t *prev, |
| const struct tcq_rate_t *rd, |
| const struct prequant_t *pq, int limits, int try_eob, |
| int64_t rdmult, struct tcq_node_t *decision) { |
| const int32_t *rate = rd->rate; |
| const int32_t *rate_zero = rd->rate_zero; |
| const int32_t *rate_eob = rd->rate_eob; |
| int64_t rdCost[2 * TCQ_MAX_STATES]; |
| int64_t rdCost_zero[TCQ_MAX_STATES]; |
| int64_t rdCost_eob[2]; |
| |
| // Init to 0 to avoid ASAN uninitialization warnings |
| memset(rdCost, 0, sizeof(rdCost)); |
| memset(rdCost_zero, 0, sizeof(rdCost_zero)); |
| init_tcq_decision(decision); |
| |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int a0 = tcq_quant(i); |
| int a1 = a0 + 2; |
| int64_t dist0 = pq->deltaDist[a0]; |
| int64_t dist1 = pq->deltaDist[a1]; |
| rdCost[2 * i] = prev[i].rdCost + RDCOST(rdmult, rate[2 * i], dist0); |
| rdCost[2 * i + 1] = prev[i].rdCost + RDCOST(rdmult, rate[2 * i + 1], dist1); |
| rdCost_zero[i] = prev[i].rdCost + RDCOST(rdmult, rate_zero[i], 0); |
| } |
| rdCost_eob[0] = RDCOST(rdmult, rate_eob[0], pq->deltaDist[0]); |
| rdCost_eob[1] = RDCOST(rdmult, rate_eob[1], pq->deltaDist[2]); |
| |
| update_node_general(rdCost[0], rdCost[1], rdCost_zero[0], rate[0], rate[1], |
| rate_zero[0], pq->absLevel[0], pq->absLevel[2], limits, |
| prev[0].rate, 0, &decision[0], &decision[4]); |
| update_node_general(rdCost[2], rdCost[3], rdCost_zero[1], rate[2], rate[3], |
| rate_zero[1], pq->absLevel[0], pq->absLevel[2], limits, |
| prev[1].rate, 1, &decision[4], &decision[0]); |
| update_node_general(rdCost[5], rdCost[4], rdCost_zero[2], rate[5], rate[4], |
| rate_zero[2], pq->absLevel[3], pq->absLevel[1], limits, |
| prev[2].rate, 2, &decision[1], &decision[5]); |
| update_node_general(rdCost[7], rdCost[6], rdCost_zero[3], rate[7], rate[6], |
| rate_zero[3], pq->absLevel[3], pq->absLevel[1], limits, |
| prev[3].rate, 3, &decision[5], &decision[1]); |
| update_node_general(rdCost[8], rdCost[9], rdCost_zero[4], rate[8], rate[9], |
| rate_zero[4], pq->absLevel[0], pq->absLevel[2], limits, |
| prev[4].rate, 4, &decision[6], &decision[2]); |
| update_node_general(rdCost[10], rdCost[11], rdCost_zero[5], rate[10], |
| rate[11], rate_zero[5], pq->absLevel[0], pq->absLevel[2], |
| limits, prev[5].rate, 5, &decision[2], &decision[6]); |
| update_node_general(rdCost[13], rdCost[12], rdCost_zero[6], rate[13], |
| rate[12], rate_zero[6], pq->absLevel[3], pq->absLevel[1], |
| limits, prev[6].rate, 6, &decision[7], &decision[3]); |
| update_node_general(rdCost[15], rdCost[14], rdCost_zero[7], rate[15], |
| rate[14], rate_zero[7], pq->absLevel[3], pq->absLevel[1], |
| limits, prev[7].rate, 7, &decision[3], &decision[7]); |
| |
| if (try_eob) { |
| const int state0 = 0; |
| const int state1 = 4; |
| decide_eob(rdCost_eob[0], rdCost_eob[1], rate_eob[0], rate_eob[1], |
| pq->absLevel[0], pq->absLevel[2], &decision[state0], |
| &decision[state1]); |
| } |
| } |
| |
| // Prepare 4 quant candidates for each coeff |
| // [0] and [2] are for Q0. One is even and the other is odd |
| // [1] and [3] are for Q1. One is even and the other is odd |
| void av1_pre_quant_c(tran_low_t tqc, struct prequant_t *pqData, |
| const int32_t *quant_ptr, int dqv, int log_scale, |
| int scan_pos) { |
| // calculate qIdx |
| const int shift = 16 - log_scale + QUANT_FP_BITS; |
| tran_low_t add = -((2 << shift) >> 1); |
| tran_low_t abs_tqc = abs(tqc); |
| |
| tran_low_t qIdx = (int)AOMMAX( |
| 1, AOMMIN(((1 << 16) - 1), |
| ((int64_t)abs_tqc * quant_ptr[scan_pos != 0] + add) >> shift)); |
| pqData->qIdx = qIdx; |
| |
| const int64_t dist0 = get_coeff_dist(abs_tqc, 0, log_scale - 1); |
| |
| int Idx_a = qIdx & 3; |
| |
| tran_low_t dqca = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, |
| QUANT_TABLE_BITS) >> |
| log_scale; |
| |
| pqData->absLevel[Idx_a] = (++qIdx) >> 1; |
| pqData->deltaDist[Idx_a] = |
| get_coeff_dist(abs_tqc, dqca, log_scale - 1) - dist0; |
| |
| int Idx_b = qIdx & 3; |
| |
| tran_low_t dqcb = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, |
| QUANT_TABLE_BITS) >> |
| log_scale; |
| |
| pqData->absLevel[Idx_b] = (++qIdx) >> 1; |
| pqData->deltaDist[Idx_b] = |
| get_coeff_dist(abs_tqc, dqcb, log_scale - 1) - dist0; |
| |
| int Idx_c = qIdx & 3; |
| |
| tran_low_t dqcc = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, |
| QUANT_TABLE_BITS) >> |
| log_scale; |
| |
| pqData->absLevel[Idx_c] = (++qIdx) >> 1; |
| pqData->deltaDist[Idx_c] = |
| get_coeff_dist(abs_tqc, dqcc, log_scale - 1) - dist0; |
| |
| int Idx_d = qIdx & 3; |
| |
| tran_low_t dqcd = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, |
| QUANT_TABLE_BITS) >> |
| log_scale; |
| |
| pqData->absLevel[Idx_d] = (++qIdx) >> 1; |
| pqData->deltaDist[Idx_d] = |
| get_coeff_dist(abs_tqc, dqcd, log_scale - 1) - dist0; |
| } |
| |
| static int get_coeff_cost(int ci, tran_low_t abs_qc, int sign, int coeff_ctx, |
| int mid_ctx, int dc_sign_ctx, |
| const LV_MAP_COEFF_COST *txb_costs, int bwl, |
