|  | /* | 
|  | * Copyright (c) 2024, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include "av1/encoder/trellis_quant.h" | 
|  | #include "av1/encoder/encodetxb.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/cost.h" | 
|  | #include "av1/common/idct.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/scan.h" | 
|  | #include "av1/encoder/bitstream.h" | 
|  | #include "av1/encoder/encodeframe.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  | #include "av1/encoder/tokenize.h" | 
|  |  | 
|  | typedef struct { | 
|  | uint8_t *base; | 
|  | int bufsize; | 
|  | int idx; | 
|  | } tcq_levels_t; | 
|  |  | 
|  | static void tcq_levels_init(tcq_levels_t *lev, uint8_t *mem_tcq, int bufsize) { | 
|  | lev->base = mem_tcq; | 
|  | lev->idx = 0; | 
|  | lev->bufsize = bufsize; | 
|  | } | 
|  |  | 
|  | static void tcq_levels_swap(tcq_levels_t *lev) { lev->idx ^= 1; } | 
|  |  | 
|  | static uint8_t *tcq_levels_prev(const tcq_levels_t *lev, int st) { | 
|  | return &lev->base[(2 * st + lev->idx) * lev->bufsize]; | 
|  | } | 
|  |  | 
|  | static uint8_t *tcq_levels_cur(const tcq_levels_t *lev, int st) { | 
|  | return &lev->base[(2 * st + !lev->idx) * lev->bufsize]; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void init_tcq_decision(tcq_node_t *decision) { | 
|  | static const tcq_node_t def = { INT64_MAX >> 10, 0, -1, -2 }; | 
|  | for (int state = 0; state < TCQ_N_STATES; state++) { | 
|  | memcpy(&decision[state], &def, sizeof(def)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initialize coeff neighbor magnitudes to zero before starting trellis | 
|  | // optimization for a coeff block. | 
|  | // Initialize previous state storage to identity mapping. | 
|  | // As trellis decisions are made, magnitudes and | 
|  | // state transitions will be updated. | 
|  | static AOM_INLINE void init_tcq_ctx(struct tcq_ctx_t *tcq_ctx) { | 
|  | static const int8_t init_st[4][TCQ_MAX_STATES] = { | 
|  | { 0, 1, 2, 3, 4, 5, 6, 7 }, | 
|  | { 0, 1, 2, 3, 4, 5, 6, 7 }, | 
|  | { 0, 1, 2, 3, 4, 5, 6, 7 }, | 
|  | { 0, 1, 2, 3, 4, 5, 6, 7 }, | 
|  | }; | 
|  | memset(&tcq_ctx->mag_base, 0, sizeof(tcq_ctx->mag_base)); | 
|  | memset(&tcq_ctx->mag_mid, 0, sizeof(tcq_ctx->mag_mid)); | 
|  | memset(&tcq_ctx->ctx, 0, sizeof(tcq_ctx->ctx)); | 
|  | memset(&tcq_ctx->lev_new, 0, sizeof(tcq_ctx->lev_new)); | 
|  | int n_elem = sizeof(tcq_ctx->prev_st) / sizeof(tcq_ctx->prev_st[0]); | 
|  | for (int i = 0; i < n_elem; i += 4) { | 
|  | memcpy(tcq_ctx->prev_st[i], init_st, sizeof(init_st)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update context buffer for the current node | 
|  | static AOM_INLINE void set_levels_buf(int prevId, int absLevel, uint8_t *levels, | 
|  | const int16_t *scan, const int eob_minus1, | 
|  | const int scan_pos, const int bwl, | 
|  | const int sharpness) { | 
|  | if (prevId == -2) { | 
|  | return; | 
|  | } | 
|  | // update current abs level | 
|  | levels[get_padded_idx(scan[scan_pos], bwl)] = AOMMIN(absLevel, INT8_MAX); | 
|  | // check current node is a new start position? if so, set all previous | 
|  | // position to 0. prevId == -1 means a new start, prevId == -2 ? | 
|  | bool new_eob = prevId < 0 && scan_pos + 1 <= eob_minus1 && sharpness == 0; | 
|  | if (new_eob) { | 
|  | for (int si = scan_pos + 1; si <= eob_minus1; si++) { | 
|  | levels[get_padded_idx(scan[si], bwl)] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_FORCE_INLINE int get_dqv(const int32_t *dequant, int coeff_idx, | 
|  | const qm_val_t *iqmatrix) { | 
|  | int dqv = dequant[!!coeff_idx]; | 
|  | if (iqmatrix != NULL) | 
|  | dqv = | 
|  | ((iqmatrix[coeff_idx] * dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; | 
|  | return dqv; | 
|  | } | 
|  |  | 
|  | static AOM_FORCE_INLINE int64_t get_coeff_dist(tran_low_t tcoeff, | 
|  | tran_low_t dqcoeff, int shift) { | 
|  | const int64_t diff = (tcoeff - dqcoeff) * (1 << shift); | 
|  | const int64_t error = diff * diff; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static INLINE int get_coeff_cost_eob(int ci, tran_low_t abs_qc, int sign, | 
|  | int coeff_ctx, int dc_sign_ctx, | 
|  | const LV_MAP_COEFF_COST *txb_costs, | 
|  | int bwl, TX_CLASS tx_class, int32_t t_sign, | 
|  | int plane) { | 
|  | int cost = 0; | 
|  | const int row = ci >> bwl; | 
|  | const int col = ci - (row << bwl); | 
|  | int limits = get_lf_limits(row, col, tx_class, plane); | 
|  | const int(*base_lf_eob_cost_ptr)[LF_BASE_SYMBOLS - 1] = | 
|  | plane > 0 ? txb_costs->base_lf_eob_cost_uv : txb_costs->base_lf_eob_cost; | 
|  | const int(*base_eob_cost_ptr)[3] = | 
|  | plane > 0 ? txb_costs->base_eob_cost_uv : txb_costs->base_eob_cost; | 
|  |  | 
|  | cost += limits ? base_lf_eob_cost_ptr[coeff_ctx] | 
|  | [AOMMIN(abs_qc, LF_BASE_SYMBOLS - 1) - 1] | 
|  | : base_eob_cost_ptr[coeff_ctx][AOMMIN(abs_qc, 3) - 1]; | 
|  | if (abs_qc != 0) { | 
|  | const int dc_ph_group = 0;  // PH disabled | 
|  | const bool dc_2dtx = (ci == 0); | 
|  | const bool dc_hor = (col == 0) && tx_class == TX_CLASS_HORIZ; | 
|  | const bool dc_ver = (row == 0) && tx_class == TX_CLASS_VERT; | 
|  | if (dc_2dtx || dc_hor || dc_ver) { | 
|  | if (plane == AOM_PLANE_V) | 
|  | cost += txb_costs->v_dc_sign_cost[t_sign][dc_sign_ctx][sign]; | 
|  | else | 
|  | cost += txb_costs->dc_sign_cost[dc_ph_group][dc_sign_ctx][sign]; | 
|  | } else { | 
|  | cost += av1_cost_literal(1); | 
|  | } | 
|  | if (plane > 0) { | 
|  | if (limits) { | 
|  | if (abs_qc > LF_NUM_BASE_LEVELS) { | 
|  | cost += get_br_lf_cost_tcq_uv(abs_qc); | 
|  | } | 
|  | } else { | 
|  | if (abs_qc > NUM_BASE_LEVELS) { | 
|  | int br_ctx = 0; /* get_br_ctx_eob_chroma */ | 
|  | cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost_uv[br_ctx]); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (limits) { | 
|  | if (abs_qc > LF_NUM_BASE_LEVELS) { | 
|  | int br_ctx = get_br_ctx_lf_eob(ci, tx_class); | 
|  | cost += get_br_lf_cost_tcq(abs_qc, txb_costs->lps_lf_cost[br_ctx]); | 
|  | } | 
|  | } else { | 
|  | if (abs_qc > NUM_BASE_LEVELS) { | 
|  | int br_ctx = 0; /* get_br_ctx_eob */ | 
|  | cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost[br_ctx]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | static INLINE int get_coeff_cost_def(tran_low_t abs_qc, int coeff_ctx, | 
|  | int diag_ctx, int plane, | 
|  | const LV_MAP_COEFF_COST *txb_costs, | 
|  | int q_i, int t_sign, int sign) { | 
|  | (void)t_sign; | 
|  | (void)sign; | 
|  | int base_ctx = get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx); | 
|  | int mid_ctx = get_mid_ctx(coeff_ctx); | 
|  | const int(*base_cost_ptr)[TCQ_CTXS][8] = | 
|  | plane > 0 ? txb_costs->base_cost_uv : txb_costs->base_cost; | 
|  | int cost = base_cost_ptr[base_ctx][q_i][AOMMIN(abs_qc, 3)]; | 
|  | if (abs_qc != 0) { | 
|  | cost += av1_cost_literal(1); | 
|  | if (abs_qc > NUM_BASE_LEVELS) { | 
|  | if (plane == 0) { | 
|  | cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost[mid_ctx]); | 
|  | } else { | 
|  | cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost_uv[mid_ctx]); | 
|  | } | 
|  | } | 
