| #!/usr/bin/env python |
| ## Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| ## |
| ## This source code is subject to the terms of the BSD 3-Clause Clear License and the |
| ## Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear License was |
| ## not distributed with this source code in the LICENSE file, you can obtain it |
| ## at aomedia.org/license/software-license/bsd-3-c-c/. If the Alliance for Open Media Patent |
| ## License 1.0 was not distributed with this source code in the PATENTS file, you |
| ## can obtain it at aomedia.org/license/patent-license/. |
| ## |
| __author__ = "maggie.sun@intel.com, ryanlei@meta.com" |
| |
| import csv |
| import os |
| import re |
| import shutil |
| from itertools import cycle |
| |
| import Config |
| import matplotlib.pyplot as plt |
| import numpy as np |
| import openpyxl |
| import pandas as pd |
| import Utils |
| import xlsxwriter |
| from CalcBDRate import BD_RATE |
| from Config import ( |
| CTC_ASXLSTemplate, |
| CTC_RegularXLSTemplate, |
| DnScaleRatio, |
| InterpolatePieces, |
| QPs, |
| UsePCHIPInterpolation, |
| ) |
| from matplotlib.backends.backend_pdf import PdfPages |
| from tabulate import tabulate |
| from Utils import ( |
| convex_hull, |
| Interpolate_Bilinear, |
| Interpolate_PCHIP, |
| ParseCSVFile, |
| plot_rd_curve, |
| ) |
| |
| CTC_RESULT_PATH = "../ctc_result" |
| |
| qtys = [ |
| "psnr_y", |
| "psnr_u", |
| "psnr_v", |
| "overall_psnr", |
| "ssim_y", |
| "ms_ssim_y", |
| "vmaf", |
| "vmaf_neg", |
| "psnr_hvs", |
| "ciede2k", |
| "apsnr_y", |
| "apsnr_u", |
| "apsnr_v", |
| "overall_apsnr", |
| ] |
| |
| csv_paths = { |
| "v01.0.0": [ |
| "v1.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v1.0.0-alt-anchor-r3.0"), |
| ], |
| # "libaom-v3.12.0": [ |
| # "v3.12.0", |
| # "av1", |
| # "aom", |
| # "0", |
| # os.path.join(CTC_RESULT_PATH, "AV1-CTC-v3.12.0-constrained"), |
| # ], |
| # "libaom-v3.12.0-unconstrained": [ |
| # "av1", |
| # "aom", |
| # "0", |
| # os.path.join(CTC_RESULT_PATH, "AV1-CTC-v3.12.0-unconstrained"), |
| # ], |
| "v02.0.0": [ |
| "v2.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v2.0.0"), |
| ], |
| "v03.0.0": [ |
| "v3.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v3.0.0"), |
| ], |
| "v04.0.0": [ |
| "v4.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v4.0.0"), |
| ], |
| "v05.0.0": [ |
| "v5.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v5.0.0"), |
| ], |
| "v06.0.0": [ |
| "v6.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v6.0.0"), |
| ], |
| "v07.0.0": [ |
| "v7.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v7.0.0"), |
| ], |
| "v08.0.0": [ |
| "v8.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v8.0.0"), |
| ], |
| "v09.0.0": [ |
| "v9.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v9.0.0"), |
| ], |
| "v10.0.0": [ |
| "v10.0.0", |
| "av2", |
| "aom", |
| "0", |
| os.path.join(CTC_RESULT_PATH, "AV2-CTC-v10.0.0"), |
| ], |
| } |
| |
| CONFIG = ["AI", "LD", "RA", "Still", "AS"] |
| |
| start_row = { |
| "AI": 2, |
| "AS": 2, |
| "RA": 2, |
| "Still": 2, |
| "LD": 50, |
| } |