| TX_CLASS tx_class, const int32_t *tmp_sign, int plane, |
| int limits, int q_i) { |
| return get_coeff_cost_general(ci, abs_qc, sign, coeff_ctx, mid_ctx, |
| dc_sign_ctx, txb_costs, bwl, tx_class, tmp_sign, |
| plane, limits, q_i); |
| } |
| |
| // Update neighbor coeff magnitudes state for current diagonal. |
| void av1_update_nbr_diagonal_c(struct tcq_ctx_t *tcq_ctx, int row, int col, |
| int bwl) { |
| // Temp storage for next diagonal ctx, with padding. |
| uint8_t next_base_mag[32 + 8][TCQ_MAX_STATES]; |
| uint8_t next_mid_mag[32 + 8][TCQ_MAX_STATES]; |
| uint8_t(*next_base)[TCQ_MAX_STATES] = &next_base_mag[4]; |
| uint8_t(*next_mid)[TCQ_MAX_STATES] = &next_mid_mag[4]; |
| uint8_t(*mag_base)[TCQ_MAX_STATES] = &tcq_ctx->mag_base[4]; |
| uint8_t(*mag_mid)[TCQ_MAX_STATES] = &tcq_ctx->mag_mid[4]; |
| |
| int idx_start = col; |
| int idx_end = 1 << bwl; |
| for (int st = 0; st < TCQ_MAX_STATES; st++) { |
| // Copy original coeff context from previous diagonal. |
| int orig_st = tcq_ctx->orig_st[st]; |
| if (orig_st < 0) { |
| for (int i = 0; i < 32; i++) { |
| next_base[i][st] = 0; |
| next_mid[i][st] = 0; |
| } |
| } else { |
| for (int i = 0; i < 32; i++) { |
| next_base[i][st] = mag_base[i][orig_st]; |
| next_mid[i][st] = mag_mid[i][orig_st]; |
| } |
| } |
| } |
| memset(next_base_mag, 0, sizeof(next_base_mag[0]) * 4); |
| memset(next_mid_mag, 0, sizeof(next_mid_mag[0]) * 4); |
| memset(tcq_ctx->mag_base, 0, sizeof(tcq_ctx->mag_base)); |
| memset(tcq_ctx->mag_mid, 0, sizeof(tcq_ctx->mag_mid)); |
| int diag = row + col; |
| int max1 = diag < 5 ? 5 : 3; |
| int max2 = diag < 6 ? 5 : 3; |
| for (int st = 0; st < TCQ_MAX_STATES; st++) { |
| // Update neighbor magnitudes |
| int st1 = st; |
| for (int i = idx_start; st1 >= 0 && i < idx_end; i++) { |
| int lev = tcq_ctx->lev_new[i][st1]; |
| st1 = tcq_ctx->prev_st[i][st1]; |
| // Update base positions {1, 0}, {0, 1} |
| int base1 = AOMMIN(lev, max1); |
| next_base[i][st] += base1; |
| next_base[i - 1][st] += base1; |
| // Update mid positions {1, 0}, {0, 1} |
| next_mid[i][st] += lev; |
| next_mid[i - 1][st] += lev; |
| // Update base positions {2, 0}, {1. 1}, {0, 2} |
| int base2 = AOMMIN(lev, max2); |
| mag_base[i][st] += base2; |
| mag_base[i - 1][st] += base2; |
| mag_base[i - 2][st] += base2; |
| // Update mid position {1, 1} |
| mag_mid[i - 1][st] = lev; |
| } |
| } |
| // Calc next context info |
| memset(tcq_ctx->ctx, 0, sizeof(tcq_ctx->ctx)); |
| static const int8_t max_tbl[6] = { 0, 8, 6, 4, 4, 4 }; |
| int base_max = max_tbl[AOMMIN(diag, 5)]; |
| for (int st = 0; st < TCQ_MAX_STATES; st++) { |
| for (int i = 0; i < 32; i++) { |
| int base_ctx = next_base[i][st]; |
| int mid_ctx = next_mid[i][st]; |
| base_ctx = AOMMIN((base_ctx + 1) >> 1, base_max); |
| mid_ctx = AOMMIN((mid_ctx + 1) >> 1, 6); |
| tcq_ctx->ctx[i][st] = (mid_ctx << 4) + base_ctx; |
| } |
| // Reset original state to prepare for next diagonal. |
| tcq_ctx->orig_st[st] = st; |
| } |
| } |
| |
| // Process the first position |
| void trellis_first_pos(const tcq_param_t *p, int scan_pos, |
| tcq_levels_t *tcq_lev, tcq_ctx_t *tcq_ctx, |
| tcq_node_t *trellis) { |
| int plane = p->plane; |
| TX_SIZE tx_size = p->tx_size; |
| TX_CLASS tx_class = p->tx_class; |
| int log_scale = p->log_scale; |
| int64_t rdmult = p->rdmult; |
| int dc_sign_ctx = p->dc_sign_ctx; |
| const int16_t *scan = p->scan; |
| const int32_t *tmp_sign = p->tmp_sign; |
| const tran_low_t *qcoeff = p->qcoeff; |
| const tran_low_t *tcoeff = p->tcoeff; |
| const int32_t *quant = p->quant; |
| const int32_t *dequant = p->dequant; |
| const qm_val_t *iqmatrix = p->iqmatrix; |
| const uint16_t *block_eob_rate = p->block_eob_rate; |
| const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; |
| const int bwl = get_txb_bwl(tx_size); |
| const int height = get_txb_high(tx_size); |
| |
| int blk_pos = scan[scan_pos]; |
| tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; |
| |
| prequant_t pqData; |
| int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); |
| av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, scan_pos); |
| |
| // init state |
| init_tcq_decision(decision); |
| |
| const int row = blk_pos >> bwl; |
| const int col = blk_pos - (row << bwl); |
| int limits = get_lf_limits(row, col, tx_class, plane); |
| |
| // calculate rate distortion |
| // try to quantize first coeff to nzcoeff |
| int coeff_ctx = get_lower_levels_ctx_eob(bwl, height, scan_pos); |
| int eob_rate = block_eob_rate[scan_pos]; |
| int t_sign = tmp_sign[blk_pos]; |
| int rate_Q0_a = |
| get_coeff_cost_eob(blk_pos, pqData.absLevel[0], (qcoeff[blk_pos] < 0), |
| coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, |
| t_sign, plane) + |
| eob_rate; |
| int rate_Q0_b = |
| get_coeff_cost_eob(blk_pos, pqData.absLevel[2], (qcoeff[blk_pos] < 0), |
| coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, |
| t_sign, plane) + |
| eob_rate; |
| const int state0 = 0; |
