| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <math.h> |
| #include <algorithm> |
| #include <vector> |
| |
| #include "aom_dsp/noise_model.h" |
| #include "aom_dsp/noise_util.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| namespace { |
| |
| // Return normally distrbuted values with standard deviation of sigma. |
| double randn(libaom_test::ACMRandom *random, double sigma) { |
| while (1) { |
| const double u = 2.0 * ((double)random->Rand31() / |
| testing::internal::Random::kMaxRange) - |
| 1.0; |
| const double v = 2.0 * ((double)random->Rand31() / |
| testing::internal::Random::kMaxRange) - |
| 1.0; |
| const double s = u * u + v * v; |
| if (s > 0 && s < 1) { |
| return sigma * (u * sqrt(-2.0 * log(s) / s)); |
| } |
| } |
| return 0; |
| } |
| |
| // Synthesizes noise using the auto-regressive filter of the given lag, |
| // with the provided n coefficients sampled at the given coords. |
| void noise_synth(libaom_test::ACMRandom *random, int lag, int n, |
| const int (*coords)[2], const double *coeffs, double *data, |
| int w, int h) { |
| const int pad_size = 3 * lag; |
| const int padded_w = w + pad_size; |
| const int padded_h = h + pad_size; |
| int x = 0, y = 0; |
| std::vector<double> padded(padded_w * padded_h); |
| |
| for (y = 0; y < padded_h; ++y) { |
| for (x = 0; x < padded_w; ++x) { |
| padded[y * padded_w + x] = randn(random, 1.0); |
| } |
| } |
| for (y = lag; y < padded_h; ++y) { |
| for (x = lag; x < padded_w; ++x) { |
| double sum = 0; |
| int i = 0; |
| for (i = 0; i < n; ++i) { |
| const int dx = coords[i][0]; |
| const int dy = coords[i][1]; |
| sum += padded[(y + dy) * padded_w + (x + dx)] * coeffs[i]; |
| } |
| padded[y * padded_w + x] += sum; |
| } |
| } |
| // Copy over the padded rows to the output |
| for (y = 0; y < h; ++y) { |
| memcpy(data + y * w, &padded[0] + y * padded_w, sizeof(*data) * w); |
| } |
| } |
| |
| std::vector<float> get_noise_psd(double *noise, int width, int height, |
| int block_size) { |
| float *block = |
| (float *)aom_memalign(32, block_size * block_size * sizeof(block)); |
| std::vector<float> psd(block_size * block_size); |
| int num_blocks = 0; |
| struct aom_noise_tx_t *tx = aom_noise_tx_malloc(block_size); |
| for (int y = 0; y <= height - block_size; y += block_size / 2) { |
| for (int x = 0; x <= width - block_size; x += block_size / 2) { |
| for (int yy = 0; yy < block_size; ++yy) { |
| for (int xx = 0; xx < block_size; ++xx) { |
| block[yy * block_size + xx] = (float)noise[(y + yy) * width + x + xx]; |
| } |
| } |
| aom_noise_tx_forward(tx, &block[0]); |
| aom_noise_tx_add_energy(tx, &psd[0]); |
| num_blocks++; |
| } |
| } |
| for (int yy = 0; yy < block_size; ++yy) { |
| for (int xx = 0; xx <= block_size / 2; ++xx) { |
| psd[yy * block_size + xx] /= num_blocks; |
| } |
| } |
| // Fill in the data that is missing due to symmetries |
| for (int xx = 1; xx < block_size / 2; ++xx) { |
| psd[(block_size - xx)] = psd[xx]; |
| } |
| for (int yy = 1; yy < block_size; ++yy) { |
| for (int xx = 1; xx < block_size / 2; ++xx) { |
| psd[(block_size - yy) * block_size + (block_size - xx)] = |
| psd[yy * block_size + xx]; |