| |
| formats = { |
| "v01.0.0": ["r", "-", "o"], |
| "v02.0.0": ["g", "-", "*"], |
| "v03.0.0": ["b", "--", "^"], |
| "v04.0.0": ["c", "--", "o"], |
| "v05.0.0": ["m", "-.", "*"], |
| "v06.0.0": ["y", "-.", "o"], |
| "v07.0.0": ["k", ":", "+"], |
| "v08.0.0": ["w", ":", "^"], |
| # "libaom-v3.12.0": ["r", "--", "<"], |
| # "libaom-v3.12.0-unconstrained": ["g", "--", "<"], |
| "v09.0.0": ["b", "-.", "^"], |
| "v10.0.0": ["c", "-.", "+"], |
| } |
| |
| AS_formats = { |
| "3840x2160": ["r", "-.", "o"], |
| "2560x1440": ["g", "-.", "*"], |
| "1920x1080": ["b", "-.", "^"], |
| "1280x720": ["y", "-.", "+"], |
| "960x540": ["c", "-.", "x"], |
| "640x360": ["k", "-.", "<"], |
| } |
| |
| anchor = "v01.0.0" |
| rd_curve_pdf = os.path.join(CTC_RESULT_PATH, "rdcurve.pdf") |
| combined_rd_curve_pdf = os.path.join(CTC_RESULT_PATH, "combined_rdcurve.pdf") |
| combined_runtime_pdf = os.path.join(CTC_RESULT_PATH, "combined_runtime.pdf") |
| bdrate_summary = os.path.join(CTC_RESULT_PATH, "Bdrate-Summary-AV1-vs-AV2.csv") |
| avg_bdrate_by_tag_class = os.path.join( |
| CTC_RESULT_PATH, "AverageBdrateByTagClass-Summary-AV1-vs-AV2.csv" |
| ) |
| avg_bdrate_by_tag = os.path.join( |
| CTC_RESULT_PATH, "AverageBdrateByTag-Summary-AV1-vs-AV2.csv" |
| ) |
| per_video_bdrate = os.path.join( |
| CTC_RESULT_PATH, "PerVideoBdrate-Summary-AV1-vs-AV2.csv" |
| ) |
| avg_bdrate_by_tag_pdf = os.path.join( |
| CTC_RESULT_PATH, "AverageBdrateByTag-Summary-AV1-vs-AV2.pdf" |
| ) |
| avg_bdrate_by_tag_class_pdf = os.path.join( |
| CTC_RESULT_PATH, "AverageBdrateByTagClass-Summary-AV1-vs-AV2.pdf" |
| ) |
| per_video_bdrate_by_tag_class_pdf = os.path.join( |
| CTC_RESULT_PATH, "PerVideoBdrate-Summary-AV1-vs-AV2.pdf" |
| ) |
| colors = cycle("bgrycmkw") |
| markers = cycle("o*^+<x>.") |
| |
| |
| def populate_stats_files(): |
| stats_files = {} |
| for tag in csv_paths.keys(): |
| codec = csv_paths[tag][1] |
| encoder = csv_paths[tag][2] |
| preset = csv_paths[tag][3] |
| path = csv_paths[tag][4] |
| stats_files[tag] = {} |
| stats_files[tag]["release"] = csv_paths[tag][0] |
| for cfg in CONFIG: |
| if cfg == "Still": |
| stats_files[tag][cfg] = os.path.join( |
| path, |
| "RDResults_%s_%s_STILL_Preset_%s.csv" % (encoder, codec, preset), |
| ) |
| else: |
| stats_files[tag][cfg] = os.path.join( |
| path, |
| "RDResults_%s_%s_%s_Preset_%s.csv" % (encoder, codec, cfg, preset), |
| ) |
| return stats_files |
| |
| |
| def WriteSheet(csv_file, sht, start_row): |
| csv = open(csv_file, "rt") |
| row = start_row |
| for line in csv: |
| if not line.startswith("TestCfg"): |
| words = re.split(",", line.strip()) |
| col = 1 |
| for word in words: |
| mycell = sht.cell(row=row, column=col) |
| if col >= 12 and col <= 30 and word != "": |
| mycell.value = float(word) |
| else: |
| mycell.value = word |
| col += 1 |
| row += 1 |
| csv.close() |
| |
| |
| def FillXlsFile(csv_files): |
| for tag in csv_files.keys(): |
| if tag == anchor: |
| continue |
| else: |
| anchor_release = csv_files[anchor]["release"] |
| release = csv_files[tag]["release"] |
| print("Processing %s..." % release) |