| const int state1 = 4; |
| update_node_eob(0, pqData.deltaDist[0], pqData.deltaDist[2], rdmult, |
| rate_Q0_a, rate_Q0_b, pqData.absLevel[0], pqData.absLevel[2], |
| limits, 0, -1, &decision[state0], &decision[state1]); |
| |
| if (tcq_ctx) { |
| for (int i = 0; i < TCQ_MAX_STATES; i++) { |
| tcq_ctx->orig_st[i] = i; |
| tcq_ctx->prev_st[col][i] = -1; |
| tcq_ctx->lev_new[col][i] = 0; |
| } |
| tcq_ctx->lev_new[col][state0] = |
| AOMMIN(decision[state0].absLevel, MAX_VAL_BR_CTX); |
| tcq_ctx->lev_new[col][state1] = |
| AOMMIN(decision[state1].absLevel, MAX_VAL_BR_CTX); |
| if ((col == 0 && row != 0) || row == height - 1) { |
| av1_update_nbr_diagonal(tcq_ctx, row, col, bwl); |
| } |
| } |
| if (tcq_lev) { |
| uint8_t *levels0 = tcq_levels_cur(tcq_lev, state0); |
| uint8_t *levels1 = tcq_levels_cur(tcq_lev, state1); |
| set_levels_buf(decision[state0].prevId, decision[state0].absLevel, levels0, |
| scan, scan_pos, scan_pos, bwl, 0); |
| set_levels_buf(decision[state1].prevId, decision[state1].absLevel, levels1, |
| scan, scan_pos, scan_pos, bwl, 0); |
| } |
| } |
| |
| void av1_get_rate_dist_def_luma_c(const struct tcq_param_t *p, |
| const struct prequant_t *pq, |
| const struct tcq_coeff_ctx_t *coeff_ctx, |
| int blk_pos, int diag_ctx, int eob_rate, |
| struct tcq_rate_t *rd) { |
| const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; |
| TX_CLASS tx_class = p->tx_class; |
| int bwl = p->bwl; |
| const int plane = 0; |
| const int t_sign = 0; |
| const int sign = 0; |
| const int dc_sign_ctx = 0; |
| const tran_low_t *absLevel = pq->absLevel; |
| |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int q_i = tcq_quant(i); |
| int a0 = q_i; |
| int a1 = a0 + 2; |
| int base_ctx = |
| get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx->coef[i]); |
| int cost0 = get_coeff_cost_def(absLevel[a0], coeff_ctx->coef[i], diag_ctx, |
| plane, txb_costs, q_i, t_sign, sign); |
| int cost1 = get_coeff_cost_def(absLevel[a1], coeff_ctx->coef[i], diag_ctx, |
| plane, txb_costs, q_i, t_sign, sign); |
| rd->rate_zero[i] = txb_costs->base_cost[base_ctx][q_i][0]; |
| rd->rate[2 * i] = cost0; |
| rd->rate[2 * i + 1] = cost1; |
| } |
| rd->rate_eob[0] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| rd->rate_eob[1] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| } |
| |
| void av1_get_rate_dist_def_chroma_c(const struct LV_MAP_COEFF_COST *txb_costs, |
| const struct prequant_t *pq, |
| const struct tcq_coeff_ctx_t *coeff_ctx, |
| int blk_pos, int bwl, TX_CLASS tx_class, |
| int diag_ctx, int eob_rate, int plane, |
| int t_sign, int sign, |
| struct tcq_rate_t *rd) { |
| const tran_low_t *absLevel = pq->absLevel; |
| const int dc_sign_ctx = 0; |
| |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int q_i = tcq_quant(i); |
| int a0 = q_i; |
| int a1 = a0 + 2; |
| int base_ctx = (diag_ctx & 15) + (coeff_ctx->coef[i] & 15); |
| int cost0 = get_coeff_cost_def(absLevel[a0], coeff_ctx->coef[i], diag_ctx, |
| plane, txb_costs, q_i, t_sign, sign); |
| int cost1 = get_coeff_cost_def(absLevel[a1], coeff_ctx->coef[i], diag_ctx, |
| plane, txb_costs, q_i, t_sign, sign); |
| rd->rate_zero[i] = txb_costs->base_cost_uv[base_ctx][q_i][0]; |
| rd->rate[2 * i] = cost0; |
| rd->rate[2 * i + 1] = cost1; |
| } |
| rd->rate_eob[0] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| rd->rate_eob[1] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| } |
| |
| void av1_get_rate_dist_lf_luma_c(const struct tcq_param_t *p, |
| const struct prequant_t *pq, |
| const struct tcq_coeff_ctx_t *coeff_ctx, |
| int blk_pos, int diag_ctx, int eob_rate, |
| int coeff_sign, struct tcq_rate_t *rd) { |
| const tran_low_t *absLevel = pq->absLevel; |
| const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; |
| const int32_t *tmp_sign = p->tmp_sign; |
| TX_CLASS tx_class = p->tx_class; |
| int bwl = p->bwl; |
| int dc_sign_ctx = p->dc_sign_ctx; |
| int t_sign = tmp_sign[blk_pos]; |
| int plane = 0; |
| |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int q_i = tcq_quant(i); |
| int a0 = q_i; |
| int a1 = a0 + 2; |
| int base_ctx = |
| get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx->coef[i]); |
| int mid_ctx = get_mid_diag_ctx(diag_ctx) + get_mid_ctx(coeff_ctx->coef[i]); |
| int cost0 = get_coeff_cost(blk_pos, absLevel[a0], coeff_sign, base_ctx, |
| mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, |
| tmp_sign, plane, 1, q_i); |
| int cost1 = get_coeff_cost(blk_pos, absLevel[a1], coeff_sign, base_ctx, |
| mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, |
| tmp_sign, plane, 1, q_i); |
| rd->rate_zero[i] = txb_costs->base_lf_cost[base_ctx][q_i][0]; |
| rd->rate[2 * i] = cost0; |
| rd->rate[2 * i + 1] = cost1; |
| } |
| rd->rate_eob[0] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], coeff_sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| rd->rate_eob[1] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], coeff_sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| } |