|  | } | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | static INLINE int get_coeff_cost_general(int ci, tran_low_t abs_qc, int sign, | 
|  | int coeff_ctx, int mid_ctx, | 
|  | int dc_sign_ctx, | 
|  | const LV_MAP_COEFF_COST *txb_costs, | 
|  | int bwl, TX_CLASS tx_class, | 
|  | const int32_t *tmp_sign, int plane, | 
|  | int limits, int q_i) { | 
|  | int cost = 0; | 
|  | const int(*base_lf_cost_ptr)[TCQ_CTXS][LF_BASE_SYMBOLS * 2] = | 
|  | plane > 0 ? txb_costs->base_lf_cost_uv : txb_costs->base_lf_cost; | 
|  | const int(*base_cost_ptr)[TCQ_CTXS][8] = | 
|  | plane > 0 ? txb_costs->base_cost_uv : txb_costs->base_cost; | 
|  | cost += limits ? base_lf_cost_ptr[coeff_ctx][q_i] | 
|  | [AOMMIN(abs_qc, LF_BASE_SYMBOLS - 1)] | 
|  | : base_cost_ptr[coeff_ctx][q_i][AOMMIN(abs_qc, 3)]; | 
|  | if (abs_qc != 0) { | 
|  | const int dc_ph_group = 0;  // PH disabled | 
|  | const int row = ci >> bwl; | 
|  | const int col = ci - (row << bwl); | 
|  | const bool dc_2dtx = (ci == 0); | 
|  | const bool dc_hor = (col == 0) && tx_class == TX_CLASS_HORIZ; | 
|  | const bool dc_ver = (row == 0) && tx_class == TX_CLASS_VERT; | 
|  | if (limits && (dc_2dtx || dc_hor || dc_ver)) { | 
|  | if (plane == AOM_PLANE_V) | 
|  | cost += txb_costs->v_dc_sign_cost[tmp_sign[ci]][dc_sign_ctx][sign]; | 
|  | else | 
|  | cost += txb_costs->dc_sign_cost[dc_ph_group][dc_sign_ctx][sign]; | 
|  | } else { | 
|  | cost += av1_cost_literal(1); | 
|  | } | 
|  | if (plane > 0) { | 
|  | if (limits) { | 
|  | if (abs_qc > LF_NUM_BASE_LEVELS) { | 
|  | cost += get_br_lf_cost_tcq_uv(abs_qc); | 
|  | } | 
|  | } else { | 
|  | if (abs_qc > NUM_BASE_LEVELS) { | 
|  | cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost_uv[mid_ctx]); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (limits) { | 
|  | if (abs_qc > LF_NUM_BASE_LEVELS) { | 
|  | cost += get_br_lf_cost_tcq(abs_qc, txb_costs->lps_lf_cost[mid_ctx]); | 
|  | } | 
|  | } else { | 
|  | if (abs_qc > NUM_BASE_LEVELS) { | 
|  | cost += get_br_cost_tcq(abs_qc, txb_costs->lps_cost[mid_ctx]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | // Compare and update nodes info for current position, only used by pos eob - 1 | 
|  | static void update_node_eob(int64_t rdCost, int64_t distA, int64_t distB, | 
|  | int64_t rdmult, int rateA, int rateB, | 
|  | tran_low_t absA, tran_low_t absB, int limits, | 
|  | int prev_rate, int prev_state, | 
|  | tcq_node_t *decision_0, tcq_node_t *decision_1) { | 
|  | (void)limits; | 
|  | int parityA = 0; | 
|  | int parityB = 1; | 
|  | assert(parityA == tcq_parity(absA)); | 
|  | assert(parityB == tcq_parity(absB)); | 
|  | int64_t costA = rdCost + RDCOST(rdmult, rateA, distA); | 
|  | int64_t costB = rdCost + RDCOST(rdmult, rateB, distB); | 
|  | rateA += prev_rate; | 
|  | rateB += prev_rate; | 
|  | if (parityA) { | 
|  | if (costA < decision_1->rdCost) { | 
|  | decision_1->rdCost = costA; | 
|  | decision_1->rate = rateA; | 
|  | decision_1->prevId = prev_state; | 
|  | decision_1->absLevel = absA; | 
|  | } | 
|  | } else { | 
|  | if (costA < decision_0->rdCost) { | 
|  | decision_0->rdCost = costA; | 
|  | decision_0->rate = rateA; | 
|  | decision_0->prevId = prev_state; | 
|  | decision_0->absLevel = absA; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (parityB) { | 
|  | if (costB < decision_1->rdCost) { | 
|  | decision_1->rdCost = costB; | 
|  | decision_1->rate = rateB; | 
|  | decision_1->prevId = prev_state; | 
|  | decision_1->absLevel = absB; | 
|  | } | 
|  | } else { | 
|  | if (costB < decision_0->rdCost) { | 
|  | decision_0->rdCost = costB; | 
|  | decision_0->rate = rateB; | 
|  | decision_0->prevId = prev_state; | 
|  | decision_0->absLevel = absB; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compare and update nodes info for current position | 
|  | static void update_node_general(int64_t costA, int64_t costB, int64_t cost_zero, | 
|  | int rateA, int rateB, int rate_zero, | 
|  | tran_low_t absA, tran_low_t absB, int limits, | 
|  | int prev_rate, int prev_state, | 
|  | tcq_node_t *decision_0, | 
|  | tcq_node_t *decision_1) { | 
|  | assert(tcq_parity(absA) == 0); | 
|  | assert(tcq_parity(absB) == 1); | 
|  |  | 
|  | (void)limits; | 
|  | int even_bias = 1; | 
|  | rateA += prev_rate; | 
|  | rateB += prev_rate; | 
|  | rate_zero += prev_rate; | 
|  |  | 
|  | if (cost_zero < costA && cost_zero < decision_0->rdCost + even_bias) { | 
|  | decision_0->rdCost = cost_zero; | 
|  | decision_0->rate = rate_zero; | 
|  | decision_0->prevId = prev_state; | 
|  | decision_0->absLevel = 0; | 
|  | } else if (costA < decision_0->rdCost + even_bias) { | 
|  | decision_0->rdCost = costA; | 
|  | decision_0->rate = rateA; | 
|  | decision_0->prevId = prev_state; | 
|  | decision_0->absLevel = absA; | 
|  | } | 
|  |  | 
|  | if (costB < decision_1->rdCost) { | 
|  | decision_1->rdCost = costB; | 
|  | decision_1->rate = rateB; | 
|  | decision_1->prevId = prev_state; | 
|  | decision_1->absLevel = absB; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Evaluate NEW_EOB at the current position | 
|  | static void decide_eob(int64_t costA, int64_t costB, int rateA, int rateB, | 
|  | tran_low_t absA, tran_low_t absB, tcq_node_t *decision_0, | 
|  | tcq_node_t *decision_1) { | 
|  | if (costA < decision_0->rdCost) { | 
|  | decision_0->rdCost = costA; | 
|  | decision_0->rate = rateA; | 
|  | decision_0->prevId = -1; | 
|  | decision_0->absLevel = absA; | 
|  | } | 
|  | if (costB < decision_1->rdCost) { | 
|  | decision_1->rdCost = costB; | 
|  | decision_1->rate = rateB; | 
|  | decision_1->prevId = -1; | 
|  | decision_1->absLevel = absB; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Populate the trellis from current position to next | 
|  | void av1_decide_states_c(const struct tcq_node_t *prev, | 
|  | const struct tcq_rate_t *rd, | 
|  | const struct prequant_t *pq, int limits, int try_eob, | 
|  | int64_t rdmult, struct tcq_node_t *decision) { | 
|  | const int32_t *rate = rd->rate; | 
|  | const int32_t *rate_zero = rd->rate_zero; | 
|  | const int32_t *rate_eob = rd->rate_eob; | 
|  | int64_t rdCost[2 * TCQ_MAX_STATES]; | 
|  | int64_t rdCost_zero[TCQ_MAX_STATES]; | 
|  | int64_t rdCost_eob[2]; | 
|  |  | 
|  | // Init to 0 to avoid ASAN uninitialization warnings | 
|  | memset(rdCost, 0, sizeof(rdCost)); | 
|  | memset(rdCost_zero, 0, sizeof(rdCost_zero)); | 
|  | init_tcq_decision(decision); | 
|  |  | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int a0 = tcq_quant(i); | 
|  | int a1 = a0 + 2; | 
|  | int64_t dist0 = pq->deltaDist[a0]; | 
|  | int64_t dist1 = pq->deltaDist[a1]; | 
|  | rdCost[2 * i] = prev[i].rdCost + RDCOST(rdmult, rate[2 * i], dist0); | 
|  | rdCost[2 * i + 1] = prev[i].rdCost + RDCOST(rdmult, rate[2 * i + 1], dist1); | 
|  | rdCost_zero[i] = prev[i].rdCost + RDCOST(rdmult, rate_zero[i], 0); | 
|  | } | 
|  | rdCost_eob[0] = RDCOST(rdmult, rate_eob[0], pq->deltaDist[0]); | 
|  | rdCost_eob[1] = RDCOST(rdmult, rate_eob[1], pq->deltaDist[2]); | 
|  |  | 
|  | update_node_general(rdCost[0], rdCost[1], rdCost_zero[0], rate[0], rate[1], | 