| for cfg in csv_files[anchor].keys(): |
| if cfg not in CONFIG: |
| continue |
| anchor_sht_name = "Anchor-%s" % cfg |
| test_sht_name = "Test-%s" % cfg |
| if cfg == "AS": |
| xls_template = CTC_ASXLSTemplate |
| xls_file = os.path.join( |
| CTC_RESULT_PATH, "CTC_AS_%s-%s.xlsm" % (anchor_release, release) |
| ) |
| shutil.copyfile(xls_template, xls_file) |
| anchor_sht_name = "Anchor" |
| test_sht_name = "Test" |
| elif cfg == "AI": |
| xls_template = CTC_RegularXLSTemplate |
| xls_file = os.path.join( |
| CTC_RESULT_PATH, |
| "CTC_Regular_%s-%s.xlsm" |
| % ( |
| anchor_release, |
| release, |
| ), |
| ) |
| shutil.copyfile(xls_template, xls_file) |
| |
| wb = openpyxl.load_workbook( |
| filename=xls_file, read_only=False, keep_vba=True |
| ) |
| anchor_sht = wb[anchor_sht_name] |
| anchor_csv = csv_files[anchor][cfg] |
| WriteSheet(anchor_csv, anchor_sht, start_row[cfg]) |
| |
| test_sht = wb[test_sht_name] |
| test_csv = csv_files[tag][cfg] |
| WriteSheet(test_csv, test_sht, start_row[cfg]) |
| |
| wb.save(xls_file) |
| |
| |
| def DrawIndividualRDCurve(records, anchor, pdf): |
| with PdfPages(pdf) as export_pdf: |
| for cfg in records[anchor].keys(): |
| videos = records[anchor][cfg].keys() |
| for video in videos: |
| if cfg == "AS": |
| DnScaledRes = [ |
| (int(3840 / ratio), int(2160 / ratio)) for ratio in DnScaleRatio |
| ] |
| Int_RDPoints = {} |
| # draw individual rd curves |
| for tag in records.keys(): |
| Int_RDPoints[tag] = [] |
| if video not in records[tag][cfg].keys(): |
| continue |
| |
| record = records[tag][cfg][video] |
| plt.figure(figsize=(15, 10)) |
| plt.suptitle("%s : %s: %s" % (cfg, video, tag)) |
| |
| br = {} |
| apsnr = {} |
| for key in record.keys(): |
| res = re.split("_", key)[0] |
| if res not in br.keys(): |
| br[res] = [] |
| apsnr[res] = [] |
| br[res].append(record[key].bitrate) |
| apsnr[res].append(record[key].overall_apsnr) |
| |
| for res in br.keys(): |
| rdpnts = [ |
| (brt, qty) for brt, qty in zip(br[res], apsnr[res]) |
| ] |
| if UsePCHIPInterpolation: |
| int_rdpnts = Interpolate_PCHIP( |
| rdpnts, QPs["AS"][:], InterpolatePieces, True |
| ) |
| else: |
| int_rdpnts = Interpolate_Bilinear( |
| rdpnts, QPs["AS"][:], InterpolatePieces, True |
| ) |
| Int_RDPoints[tag] += int_rdpnts |
| plot_rd_curve( |
| br[res], |
| apsnr[res], |
| "overall_apsnr", |
| res, |
| "bitrate(Kbps)", |
| AS_formats[res][0], |
| AS_formats[res][1], |
| AS_formats[res][2], |
| ) |
| plt.legend(loc="lower right") |
| plt.grid(True) |
| export_pdf.savefig() |
| plt.close() |
| |
| # draw convex hull |
| plt.figure(figsize=(15, 10)) |
| plt.suptitle("%s : %s: convex hull" % (cfg, video)) |
| for tag in records.keys(): |
| lower, upper = convex_hull(Int_RDPoints[tag]) |
| br = [h[0] for h in upper] |
| apsnr = [h[1] for h in upper] |
| plot_rd_curve( |
| br, |
| apsnr, |
| "overall_apsnr(dB)", |
| tag, |
| "bitrate(kbps)", |
| formats[tag][0], |
| formats[tag][1], |
| formats[tag][2], |
| ) |
| plt.legend(loc="lower right") |
| plt.grid(True) |
| export_pdf.savefig() |
| plt.close() |
| else: |
| # bit rate to quality |