| |
| void av1_get_rate_dist_lf_chroma_c(const struct LV_MAP_COEFF_COST *txb_costs, |
| const struct prequant_t *pq, |
| const struct tcq_coeff_ctx_t *coeff_ctx, |
| int blk_pos, int diag_ctx, int eob_rate, |
| int dc_sign_ctx, const int32_t *tmp_sign, |
| int bwl, TX_CLASS tx_class, int plane, |
| int coeff_sign, struct tcq_rate_t *rd) { |
| const tran_low_t *absLevel = pq->absLevel; |
| int t_sign = tmp_sign[blk_pos]; |
| |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int q_i = tcq_quant(i); |
| int a0 = q_i; |
| int a1 = a0 + 2; |
| int base_ctx = |
| get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx->coef[i]); |
| int mid_ctx = get_mid_diag_ctx(diag_ctx) + get_mid_ctx(coeff_ctx->coef[i]); |
| int cost0 = get_coeff_cost(blk_pos, absLevel[a0], coeff_sign, base_ctx, |
| mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, |
| tmp_sign, plane, 1, q_i); |
| int cost1 = get_coeff_cost(blk_pos, absLevel[a1], coeff_sign, base_ctx, |
| mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, |
| tmp_sign, plane, 1, q_i); |
| rd->rate_zero[i] = txb_costs->base_lf_cost_uv[base_ctx][q_i][0]; |
| rd->rate[2 * i] = cost0; |
| rd->rate[2 * i + 1] = cost1; |
| } |
| rd->rate_eob[0] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], coeff_sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| rd->rate_eob[1] = |
| eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], coeff_sign, |
| coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, |
| bwl, tx_class, t_sign, plane); |
| } |
| |
| void av1_update_states_c(const tcq_node_t *decision, int col, |
| struct tcq_ctx_t *tcq_ctx) { |
| int8_t tmp_orig_st[TCQ_N_STATES]; |
| memcpy(tmp_orig_st, tcq_ctx->orig_st, sizeof(tcq_ctx->orig_st)); |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int prevId = decision[i].prevId; |
| int absLevel = decision[i].absLevel; |
| tcq_ctx->lev_new[col][i] = AOMMIN(absLevel, MAX_VAL_BR_CTX); |
| tcq_ctx->prev_st[col][i] = prevId; |
| if (prevId < 0) { |
| tcq_ctx->orig_st[i] = -1; |
| } else { |
| tcq_ctx->orig_st[i] = tmp_orig_st[prevId]; |
| } |
| } |
| } |
| |
| void av1_get_coeff_ctx_c(const struct tcq_ctx_t *tcq_ctx, int col, |
| struct tcq_coeff_ctx_t *coeff_ctx) { |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int orig_st = tcq_ctx->orig_st[i]; |
| coeff_ctx->coef[i] = orig_st == -1 ? 0 : tcq_ctx->ctx[col][orig_st]; |
| } |
| } |
| |
| // Get diagonal context for 2D luma block |
| static AOM_INLINE int get_diag_ctx(int lf, int blk_pos, int scan_pos, int bwl) { |
| int diag_ctx; |
| if (lf) { |
| diag_ctx = get_nz_map_ctx_from_stats_lf(0, blk_pos, bwl, TX_CLASS_2D); |
| if (scan_pos > 0) { |
| diag_ctx += 7 << 8; |
| } |
| } else { |
| diag_ctx = get_nz_map_ctx_from_stats(0, blk_pos, bwl, TX_CLASS_2D, 0); |
| } |
| return diag_ctx; |
| } |
| |
| // TCQ 8-state for a 2D luma block. |
| static void trellis_loop_diagonal_st8(const tcq_param_t *p, int scan_hi, |
| int scan_lo, tcq_ctx_t *tcq_ctx, |
| tcq_node_t *trellis) { |
| int plane = p->plane; |
| int log_scale = p->log_scale; |
| int try_eob = p->sharpness == 0; |
| int64_t rdmult = p->rdmult; |
| const int16_t *scan = p->scan; |
| const tran_low_t *tcoeff = p->tcoeff; |
| const int32_t *quant = p->quant; |
| const int32_t *dequant = p->dequant; |
| const qm_val_t *iqmatrix = p->iqmatrix; |
| const uint16_t *block_eob_rate = p->block_eob_rate; |
| int bwl = p->bwl; |
| int height = p->txb_height; |
| assert(plane == 0); |
| assert(p->tx_class == TX_CLASS_2D); |
| (void)plane; |
| |
| int dc_coeff_sign = tcoeff[0] < 0; |
| int blk_pos_inc = (1 << bwl) - 1; |
| int blk_pos, row, col; |
| |
| // Handle default region. |
| while (scan_hi >= 10) { |
| blk_pos = scan[scan_hi]; |
| row = blk_pos >> bwl; |
| col = blk_pos - (row << bwl); |
| int inc = AOMMIN(height - 1 - row, col); |
| scan_lo = scan_hi - inc; |
| int lf = 0; |
| int diag_ctx = get_diag_ctx(lf, blk_pos, scan_lo, bwl); |
| assert(scan_lo >= 0); |
| |
| for (int scan_pos = scan_hi; scan_pos >= scan_lo; scan_pos--) { |
| tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; |
| tcq_node_t *prev_decision = &decision[TCQ_N_STATES]; |
| |
| prequant_t pqData; |
| int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); |
| av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, |
| scan_pos); |
| |
| // Get coeff contexts |
| tcq_coeff_ctx_t coeff_ctx; |
| av1_get_coeff_ctx(tcq_ctx, col, &coeff_ctx); |
| coeff_ctx.coef_eob = get_lower_levels_ctx_eob(bwl, height, scan_pos); |
| int eob_rate = block_eob_rate[scan_pos]; |
| |
| // Calculate rate and distortion. |
| tcq_rate_t rd; |
| av1_get_rate_dist_def_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, |
| eob_rate, &rd); |
| |
| av1_decide_states(prev_decision, &rd, &pqData, lf, try_eob, rdmult, |
| decision); |
| |
| av1_update_states(decision, col, tcq_ctx); |
| |
| blk_pos += blk_pos_inc; |
| col--; |
| row++; |
| } |