|  | rate_zero[0], pq->absLevel[0], pq->absLevel[2], limits, | 
|  | prev[0].rate, 0, &decision[0], &decision[4]); | 
|  | update_node_general(rdCost[2], rdCost[3], rdCost_zero[1], rate[2], rate[3], | 
|  | rate_zero[1], pq->absLevel[0], pq->absLevel[2], limits, | 
|  | prev[1].rate, 1, &decision[4], &decision[0]); | 
|  | update_node_general(rdCost[5], rdCost[4], rdCost_zero[2], rate[5], rate[4], | 
|  | rate_zero[2], pq->absLevel[3], pq->absLevel[1], limits, | 
|  | prev[2].rate, 2, &decision[1], &decision[5]); | 
|  | update_node_general(rdCost[7], rdCost[6], rdCost_zero[3], rate[7], rate[6], | 
|  | rate_zero[3], pq->absLevel[3], pq->absLevel[1], limits, | 
|  | prev[3].rate, 3, &decision[5], &decision[1]); | 
|  | update_node_general(rdCost[8], rdCost[9], rdCost_zero[4], rate[8], rate[9], | 
|  | rate_zero[4], pq->absLevel[0], pq->absLevel[2], limits, | 
|  | prev[4].rate, 4, &decision[6], &decision[2]); | 
|  | update_node_general(rdCost[10], rdCost[11], rdCost_zero[5], rate[10], | 
|  | rate[11], rate_zero[5], pq->absLevel[0], pq->absLevel[2], | 
|  | limits, prev[5].rate, 5, &decision[2], &decision[6]); | 
|  | update_node_general(rdCost[13], rdCost[12], rdCost_zero[6], rate[13], | 
|  | rate[12], rate_zero[6], pq->absLevel[3], pq->absLevel[1], | 
|  | limits, prev[6].rate, 6, &decision[7], &decision[3]); | 
|  | update_node_general(rdCost[15], rdCost[14], rdCost_zero[7], rate[15], | 
|  | rate[14], rate_zero[7], pq->absLevel[3], pq->absLevel[1], | 
|  | limits, prev[7].rate, 7, &decision[3], &decision[7]); | 
|  |  | 
|  | if (try_eob) { | 
|  | const int state0 = 0; | 
|  | const int state1 = 4; | 
|  | decide_eob(rdCost_eob[0], rdCost_eob[1], rate_eob[0], rate_eob[1], | 
|  | pq->absLevel[0], pq->absLevel[2], &decision[state0], | 
|  | &decision[state1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prepare 4 quant candidates for each coeff | 
|  | // [0] and [2] are for Q0. One is even and the other is odd | 
|  | // [1] and [3] are for Q1. One is even and the other is odd | 
|  | void av1_pre_quant_c(tran_low_t tqc, struct prequant_t *pqData, | 
|  | const int32_t *quant_ptr, int dqv, int log_scale, | 
|  | int scan_pos) { | 
|  | // calculate qIdx | 
|  | const int shift = 16 - log_scale + QUANT_FP_BITS; | 
|  | tran_low_t add = -((2 << shift) >> 1); | 
|  | tran_low_t abs_tqc = abs(tqc); | 
|  |  | 
|  | tran_low_t qIdx = (int)AOMMAX( | 
|  | 1, AOMMIN(((1 << 16) - 1), | 
|  | ((int64_t)abs_tqc * quant_ptr[scan_pos != 0] + add) >> shift)); | 
|  | pqData->qIdx = qIdx; | 
|  |  | 
|  | const int64_t dist0 = get_coeff_dist(abs_tqc, 0, log_scale - 1); | 
|  |  | 
|  | int Idx_a = qIdx & 3; | 
|  |  | 
|  | tran_low_t dqca = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, | 
|  | QUANT_TABLE_BITS) >> | 
|  | log_scale; | 
|  |  | 
|  | pqData->absLevel[Idx_a] = (++qIdx) >> 1; | 
|  | pqData->deltaDist[Idx_a] = | 
|  | get_coeff_dist(abs_tqc, dqca, log_scale - 1) - dist0; | 
|  |  | 
|  | int Idx_b = qIdx & 3; | 
|  |  | 
|  | tran_low_t dqcb = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, | 
|  | QUANT_TABLE_BITS) >> | 
|  | log_scale; | 
|  |  | 
|  | pqData->absLevel[Idx_b] = (++qIdx) >> 1; | 
|  | pqData->deltaDist[Idx_b] = | 
|  | get_coeff_dist(abs_tqc, dqcb, log_scale - 1) - dist0; | 
|  |  | 
|  | int Idx_c = qIdx & 3; | 
|  |  | 
|  | tran_low_t dqcc = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, | 
|  | QUANT_TABLE_BITS) >> | 
|  | log_scale; | 
|  |  | 
|  | pqData->absLevel[Idx_c] = (++qIdx) >> 1; | 
|  | pqData->deltaDist[Idx_c] = | 
|  | get_coeff_dist(abs_tqc, dqcc, log_scale - 1) - dist0; | 
|  |  | 
|  | int Idx_d = qIdx & 3; | 
|  |  | 
|  | tran_low_t dqcd = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qIdx * dqv, | 
|  | QUANT_TABLE_BITS) >> | 
|  | log_scale; | 
|  |  | 
|  | pqData->absLevel[Idx_d] = (++qIdx) >> 1; | 
|  | pqData->deltaDist[Idx_d] = | 
|  | get_coeff_dist(abs_tqc, dqcd, log_scale - 1) - dist0; | 
|  | } | 
|  |  | 
|  | static int get_coeff_cost(int ci, tran_low_t abs_qc, int sign, int coeff_ctx, | 
|  | int mid_ctx, int dc_sign_ctx, | 
|  | const LV_MAP_COEFF_COST *txb_costs, int bwl, | 
|  | TX_CLASS tx_class, const int32_t *tmp_sign, int plane, | 
|  | int limits, int q_i) { | 
|  | return get_coeff_cost_general(ci, abs_qc, sign, coeff_ctx, mid_ctx, | 
|  | dc_sign_ctx, txb_costs, bwl, tx_class, tmp_sign, | 
|  | plane, limits, q_i); | 
|  | } | 
|  |  | 
|  | // Update neighbor coeff magnitudes state for current diagonal. | 
|  | void av1_update_nbr_diagonal_c(struct tcq_ctx_t *tcq_ctx, int row, int col, | 
|  | int bwl) { | 
|  | // Temp storage for next diagonal ctx, with padding. | 
|  | uint8_t next_base_mag[32 + 8][TCQ_MAX_STATES]; | 
|  | uint8_t next_mid_mag[32 + 8][TCQ_MAX_STATES]; | 
|  | uint8_t(*next_base)[TCQ_MAX_STATES] = &next_base_mag[4]; | 
|  | uint8_t(*next_mid)[TCQ_MAX_STATES] = &next_mid_mag[4]; | 
|  | uint8_t(*mag_base)[TCQ_MAX_STATES] = &tcq_ctx->mag_base[4]; | 
|  | uint8_t(*mag_mid)[TCQ_MAX_STATES] = &tcq_ctx->mag_mid[4]; | 
|  |  | 
|  | int idx_start = col; | 
|  | int idx_end = 1 << bwl; | 
|  | for (int st = 0; st < TCQ_MAX_STATES; st++) { | 
|  | // Copy original coeff context from previous diagonal. | 
|  | int orig_st = tcq_ctx->orig_st[st]; | 
|  | if (orig_st < 0) { | 
|  | for (int i = 0; i < 32; i++) { | 
|  | next_base[i][st] = 0; | 
|  | next_mid[i][st] = 0; | 
|  | } | 
|  | } else { | 
|  | for (int i = 0; i < 32; i++) { | 
|  | next_base[i][st] = mag_base[i][orig_st]; | 
|  | next_mid[i][st] = mag_mid[i][orig_st]; | 
|  | } | 
|  | } | 
|  | } | 
|  | memset(next_base_mag, 0, sizeof(next_base_mag[0]) * 4); | 
|  | memset(next_mid_mag, 0, sizeof(next_mid_mag[0]) * 4); | 
|  | memset(tcq_ctx->mag_base, 0, sizeof(tcq_ctx->mag_base)); | 
|  | memset(tcq_ctx->mag_mid, 0, sizeof(tcq_ctx->mag_mid)); | 
|  | int diag = row + col; | 
|  | int max1 = diag < 5 ? 5 : 3; | 
|  | int max2 = diag < 6 ? 5 : 3; | 
|  | for (int st = 0; st < TCQ_MAX_STATES; st++) { | 
|  | // Update neighbor magnitudes | 
|  | int st1 = st; | 
|  | for (int i = idx_start; st1 >= 0 && i < idx_end; i++) { | 
|  | int lev = tcq_ctx->lev_new[i][st1]; | 
|  | st1 = tcq_ctx->prev_st[i][st1]; | 
|  | // Update base positions {1, 0}, {0, 1} | 
|  | int base1 = AOMMIN(lev, max1); | 
|  | next_base[i][st] += base1; | 
|  | next_base[i - 1][st] += base1; | 
|  | // Update mid positions {1, 0}, {0, 1} | 
|  | next_mid[i][st] += lev; | 
|  | next_mid[i - 1][st] += lev; | 
|  | // Update base positions {2, 0}, {1. 1}, {0, 2} | 
|  | int base2 = AOMMIN(lev, max2); | 
|  | mag_base[i][st] += base2; | 
|  | mag_base[i - 1][st] += base2; | 
|  | mag_base[i - 2][st] += base2; | 
|  | // Update mid position {1, 1} | 
|  | mag_mid[i - 1][st] = lev; | 
|  | } | 
|  | } | 
|  | // Calc next context info | 
|  | memset(tcq_ctx->ctx, 0, sizeof(tcq_ctx->ctx)); | 
|  | static const int8_t max_tbl[6] = { 0, 8, 6, 4, 4, 4 }; | 
|  | int base_max = max_tbl[AOMMIN(diag, 5)]; | 
|  | for (int st = 0; st < TCQ_MAX_STATES; st++) { | 
|  | for (int i = 0; i < 32; i++) { | 
|  | int base_ctx = next_base[i][st]; | 
