blob: 5c4debaa892d35c93b3dd54f6d37330695b67094 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <stdbool.h>
#include "common/rawenc.h"
#include <stdlib.h>
#include <assert.h>
#define BATCH_SIZE 8
// When writing greyscale color, batch 8 writes for low bit-depth, 4 writes
// for high bit-depth.
static const uint8_t batched[BATCH_SIZE] = { 128, 128, 128, 128,
128, 128, 128, 128 };
static const uint8_t batched_hbd[BATCH_SIZE] = {
0, 128, 0, 128, 0, 128, 0, 128
};
// Interface to writing to either a file or MD5Context. Takes a pointer to
// either the file or MD5Context, the buffer, the size of each element, and
// number of elements to write. Note that size and nmemb (last two args) must
// be unsigned int, as the interface to MD5Update requires that.
typedef void (*WRITER)(void *, const uint8_t *, unsigned int, unsigned int);
static void write_file(void *fp, const uint8_t *buffer, unsigned int size,
unsigned int nmemb) {
fwrite(buffer, size, nmemb, (FILE *)fp);
}
static void write_md5(void *md5, const uint8_t *buffer, unsigned int size,
unsigned int nmemb) {
MD5Update((MD5Context *)md5, buffer, size * nmemb);
}
// Writes out n greyscale values.
static void write_greyscale(const bool high_bitdepth, int n, WRITER writer_func,
void *file_or_md5
#if CONFIG_CROP_WIN_CWG_F220
,
int left_pos_x, int right_pos_x, int top_pos_y,
int bottom_pos_y
#endif // CONFIG_CROP_WIN_CWG_F220
) {
#if CONFIG_CROP_WIN_CWG_F220
// Apply cropping window to greyscale output
// Calculate the number of pixels to write based on cropping window
// Only apply cropping if the parameters indicate a valid cropping window
if (left_pos_x >= 0 && right_pos_x >= left_pos_x && top_pos_y >= 0 &&
bottom_pos_y >= top_pos_y) {
int cropped_pixels =
(right_pos_x - left_pos_x + 1) * (bottom_pos_y - top_pos_y + 1);
if (cropped_pixels > 0 && cropped_pixels < n) {
n = cropped_pixels;
}
}
#endif // CONFIG_CROP_WIN_CWG_F220
const uint8_t *b = batched;
if (high_bitdepth) {
b = batched_hbd;
}
const int num_batched_writes =
high_bitdepth ? n / (BATCH_SIZE / 2) : n / BATCH_SIZE;
for (int i = 0; i < num_batched_writes; ++i) {
writer_func(file_or_md5, b, sizeof(uint8_t), BATCH_SIZE);
}
const int remaining = high_bitdepth ? n % (BATCH_SIZE / 2) : n % BATCH_SIZE;
for (int i = 0; i < remaining; ++i) {
if (high_bitdepth) {
writer_func(file_or_md5, batched_hbd, sizeof(uint8_t), 2);
} else {
writer_func(file_or_md5, batched, sizeof(uint8_t), 1);
}
}
}
// Encapsulates the logic for writing raw data to either an image file or
// to an MD5 context.
static void raw_write_image_file_or_md5(const aom_image_t *img,
const int *planes, const int num_planes,
void *file_or_md5, WRITER writer_func) {
const bool high_bitdepth = img->fmt & AOM_IMG_FMT_HIGHBITDEPTH;
const int bytes_per_sample = high_bitdepth ? 2 : 1;
for (int i = 0; i < num_planes; ++i) {
const int plane = planes[i];
#if CONFIG_CROP_WIN_CWG_F220
int w, h;
int left_pos_x = 0;
int right_pos_x = 0;
int top_pos_y = 0;
int bottom_pos_y = 0;
int crop_width = 0;
int crop_height = 0;
if (img->w_conf_win_enabled_flag == 1) {
// Determine subsampling factors
const int is_chroma = (plane > 0);
const int ss_x = is_chroma ? img->x_chroma_shift : 0;
const int ss_y = is_chroma ? img->y_chroma_shift : 0;
w = img->w >> ss_x;
h = img->h >> ss_y;
// Convert plane
const int plane_left_offset = img->w_conf_win_left_offset >> ss_x;
const int plane_right_offset = img->w_conf_win_right_offset >> ss_x;
const int plane_top_offset = img->w_conf_win_top_offset >> ss_y;
const int plane_bottom_offset = img->w_conf_win_bottom_offset >> ss_y;
// Calculate corpping positions
left_pos_x = plane_left_offset;
right_pos_x = w - 1 - plane_right_offset;
top_pos_y = plane_top_offset;
bottom_pos_y = h - 1 - plane_bottom_offset;
// Calculate the cropped size
crop_width = right_pos_x - left_pos_x + 1;
crop_height = bottom_pos_y - top_pos_y + 1;
} else { // !img->w_confWinEnabledFlag
w = aom_img_plane_width(img, plane);
h = aom_img_plane_height(img, plane);
}
#else
const int w = aom_img_plane_width(img, plane);
const int h = aom_img_plane_height(img, plane);
#endif // CONFIG_CROP_WIN_CWG_F220
// If we're on a color plane and the output is monochrome, write a
// greyscale value. Since there are only YUV planes, compare against Y.