| av1_update_nbr_diagonal(tcq_ctx, row - 1, col + 1, bwl); |
| scan_hi = scan_lo - 1; |
| } |
| // Handle LF region. |
| while (scan_hi >= 0) { |
| blk_pos = scan[scan_hi]; |
| row = blk_pos >> bwl; |
| col = blk_pos - (row << bwl); |
| int inc = AOMMIN(height - 1 - row, col); |
| scan_lo = scan_hi - inc; |
| int lf = 1; |
| int diag_ctx = get_diag_ctx(lf, blk_pos, scan_lo, bwl); |
| assert(scan_lo >= 0); |
| |
| for (int scan_pos = scan_hi; scan_pos >= scan_lo; scan_pos--) { |
| tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; |
| tcq_node_t *prev_decision = &decision[TCQ_N_STATES]; |
| |
| prequant_t pqData; |
| int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); |
| av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, |
| scan_pos); |
| |
| // Get coeff contexts |
| tcq_coeff_ctx_t coeff_ctx; |
| av1_get_coeff_ctx(tcq_ctx, col, &coeff_ctx); |
| coeff_ctx.coef_eob = get_lower_levels_ctx_eob(bwl, height, scan_pos); |
| int eob_rate = block_eob_rate[scan_pos]; |
| |
| // Calculate rate and distortion. |
| tcq_rate_t rd; |
| av1_get_rate_dist_lf_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, |
| eob_rate, dc_coeff_sign, &rd); |
| |
| av1_decide_states(prev_decision, &rd, &pqData, lf, try_eob, rdmult, |
| decision); |
| |
| av1_update_states(decision, col, tcq_ctx); |
| |
| blk_pos += blk_pos_inc; |
| col--; |
| row++; |
| } |
| if (scan_hi != 0) { |
| av1_update_nbr_diagonal(tcq_ctx, row - 1, col + 1, bwl); |
| } |
| scan_hi = scan_lo - 1; |
| } |
| } |
| |
| // General TCQ 8-state, used by non 2D Luma |
| void trellis_loop(const tcq_param_t *p, int first_scan_pos, int scan_hi, |
| int scan_lo, tcq_levels_t *tcq_lev, tcq_node_t *trellis) { |
| int plane = p->plane; |
| TX_CLASS tx_class = p->tx_class; |
| int log_scale = p->log_scale; |
| int sharpness = p->sharpness; |
| int try_eob = sharpness == 0; |
| int64_t rdmult = p->rdmult; |
| int dc_sign_ctx = p->dc_sign_ctx; |
| const int16_t *scan = p->scan; |
| const int32_t *tmp_sign = p->tmp_sign; |
| const tran_low_t *tcoeff = p->tcoeff; |
| const int32_t *quant = p->quant; |
| const int32_t *dequant = p->dequant; |
| const qm_val_t *iqmatrix = p->iqmatrix; |
| const uint16_t *block_eob_rate = p->block_eob_rate; |
| const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; |
| const int bwl = p->bwl; |
| const int height = p->txb_height; |
| |
| for (int scan_pos = scan_hi; scan_pos >= scan_lo; scan_pos--) { |
| tcq_levels_swap(tcq_lev); |
| uint8_t *levels[TCQ_MAX_STATES]; |
| uint8_t *prev_levels[TCQ_MAX_STATES]; |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| prev_levels[i] = tcq_levels_prev(tcq_lev, i); |
| levels[i] = tcq_levels_cur(tcq_lev, i); |
| } |
| |
| int blk_pos = scan[scan_pos]; |
| int row = blk_pos >> bwl; |
| int col = blk_pos - (row << bwl); |
| int limits = get_lf_limits(row, col, tx_class, plane); |
| |
| tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; |
| tcq_node_t *prd = &decision[TCQ_N_STATES]; |
| |
| prequant_t pqData; |
| int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); |
| av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, |
| scan_pos); |
| |
| // init state |
| init_tcq_decision(decision); |
| const int coeff_sign = tcoeff[blk_pos] < 0; |
| |
| // calculate contexts |
| |
| tcq_coeff_ctx_t coeff_ctx; |
| int eob_ctx = get_lower_levels_ctx_eob(bwl, height, scan_pos); |
| int eob_rate = block_eob_rate[scan_pos]; |
| coeff_ctx.coef_eob = eob_ctx; |
| |
| tcq_rate_t rd; |
| |
| // Calculate contexts and rate distortion |
| if (limits) { |
| if (plane == 0) { |
| int base_diag_ctx = |
| get_nz_map_ctx_from_stats_lf(0, blk_pos, bwl, tx_class); |
| int mid_diag_ctx = 7 * (tx_class == TX_CLASS_2D ? blk_pos > 0 |
| : tx_class == TX_CLASS_HORIZ ? col == 0 |
| : row == 0); |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int base_ctx = |
| get_lower_levels_lf_ctx(prev_levels[i], blk_pos, bwl, tx_class); |
| int br_ctx = get_br_lf_ctx(prev_levels[i], blk_pos, bwl, tx_class); |
| br_ctx -= mid_diag_ctx; |
| coeff_ctx.coef[i] = base_ctx - base_diag_ctx + (br_ctx << 4); |
| } |
| int diag_ctx = base_diag_ctx + (mid_diag_ctx << 8); |
| av1_get_rate_dist_lf_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, |
| eob_rate, coeff_sign, &rd); |
| } else { |
| int diag_ctx = get_nz_map_ctx_from_stats_lf_chroma(0, tx_class, plane); |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int base_ctx = get_lower_levels_lf_ctx_chroma(prev_levels[i], blk_pos, |
| bwl, tx_class, plane); |
| #if CONFIG_COEFF_BR_LF_UV_BYPASS |
| coeff_ctx.coef[i] = base_ctx - diag_ctx; |
| #else |
| int br_ctx = |
| get_br_lf_ctx_chroma(prev_levels[i], blk_pos, bwl, tx_class); |
| coeff_ctx.coef[i] = base_ctx - diag_ctx + (br_ctx << 4); |
| #endif // CONFIG_COEFF_BR_LF_UV_BYPASS |
| } |
| av1_get_rate_dist_lf_chroma(txb_costs, &pqData, &coeff_ctx, blk_pos, |
| diag_ctx, eob_rate, dc_sign_ctx, tmp_sign, |
| bwl, tx_class, plane, coeff_sign, &rd); |
| } |
