|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include "test/hiprec_convolve_test_util.h" | 
|  |  | 
|  | #include "av1/common/restoration.h" | 
|  |  | 
|  | using std::make_tuple; | 
|  | using std::tuple; | 
|  |  | 
|  | namespace libaom_test { | 
|  |  | 
|  | // Generate a random pair of filter kernels, using the ranges | 
|  | // of possible values from the loop-restoration experiment | 
|  | static void generate_kernels(ACMRandom *rnd, InterpKernel hkernel, | 
|  | InterpKernel vkernel, int kernel_type = 2) { | 
|  | if (kernel_type == 0) { | 
|  | // Low possible values for filter coefficients | 
|  | hkernel[0] = hkernel[6] = vkernel[0] = vkernel[6] = WIENER_FILT_TAP0_MINV; | 
|  | hkernel[1] = hkernel[5] = vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MINV; | 
|  | hkernel[2] = hkernel[4] = vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MINV; | 
|  | hkernel[3] = vkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); | 
|  | hkernel[7] = vkernel[7] = 0; | 
|  | } else if (kernel_type == 1) { | 
|  | // Max possible values for filter coefficients | 
|  | hkernel[0] = hkernel[6] = vkernel[0] = vkernel[6] = WIENER_FILT_TAP0_MAXV; | 
|  | hkernel[1] = hkernel[5] = vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MAXV; | 
|  | hkernel[2] = hkernel[4] = vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MAXV; | 
|  | hkernel[3] = vkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); | 
|  | hkernel[7] = vkernel[7] = 0; | 
|  | } else { | 
|  | // Randomly generated values for filter coefficients | 
|  | hkernel[0] = hkernel[6] = | 
|  | WIENER_FILT_TAP0_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV); | 
|  | hkernel[1] = hkernel[5] = | 
|  | WIENER_FILT_TAP1_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV); | 
|  | hkernel[2] = hkernel[4] = | 
|  | WIENER_FILT_TAP2_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV); | 
|  | hkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); | 
|  | hkernel[7] = 0; | 
|  |  | 
|  | vkernel[0] = vkernel[6] = | 
|  | WIENER_FILT_TAP0_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 2 - WIENER_FILT_TAP0_MINV); | 
|  | vkernel[1] = vkernel[5] = | 
|  | WIENER_FILT_TAP1_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 2 - WIENER_FILT_TAP1_MINV); | 
|  | vkernel[2] = vkernel[4] = | 
|  | WIENER_FILT_TAP2_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 2 - WIENER_FILT_TAP2_MINV); | 
|  | vkernel[3] = -2 * (vkernel[0] + vkernel[1] + vkernel[2]); | 
|  | vkernel[7] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace AV1HighbdHiprecConvolve { | 
|  |  | 
|  | ::testing::internal::ParamGenerator<HighbdHiprecConvolveParam> BuildParams( | 
|  | highbd_hiprec_convolve_func filter) { | 
|  | const HighbdHiprecConvolveParam params[] = { | 
|  | make_tuple(8, 8, 50000, 8, filter),   make_tuple(64, 64, 1000, 8, filter), | 
|  | make_tuple(32, 8, 10000, 8, filter),  make_tuple(8, 8, 50000, 10, filter), | 
|  | make_tuple(64, 64, 1000, 10, filter), make_tuple(32, 8, 10000, 10, filter), | 
|  | make_tuple(8, 8, 50000, 12, filter),  make_tuple(64, 64, 1000, 12, filter), | 
|  | make_tuple(32, 8, 10000, 12, filter), | 
|  | }; | 
|  | return ::testing::ValuesIn(params); | 
|  | } | 
|  |  | 
|  | AV1HighbdHiprecConvolveTest::~AV1HighbdHiprecConvolveTest() {} | 
|  | void AV1HighbdHiprecConvolveTest::SetUp() { | 
|  | rnd_.Reset(ACMRandom::DeterministicSeed()); | 
|  | } | 
|  |  | 
|  | void AV1HighbdHiprecConvolveTest::TearDown() { | 
|  | libaom_test::ClearSystemState(); | 
|  | } | 
|  |  | 
|  | void AV1HighbdHiprecConvolveTest::RunCheckOutput( | 
|  | highbd_hiprec_convolve_func test_impl) { | 
|  | const int w = 128, h = 128; | 
|  | const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); | 
|  | const int num_iters = GET_PARAM(2); | 
|  | const int bd = GET_PARAM(3); | 
|  | assert(bd == 8 || bd == 10 || bd == 12); | 
|  | int i, j; | 
|  | const WienerConvolveParams conv_params = get_conv_params_wiener(bd); | 
|  |  | 
|  | uint16_t *input = new uint16_t[h * w]; | 
|  |  | 
|  | // The AVX2 convolve functions always write rows with widths that are | 
|  | // multiples of 16. So to avoid a buffer overflow, we may need to pad | 