| plt.figure(figsize=(15, 10)) |
| plt.suptitle("%s : %s" % (cfg, video)) |
| for tag in records.keys(): |
| if video not in records[tag][cfg].keys(): |
| continue |
| |
| record = records[tag][cfg][video] |
| br = [record[key].bitrate for key in record.keys()] |
| apsnr = [record[key].overall_apsnr for key in record.keys()] |
| plot_rd_curve( |
| br, |
| apsnr, |
| "overall_apsnr(dB)", |
| tag, |
| "bitrate(kbps)", |
| formats[tag][0], |
| formats[tag][1], |
| formats[tag][2], |
| ) |
| plt.legend(loc="lower right") |
| plt.grid(True) |
| export_pdf.savefig() |
| plt.close() |
| |
| |
| def DrawCombinedRDCurve(records, pdf): |
| with PdfPages(pdf) as export_pdf: |
| for tag in csv_files.keys(): |
| for cfg in csv_files[tag].keys(): |
| if cfg not in CONFIG: |
| continue |
| videos = records[tag][cfg].keys() |
| plt.figure(figsize=(30, 30)) |
| plt.suptitle("%s : %s" % (tag, cfg)) |
| |
| for video in videos: |
| short_name = video.split("_")[0] |
| if video not in records[tag][cfg].keys(): |
| continue |
| |
| if cfg == "AS": |
| Int_RDPoints = [] |
| record = records[tag][cfg][video] |
| br = {} |
| apsnr = {} |
| for key in record.keys(): |
| res = re.split("_", key)[0] |
| if res not in br.keys(): |
| br[res] = [] |
| apsnr[res] = [] |
| br[res].append(record[key].bitrate) |
| apsnr[res].append(record[key].overall_apsnr) |
| |
| for res in br.keys(): |
| rdpnts = [ |
| (brt, qty) for brt, qty in zip(br[res], apsnr[res]) |
| ] |
| if UsePCHIPInterpolation: |
| int_rdpnts = Interpolate_PCHIP( |
| rdpnts, QPs["AS"][:], InterpolatePieces, True |
| ) |
| else: |
| int_rdpnts = Interpolate_Bilinear( |
| rdpnts, QPs["AS"][:], InterpolatePieces, True |
| ) |
| Int_RDPoints += int_rdpnts |
| |
| # draw convex hull |
| lower, upper = convex_hull(Int_RDPoints) |
| br = [h[0] for h in upper] |
| apsnr = [h[1] for h in upper] |
| plot_rd_curve( |
| br, |
| apsnr, |
| "overall_apsnr(dB)", |
| short_name, |
| "bitrate(kbps)", |
| next(colors), |
| "-", |
| next(markers), |
| ) |
| else: |
| record = records[tag][cfg][video] |
| br = [record[key].bitrate for key in record.keys()] |
| apsnr = [record[key].overall_apsnr for key in record.keys()] |
| plot_rd_curve( |
| br, |
| apsnr, |
| "overall_apsnr(dB)", |
| short_name, |
| "bitrate(kbps)", |
| next(colors), |
| "-", |
| next(markers), |
| ) |
| |
| plt.legend(loc="lower right") |
| plt.grid(True) |
| export_pdf.savefig() |
| plt.close() |
| |
| |
| def DrawCombinedRuntime(records, pdf): |
| with PdfPages(pdf) as export_pdf: |
| for tag in csv_files.keys(): |
| for cfg in csv_files[tag].keys(): |
| if cfg == "RA" or cfg not in CONFIG: |
| continue |
| videos = records[tag][cfg].keys() |
| plt.figure(figsize=(30, 30)) |
| plt.suptitle("%s : %s" % (tag, cfg)) |
| |
| for video in videos: |
| short_name = video.split("_")[0] |
| if video not in records[tag][cfg].keys(): |
| continue |
| |
| if cfg == "AS": |
| record = records[tag][cfg][video] |
| br = {} |
| enc_time = {} |
| for key in record.keys(): |
| res = re.split("_", key)[0] |
| if res not in br.keys(): |
| br[res] = [] |
| enc_time[res] = [] |