| } else { |
| if (plane == 0) { |
| int diag_ctx = get_nz_map_ctx_from_stats(0, blk_pos, bwl, tx_class, 0); |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int base_ctx = get_lower_levels_ctx(prev_levels[i], blk_pos, bwl, |
| tx_class, plane); |
| int br_ctx = get_br_ctx(prev_levels[i], blk_pos, bwl, tx_class); |
| coeff_ctx.coef[i] = base_ctx - diag_ctx + (br_ctx << 4); |
| } |
| av1_get_rate_dist_def_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, |
| eob_rate, &rd); |
| } else { |
| int diag_ctx = |
| get_nz_map_ctx_from_stats_chroma(0, blk_pos, tx_class, plane); |
| for (int i = 0; i < TCQ_N_STATES; i++) { |
| int base_ctx = get_lower_levels_ctx_chroma(prev_levels[i], blk_pos, |
| bwl, tx_class, plane); |
| int br_ctx = |
| get_br_ctx_chroma(prev_levels[i], blk_pos, bwl, tx_class); |
| coeff_ctx.coef[i] = base_ctx - diag_ctx + (br_ctx << 4); |
| } |
| av1_get_rate_dist_def_chroma(txb_costs, &pqData, &coeff_ctx, blk_pos, |
| bwl, tx_class, diag_ctx, eob_rate, plane, |
| tmp_sign[blk_pos], coeff_sign, &rd); |
| } |
| } |
| |
| av1_decide_states(prd, &rd, &pqData, limits, try_eob, rdmult, decision); |
| |
| // copy corresponding context from previous level buffer |
| for (int state = 0; state < TCQ_N_STATES && scan_pos != first_scan_pos; |
| state++) { |
| int prevId = decision[state].prevId; |
| if (prevId >= 0) |
| memcpy(levels[state], prev_levels[prevId], |
| sizeof(uint8_t) * tcq_lev->bufsize); |
| } |
| |
| // update levels_buf |
| for (int state = 0; state < TCQ_N_STATES && scan_pos != 0; state++) { |
| set_levels_buf(decision[state].prevId, decision[state].absLevel, |
| levels[state], scan, first_scan_pos, scan_pos, bwl, |
| sharpness); |
| } |
| } |
| } |
| |
| // Pre-calculate eob bits (rate) for each EOB candidate position from 1 |
| // to the initial eob location. Store rate in array block_eob_rate[], |
| // starting with index. |
| void av1_calc_block_eob_rate_c(struct macroblock *x, int plane, TX_SIZE tx_size, |
| int eob, uint16_t *block_eob_rate) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| const CoeffCosts *coeff_costs = &x->coeff_costs; |
| const LV_MAP_COEFF_COST *txb_costs = |
| &coeff_costs->coeff_costs[txs_ctx][plane_type]; |
| const int eob_multi_size = txsize_log2_minus4[tx_size]; |
| const LV_MAP_EOB_COST *txb_eob_costs = |
| &coeff_costs->eob_costs[eob_multi_size][plane_type]; |
| |
| const int *tbl_eob_cost = txb_eob_costs->eob_cost[is_inter]; |
| |
| block_eob_rate[0] = tbl_eob_cost[0]; |
| block_eob_rate[1] = tbl_eob_cost[1]; |
| int scan_pos = 2; |
| int n_offset_bits = 0; |
| while (scan_pos < eob) { |
| #if CONFIG_REDUCE_SYMBOL_SIZE |
| int eob_pt_low = AOMMIN(2 + n_offset_bits, EOB_PT_INDEX_COUNT - 1); |
| int eob_pt_rate = tbl_eob_cost[eob_pt_low]; |
| if (eob_multi_size == 4 && (eob_pt_low == EOB_PT_INDEX_COUNT - 1)) |
| eob_pt_rate += av1_cost_literal(1); |
| else if (eob_multi_size > 4 && (eob_pt_low == EOB_PT_INDEX_COUNT - 1)) |
| eob_pt_rate += av1_cost_literal(2); |
| #else |
| int eob_pt_rate = tbl_eob_cost[2 + n_offset_bits]; |
| #endif // CONFIG_REDUCE_SYMBOL_SIZE |
| for (int bit = 0; bit < 2; bit++) { |
| int eob_ctx = n_offset_bits; |
| int extra_bit_rate = txb_costs->eob_extra_cost[eob_ctx][bit]; |
| int eob_rate = |
| eob_pt_rate + extra_bit_rate + av1_cost_literal(n_offset_bits); |
| for (int i = 0; i < (1 << n_offset_bits); i++) { |
| block_eob_rate[scan_pos++] = eob_rate; |
| } |
| } |
| n_offset_bits++; |
| } |
| } |
| |
| // Determine the best quantization option for each coeff from DC to EOB |
| int av1_find_best_path_c(const struct tcq_node_t *trellis, const int16_t *scan, |
| const int32_t *dequant, const qm_val_t *iqmatrix, |
| const tran_low_t *tcoeff, int first_scan_pos, |
| int log_scale, tran_low_t *qcoeff, tran_low_t *dqcoeff, |
| int *min_rate, int64_t *min_cost) { |
| int64_t min_path_cost = INT64_MAX; |
| int trel_min_rate = 0; |
| int prev_id = -2; |
| for (int state = 0; state < TCQ_N_STATES; state++) { |
| const tcq_node_t *decision = &trellis[state]; |
| if (decision->rdCost < min_path_cost) { |
| prev_id = state; |
| min_path_cost = decision->rdCost; |
| trel_min_rate = decision->rate; |
| } |
| } |
| |
| // Backtrack to reconstruct qcoeff / dqcoeff blocks. |
| int scan_pos = 0; |
| if (!iqmatrix) { |
| int dqv = dequant[0]; |
| int dqv_ac = dequant[1]; |
| for (; prev_id >= 0; scan_pos++) { |
| const tcq_node_t *decision = |
| &trellis[(scan_pos << TCQ_N_STATES_LOG) + prev_id]; |
| prev_id = decision->prevId; |
| int abs_level = decision->absLevel; |
| int blk_pos = scan[scan_pos]; |
| int sign = -(tcoeff[blk_pos] < 0); |
| int q_i = prev_id >= 0 ? tcq_quant(prev_id) : 0; |
| int qc = (abs_level == 0) ? 0 : (2 * abs_level - q_i); |
| int dqc = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qc * dqv, |
| QUANT_TABLE_BITS) >> |
| log_scale; |
| qcoeff[blk_pos] = (abs_level ^ sign) - sign; |
| dqcoeff[blk_pos] = (dqc ^ sign) - sign; |
| dqv = dqv_ac; |