| } |
| } |
| aom_noise_tx_free(tx); |
| aom_free(block); |
| return psd; |
| } |
| |
| } // namespace |
| |
| TEST(NoiseStrengthSolver, GetCentersTwoBins) { |
| aom_noise_strength_solver_t solver; |
| aom_noise_strength_solver_init(&solver, 2, 8); |
| EXPECT_NEAR(0, aom_noise_strength_solver_get_center(&solver, 0), 1e-5); |
| EXPECT_NEAR(255, aom_noise_strength_solver_get_center(&solver, 1), 1e-5); |
| aom_noise_strength_solver_free(&solver); |
| } |
| |
| TEST(NoiseStrengthSolver, GetCentersTwoBins10bit) { |
| aom_noise_strength_solver_t solver; |
| aom_noise_strength_solver_init(&solver, 2, 10); |
| EXPECT_NEAR(0, aom_noise_strength_solver_get_center(&solver, 0), 1e-5); |
| EXPECT_NEAR(1023, aom_noise_strength_solver_get_center(&solver, 1), 1e-5); |
| aom_noise_strength_solver_free(&solver); |
| } |
| |
| TEST(NoiseStrengthSolver, GetCenters256Bins) { |
| const int num_bins = 256; |
| aom_noise_strength_solver_t solver; |
| aom_noise_strength_solver_init(&solver, num_bins, 8); |
| |
| for (int i = 0; i < 256; ++i) { |
| EXPECT_NEAR(i, aom_noise_strength_solver_get_center(&solver, i), 1e-5); |
| } |
| aom_noise_strength_solver_free(&solver); |
| } |
| |
| // Tests that the noise strength solver returns the identity transform when |
| // given identity-like constraints. |
| TEST(NoiseStrengthSolver, ObserveIdentity) { |
| const int num_bins = 256; |
| aom_noise_strength_solver_t solver; |
| EXPECT_EQ(1, aom_noise_strength_solver_init(&solver, num_bins, 8)); |
| |
| // We have to add a big more strength to constraints at the boundary to |
| // overcome any regularization. |
| for (int j = 0; j < 5; ++j) { |
| aom_noise_strength_solver_add_measurement(&solver, 0, 0); |
| aom_noise_strength_solver_add_measurement(&solver, 255, 255); |
| } |
| for (int i = 0; i < 256; ++i) { |
| aom_noise_strength_solver_add_measurement(&solver, i, i); |
| } |
| EXPECT_EQ(1, aom_noise_strength_solver_solve(&solver)); |
| for (int i = 2; i < num_bins - 2; ++i) { |
| EXPECT_NEAR(i, solver.eqns.x[i], 0.1); |
| } |
| |
| aom_noise_strength_lut_t lut; |
| EXPECT_EQ(1, aom_noise_strength_solver_fit_piecewise(&solver, 2, &lut)); |
| |
| ASSERT_EQ(2, lut.num_points); |
| EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); |
| EXPECT_NEAR(0.0, lut.points[0][1], 0.5); |
| EXPECT_NEAR(255.0, lut.points[1][0], 1e-5); |
| EXPECT_NEAR(255.0, lut.points[1][1], 0.5); |
| |
| aom_noise_strength_lut_free(&lut); |
| aom_noise_strength_solver_free(&solver); |
| } |
| |
| TEST(NoiseStrengthSolver, SimplifiesCurve) { |
| const int num_bins = 256; |
| aom_noise_strength_solver_t solver; |
| EXPECT_EQ(1, aom_noise_strength_solver_init(&solver, num_bins, 8)); |
| |
| // Create a parabolic input |
| for (int i = 0; i < 256; ++i) { |
| const double x = (i - 127.5) / 63.5; |
| aom_noise_strength_solver_add_measurement(&solver, i, x * x); |
| } |
| EXPECT_EQ(1, aom_noise_strength_solver_solve(&solver)); |
| |
| // First try to fit an unconstrained lut |
| aom_noise_strength_lut_t lut; |
| EXPECT_EQ(1, aom_noise_strength_solver_fit_piecewise(&solver, -1, &lut)); |
| ASSERT_LE(20, lut.num_points); |
| aom_noise_strength_lut_free(&lut); |