| br[res].append(record[key].bitrate) |
| enc_time[res].append(record[key].enc_time) |
| |
| for res in br.keys(): |
| plot_rd_curve( |
| br[res], |
| enc_time[res], |
| "enc_time(s)", |
| short_name + "_" + res, |
| "bitrate(kbps)", |
| next(colors), |
| "-", |
| next(markers), |
| ) |
| else: |
| record = records[tag][cfg][video] |
| br = [record[key].bitrate for key in record.keys()] |
| enc_time = [record[key].enc_time for key in record.keys()] |
| plot_rd_curve( |
| br, |
| enc_time, |
| "enc_time(s)", |
| short_name, |
| "bitrate(kbps)", |
| next(colors), |
| "-", |
| next(markers), |
| ) |
| |
| plt.legend(loc="lower right") |
| plt.grid(True) |
| export_pdf.savefig() |
| plt.close() |
| |
| |
| def GetQty(record, key, qty): |
| if qty == "psnr_y": |
| q = record[key].psnr_y |
| elif qty == "psnr_u": |
| q = record[key].psnr_u |
| elif qty == "psnr_v": |
| q = record[key].psnr_v |
| elif qty == "overall_psnr": |
| q = record[key].overall_psnr |
| elif qty == "ssim_y": |
| q = record[key].ssim_y |
| elif qty == "ms_ssim_y": |
| q = record[key].ms_ssim_y |
| elif qty == "vmaf": |
| q = record[key].vmaf_y |
| elif qty == "vmaf_neg": |
| q = record[key].vmaf_y_neg |
| elif qty == "psnr_hvs": |
| q = record[key].psnr_hvs |
| elif qty == "ciede2k": |
| q = record[key].ciede2k |
| elif qty == "apsnr_y": |
| q = record[key].apsnr_y |
| elif qty == "apsnr_u": |
| q = record[key].apsnr_u |
| elif qty == "apsnr_v": |
| q = record[key].apsnr_v |
| elif qty == "overall_apsnr": |
| q = record[key].overall_apsnr |
| else: |
| assert 0 |
| return q |
| |
| |
| def CalcBDRate(tag, cfg, cls, video, anchor, test): |
| bdrate = {} |
| anchor_qty = {} |
| test_qty = {} |
| br_anchor = [] |
| br_test = [] |
| for key in anchor.keys(): |
| br_anchor.append(anchor[key].bitrate) |
| for key in test.keys(): |
| br_test.append(test[key].bitrate) |
| |
| for qty in qtys: |
| anchor_qty[qty] = [] |
| test_qty[qty] = [] |
| for key in anchor.keys(): |
| anchor_qty[qty].append(GetQty(anchor, key, qty)) |
| for key in test.keys(): |
| test_qty[qty].append(GetQty(test, key, qty)) |
| |
| bdrate["tag"] = tag |
| bdrate["cfg"] = cfg |
| bdrate["class"] = cls |
| bdrate["video"] = video |
| |
| for qty in qtys: |
| (err, bd) = BD_RATE(qty, br_anchor, anchor_qty[qty], br_test, test_qty[qty]) |
| if err == 0: |
| bdrate[qty] = bd |
| else: |
| bdrate[qty] = 0.0 |
| return bdrate |
| |
| |
| def CalcConvexHull(record): |
| br = {} |
| quality = {} |
| cvx_hull = {} |
| |
| for key in record.keys(): |
| res = re.split("_", key)[0] |
| if res not in br.keys(): |
| br[res] = [] |
| quality[res] = {} |
| |
| br[res].append(record[key].bitrate) |
| for q in qtys: |
| if q not in quality[res].keys(): |
| quality[res][q] = [] |
| quality[res][q].append(GetQty(record, key, q)) |
| |
| for q in qtys: |
| Int_RDPoints = [] |
| for res in br.keys(): |
| rdpnts = [(brt, qty) for brt, qty in zip(br[res], quality[res][q])] |
| if UsePCHIPInterpolation: |
| int_rdpnts = Interpolate_PCHIP( |
| rdpnts, QPs["AS"][:], InterpolatePieces, True |
| ) |
| else: |
| int_rdpnts = Interpolate_Bilinear( |