| } |
| } else { |
| for (; prev_id >= 0; scan_pos++) { |
| const tcq_node_t *decision = |
| &trellis[(scan_pos << TCQ_N_STATES_LOG) + prev_id]; |
| prev_id = decision->prevId; |
| int abs_level = decision->absLevel; |
| int blk_pos = scan[scan_pos]; |
| int sign = tcoeff[blk_pos] < 0; |
| qcoeff[blk_pos] = sign ? -abs_level : abs_level; |
| int dqv = get_dqv(dequant, blk_pos, iqmatrix); |
| int q_i = prev_id >= 0 ? tcq_quant(prev_id) : 0; |
| int qc = (abs_level == 0) ? 0 : (2 * abs_level - q_i); |
| int dqc = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qc * dqv, |
| QUANT_TABLE_BITS) >> |
| log_scale; |
| dqcoeff[blk_pos] = sign ? -dqc : dqc; |
| } |
| } |
| int eob = scan_pos; |
| |
| for (; scan_pos <= first_scan_pos; scan_pos++) { |
| int blk_pos = scan[scan_pos]; |
| qcoeff[blk_pos] = 0; |
| dqcoeff[blk_pos] = 0; |
| } |
| |
| *min_rate = trel_min_rate; |
| *min_cost = min_path_cost; |
| return eob; |
| } |
| |
| /* |
| Algorithem description: |
| Unlike regular scaler quantization, trellis coded quant has dependency on |
| already coded coeffs in the decoder side. In order to correctly build the |
| dependency, the encoder creates a trellis and implements dependency in it. |
| |
| The encoder flow: |
| 1. Start at the first candidate EOB position and proceed towards DC (coeff[0]) |
| |
| 2. For each of the states, the RD cost is calculated for each state transition, |
| keeping the best option out of the 2 (or 3) incoming candidates at each state. |
| the state quantizer mapping and state transition table are shown below. In |
| addition, it checks NEW_EOB at each of the coeff position and the next state is |
| 0/4 in this case. |
| |
| 3. After the last coeff is processed, pick the lowest RD cost out of states 0-3 |
| and all_zero, back track until it reaches eob. |
| |
| * State-quantizer mapping and state transition table * |
| --------------------------------------------------------- |
| | Current state | Quantizer | Parity of Qk | Next state | |
| |-------------------------------------------------------- |
| | | | Even | 0 | |
| | 0 | 0 |---------------------------- |
| | | | Odd | 4 | |
| |-------------------------------------------------------- |
| | | | Even | 4 | |
| | 1 | 0 |---------------------------- |
| | | | Odd | 0 | |
| |-------------------------------------------------------- |
| | | | Even | 1 | |
| | 2 | 1 |---------------------------- |
| | | | Odd | 5 | |
| |-------------------------------------------------------- |
| | | | Even | 5 | |
| | 3 | 1 |---------------------------- |
| | | | Odd | 1 | |
| |-------------------------------------------------------- |
| | | | Even | 6 | |
| | 4 | 0 |---------------------------- |
| | | | Odd | 2 | |
| |-------------------------------------------------------- |
| | | | Even | 2 | |
| | 5 | 0 |---------------------------- |
| | | | Odd | 6 | |
| |-------------------------------------------------------- |
| | | | Even | 7 | |
| | 6 | 1 |---------------------------- |
| | | | Odd | 3 | |
| |-------------------------------------------------------- |
| | | | Even | 3 | |
| | 7 | 1 |---------------------------- |
| | | | Odd | 7 | |
| |-------------------------------------------------------- |
| */ |
| int av1_trellis_quant(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, TX_SIZE tx_size, TX_TYPE tx_type, |
| CctxType cctx_type, const TXB_CTX *const txb_ctx, |
| int *rate_cost, int sharpness) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const struct macroblock_plane *p = &x->plane[plane]; |
| |
| const SCAN_ORDER *scan_order = |
| get_scan(tx_size, get_primary_tx_type(tx_type)); |
| |
| const int16_t *scan = scan_order->scan; |
| int eob = p->eobs[block]; |
| |
| const int32_t *dequant = p->dequant_QTX; |
| const int32_t *quant = p->quant_fp_QTX; // quant_QTX |
| |
| const qm_val_t *iqmatrix = |
| av1_get_iqmatrix(&cpi->common.quant_params, xd, plane, tx_size, tx_type); |
| const int block_offset = BLOCK_OFFSET(block); |
| tran_low_t *qcoeff = p->qcoeff + block_offset; |
| tran_low_t *dqcoeff = p->dqcoeff + block_offset; |
| const tran_low_t *tcoeff = p->coeff + block_offset; |
| const CoeffCosts *coeff_costs = &x->coeff_costs; |
| |
| // This function is not called if eob = 0. |
| assert(eob > 0); |
| |
| const AV1_COMMON *cm = &cpi->common; |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| |
| const TX_CLASS tx_class = tx_type_to_class[get_primary_tx_type(tx_type)]; |
| |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int bwl = get_txb_bwl(tx_size); |
| const int width = get_txb_wide(tx_size); |
| const int height = get_txb_high(tx_size); |
| assert(width == (1 << bwl)); |
| |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| const int bob_code = p->bobs[block]; |
| const int is_fsc = ((xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] && |
| plane == PLANE_TYPE_Y) || |
| use_inter_fsc(&cpi->common, plane, tx_type, is_inter)) |