|  | int mid_ctx = next_mid[i][st]; | 
|  | base_ctx = AOMMIN((base_ctx + 1) >> 1, base_max); | 
|  | mid_ctx = AOMMIN((mid_ctx + 1) >> 1, 6); | 
|  | tcq_ctx->ctx[i][st] = (mid_ctx << 4) + base_ctx; | 
|  | } | 
|  | // Reset original state to prepare for next diagonal. | 
|  | tcq_ctx->orig_st[st] = st; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process the first position | 
|  | void trellis_first_pos(const tcq_param_t *p, int scan_pos, | 
|  | tcq_levels_t *tcq_lev, tcq_ctx_t *tcq_ctx, | 
|  | tcq_node_t *trellis) { | 
|  | int plane = p->plane; | 
|  | TX_SIZE tx_size = p->tx_size; | 
|  | TX_CLASS tx_class = p->tx_class; | 
|  | int log_scale = p->log_scale; | 
|  | int64_t rdmult = p->rdmult; | 
|  | int dc_sign_ctx = p->dc_sign_ctx; | 
|  | const int16_t *scan = p->scan; | 
|  | const int32_t *tmp_sign = p->tmp_sign; | 
|  | const tran_low_t *qcoeff = p->qcoeff; | 
|  | const tran_low_t *tcoeff = p->tcoeff; | 
|  | const int32_t *quant = p->quant; | 
|  | const int32_t *dequant = p->dequant; | 
|  | const qm_val_t *iqmatrix = p->iqmatrix; | 
|  | const uint16_t *block_eob_rate = p->block_eob_rate; | 
|  | const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; | 
|  | const int bwl = get_txb_bwl(tx_size); | 
|  | const int height = get_txb_high(tx_size); | 
|  |  | 
|  | int blk_pos = scan[scan_pos]; | 
|  | tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; | 
|  |  | 
|  | prequant_t pqData; | 
|  | int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); | 
|  | av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, scan_pos); | 
|  |  | 
|  | // init state | 
|  | init_tcq_decision(decision); | 
|  |  | 
|  | const int row = blk_pos >> bwl; | 
|  | const int col = blk_pos - (row << bwl); | 
|  | int limits = get_lf_limits(row, col, tx_class, plane); | 
|  |  | 
|  | // calculate rate distortion | 
|  | // try to quantize first coeff to nzcoeff | 
|  | int coeff_ctx = get_lower_levels_ctx_eob(bwl, height, scan_pos); | 
|  | int eob_rate = block_eob_rate[scan_pos]; | 
|  | int t_sign = tmp_sign[blk_pos]; | 
|  | int rate_Q0_a = | 
|  | get_coeff_cost_eob(blk_pos, pqData.absLevel[0], (qcoeff[blk_pos] < 0), | 
|  | coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, | 
|  | t_sign, plane) + | 
|  | eob_rate; | 
|  | int rate_Q0_b = | 
|  | get_coeff_cost_eob(blk_pos, pqData.absLevel[2], (qcoeff[blk_pos] < 0), | 
|  | coeff_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, | 
|  | t_sign, plane) + | 
|  | eob_rate; | 
|  | const int state0 = 0; | 
|  | const int state1 = 4; | 
|  | update_node_eob(0, pqData.deltaDist[0], pqData.deltaDist[2], rdmult, | 
|  | rate_Q0_a, rate_Q0_b, pqData.absLevel[0], pqData.absLevel[2], | 
|  | limits, 0, -1, &decision[state0], &decision[state1]); | 
|  |  | 
|  | if (tcq_ctx) { | 
|  | for (int i = 0; i < TCQ_MAX_STATES; i++) { | 
|  | tcq_ctx->orig_st[i] = i; | 
|  | tcq_ctx->prev_st[col][i] = -1; | 
|  | tcq_ctx->lev_new[col][i] = 0; | 
|  | } | 
|  | tcq_ctx->lev_new[col][state0] = | 
|  | AOMMIN(decision[state0].absLevel, MAX_VAL_BR_CTX); | 
|  | tcq_ctx->lev_new[col][state1] = | 
|  | AOMMIN(decision[state1].absLevel, MAX_VAL_BR_CTX); | 
|  | if ((col == 0 && row != 0) || row == height - 1) { | 
|  | av1_update_nbr_diagonal(tcq_ctx, row, col, bwl); | 
|  | } | 
|  | } | 
|  | if (tcq_lev) { | 
|  | uint8_t *levels0 = tcq_levels_cur(tcq_lev, state0); | 
|  | uint8_t *levels1 = tcq_levels_cur(tcq_lev, state1); | 
|  | set_levels_buf(decision[state0].prevId, decision[state0].absLevel, levels0, | 
|  | scan, scan_pos, scan_pos, bwl, 0); | 
|  | set_levels_buf(decision[state1].prevId, decision[state1].absLevel, levels1, | 
|  | scan, scan_pos, scan_pos, bwl, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_get_rate_dist_def_luma_c(const struct tcq_param_t *p, | 
|  | const struct prequant_t *pq, | 
|  | const struct tcq_coeff_ctx_t *coeff_ctx, | 
|  | int blk_pos, int diag_ctx, int eob_rate, | 
|  | struct tcq_rate_t *rd) { | 
|  | const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; | 
|  | TX_CLASS tx_class = p->tx_class; | 
|  | int bwl = p->bwl; | 
|  | const int plane = 0; | 
|  | const int t_sign = 0; | 
|  | const int sign = 0; | 
|  | const int dc_sign_ctx = 0; | 
|  | const tran_low_t *absLevel = pq->absLevel; | 
|  |  | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int q_i = tcq_quant(i); | 
|  | int a0 = q_i; | 
|  | int a1 = a0 + 2; | 
|  | int base_ctx = | 
|  | get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx->coef[i]); | 
|  | int cost0 = get_coeff_cost_def(absLevel[a0], coeff_ctx->coef[i], diag_ctx, | 
|  | plane, txb_costs, q_i, t_sign, sign); | 
|  | int cost1 = get_coeff_cost_def(absLevel[a1], coeff_ctx->coef[i], diag_ctx, | 
|  | plane, txb_costs, q_i, t_sign, sign); | 
|  | rd->rate_zero[i] = txb_costs->base_cost[base_ctx][q_i][0]; | 
|  | rd->rate[2 * i] = cost0; | 
|  | rd->rate[2 * i + 1] = cost1; | 
|  | } | 
|  | rd->rate_eob[0] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | rd->rate_eob[1] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | } | 
|  |  | 
|  | void av1_get_rate_dist_def_chroma_c(const struct LV_MAP_COEFF_COST *txb_costs, | 
|  | const struct prequant_t *pq, | 
|  | const struct tcq_coeff_ctx_t *coeff_ctx, | 
|  | int blk_pos, int bwl, TX_CLASS tx_class, | 
|  | int diag_ctx, int eob_rate, int plane, | 
|  | int t_sign, int sign, | 
|  | struct tcq_rate_t *rd) { | 
|  | const tran_low_t *absLevel = pq->absLevel; | 
|  | const int dc_sign_ctx = 0; | 
|  |  | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int q_i = tcq_quant(i); | 
|  | int a0 = q_i; | 
|  | int a1 = a0 + 2; | 
|  | int base_ctx = (diag_ctx & 15) + (coeff_ctx->coef[i] & 15); | 
|  | int cost0 = get_coeff_cost_def(absLevel[a0], coeff_ctx->coef[i], diag_ctx, | 
|  | plane, txb_costs, q_i, t_sign, sign); | 
|  | int cost1 = get_coeff_cost_def(absLevel[a1], coeff_ctx->coef[i], diag_ctx, | 
|  | plane, txb_costs, q_i, t_sign, sign); | 
|  | rd->rate_zero[i] = txb_costs->base_cost_uv[base_ctx][q_i][0]; | 
|  | rd->rate[2 * i] = cost0; | 
|  | rd->rate[2 * i + 1] = cost1; | 
|  | } | 
|  | rd->rate_eob[0] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | rd->rate_eob[1] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | } | 
|  |  | 
|  | void av1_get_rate_dist_lf_luma_c(const struct tcq_param_t *p, | 
|  | const struct prequant_t *pq, | 
|  | const struct tcq_coeff_ctx_t *coeff_ctx, | 
|  | int blk_pos, int diag_ctx, int eob_rate, | 
|  | int coeff_sign, struct tcq_rate_t *rd) { | 
|  | const tran_low_t *absLevel = pq->absLevel; | 
|  | const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; | 
|  | const int32_t *tmp_sign = p->tmp_sign; | 
|  | TX_CLASS tx_class = p->tx_class; | 
|  | int bwl = p->bwl; | 
|  | int dc_sign_ctx = p->dc_sign_ctx; | 
|  | int t_sign = tmp_sign[blk_pos]; | 
|  | int plane = 0; | 
|  |  | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int q_i = tcq_quant(i); | 
|  | int a0 = q_i; | 
|  | int a1 = a0 + 2; | 
|  | int base_ctx = | 
|  | get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx->coef[i]); | 