| |
| // Now constrain the maximum number of points |
| const int kMaxPoints = 9; |
| EXPECT_EQ(1, |
| aom_noise_strength_solver_fit_piecewise(&solver, kMaxPoints, &lut)); |
| ASSERT_EQ(kMaxPoints, lut.num_points); |
| |
| // Check that the input parabola is still well represented |
| EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); |
| EXPECT_NEAR(4.0, lut.points[0][1], 0.1); |
| for (int i = 1; i < lut.num_points - 1; ++i) { |
| const double x = (lut.points[i][0] - 128.) / 64.; |
| EXPECT_NEAR(x * x, lut.points[i][1], 0.1); |
| } |
| EXPECT_NEAR(255.0, lut.points[kMaxPoints - 1][0], 1e-5); |
| |
| EXPECT_NEAR(4.0, lut.points[kMaxPoints - 1][1], 0.1); |
| aom_noise_strength_lut_free(&lut); |
| aom_noise_strength_solver_free(&solver); |
| } |
| |
| TEST(NoiseStrengthLut, LutEvalSinglePoint) { |
| aom_noise_strength_lut_t lut; |
| ASSERT_TRUE(aom_noise_strength_lut_init(&lut, 1)); |
| ASSERT_EQ(1, lut.num_points); |
| lut.points[0][0] = 0; |
| lut.points[0][1] = 1; |
| EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, -1)); |
| EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, 0)); |
| EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, 1)); |
| aom_noise_strength_lut_free(&lut); |
| } |
| |
| TEST(NoiseStrengthLut, LutEvalMultiPointInterp) { |
| const double kEps = 1e-5; |
| aom_noise_strength_lut_t lut; |
| ASSERT_TRUE(aom_noise_strength_lut_init(&lut, 4)); |
| ASSERT_EQ(4, lut.num_points); |
| |
| lut.points[0][0] = 0; |
| lut.points[0][1] = 0; |
| |
| lut.points[1][0] = 1; |
| lut.points[1][1] = 1; |
| |
| lut.points[2][0] = 2; |
| lut.points[2][1] = 1; |
| |
| lut.points[3][0] = 100; |
| lut.points[3][1] = 1001; |
| |
| // Test lower boundary |
| EXPECT_EQ(0, aom_noise_strength_lut_eval(&lut, -1)); |
| EXPECT_EQ(0, aom_noise_strength_lut_eval(&lut, 0)); |
| |
| // Test first part that should be identity |
| EXPECT_NEAR(0.25, aom_noise_strength_lut_eval(&lut, 0.25), kEps); |
| EXPECT_NEAR(0.75, aom_noise_strength_lut_eval(&lut, 0.75), kEps); |
| |
| // This is a constant section (should evaluate to 1) |
| EXPECT_NEAR(1.0, aom_noise_strength_lut_eval(&lut, 1.25), kEps); |
| EXPECT_NEAR(1.0, aom_noise_strength_lut_eval(&lut, 1.75), kEps); |
| |
| // Test interpolation between to non-zero y coords. |
| EXPECT_NEAR(1, aom_noise_strength_lut_eval(&lut, 2), kEps); |
| EXPECT_NEAR(251, aom_noise_strength_lut_eval(&lut, 26.5), kEps); |
| EXPECT_NEAR(751, aom_noise_strength_lut_eval(&lut, 75.5), kEps); |
| |
| // Test upper boundary |
| EXPECT_EQ(1001, aom_noise_strength_lut_eval(&lut, 100)); |
| EXPECT_EQ(1001, aom_noise_strength_lut_eval(&lut, 101)); |
| |
| aom_noise_strength_lut_free(&lut); |
| } |
| |
| TEST(NoiseModel, InitSuccessWithValidSquareShape) { |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 2, 8, 0 }; |
| aom_noise_model_t model; |
| |
| EXPECT_TRUE(aom_noise_model_init(&model, params)); |
| |
| const int kNumCoords = 12; |
| const int kCoords[][2] = { { -2, -2 }, { -1, -2 }, { 0, -2 }, { 1, -2 }, |
| { 2, -2 }, { -2, -1 }, { -1, -1 }, { 0, -1 }, |
| { 1, -1 }, { 2, -1 }, { -2, 0 }, { -1, 0 } }; |
| EXPECT_EQ(kNumCoords, model.n); |