| #if CONFIG_FSC_RES_HLS |
| && cm->seq_params.enable_fsc_residual |
| #endif // CONFIG_FSC_RES_HLS |
| ; |
| const LV_MAP_COEFF_COST *txb_costs = |
| &coeff_costs->coeff_costs[txs_ctx][plane_type]; |
| |
| const int rshift = |
| (sharpness + |
| (cpi->oxcf.q_cfg.aq_mode == VARIANCE_AQ && mbmi->segment_id < 4 |
| ? 7 - mbmi->segment_id |
| : 2) + |
| (cpi->oxcf.q_cfg.aq_mode != VARIANCE_AQ && |
| cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL && |
| cm->delta_q_info.delta_q_present_flag && x->sb_energy_level < 0 |
| ? (3 - x->sb_energy_level) |
| : 0)); |
| int64_t rdmult = av1_compute_rdmult_for_plane( |
| x->rdmult, plane_rd_mult[is_inter][plane_type], xd->bd, rshift); |
| |
| int si = eob - 1; |
| // populate trellis |
| assert(si < MAX_TRELLIS); |
| tcq_node_t trellis[MAX_TRELLIS * TCQ_MAX_STATES]; |
| |
| // Precalc block eob rate. |
| uint16_t block_eob_rate[MAX_TRELLIS]; |
| av1_calc_block_eob_rate(x, plane, tx_size, eob, block_eob_rate); |
| |
| // Collect TCQ related parameters. |
| tcq_param_t param; |
| int log_scale = av1_get_tx_scale(tx_size) + 1; |
| param.plane = plane; |
| param.bwl = bwl; |
| param.txb_height = height; |
| param.tx_size = tx_size; |
| param.tx_class = tx_class; |
| param.sharpness = sharpness; |
| param.rdmult = rdmult; |
| param.log_scale = log_scale; |
| param.dc_sign_ctx = txb_ctx->dc_sign_ctx; |
| param.scan = scan; |
| param.tmp_sign = xd->tmp_sign; |
| param.qcoeff = qcoeff; |
| param.tcoeff = tcoeff; |
| param.quant = quant; |
| param.dequant = dequant; |
| param.iqmatrix = iqmatrix; |
| param.block_eob_rate = block_eob_rate; |
| param.txb_costs = txb_costs; |
| |
| // Start of TCQ |
| int first_scan_pos = si; |
| int scan_hi = first_scan_pos - 1; |
| int is_luma_2d = plane == 0 && tx_class == TX_CLASS_2D; |
| |
| // Use faster path for 2D-luma blocks. |
| // Otherwise, use generic trellis code. |
| if (is_luma_2d) { |
| // Buffers for diagonal contexts. |
| tcq_ctx_t tcq_ctx; |
| init_tcq_ctx(&tcq_ctx); |
| |
| // Process the first position |
| trellis_first_pos(¶m, first_scan_pos, 0, &tcq_ctx, trellis); |
| |
| // Speed-up version for 2D Luma by exploiting parallelism |
| // Process coeffs diagonal-by-diagonal. |
| if (scan_hi >= 0) { |
| trellis_loop_diagonal_st8(¶m, scan_hi, 0, &tcq_ctx, trellis); |
| } |
| } else { |
| // Coeff level buffers. |
| int bufsize = (width + 4) * (height + 4) + TX_PAD_END; |
| int mem_tcq_sz = sizeof(uint8_t) * bufsize * (2 << TCQ_N_STATES_LOG); |
| uint8_t *mem_tcq = (uint8_t *)malloc(mem_tcq_sz); |
| if (!mem_tcq) { |
| exit(1); |
| } |
| if (eob > 1) { |
| memset(mem_tcq, 0, mem_tcq_sz); |
| } |
| tcq_levels_t tcq_lev; |
| tcq_levels_init(&tcq_lev, mem_tcq, bufsize); |
| |
| // Process the first position |
| trellis_first_pos(¶m, first_scan_pos, &tcq_lev, 0, trellis); |
| |
| if (scan_hi >= 0) { |
| // Generic trellis loop |
| trellis_loop(¶m, first_scan_pos, scan_hi, 0, &tcq_lev, trellis); |
| } |
| |
| free(mem_tcq); |
| } |
| |
| // find best path |
| int min_rate = 0; |
| int64_t min_path_cost = INT64_MAX; |
| eob = av1_find_best_path(trellis, scan, dequant, iqmatrix, tcoeff, |
| first_scan_pos, log_scale, qcoeff, dqcoeff, |
| &min_rate, &min_path_cost); |
| |
| int txb_skip_ctx = txb_ctx->txb_skip_ctx; |
| int non_skip_cost = 0; |
| int skip_cost = 0; |
| if (plane == AOM_PLANE_V) { |
| txb_skip_ctx += |
| (x->plane[AOM_PLANE_U].eobs[block] ? V_TXB_SKIP_CONTEXT_OFFSET : 0); |
| non_skip_cost = txb_costs->v_txb_skip_cost[txb_skip_ctx][0]; |
| skip_cost = txb_costs->v_txb_skip_cost[txb_skip_ctx][1]; |
| } else { |
| const int pred_mode_ctx = |
| (is_inter || mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) ? 1 : 0; |
| non_skip_cost = txb_costs->txb_skip_cost[pred_mode_ctx][txb_skip_ctx][0]; |
| skip_cost = txb_costs->txb_skip_cost[pred_mode_ctx][txb_skip_ctx][1]; |
| } |
| |
| int accu_rate = 0; |
| set_bob(x, plane, block, tx_size, tx_type); |
| |
| if (eob == 0) |
| assert(0); // in current implementation, this could not happen. |
| else { |
| const int tx_type_cost = get_tx_type_cost(x, xd, plane, tx_size, tx_type, |
| cm->features.reduced_tx_set_used, |
| eob, bob_code, is_fsc); |
| int64_t rd_cost_skip = RDCOST(rdmult, skip_cost, 0); |
| accu_rate = non_skip_cost + tx_type_cost + min_rate; |
| int64_t rd_cost_coded = |
| min_path_cost + |
| (int64_t)RDCOST(rdmult, non_skip_cost + tx_type_cost, 0); |
| // skip block |
| if ((rd_cost_coded > rd_cost_skip) && sharpness == 0) { |
| for (int scan_idx = 0; scan_idx <= first_scan_pos; scan_idx++) { |
| int blk_idx = scan[scan_idx]; |
| qcoeff[blk_idx] = 0; |
| dqcoeff[blk_idx] = 0; |
| } |
| accu_rate = skip_cost; |
| eob = 0; |
| } |
| } |
| |
| p->eobs[block] = eob; |
| p->txb_entropy_ctx[block] = |
| av1_get_txb_entropy_context(qcoeff, scan_order, p->eobs[block]); |
| |
| accu_rate += get_cctx_type_cost(cm, x, xd, plane, tx_size, block, cctx_type); |
| *rate_cost = accu_rate; |
| |
| return eob; |
| } |