| rdpnts, QPs["AS"][:], InterpolatePieces, True |
| ) |
| Int_RDPoints += int_rdpnts |
| |
| lower, upper = convex_hull(Int_RDPoints) |
| cvx_hull[q] = upper |
| |
| return cvx_hull |
| |
| |
| def CalcASBDRate(tag, cfg, cls, video, anchor, test): |
| # first produce convex hull for each quality |
| convex_hull = {} |
| convex_hull["anchor"] = CalcConvexHull(anchor) |
| convex_hull["test"] = CalcConvexHull(test) |
| |
| # calculate bdrate for each quality metric |
| bdrate = {} |
| bdrate["tag"] = tag |
| bdrate["cfg"] = cfg |
| bdrate["class"] = cls |
| bdrate["video"] = video |
| |
| for q in qtys: |
| br_anchor = list(zip(*convex_hull["anchor"][q]))[0] |
| br_test = list(zip(*convex_hull["test"][q]))[0] |
| quality_anchor = list(zip(*convex_hull["anchor"][q]))[1] |
| quality_test = list(zip(*convex_hull["test"][q]))[1] |
| |
| (err, bd) = BD_RATE(q, br_anchor, quality_anchor, br_test, quality_test) |
| if err == 0: |
| bdrate[q] = bd |
| else: |
| bdrate[q] = 0.0 |
| return bdrate |
| |
| |
| def CalcFullBDRate(anchor): |
| bdrate = [] |
| seq_time = [] |
| for cfg in csv_files[anchor].keys(): |
| if cfg not in CONFIG: |
| continue |
| for video in records[anchor][cfg].keys(): |
| for tag in records.keys(): |
| if video not in records[tag][cfg].keys(): |
| continue |
| |
| record = records[tag][cfg][video] |
| time = 0 |
| instr = 0 |
| video_class = "" |
| for key in record.keys(): |
| time += record[key].enc_time |
| instr += record[key].enc_instr |
| video_class = record[key].file_class |
| |
| total_time = {} |
| total_time["tag"] = tag |
| total_time["cfg"] = cfg |
| total_time["class"] = video_class |
| total_time["video"] = video |
| total_time["time"] = time |
| total_time["instr"] = instr |
| |
| seq_time.append(total_time) |
| |
| if tag == anchor: |
| continue |
| if cfg == "AS": |
| bd = CalcASBDRate( |
| tag, |
| cfg, |
| video_class, |
| video, |
| records[anchor][cfg][video], |
| records[tag][cfg][video], |
| ) |
| else: |
| bd = CalcBDRate( |
| tag, |
| cfg, |
| video_class, |
| video, |
| records[anchor][cfg][video], |
| records[tag][cfg][video], |
| ) |
| bdrate.append(bd) |
| |
| return (bdrate, seq_time) |
| |
| |
| def write_bdrate(bdrate, bdrate_csv): |
| # Open the CSV file for writing |
| with open(bdrate_csv, "w", encoding="utf8", newline="") as csvfile: |
| fc = csv.DictWriter( |
| csvfile, |
| fieldnames=bdrate[0].keys(), |
| ) |
| fc.writeheader() |
| fc.writerows(bdrate) |
| |
| |
| def write_avg_bdrate( |
| bdrate_csv, avg_bdrate_by_tag_csv, avg_bdrate_by_tag_class_csv, per_video_bdrate_csv |
| ): |
| df = pd.read_csv(bdrate_csv) |
| average_bdrate_by_tag_class = df.groupby(["tag", "cfg", "class"]).agg( |
| { |
| "psnr_y": ["mean"], |
| "psnr_u": ["mean"], |
| "psnr_v": ["mean"], |
| "overall_psnr": ["mean"], |
| "ssim_y": ["mean"], |
| "ms_ssim_y": ["mean"], |
| "vmaf": ["mean"], |
| "vmaf_neg": ["mean"], |
| "psnr_hvs": ["mean"], |
| "ciede2k": ["mean"], |
| "apsnr_y": ["mean"], |
| "apsnr_u": ["mean"], |
| "apsnr_v": ["mean"], |
| "overall_apsnr": ["mean"], |
| } |
| ) |
| |