| for (int i = 0; i < kNumCoords; ++i) { |
| const int *coord = kCoords[i]; |
| EXPECT_EQ(coord[0], model.coords[i][0]); |
| EXPECT_EQ(coord[1], model.coords[i][1]); |
| } |
| aom_noise_model_free(&model); |
| } |
| |
| TEST(NoiseModel, InitSuccessWithValidDiamondShape) { |
| aom_noise_model_t model; |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_DIAMOND, 2, 8, 0 }; |
| EXPECT_TRUE(aom_noise_model_init(&model, params)); |
| EXPECT_EQ(6, model.n); |
| const int kNumCoords = 6; |
| const int kCoords[][2] = { { 0, -2 }, { -1, -1 }, { 0, -1 }, |
| { 1, -1 }, { -2, 0 }, { -1, 0 } }; |
| EXPECT_EQ(kNumCoords, model.n); |
| for (int i = 0; i < kNumCoords; ++i) { |
| const int *coord = kCoords[i]; |
| EXPECT_EQ(coord[0], model.coords[i][0]); |
| EXPECT_EQ(coord[1], model.coords[i][1]); |
| } |
| aom_noise_model_free(&model); |
| } |
| |
| TEST(NoiseModel, InitFailsWithTooLargeLag) { |
| aom_noise_model_t model; |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 10, 8, 0 }; |
| EXPECT_FALSE(aom_noise_model_init(&model, params)); |
| aom_noise_model_free(&model); |
| } |
| |
| TEST(NoiseModel, InitFailsWithTooSmallLag) { |
| aom_noise_model_t model; |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 0, 8, 0 }; |
| EXPECT_FALSE(aom_noise_model_init(&model, params)); |
| aom_noise_model_free(&model); |
| } |
| |
| TEST(NoiseModel, InitFailsWithInvalidShape) { |
| aom_noise_model_t model; |
| aom_noise_model_params_t params = { aom_noise_shape(100), 3, 8, 0 }; |
| EXPECT_FALSE(aom_noise_model_init(&model, params)); |
| aom_noise_model_free(&model); |
| } |
| |
| // A container template class to hold a data type and extra arguments. |
| // All of these args are bundled into one struct so that we can use |
| // parameterized tests on combinations of supported data types |
| // (uint8_t and uint16_t) and bit depths (8, 10, 12). |
| template <typename T, int bit_depth, bool use_highbd> |
| struct BitDepthParams { |
| typedef T data_type_t; |
| static const int kBitDepth = bit_depth; |
| static const bool kUseHighBD = use_highbd; |
| }; |
| |
| template <typename T> |
| class FlatBlockEstimatorTest : public ::testing::Test, public T { |
| public: |
| virtual void SetUp() { random_.Reset(171); } |
| typedef std::vector<typename T::data_type_t> VecType; |
| VecType data_; |
| libaom_test::ACMRandom random_; |
| }; |
| |
| TYPED_TEST_SUITE_P(FlatBlockEstimatorTest); |
| |
| TYPED_TEST_P(FlatBlockEstimatorTest, ExtractBlock) { |
| const int kBlockSize = 16; |
| aom_flat_block_finder_t flat_block_finder; |
| ASSERT_EQ(1, aom_flat_block_finder_init(&flat_block_finder, kBlockSize, |
| this->kBitDepth, this->kUseHighBD)); |
| const double normalization = flat_block_finder.normalization; |
| |
| // Test with an image of more than one block. |
| const int h = 2 * kBlockSize; |
| const int w = 2 * kBlockSize; |
| const int stride = 2 * kBlockSize; |
| this->data_.resize(h * stride, 128); |
| |
| // Set up the (0,0) block to be a plane and the (0,1) block to be a |
| // checkerboard |
| const int shift = this->kBitDepth - 8; |
| for (int y = 0; y < kBlockSize; ++y) { |
| for (int x = 0; x < kBlockSize; ++x) { |