|  | int mid_ctx = get_mid_diag_ctx(diag_ctx) + get_mid_ctx(coeff_ctx->coef[i]); | 
|  | int cost0 = get_coeff_cost(blk_pos, absLevel[a0], coeff_sign, base_ctx, | 
|  | mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, | 
|  | tmp_sign, plane, 1, q_i); | 
|  | int cost1 = get_coeff_cost(blk_pos, absLevel[a1], coeff_sign, base_ctx, | 
|  | mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, | 
|  | tmp_sign, plane, 1, q_i); | 
|  | rd->rate_zero[i] = txb_costs->base_lf_cost[base_ctx][q_i][0]; | 
|  | rd->rate[2 * i] = cost0; | 
|  | rd->rate[2 * i + 1] = cost1; | 
|  | } | 
|  | rd->rate_eob[0] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], coeff_sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | rd->rate_eob[1] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], coeff_sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | } | 
|  |  | 
|  | void av1_get_rate_dist_lf_chroma_c(const struct LV_MAP_COEFF_COST *txb_costs, | 
|  | const struct prequant_t *pq, | 
|  | const struct tcq_coeff_ctx_t *coeff_ctx, | 
|  | int blk_pos, int diag_ctx, int eob_rate, | 
|  | int dc_sign_ctx, const int32_t *tmp_sign, | 
|  | int bwl, TX_CLASS tx_class, int plane, | 
|  | int coeff_sign, struct tcq_rate_t *rd) { | 
|  | const tran_low_t *absLevel = pq->absLevel; | 
|  | int t_sign = tmp_sign[blk_pos]; | 
|  |  | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int q_i = tcq_quant(i); | 
|  | int a0 = q_i; | 
|  | int a1 = a0 + 2; | 
|  | int base_ctx = | 
|  | get_base_diag_ctx(diag_ctx) + get_base_ctx(coeff_ctx->coef[i]); | 
|  | int mid_ctx = get_mid_diag_ctx(diag_ctx) + get_mid_ctx(coeff_ctx->coef[i]); | 
|  | int cost0 = get_coeff_cost(blk_pos, absLevel[a0], coeff_sign, base_ctx, | 
|  | mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, | 
|  | tmp_sign, plane, 1, q_i); | 
|  | int cost1 = get_coeff_cost(blk_pos, absLevel[a1], coeff_sign, base_ctx, | 
|  | mid_ctx, dc_sign_ctx, txb_costs, bwl, tx_class, | 
|  | tmp_sign, plane, 1, q_i); | 
|  | rd->rate_zero[i] = txb_costs->base_lf_cost_uv[base_ctx][q_i][0]; | 
|  | rd->rate[2 * i] = cost0; | 
|  | rd->rate[2 * i + 1] = cost1; | 
|  | } | 
|  | rd->rate_eob[0] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[0], coeff_sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | rd->rate_eob[1] = | 
|  | eob_rate + get_coeff_cost_eob(blk_pos, absLevel[2], coeff_sign, | 
|  | coeff_ctx->coef_eob, dc_sign_ctx, txb_costs, | 
|  | bwl, tx_class, t_sign, plane); | 
|  | } | 
|  |  | 
|  | void av1_update_states_c(const tcq_node_t *decision, int col, | 
|  | struct tcq_ctx_t *tcq_ctx) { | 
|  | int8_t tmp_orig_st[TCQ_N_STATES]; | 
|  | memcpy(tmp_orig_st, tcq_ctx->orig_st, sizeof(tcq_ctx->orig_st)); | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int prevId = decision[i].prevId; | 
|  | int absLevel = decision[i].absLevel; | 
|  | tcq_ctx->lev_new[col][i] = AOMMIN(absLevel, MAX_VAL_BR_CTX); | 
|  | tcq_ctx->prev_st[col][i] = prevId; | 
|  | if (prevId < 0) { | 
|  | tcq_ctx->orig_st[i] = -1; | 
|  | } else { | 
|  | tcq_ctx->orig_st[i] = tmp_orig_st[prevId]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_get_coeff_ctx_c(const struct tcq_ctx_t *tcq_ctx, int col, | 
|  | struct tcq_coeff_ctx_t *coeff_ctx) { | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int orig_st = tcq_ctx->orig_st[i]; | 
|  | coeff_ctx->coef[i] = orig_st == -1 ? 0 : tcq_ctx->ctx[col][orig_st]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get diagonal context for 2D luma block | 
|  | static AOM_INLINE int get_diag_ctx(int lf, int blk_pos, int scan_pos, int bwl) { | 
|  | int diag_ctx; | 
|  | if (lf) { | 
|  | diag_ctx = get_nz_map_ctx_from_stats_lf(0, blk_pos, bwl, TX_CLASS_2D); | 
|  | if (scan_pos > 0) { | 
|  | diag_ctx += 7 << 8; | 
|  | } | 
|  | } else { | 
|  | diag_ctx = get_nz_map_ctx_from_stats(0, blk_pos, bwl, TX_CLASS_2D, 0); | 
|  | } | 
|  | return diag_ctx; | 
|  | } | 
|  |  | 
|  | // TCQ 8-state for a 2D luma block. | 
|  | static void trellis_loop_diagonal_st8(const tcq_param_t *p, int scan_hi, | 
|  | int scan_lo, tcq_ctx_t *tcq_ctx, | 
|  | tcq_node_t *trellis) { | 
|  | int plane = p->plane; | 
|  | int log_scale = p->log_scale; | 
|  | int try_eob = p->sharpness == 0; | 
|  | int64_t rdmult = p->rdmult; | 
|  | const int16_t *scan = p->scan; | 
|  | const tran_low_t *tcoeff = p->tcoeff; | 
|  | const int32_t *quant = p->quant; | 
|  | const int32_t *dequant = p->dequant; | 
|  | const qm_val_t *iqmatrix = p->iqmatrix; | 
|  | const uint16_t *block_eob_rate = p->block_eob_rate; | 
|  | int bwl = p->bwl; | 
|  | int height = p->txb_height; | 
|  | assert(plane == 0); | 
|  | assert(p->tx_class == TX_CLASS_2D); | 
|  | (void)plane; | 
|  |  | 
|  | int dc_coeff_sign = tcoeff[0] < 0; | 
|  | int blk_pos_inc = (1 << bwl) - 1; | 
|  | int blk_pos, row, col; | 
|  |  | 
|  | // Handle default region. | 
|  | while (scan_hi >= 10) { | 
|  | blk_pos = scan[scan_hi]; | 
|  | row = blk_pos >> bwl; | 
|  | col = blk_pos - (row << bwl); | 
|  | int inc = AOMMIN(height - 1 - row, col); | 
|  | scan_lo = scan_hi - inc; | 
|  | int lf = 0; | 
|  | int diag_ctx = get_diag_ctx(lf, blk_pos, scan_lo, bwl); | 
|  | assert(scan_lo >= 0); | 
|  |  | 
|  | for (int scan_pos = scan_hi; scan_pos >= scan_lo; scan_pos--) { | 
|  | tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; | 
|  | tcq_node_t *prev_decision = &decision[TCQ_N_STATES]; | 
|  |  | 
|  | prequant_t pqData; | 
|  | int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); | 
|  | av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, | 
|  | scan_pos); | 
|  |  | 
|  | // Get coeff contexts | 
|  | tcq_coeff_ctx_t coeff_ctx; | 
|  | av1_get_coeff_ctx(tcq_ctx, col, &coeff_ctx); | 
|  | coeff_ctx.coef_eob = get_lower_levels_ctx_eob(bwl, height, scan_pos); | 
|  | int eob_rate = block_eob_rate[scan_pos]; | 
|  |  | 
|  | // Calculate rate and distortion. | 
|  | tcq_rate_t rd; | 
|  | av1_get_rate_dist_def_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, | 
|  | eob_rate, &rd); | 
|  |  | 
|  | av1_decide_states(prev_decision, &rd, &pqData, lf, try_eob, rdmult, | 
|  | decision); | 
|  |  | 
|  | av1_update_states(decision, col, tcq_ctx); | 
|  |  | 
|  | blk_pos += blk_pos_inc; | 
|  | col--; | 
|  | row++; | 
|  | } | 
|  | av1_update_nbr_diagonal(tcq_ctx, row - 1, col + 1, bwl); | 
|  | scan_hi = scan_lo - 1; | 
|  | } | 
|  | // Handle LF region. | 
|  | while (scan_hi >= 0) { | 
|  | blk_pos = scan[scan_hi]; | 
|  | row = blk_pos >> bwl; | 
|  | col = blk_pos - (row << bwl); | 
|  | int inc = AOMMIN(height - 1 - row, col); | 
|  | scan_lo = scan_hi - inc; | 
|  | int lf = 1; | 
|  | int diag_ctx = get_diag_ctx(lf, blk_pos, scan_lo, bwl); | 
|  | assert(scan_lo >= 0); | 
|  |  | 
|  | for (int scan_pos = scan_hi; scan_pos >= scan_lo; scan_pos--) { | 
|  | tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; | 
|  | tcq_node_t *prev_decision = &decision[TCQ_N_STATES]; | 
|  |  | 
|  | prequant_t pqData; | 
|  | int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); | 
|  | av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, | 
|  | scan_pos); | 
|  |  | 