| fields_name = [ |
| "psnr_y", |
| "psnr_u", |
| "psnr_v", |
| "overall_psnr", |
| "ssim_y", |
| "ms_ssim_y", |
| "vmaf", |
| "vmaf_neg", |
| "psnr_hvs", |
| "ciede2k", |
| "apsnr_y", |
| "apsnr_u", |
| "apsnr_v", |
| "overall_apsnr", |
| ] |
| # print(average_bdrate_by_tag_class) |
| # print(tabulate(average_bdrate_by_tag_class, headers='keys', tablefmt='psql')) |
| |
| # Write output summary csv file |
| average_bdrate_by_tag_class.columns = fields_name |
| average_bdrate_by_tag_class.reset_index(inplace=True) |
| average_bdrate_by_tag_class.to_csv(avg_bdrate_by_tag_class_csv, index=False) |
| |
| average_bdrate_by_tag = df.groupby(["tag", "cfg"]).agg( |
| { |
| "psnr_y": ["mean"], |
| "psnr_u": ["mean"], |
| "psnr_v": ["mean"], |
| "overall_psnr": ["mean"], |
| "ssim_y": ["mean"], |
| "ms_ssim_y": ["mean"], |
| "vmaf": ["mean"], |
| "vmaf_neg": ["mean"], |
| "psnr_hvs": ["mean"], |
| "ciede2k": ["mean"], |
| "apsnr_y": ["mean"], |
| "apsnr_u": ["mean"], |
| "apsnr_v": ["mean"], |
| "overall_apsnr": ["mean"], |
| } |
| ) |
| |
| # print(average_bdrate_by_tag) |
| # print(tabulate(average_bdrate_by_tag, headers='keys', tablefmt='psql')) |
| # Write output summary csv file |
| average_bdrate_by_tag.columns = fields_name |
| average_bdrate_by_tag.reset_index(inplace=True) |
| average_bdrate_by_tag.to_csv(avg_bdrate_by_tag_csv, index=False) |
| |
| average_bdrate_by_video = df.groupby(["cfg", "class", "video", "tag"]).agg( |
| { |
| "psnr_y": ["mean"], |
| "psnr_u": ["mean"], |
| "psnr_v": ["mean"], |
| "overall_psnr": ["mean"], |
| "ssim_y": ["mean"], |
| "ms_ssim_y": ["mean"], |
| "vmaf": ["mean"], |
| "vmaf_neg": ["mean"], |
| "psnr_hvs": ["mean"], |
| "ciede2k": ["mean"], |
| "apsnr_y": ["mean"], |
| "apsnr_u": ["mean"], |
| "apsnr_v": ["mean"], |
| "overall_apsnr": ["mean"], |
| } |
| ) |
| |
| average_bdrate_by_video.columns = fields_name |
| average_bdrate_by_video.reset_index(inplace=True) |
| average_bdrate_by_video.to_csv(per_video_bdrate_csv, index=False) |
| |
| |
| def plot_avg_bdrate_by_tag(avg_bdrate_by_tag_csv, avg_bdrate_by_tag_pdf): |
| df = pd.read_csv(avg_bdrate_by_tag_csv, index_col=0) |
| # print(df) |
| with PdfPages(avg_bdrate_by_tag_pdf) as export_pdf: |
| for cfg in df["cfg"].unique().tolist(): |
| for qty in ["overall_psnr", "ssim_y", "vmaf"]: |
| ax = df[df["cfg"] == cfg][qty].plot( |
| kind="bar", figsize=(30, 15), fontsize=20 |
| ) |
| ax.set_title("BDRATE-%s for %s" % (qty, cfg), fontsize=40) |
| ax.set_xlabel("Tag", fontsize=20) |
| ax.set_ylabel("BDRATE", fontsize=20) |
| for q in ax.containers: |
| ax.bar_label(q, fontsize=20) |
| plt.xticks(rotation=30, horizontalalignment="center") |
| plt.grid(True) |
| # plt.show() |
| export_pdf.savefig() |
| plt.close() |
| |
| |
| def plot_avg_bdrate_by_tag_class( |
| avg_bdrate_by_tag_class_csv, avg_bdrate_by_tag_class_pdf |
| ): |
| df = pd.read_csv(avg_bdrate_by_tag_class_csv, index_col=0) |
| # print(df) |
| with PdfPages(avg_bdrate_by_tag_class_pdf) as export_pdf: |
| for cfg in df["cfg"].unique().tolist(): |
| # print(df["class"].unique().tolist()) |