| this->data_[y * stride + x] = (-y + x + 128) << shift; |
| this->data_[y * stride + x + kBlockSize] = |
| ((x % 2 + y % 2) % 2 ? 128 - 20 : 128 + 20) << shift; |
| } |
| } |
| std::vector<double> block(kBlockSize * kBlockSize, 1); |
| std::vector<double> plane(kBlockSize * kBlockSize, 1); |
| |
| // The block data should be a constant (zero) and the rest of the plane |
| // trend is covered in the plane data. |
| aom_flat_block_finder_extract_block(&flat_block_finder, |
| (uint8_t *)&this->data_[0], w, h, stride, |
| 0, 0, &plane[0], &block[0]); |
| for (int y = 0; y < kBlockSize; ++y) { |
| for (int x = 0; x < kBlockSize; ++x) { |
| EXPECT_NEAR(0, block[y * kBlockSize + x], 1e-5); |
| EXPECT_NEAR((double)(this->data_[y * stride + x]) / normalization, |
| plane[y * kBlockSize + x], 1e-5); |
| } |
| } |
| |
| // The plane trend is a constant, and the block is a zero mean checkerboard. |
| aom_flat_block_finder_extract_block(&flat_block_finder, |
| (uint8_t *)&this->data_[0], w, h, stride, |
| kBlockSize, 0, &plane[0], &block[0]); |
| const int mid = 128 << shift; |
| for (int y = 0; y < kBlockSize; ++y) { |
| for (int x = 0; x < kBlockSize; ++x) { |
| EXPECT_NEAR(((double)this->data_[y * stride + x + kBlockSize] - mid) / |
| normalization, |
| block[y * kBlockSize + x], 1e-5); |
| EXPECT_NEAR(mid / normalization, plane[y * kBlockSize + x], 1e-5); |
| } |
| } |
| aom_flat_block_finder_free(&flat_block_finder); |
| } |
| |
| TYPED_TEST_P(FlatBlockEstimatorTest, FindFlatBlocks) { |
| const int kBlockSize = 32; |
| aom_flat_block_finder_t flat_block_finder; |
| ASSERT_EQ(1, aom_flat_block_finder_init(&flat_block_finder, kBlockSize, |
| this->kBitDepth, this->kUseHighBD)); |
| |
| const int num_blocks_w = 8; |
| const int h = kBlockSize; |
| const int w = kBlockSize * num_blocks_w; |
| const int stride = w; |
| this->data_.resize(h * stride, 128); |
| std::vector<uint8_t> flat_blocks(num_blocks_w, 0); |
| |
| const int shift = this->kBitDepth - 8; |
| for (int y = 0; y < kBlockSize; ++y) { |
| for (int x = 0; x < kBlockSize; ++x) { |
| // Block 0 (not flat): constant doesn't have enough variance to qualify |
| this->data_[y * stride + x + 0 * kBlockSize] = 128 << shift; |
| |
| // Block 1 (not flat): too high of variance is hard to validate as flat |
| this->data_[y * stride + x + 1 * kBlockSize] = |
| ((uint8_t)(128 + randn(&this->random_, 5))) << shift; |
| |
| // Block 2 (flat): slight checkerboard added to constant |
| const int check = (x % 2 + y % 2) % 2 ? -2 : 2; |
| this->data_[y * stride + x + 2 * kBlockSize] = (128 + check) << shift; |
| |
| // Block 3 (flat): planar block with checkerboard pattern is also flat |
| this->data_[y * stride + x + 3 * kBlockSize] = |
| (y * 2 - x / 2 + 128 + check) << shift; |
| |
| // Block 4 (flat): gaussian random with standard deviation 1. |
| this->data_[y * stride + x + 4 * kBlockSize] = |
| ((uint8_t)(randn(&this->random_, 1) + x + 128.0)) << shift; |
| |
| // Block 5 (flat): gaussian random with standard deviation 2. |
| this->data_[y * stride + x + 5 * kBlockSize] = |
| ((uint8_t)(randn(&this->random_, 2) + y + 128.0)) << shift; |