|  | // rows to a multiple of 16. | 
|  | int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; | 
|  | uint16_t *output = new uint16_t[output_n]; | 
|  | uint16_t *output2 = new uint16_t[output_n]; | 
|  |  | 
|  | // Generate random filter kernels | 
|  | DECLARE_ALIGNED(16, InterpKernel, hkernel); | 
|  | DECLARE_ALIGNED(16, InterpKernel, vkernel); | 
|  |  | 
|  | for (i = 0; i < h; ++i) | 
|  | for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); | 
|  |  | 
|  | for (int kernel_type = 0; kernel_type < 3; kernel_type++) { | 
|  | generate_kernels(&rnd_, hkernel, vkernel, kernel_type); | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | // Choose random locations within the source block | 
|  | int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); | 
|  | int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); | 
|  | av1_highbd_wiener_convolve_add_src_c(input + offset_r * w + offset_c, w, | 
|  | output, out_w, hkernel, 16, vkernel, | 
|  | 16, out_w, out_h, &conv_params, bd); | 
|  | test_impl(input + offset_r * w + offset_c, w, output2, out_w, hkernel, 16, | 
|  | vkernel, 16, out_w, out_h, &conv_params, bd); | 
|  |  | 
|  | for (j = 0; j < out_w * out_h; ++j) | 
|  | ASSERT_EQ(output[j], output2[j]) | 
|  | << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " | 
|  | << (j / out_w) << ") on iteration " << i; | 
|  | } | 
|  | } | 
|  | delete[] input; | 
|  | delete[] output; | 
|  | delete[] output2; | 
|  | } | 
|  |  | 
|  | void AV1HighbdHiprecConvolveTest::RunSpeedTest( | 
|  | highbd_hiprec_convolve_func test_impl) { | 
|  | const int w = 128, h = 128; | 
|  | const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); | 
|  | const int num_iters = GET_PARAM(2) / 500; | 
|  | const int bd = GET_PARAM(3); | 
|  | assert(bd == 8 || bd == 10 || bd == 12); | 
|  | int i, j, k; | 
|  | const WienerConvolveParams conv_params = get_conv_params_wiener(bd); | 
|  |  | 
|  | uint16_t *input = new uint16_t[h * w]; | 
|  |  | 
|  | // The AVX2 convolve functions always write rows with widths that are | 
|  | // multiples of 16. So to avoid a buffer overflow, we may need to pad | 
|  | // rows to a multiple of 16. | 
|  | int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; | 
|  | uint16_t *output = new uint16_t[output_n]; | 
|  | uint16_t *output2 = new uint16_t[output_n]; | 
|  |  | 
|  | // Generate random filter kernels | 
|  | DECLARE_ALIGNED(16, InterpKernel, hkernel); | 
|  | DECLARE_ALIGNED(16, InterpKernel, vkernel); | 
|  |  | 
|  | generate_kernels(&rnd_, hkernel, vkernel); | 
|  |  | 
|  | for (i = 0; i < h; ++i) | 
|  | for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); | 
|  |  | 
|  | aom_usec_timer ref_timer; | 
|  | aom_usec_timer_start(&ref_timer); | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | for (j = 3; j < h - out_h - 4; j++) { | 
|  | for (k = 3; k < w - out_w - 4; k++) { | 
|  | av1_highbd_wiener_convolve_add_src_c(input + j * w + k, w, output, | 
|  | out_w, hkernel, 16, vkernel, 16, | 
|  | out_w, out_h, &conv_params, bd); | 
|  | } | 
|  | } | 
|  | } | 
|  | aom_usec_timer_mark(&ref_timer); | 
|  | const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); | 
|  |  | 
|  | aom_usec_timer tst_timer; | 
|  | aom_usec_timer_start(&tst_timer); | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | for (j = 3; j < h - out_h - 4; j++) { | 
|  | for (k = 3; k < w - out_w - 4; k++) { | 
|  | test_impl(input + j * w + k, w, output2, out_w, hkernel, 16, vkernel, | 
|  | 16, out_w, out_h, &conv_params, bd); | 
|  | } | 
|  | } | 
|  | } | 
|  | aom_usec_timer_mark(&tst_timer); | 
|  | const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); | 
|  |  | 
|  | std::cout << "[          ] C time = " << ref_time / 1000 | 
|  | << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; | 
|  |  | 
|  | EXPECT_GT(ref_time, tst_time) | 
|  | << "Error: AV1HighbdHiprecConvolveTest.SpeedTest, SIMD slower than C.\n" | 
|  | << "C time: " << ref_time << " us\n" | 
|  | << "SIMD time: " << tst_time << " us\n"; | 
|  |  | 
|  | delete[] input; | 
|  | delete[] output; | 
|  | delete[] output2; | 
|  | } | 
|  | }  // namespace AV1HighbdHiprecConvolve | 
|  | }  // namespace libaom_test |