| for cls in df["class"].unique().tolist(): |
| for qty in ["overall_psnr", "ssim_y", "vmaf"]: |
| selected_rows = df[(df["cfg"] == cfg) & (df["class"] == cls)] |
| if selected_rows.empty: |
| continue |
| # print(selected_rows) |
| ax = selected_rows[qty].plot( |
| kind="bar", figsize=(30, 15), fontsize=20 |
| ) |
| ax.set_title( |
| "BDRATE-%s for %s class %s" % (qty, cfg, cls), fontsize=40 |
| ) |
| ax.set_xlabel("Tag", fontsize=20) |
| ax.set_ylabel("BDRATE", fontsize=20) |
| for q in ax.containers: |
| ax.bar_label(q, fontsize=20) |
| plt.xticks(rotation=30, horizontalalignment="center") |
| plt.grid(True) |
| # plt.show() |
| export_pdf.savefig() |
| plt.close() |
| |
| |
| def plot_per_video_bdrate_by_tag_class( |
| per_video_bdrate_csv, per_video_bdrate_by_tag_class_pdf |
| ): |
| df = pd.read_csv(per_video_bdrate_csv) |
| # print(df) |
| with PdfPages(per_video_bdrate_by_tag_class_pdf) as export_pdf: |
| for cfg in df["cfg"].unique().tolist(): |
| for cls in df["class"].unique().tolist(): |
| for video in df["video"].unique().tolist(): |
| for qty in ["overall_psnr", "ssim_y", "vmaf"]: |
| selected_rows = df[ |
| (df["cfg"] == cfg) |
| & (df["class"] == cls) |
| & (df["video"] == video) |
| ] |
| if selected_rows.empty: |
| continue |
| # print(selected_rows) |
| tags = selected_rows["tag"].unique().tolist() |
| idx = np.asarray([i for i in range(len(tags))]) |
| ax = selected_rows[qty].plot( |
| kind="bar", figsize=(30, 15), fontsize=20 |
| ) |
| ax.set_title( |
| "BDRATE-%s for %s class %s %s" % (qty, cfg, cls, video), |
| fontsize=40, |
| ) |
| ax.set_xlabel("Tag", fontsize=20) |
| ax.set_ylabel("BDRATE", fontsize=20) |
| for q in ax.containers: |
| ax.bar_label(q, fontsize=20) |
| ax.set_xticks(idx) |
| ax.set_xticklabels( |
| tags, rotation=30, horizontalalignment="center" |
| ) |
| plt.grid(True) |
| plt.tight_layout() |
| # plt.show() |
| export_pdf.savefig() |
| plt.close() |
| |
| |
| ###################################### |
| # main |
| ###################################### |
| if __name__ == "__main__": |
| csv_files = populate_stats_files() |
| records = {} |
| for tag in csv_files.keys(): |
| records[tag] = {} |
| for test_cfg in csv_files[tag].keys(): |
| if test_cfg not in CONFIG: |
| continue |
| IgnorePerf = test_cfg in ["RA", "AS"] |
| records[tag][test_cfg] = ParseCSVFile(csv_files[tag][test_cfg], IgnorePerf) |
| |
| FillXlsFile(csv_files) |
| |
| DrawCombinedRDCurve(records, combined_rd_curve_pdf) |
| DrawCombinedRuntime(records, combined_runtime_pdf) |
| DrawIndividualRDCurve(records, anchor, rd_curve_pdf) |
| |
| # Calculate BDRate and collect total time |
| (bdrate, seq_time) = CalcFullBDRate(anchor) |
| |
| write_bdrate(bdrate, bdrate_summary) |
| |
| write_avg_bdrate( |
| bdrate_summary, avg_bdrate_by_tag, avg_bdrate_by_tag_class, per_video_bdrate |
| ) |
| |
| plot_avg_bdrate_by_tag(avg_bdrate_by_tag, avg_bdrate_by_tag_pdf) |
| |
| plot_avg_bdrate_by_tag_class(avg_bdrate_by_tag_class, avg_bdrate_by_tag_class_pdf) |
| |
| plot_per_video_bdrate_by_tag_class( |
| per_video_bdrate, per_video_bdrate_by_tag_class_pdf |
| ) |