| |
| // Block 6 (not flat): too high of directional gradient. |
| const int strong_edge = x > kBlockSize / 2 ? 64 : 0; |
| this->data_[y * stride + x + 6 * kBlockSize] = |
| ((uint8_t)(randn(&this->random_, 1) + strong_edge + 128.0)) << shift; |
| |
| // Block 7 (not flat): too high gradient. |
| const int big_check = ((x >> 2) % 2 + (y >> 2) % 2) % 2 ? -16 : 16; |
| this->data_[y * stride + x + 7 * kBlockSize] = |
| ((uint8_t)(randn(&this->random_, 1) + big_check + 128.0)) << shift; |
| } |
| } |
| |
| EXPECT_EQ(4, aom_flat_block_finder_run(&flat_block_finder, |
| (uint8_t *)&this->data_[0], w, h, |
| stride, &flat_blocks[0])); |
| |
| // First two blocks are not flat |
| EXPECT_EQ(0, flat_blocks[0]); |
| EXPECT_EQ(0, flat_blocks[1]); |
| |
| // Next 4 blocks are flat. |
| EXPECT_EQ(255, flat_blocks[2]); |
| EXPECT_EQ(255, flat_blocks[3]); |
| EXPECT_EQ(255, flat_blocks[4]); |
| EXPECT_EQ(255, flat_blocks[5]); |
| |
| // Last 2 are not flat by threshold |
| EXPECT_EQ(0, flat_blocks[6]); |
| EXPECT_EQ(0, flat_blocks[7]); |
| |
| // Add the noise from non-flat block 1 to every block. |
| for (int y = 0; y < kBlockSize; ++y) { |
| for (int x = 0; x < kBlockSize * num_blocks_w; ++x) { |
| this->data_[y * stride + x] += |
| (this->data_[y * stride + x % kBlockSize + kBlockSize] - |
| (128 << shift)); |
| } |
| } |
| // Now the scored selection will pick the one that is most likely flat (block |
| // 0) |
| EXPECT_EQ(1, aom_flat_block_finder_run(&flat_block_finder, |
| (uint8_t *)&this->data_[0], w, h, |
| stride, &flat_blocks[0])); |
| EXPECT_EQ(1, flat_blocks[0]); |
| EXPECT_EQ(0, flat_blocks[1]); |
| EXPECT_EQ(0, flat_blocks[2]); |
| EXPECT_EQ(0, flat_blocks[3]); |
| EXPECT_EQ(0, flat_blocks[4]); |
| EXPECT_EQ(0, flat_blocks[5]); |
| EXPECT_EQ(0, flat_blocks[6]); |
| EXPECT_EQ(0, flat_blocks[7]); |
| |
| aom_flat_block_finder_free(&flat_block_finder); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(FlatBlockEstimatorTest, ExtractBlock, |
| FindFlatBlocks); |
| |
| typedef ::testing::Types<BitDepthParams<uint8_t, 8, false>, // lowbd |
| BitDepthParams<uint16_t, 8, true>, // lowbd in 16-bit |
| BitDepthParams<uint16_t, 10, true>, // highbd data |
| BitDepthParams<uint16_t, 12, true> > |
| AllBitDepthParams; |
| INSTANTIATE_TYPED_TEST_SUITE_P(FlatBlockInstatiation, FlatBlockEstimatorTest, |
| AllBitDepthParams); |
| |
| template <typename T> |
| class NoiseModelUpdateTest : public ::testing::Test, public T { |
| public: |
| static const int kWidth = 128; |
| static const int kHeight = 128; |
| static const int kBlockSize = 16; |
| static const int kNumBlocksX = kWidth / kBlockSize; |
| static const int kNumBlocksY = kHeight / kBlockSize; |
| |
| virtual void SetUp() { |
| const aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 3, |
| T::kBitDepth, T::kUseHighBD }; |
| ASSERT_TRUE(aom_noise_model_init(&model_, params)); |
| |
| random_.Reset(100171); |
| |
| data_.resize(kWidth * kHeight * 3); |
| denoised_.resize(kWidth * kHeight * 3); |
| noise_.resize(kWidth * kHeight * 3); |
| renoise_.resize(kWidth * kHeight); |
| flat_blocks_.resize(kNumBlocksX * kNumBlocksY); |