|  | // Get coeff contexts | 
|  | tcq_coeff_ctx_t coeff_ctx; | 
|  | av1_get_coeff_ctx(tcq_ctx, col, &coeff_ctx); | 
|  | coeff_ctx.coef_eob = get_lower_levels_ctx_eob(bwl, height, scan_pos); | 
|  | int eob_rate = block_eob_rate[scan_pos]; | 
|  |  | 
|  | // Calculate rate and distortion. | 
|  | tcq_rate_t rd; | 
|  | av1_get_rate_dist_lf_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, | 
|  | eob_rate, dc_coeff_sign, &rd); | 
|  |  | 
|  | av1_decide_states(prev_decision, &rd, &pqData, lf, try_eob, rdmult, | 
|  | decision); | 
|  |  | 
|  | av1_update_states(decision, col, tcq_ctx); | 
|  |  | 
|  | blk_pos += blk_pos_inc; | 
|  | col--; | 
|  | row++; | 
|  | } | 
|  | if (scan_hi != 0) { | 
|  | av1_update_nbr_diagonal(tcq_ctx, row - 1, col + 1, bwl); | 
|  | } | 
|  | scan_hi = scan_lo - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // General TCQ 8-state, used by non 2D Luma | 
|  | void trellis_loop(const tcq_param_t *p, int first_scan_pos, int scan_hi, | 
|  | int scan_lo, tcq_levels_t *tcq_lev, tcq_node_t *trellis) { | 
|  | int plane = p->plane; | 
|  | TX_CLASS tx_class = p->tx_class; | 
|  | int log_scale = p->log_scale; | 
|  | int sharpness = p->sharpness; | 
|  | int try_eob = sharpness == 0; | 
|  | int64_t rdmult = p->rdmult; | 
|  | int dc_sign_ctx = p->dc_sign_ctx; | 
|  | const int16_t *scan = p->scan; | 
|  | const int32_t *tmp_sign = p->tmp_sign; | 
|  | const tran_low_t *tcoeff = p->tcoeff; | 
|  | const int32_t *quant = p->quant; | 
|  | const int32_t *dequant = p->dequant; | 
|  | const qm_val_t *iqmatrix = p->iqmatrix; | 
|  | const uint16_t *block_eob_rate = p->block_eob_rate; | 
|  | const LV_MAP_COEFF_COST *txb_costs = p->txb_costs; | 
|  | const int bwl = p->bwl; | 
|  | const int height = p->txb_height; | 
|  |  | 
|  | for (int scan_pos = scan_hi; scan_pos >= scan_lo; scan_pos--) { | 
|  | tcq_levels_swap(tcq_lev); | 
|  | uint8_t *levels[TCQ_MAX_STATES]; | 
|  | uint8_t *prev_levels[TCQ_MAX_STATES]; | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | prev_levels[i] = tcq_levels_prev(tcq_lev, i); | 
|  | levels[i] = tcq_levels_cur(tcq_lev, i); | 
|  | } | 
|  |  | 
|  | int blk_pos = scan[scan_pos]; | 
|  | int row = blk_pos >> bwl; | 
|  | int col = blk_pos - (row << bwl); | 
|  | int limits = get_lf_limits(row, col, tx_class, plane); | 
|  |  | 
|  | tcq_node_t *decision = &trellis[scan_pos << TCQ_N_STATES_LOG]; | 
|  | tcq_node_t *prd = &decision[TCQ_N_STATES]; | 
|  |  | 
|  | prequant_t pqData; | 
|  | int tempdqv = get_dqv(dequant, scan[scan_pos], iqmatrix); | 
|  | av1_pre_quant(tcoeff[blk_pos], &pqData, quant, tempdqv, log_scale, | 
|  | scan_pos); | 
|  |  | 
|  | // init state | 
|  | init_tcq_decision(decision); | 
|  | const int coeff_sign = tcoeff[blk_pos] < 0; | 
|  |  | 
|  | // calculate contexts | 
|  |  | 
|  | tcq_coeff_ctx_t coeff_ctx; | 
|  | int eob_ctx = get_lower_levels_ctx_eob(bwl, height, scan_pos); | 
|  | int eob_rate = block_eob_rate[scan_pos]; | 
|  | coeff_ctx.coef_eob = eob_ctx; | 
|  |  | 
|  | tcq_rate_t rd; | 
|  |  | 
|  | // Calculate contexts and rate distortion | 
|  | if (limits) { | 
|  | if (plane == 0) { | 
|  | int base_diag_ctx = | 
|  | get_nz_map_ctx_from_stats_lf(0, blk_pos, bwl, tx_class); | 
|  | int mid_diag_ctx = 7 * (tx_class == TX_CLASS_2D      ? blk_pos > 0 | 
|  | : tx_class == TX_CLASS_HORIZ ? col == 0 | 
|  | : row == 0); | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int base_ctx = | 
|  | get_lower_levels_lf_ctx(prev_levels[i], blk_pos, bwl, tx_class); | 
|  | int br_ctx = get_br_lf_ctx(prev_levels[i], blk_pos, bwl, tx_class); | 
|  | br_ctx -= mid_diag_ctx; | 
|  | coeff_ctx.coef[i] = base_ctx - base_diag_ctx + (br_ctx << 4); | 
|  | } | 
|  | int diag_ctx = base_diag_ctx + (mid_diag_ctx << 8); | 
|  | av1_get_rate_dist_lf_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, | 
|  | eob_rate, coeff_sign, &rd); | 
|  | } else { | 
|  | int diag_ctx = get_nz_map_ctx_from_stats_lf_chroma(0, tx_class, plane); | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int base_ctx = get_lower_levels_lf_ctx_chroma(prev_levels[i], blk_pos, | 
|  | bwl, tx_class, plane); | 
|  | coeff_ctx.coef[i] = base_ctx - diag_ctx; | 
|  | } | 
|  | av1_get_rate_dist_lf_chroma(txb_costs, &pqData, &coeff_ctx, blk_pos, | 
|  | diag_ctx, eob_rate, dc_sign_ctx, tmp_sign, | 
|  | bwl, tx_class, plane, coeff_sign, &rd); | 
|  | } | 
|  | } else { | 
|  | if (plane == 0) { | 
|  | int diag_ctx = get_nz_map_ctx_from_stats(0, blk_pos, bwl, tx_class, 0); | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int base_ctx = get_lower_levels_ctx(prev_levels[i], blk_pos, bwl, | 
|  | tx_class, plane); | 
|  | int br_ctx = get_br_ctx(prev_levels[i], blk_pos, bwl, tx_class); | 
|  | coeff_ctx.coef[i] = base_ctx - diag_ctx + (br_ctx << 4); | 
|  | } | 
|  | av1_get_rate_dist_def_luma(p, &pqData, &coeff_ctx, blk_pos, diag_ctx, | 
|  | eob_rate, &rd); | 
|  | } else { | 
|  | int diag_ctx = | 
|  | get_nz_map_ctx_from_stats_chroma(0, blk_pos, tx_class, plane); | 
|  | for (int i = 0; i < TCQ_N_STATES; i++) { | 
|  | int base_ctx = get_lower_levels_ctx_chroma(prev_levels[i], blk_pos, | 
|  | bwl, tx_class, plane); | 
|  | int br_ctx = | 
|  | get_br_ctx_chroma(prev_levels[i], blk_pos, bwl, tx_class); | 
|  | coeff_ctx.coef[i] = base_ctx - diag_ctx + (br_ctx << 4); | 
|  | } | 
|  | av1_get_rate_dist_def_chroma(txb_costs, &pqData, &coeff_ctx, blk_pos, | 
|  | bwl, tx_class, diag_ctx, eob_rate, plane, | 
|  | tmp_sign[blk_pos], coeff_sign, &rd); | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_decide_states(prd, &rd, &pqData, limits, try_eob, rdmult, decision); | 
|  |  | 
|  | // copy corresponding context from previous level buffer | 
|  | for (int state = 0; state < TCQ_N_STATES && scan_pos != first_scan_pos; | 
|  | state++) { | 
|  | int prevId = decision[state].prevId; | 
|  | if (prevId >= 0) | 
|  | memcpy(levels[state], prev_levels[prevId], | 
|  | sizeof(uint8_t) * tcq_lev->bufsize); | 
|  | } | 
|  |  | 
|  | // update levels_buf | 
|  | for (int state = 0; state < TCQ_N_STATES && scan_pos != 0; state++) { | 
|  | set_levels_buf(decision[state].prevId, decision[state].absLevel, | 
|  | levels[state], scan, first_scan_pos, scan_pos, bwl, | 
|  | sharpness); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pre-calculate eob bits (rate) for each EOB candidate position from 1 | 
|  | // to the initial eob location. Store rate in array block_eob_rate[], | 
|  | // starting with index. | 
|  | void av1_calc_block_eob_rate_c(struct macroblock *x, int plane, TX_SIZE tx_size, | 
|  | int eob, uint16_t *block_eob_rate) { | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | const PLANE_TYPE plane_type = get_plane_type(plane); | 
|  | const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); | 
|  | const CoeffCosts *coeff_costs = &x->coeff_costs; | 
|  | const LV_MAP_COEFF_COST *txb_costs = | 
|  | &coeff_costs->coeff_costs[txs_ctx][plane_type]; | 
|  | const int eob_multi_size = txsize_log2_minus4[tx_size]; | 
|  | const LV_MAP_EOB_COST *txb_eob_costs = | 
|  | &coeff_costs->eob_costs[eob_multi_size][plane_type]; | 