if (img->monochrome && plane != AOM_PLANE_Y) {
#if CONFIG_CROP_WIN_CWG_F220
if (img->w_conf_win_enabled_flag == 1) {
write_greyscale(high_bitdepth, crop_width * crop_height, writer_func,
file_or_md5, left_pos_x, right_pos_x, top_pos_y,
bottom_pos_y);
} else {
write_greyscale(high_bitdepth, w * h, writer_func, file_or_md5,
left_pos_x, right_pos_x, top_pos_y, bottom_pos_y);
}
#else
write_greyscale(high_bitdepth, w * h, writer_func, file_or_md5);
#endif // CONFIG_CROP_WIN_CWG_F220
continue;
}
const unsigned char *buf = img->planes[plane];
const int stride = img->stride[plane];
#if CONFIG_CROP_WIN_CWG_F220
if (img->w_conf_win_enabled_flag == 1) {
buf += top_pos_y * stride;
buf += left_pos_x * bytes_per_sample;
}
#endif // CONFIG_CROP_WIN_CWG_F220
if (high_bitdepth && img->bit_depth == 8) {
// convert 16-bit buffer to 8-bit (input bitdepth) buffer
#if CONFIG_CROP_WIN_CWG_F220
if (img->w_conf_win_enabled_flag == 1) {
uint8_t *buf8 = (uint8_t *)malloc(sizeof(*buf8) * crop_width);
for (int y = 0; y < crop_height; ++y) {
uint16_t *buf16 = (uint16_t *)buf;
for (int x = 0; x < crop_width; ++x) {
buf8[x] = buf16[x] & 0xff;
}
writer_func(file_or_md5, buf8, 1, crop_width);
buf += stride;
}
free(buf8);
} else {
uint8_t *buf8 = (uint8_t *)malloc(sizeof(*buf8) * w);
for (int y = 0; y < h; ++y) {
uint16_t *buf16 = (uint16_t *)buf;
for (int x = 0; x < w; ++x) {
buf8[x] = buf16[x] & 0xff;
}
writer_func(file_or_md5, buf8, 1, w);
buf += stride;
}
free(buf8);
}
#else
uint8_t *buf8 = (uint8_t *)malloc(sizeof(*buf8) * w);
for (int y = 0; y < h; ++y) {
uint16_t *buf16 = (uint16_t *)buf;
for (int x = 0; x < w; ++x) {
buf8[x] = buf16[x] & 0xff;
}
writer_func(file_or_md5, buf8, 1, w);
buf += stride;
}
free(buf8);
#endif
} else {
#if CONFIG_CROP_WIN_CWG_F220
if (img->w_conf_win_enabled_flag == 1) {
for (int y = 0; y < crop_height; ++y) {
writer_func(file_or_md5, buf, bytes_per_sample, crop_width);
buf += stride;
}
} else {
for (int y = 0; y < h; ++y) {
writer_func(file_or_md5, buf, bytes_per_sample, w);
buf += stride;
}
}
#else
for (int y = 0; y < h; ++y) {
writer_func(file_or_md5, buf, bytes_per_sample, w);
buf += stride;
}
#endif
}
}
}
void raw_write_image_file(const aom_image_t *img, const int *planes,
const int num_planes, FILE *file) {
raw_write_image_file_or_md5(img, planes, num_planes, file, write_file);
}
void raw_update_image_md5(const aom_image_t *img, const int *planes,
const int num_planes, MD5Context *md5) {
raw_write_image_file_or_md5(img, planes, num_planes, md5, write_md5);
}