| |
| for (int c = 0, offset = 0; c < 3; ++c, offset += kWidth * kHeight) { |
| data_ptr_[c] = &data_[offset]; |
| noise_ptr_[c] = &noise_[offset]; |
| denoised_ptr_[c] = &denoised_[offset]; |
| strides_[c] = kWidth; |
| |
| data_ptr_raw_[c] = (uint8_t *)&data_[offset]; |
| denoised_ptr_raw_[c] = (uint8_t *)&denoised_[offset]; |
| } |
| chroma_sub_[0] = 0; |
| chroma_sub_[1] = 0; |
| } |
| |
| int NoiseModelUpdate(int block_size = kBlockSize) { |
| return aom_noise_model_update(&model_, data_ptr_raw_, denoised_ptr_raw_, |
| kWidth, kHeight, strides_, chroma_sub_, |
| &flat_blocks_[0], block_size); |
| } |
| |
| void TearDown() { aom_noise_model_free(&model_); } |
| |
| protected: |
| aom_noise_model_t model_; |
| std::vector<typename T::data_type_t> data_; |
| std::vector<typename T::data_type_t> denoised_; |
| |
| std::vector<double> noise_; |
| std::vector<double> renoise_; |
| std::vector<uint8_t> flat_blocks_; |
| |
| typename T::data_type_t *data_ptr_[3]; |
| typename T::data_type_t *denoised_ptr_[3]; |
| |
| double *noise_ptr_[3]; |
| int strides_[3]; |
| int chroma_sub_[2]; |
| libaom_test::ACMRandom random_; |
| |
| private: |
| uint8_t *data_ptr_raw_[3]; |
| uint8_t *denoised_ptr_raw_[3]; |
| }; |
| |
| TYPED_TEST_SUITE_P(NoiseModelUpdateTest); |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, UpdateFailsNoFlatBlocks) { |
| EXPECT_EQ(AOM_NOISE_STATUS_INSUFFICIENT_FLAT_BLOCKS, |
| this->NoiseModelUpdate()); |
| } |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForZeroNoiseAllFlat) { |
| this->flat_blocks_.assign(this->flat_blocks_.size(), 1); |
| this->denoised_.assign(this->denoised_.size(), 128); |
| this->data_.assign(this->denoised_.size(), 128); |
| EXPECT_EQ(AOM_NOISE_STATUS_INTERNAL_ERROR, this->NoiseModelUpdate()); |
| } |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, UpdateFailsBlockSizeTooSmall) { |
| this->flat_blocks_.assign(this->flat_blocks_.size(), 1); |
| this->denoised_.assign(this->denoised_.size(), 128); |
| this->data_.assign(this->denoised_.size(), 128); |
| EXPECT_EQ(AOM_NOISE_STATUS_INVALID_ARGUMENT, |
| this->NoiseModelUpdate(6 /* block_size=6 is too small*/)); |
| } |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForWhiteRandomNoise) { |
| aom_noise_model_t &model = this->model_; |
| const int kWidth = this->kWidth; |
| const int kHeight = this->kHeight; |
| |
| const int shift = this->kBitDepth - 8; |
| for (int y = 0; y < kHeight; ++y) { |
| for (int x = 0; x < kWidth; ++x) { |
| this->data_ptr_[0][y * kWidth + x] = |
| int(64 + y + randn(&this->random_, 1)) << shift; |
| this->denoised_ptr_[0][y * kWidth + x] = (64 + y) << shift; |
| // Make the chroma planes completely correlated with the Y plane |
| for (int c = 1; c < 3; ++c) { |
| this->data_ptr_[c][y * kWidth + x] = this->data_ptr_[0][y * kWidth + x]; |
| this->denoised_ptr_[c][y * kWidth + x] = |
| this->denoised_ptr_[0][y * kWidth + x]; |
| } |
| } |
| } |
| this->flat_blocks_.assign(this->flat_blocks_.size(), 1); |
| EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); |
| |
| const double kCoeffEps = 0.075; |
| const int n = model.n; |
| for (int c = 0; c < 3; ++c) { |