|  |  | 
|  | const int *tbl_eob_cost = txb_eob_costs->eob_cost[is_inter]; | 
|  |  | 
|  | block_eob_rate[0] = tbl_eob_cost[0]; | 
|  | block_eob_rate[1] = tbl_eob_cost[1]; | 
|  | int scan_pos = 2; | 
|  | int n_offset_bits = 0; | 
|  | while (scan_pos < eob) { | 
|  | int eob_pt_low = AOMMIN(2 + n_offset_bits, EOB_PT_INDEX_COUNT - 1); | 
|  | int eob_pt_rate = tbl_eob_cost[eob_pt_low]; | 
|  | if (eob_multi_size == 4 && (eob_pt_low == EOB_PT_INDEX_COUNT - 1)) | 
|  | eob_pt_rate += av1_cost_literal(1); | 
|  | else if (eob_multi_size > 4 && (eob_pt_low == EOB_PT_INDEX_COUNT - 1)) | 
|  | eob_pt_rate += av1_cost_literal(2); | 
|  | for (int bit = 0; bit < 2; bit++) { | 
|  | int eob_ctx = n_offset_bits; | 
|  | int extra_bit_rate = txb_costs->eob_extra_cost[eob_ctx][bit]; | 
|  | int eob_rate = | 
|  | eob_pt_rate + extra_bit_rate + av1_cost_literal(n_offset_bits); | 
|  | for (int i = 0; i < (1 << n_offset_bits); i++) { | 
|  | block_eob_rate[scan_pos++] = eob_rate; | 
|  | } | 
|  | } | 
|  | n_offset_bits++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the best quantization option for each coeff from DC to EOB | 
|  | int av1_find_best_path_c(const struct tcq_node_t *trellis, const int16_t *scan, | 
|  | const int32_t *dequant, const qm_val_t *iqmatrix, | 
|  | const tran_low_t *tcoeff, int first_scan_pos, | 
|  | int log_scale, tran_low_t *qcoeff, tran_low_t *dqcoeff, | 
|  | int *min_rate, int64_t *min_cost) { | 
|  | int64_t min_path_cost = INT64_MAX; | 
|  | int trel_min_rate = 0; | 
|  | int prev_id = -2; | 
|  | for (int state = 0; state < TCQ_N_STATES; state++) { | 
|  | const tcq_node_t *decision = &trellis[state]; | 
|  | if (decision->rdCost < min_path_cost) { | 
|  | prev_id = state; | 
|  | min_path_cost = decision->rdCost; | 
|  | trel_min_rate = decision->rate; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Backtrack to reconstruct qcoeff / dqcoeff blocks. | 
|  | int scan_pos = 0; | 
|  | if (!iqmatrix) { | 
|  | int dqv = dequant[0]; | 
|  | int dqv_ac = dequant[1]; | 
|  | for (; prev_id >= 0; scan_pos++) { | 
|  | const tcq_node_t *decision = | 
|  | &trellis[(scan_pos << TCQ_N_STATES_LOG) + prev_id]; | 
|  | prev_id = decision->prevId; | 
|  | int abs_level = decision->absLevel; | 
|  | int blk_pos = scan[scan_pos]; | 
|  | int sign = -(tcoeff[blk_pos] < 0); | 
|  | int q_i = prev_id >= 0 ? tcq_quant(prev_id) : 0; | 
|  | int qc = (abs_level == 0) ? 0 : (2 * abs_level - q_i); | 
|  | int dqc = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qc * dqv, | 
|  | QUANT_TABLE_BITS) >> | 
|  | log_scale; | 
|  | qcoeff[blk_pos] = (abs_level ^ sign) - sign; | 
|  | dqcoeff[blk_pos] = (dqc ^ sign) - sign; | 
|  | dqv = dqv_ac; | 
|  | } | 
|  | } else { | 
|  | for (; prev_id >= 0; scan_pos++) { | 
|  | const tcq_node_t *decision = | 
|  | &trellis[(scan_pos << TCQ_N_STATES_LOG) + prev_id]; | 
|  | prev_id = decision->prevId; | 
|  | int abs_level = decision->absLevel; | 
|  | int blk_pos = scan[scan_pos]; | 
|  | int sign = tcoeff[blk_pos] < 0; | 
|  | qcoeff[blk_pos] = sign ? -abs_level : abs_level; | 
|  | int dqv = get_dqv(dequant, blk_pos, iqmatrix); | 
|  | int q_i = prev_id >= 0 ? tcq_quant(prev_id) : 0; | 
|  | int qc = (abs_level == 0) ? 0 : (2 * abs_level - q_i); | 
|  | int dqc = (tran_low_t)ROUND_POWER_OF_TWO_64((tran_high_t)qc * dqv, | 
|  | QUANT_TABLE_BITS) >> | 
|  | log_scale; | 
|  | dqcoeff[blk_pos] = sign ? -dqc : dqc; | 
|  | } | 
|  | } | 
|  | int eob = scan_pos; | 
|  |  | 
|  | for (; scan_pos <= first_scan_pos; scan_pos++) { | 
|  | int blk_pos = scan[scan_pos]; | 
|  | qcoeff[blk_pos] = 0; | 
|  | dqcoeff[blk_pos] = 0; | 
|  | } | 
|  |  | 
|  | *min_rate = trel_min_rate; | 
|  | *min_cost = min_path_cost; | 
|  | return eob; | 
|  | } | 
|  |  | 
|  | /* | 
|  | Algorithem description: | 
|  | Unlike regular scaler quantization, trellis coded quant has dependency on | 
|  | already coded coeffs in the decoder side. In order to correctly build the | 
|  | dependency, the encoder creates a trellis and implements dependency in it. | 
|  |  | 
|  | The encoder flow: | 
|  | 1. Start at the first candidate EOB position and proceed towards DC (coeff[0]) | 
|  |  | 
|  | 2. For each of the states, the RD cost is calculated for each state transition, | 
|  | keeping the best option out of the 2 (or 3) incoming candidates at each state. | 
|  | the state quantizer mapping and state transition table are shown below. In | 
|  | addition, it checks NEW_EOB at each of the coeff position and the next state is | 
|  | 0/4 in this case. | 
|  |  | 
|  | 3. After the last coeff is processed, pick the lowest RD cost out of states 0-3 | 
|  | and all_zero, back track until it reaches eob. | 
|  |  | 
|  | * State-quantizer mapping and state transition table * | 
|  | --------------------------------------------------------- | 
|  | | Current state | Quantizer | Parity of Qk | Next state | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     0      | | 
|  | |       0       |     0     |---------------------------- | 
|  | |               |           |    Odd       |     4      | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     4      | | 
|  | |       1       |     0     |---------------------------- | 
|  | |               |           |    Odd       |     0      | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     1      | | 
|  | |       2       |     1     |---------------------------- | 
|  | |               |           |    Odd       |     5      | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     5      | | 
|  | |       3       |     1     |---------------------------- | 
|  | |               |           |    Odd       |     1      | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     6      | | 
|  | |       4       |     0     |---------------------------- | 
|  | |               |           |    Odd       |     2      | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     2      | | 
|  | |       5       |     0     |---------------------------- | 
|  | |               |           |    Odd       |     6      | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     7      | | 
|  | |       6       |     1     |---------------------------- | 
|  | |               |           |    Odd       |     3      | | 
|  | |-------------------------------------------------------- | 
|  | |               |           |    Even      |     3      | | 
|  | |       7       |     1     |---------------------------- | 
|  | |               |           |    Odd       |     7      | | 
|  | |-------------------------------------------------------- | 
|  | */ | 
|  | int av1_trellis_quant(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, | 
|  | int block, TX_SIZE tx_size, TX_TYPE tx_type, | 
|  | CctxType cctx_type, const TXB_CTX *const txb_ctx, | 
|  | int *rate_cost, int sharpness) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const struct macroblock_plane *p = &x->plane[plane]; | 
|  |  | 
|  | const SCAN_ORDER *scan_order = | 
|  | get_scan(tx_size, get_primary_tx_type(tx_type)); | 
|  |  | 
|  | const int16_t *scan = scan_order->scan; | 
|  | int eob = p->eobs[block]; | 
|  |  | 
|  | const int32_t *dequant = p->dequant_QTX; | 
|  | const int32_t *quant = p->quant_fp_QTX;  // quant_QTX | 
|  |  | 
|  | const qm_val_t *iqmatrix = | 
|  | av1_get_iqmatrix(&cpi->common.quant_params, xd, plane, tx_size, tx_type); | 
|  | const int block_offset = BLOCK_OFFSET(block); | 
|  | tran_low_t *qcoeff = p->qcoeff + block_offset; | 
|  | tran_low_t *dqcoeff = p->dqcoeff + block_offset; | 
|  | const tran_low_t *tcoeff = p->coeff + block_offset; | 
|  | const CoeffCosts *coeff_costs = &x->coeff_costs; | 
|  |  | 
|  | // This function is not called if eob = 0. | 
|  | assert(eob > 0); | 
|  |  | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const PLANE_TYPE plane_type = get_plane_type(plane); | 
|  | const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); | 
|  |  | 
|  | const TX_CLASS tx_class = tx_type_to_class[get_primary_tx_type(tx_type)]; | 
|  |  | 
|  | const MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const int bwl = get_txb_bwl(tx_size); | 
|  | const int width = get_txb_wide(tx_size); | 
|  | const int height = get_txb_high(tx_size); | 
|  | assert(width == (1 << bwl)); | 
|  |  | 
|  | const int is_inter = is_inter_block(mbmi, xd->tree_type); | 
|  | const int bob_code = p->bobs[block]; | 
|  | const int is_fsc = (( | 
|  | #if CONFIG_FSC_RES_HLS | 
|  | cm->seq_params.enable_fsc && | 
|  | #endif | 
|  | xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] && | 
|  | plane == PLANE_TYPE_Y) || | 
|  | use_inter_fsc(&cpi->common, plane, tx_type, is_inter)); | 
|  | const LV_MAP_COEFF_COST *txb_costs = | 
|  | &coeff_costs->coeff_costs[txs_ctx][plane_type]; | 
|  |  | 
|  | const int rshift = | 
|  | (sharpness + | 
|  | (cpi->oxcf.q_cfg.aq_mode == VARIANCE_AQ && mbmi->segment_id < 4 | 
|  | ? 7 - mbmi->segment_id | 
|  | : 2) + | 
|  | (cpi->oxcf.q_cfg.aq_mode != VARIANCE_AQ && | 
|  | cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL && | 
|  | cm->delta_q_info.delta_q_present_flag && x->sb_energy_level < 0 | 
|  | ? (3 - x->sb_energy_level) | 
|  | : 0)); | 
|  | int64_t rdmult = av1_compute_rdmult_for_plane( | 
|  | x->rdmult, plane_rd_mult[is_inter][plane_type], xd->bd, rshift); | 
|  |  | 
|  | int si = eob - 1; | 
|  | // populate trellis | 
|  | assert(si < MAX_TRELLIS); | 
|  | tcq_node_t trellis[MAX_TRELLIS * TCQ_MAX_STATES]; | 
|  |  | 
|  | // Precalc block eob rate. | 
|  | uint16_t block_eob_rate[MAX_TRELLIS]; | 
|  | av1_calc_block_eob_rate(x, plane, tx_size, eob, block_eob_rate); | 
|  |  | 
|  | // Collect TCQ related parameters. | 
|  | tcq_param_t param; | 
|  | int log_scale = av1_get_tx_scale(tx_size) + 1; | 
|  | param.plane = plane; | 
|  | param.bwl = bwl; | 
|  | param.txb_height = height; | 
|  | param.tx_size = tx_size; | 
|  | param.tx_class = tx_class; | 
|  | param.sharpness = sharpness; | 
|  | param.rdmult = rdmult; | 
|  | param.log_scale = log_scale; | 
|  | param.dc_sign_ctx = txb_ctx->dc_sign_ctx; | 
|  | param.scan = scan; | 
|  | param.tmp_sign = xd->tmp_sign; | 
|  | param.qcoeff = qcoeff; | 
|  | param.tcoeff = tcoeff; | 
|  | param.quant = quant; | 
|  | param.dequant = dequant; | 
|  | param.iqmatrix = iqmatrix; | 
|  | param.block_eob_rate = block_eob_rate; | 
|  | param.txb_costs = txb_costs; | 
|  |  | 
|  | // Start of TCQ | 
|  | int first_scan_pos = si; | 
|  | int scan_hi = first_scan_pos - 1; | 
|  | int is_luma_2d = plane == 0 && tx_class == TX_CLASS_2D; | 
|  |  | 
|  | // Use faster path for 2D-luma blocks. | 
|  | // Otherwise, use generic trellis code. | 
|  | if (is_luma_2d) { | 
|  | // Buffers for diagonal contexts. | 
|  | tcq_ctx_t tcq_ctx; | 
|  | init_tcq_ctx(&tcq_ctx); | 
|  |  | 
|  | // Process the first position | 
|  | trellis_first_pos(¶m, first_scan_pos, 0, &tcq_ctx, trellis); | 
|  |  | 
|  | // Speed-up version for 2D Luma by exploiting parallelism | 
|  | // Process coeffs diagonal-by-diagonal. | 
|  | if (scan_hi >= 0) { | 
|  | trellis_loop_diagonal_st8(¶m, scan_hi, 0, &tcq_ctx, trellis); | 
|  | } | 
|  | } else { | 
|  | // Coeff level buffers. | 
|  | int bufsize = (width + 4) * (height + 4) + TX_PAD_END; | 
|  | int mem_tcq_sz = sizeof(uint8_t) * bufsize * (2 << TCQ_N_STATES_LOG); | 
|  | uint8_t *mem_tcq = (uint8_t *)malloc(mem_tcq_sz); | 
|  | if (!mem_tcq) { | 
|  | exit(1); | 
|  | } | 
|  | if (eob > 1) { | 
|  | memset(mem_tcq, 0, mem_tcq_sz); | 
|  | } | 
|  | tcq_levels_t tcq_lev; | 
|  | tcq_levels_init(&tcq_lev, mem_tcq, bufsize); | 
|  |  | 
|  | // Process the first position | 
|  | trellis_first_pos(¶m, first_scan_pos, &tcq_lev, 0, trellis); | 
|  |  | 
|  | if (scan_hi >= 0) { | 
|  | // Generic trellis loop | 
|  | trellis_loop(¶m, first_scan_pos, scan_hi, 0, &tcq_lev, trellis); | 
|  | } | 
|  |  | 
|  | free(mem_tcq); | 
|  | } | 
|  |  | 
|  | // find best path | 
|  | int min_rate = 0; | 
|  | int64_t min_path_cost = INT64_MAX; | 
|  | eob = av1_find_best_path(trellis, scan, dequant, iqmatrix, tcoeff, | 
|  | first_scan_pos, log_scale, qcoeff, dqcoeff, | 
|  | &min_rate, &min_path_cost); | 
|  |  | 
|  | int txb_skip_ctx = txb_ctx->txb_skip_ctx; | 
|  | int non_skip_cost = 0; | 
|  | int skip_cost = 0; | 
|  | if (plane == AOM_PLANE_V) { | 
|  | txb_skip_ctx += | 
|  | (x->plane[AOM_PLANE_U].eobs[block] ? V_TXB_SKIP_CONTEXT_OFFSET : 0); | 
|  | non_skip_cost = txb_costs->v_txb_skip_cost[txb_skip_ctx][0]; | 
|  | skip_cost = txb_costs->v_txb_skip_cost[txb_skip_ctx][1]; | 
|  | } else { | 
|  | const int pred_mode_ctx = | 
|  | (is_inter || mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) ? 1 : 0; | 
|  | non_skip_cost = txb_costs->txb_skip_cost[pred_mode_ctx][txb_skip_ctx][0]; | 
|  | skip_cost = txb_costs->txb_skip_cost[pred_mode_ctx][txb_skip_ctx][1]; | 
|  | } | 
|  |  | 
|  | int accu_rate = 0; | 
|  | set_bob(x, plane, block, tx_size, tx_type); | 
|  |  | 
|  | if (eob == 0) | 
|  | assert(0);  // in current implementation, this could not happen. | 
|  | else { | 
|  | const int tx_type_cost = get_tx_type_cost(x, xd, plane, tx_size, tx_type, | 
|  | cm->features.reduced_tx_set_used, | 
|  | eob, bob_code, is_fsc); | 
|  | int64_t rd_cost_skip = RDCOST(rdmult, skip_cost, 0); | 
|  | accu_rate = non_skip_cost + tx_type_cost + min_rate; | 
|  | int64_t rd_cost_coded = | 
|  | min_path_cost + | 
|  | (int64_t)RDCOST(rdmult, non_skip_cost + tx_type_cost, 0); | 
|  | // skip block | 
|  | if ((rd_cost_coded > rd_cost_skip) && sharpness == 0) { | 
|  | for (int scan_idx = 0; scan_idx <= first_scan_pos; scan_idx++) { | 
|  | int blk_idx = scan[scan_idx]; | 
|  | qcoeff[blk_idx] = 0; | 
|  | dqcoeff[blk_idx] = 0; | 
|  | } | 
|  | accu_rate = skip_cost; | 
|  | eob = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | p->eobs[block] = eob; | 
|  | p->txb_entropy_ctx[block] = | 
|  | av1_get_txb_entropy_context(qcoeff, scan_order, p->eobs[block]); | 
|  |  | 
|  | accu_rate += get_cctx_type_cost(cm, x, xd, plane, tx_size, block, cctx_type); | 
|  | *rate_cost = accu_rate; | 
|  |  | 
|  | return eob; | 
|  | } |