| for (int i = 0; i < n; ++i) { |
| EXPECT_NEAR(0, model.latest_state[c].eqns.x[i], kCoeffEps); |
| EXPECT_NEAR(0, model.combined_state[c].eqns.x[i], kCoeffEps); |
| } |
| // The second and third channels are highly correlated with the first. |
| if (c > 0) { |
| ASSERT_EQ(n + 1, model.latest_state[c].eqns.n); |
| ASSERT_EQ(n + 1, model.combined_state[c].eqns.n); |
| |
| EXPECT_NEAR(1, model.latest_state[c].eqns.x[n], kCoeffEps); |
| EXPECT_NEAR(1, model.combined_state[c].eqns.x[n], kCoeffEps); |
| } |
| } |
| |
| // The fitted noise strength should be close to the standard deviation |
| // for all intensity bins. |
| const double kStdEps = 0.1; |
| const double normalize = 1 << shift; |
| |
| for (int i = 0; i < model.latest_state[0].strength_solver.eqns.n; ++i) { |
| EXPECT_NEAR(1.0, |
| model.latest_state[0].strength_solver.eqns.x[i] / normalize, |
| kStdEps); |
| EXPECT_NEAR(1.0, |
| model.combined_state[0].strength_solver.eqns.x[i] / normalize, |
| kStdEps); |
| } |
| |
| aom_noise_strength_lut_t lut; |
| aom_noise_strength_solver_fit_piecewise( |
| &model.latest_state[0].strength_solver, -1, &lut); |
| ASSERT_EQ(2, lut.num_points); |
| EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); |
| EXPECT_NEAR(1.0, lut.points[0][1] / normalize, kStdEps); |
| EXPECT_NEAR((1 << this->kBitDepth) - 1, lut.points[1][0], 1e-5); |
| EXPECT_NEAR(1.0, lut.points[1][1] / normalize, kStdEps); |
| aom_noise_strength_lut_free(&lut); |
| } |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForScaledWhiteNoise) { |
| aom_noise_model_t &model = this->model_; |
| const int kWidth = this->kWidth; |
| const int kHeight = this->kHeight; |
| |
| const double kCoeffEps = 0.055; |
| const double kLowStd = 1; |
| const double kHighStd = 4; |
| const int shift = this->kBitDepth - 8; |
| for (int y = 0; y < kHeight; ++y) { |
| for (int x = 0; x < kWidth; ++x) { |
| for (int c = 0; c < 3; ++c) { |
| // The image data is bimodal: |
| // Bottom half has low intensity and low noise strength |
| // Top half has high intensity and high noise strength |
| const int avg = (y < kHeight / 2) ? 4 : 245; |
| const double std = (y < kHeight / 2) ? kLowStd : kHighStd; |
| this->data_ptr_[c][y * kWidth + x] = |
| ((uint8_t)std::min((int)255, |
| (int)(2 + avg + randn(&this->random_, std)))) |
| << shift; |
| this->denoised_ptr_[c][y * kWidth + x] = (2 + avg) << shift; |
| } |
| } |
| } |
| // Label all blocks as flat for the update |
| this->flat_blocks_.assign(this->flat_blocks_.size(), 1); |
| EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); |
| |
| const int n = model.n; |
| // The noise is uncorrelated spatially and with the y channel. |
| // All coefficients should be reasonably close to zero. |
| for (int c = 0; c < 3; ++c) { |
| for (int i = 0; i < n; ++i) { |
| EXPECT_NEAR(0, model.latest_state[c].eqns.x[i], kCoeffEps); |
| EXPECT_NEAR(0, model.combined_state[c].eqns.x[i], kCoeffEps); |
| } |
| if (c > 0) { |
| ASSERT_EQ(n + 1, model.latest_state[c].eqns.n); |
| ASSERT_EQ(n + 1, model.combined_state[c].eqns.n); |
| |
| // The correlation to the y channel should be low (near zero) |
| EXPECT_NEAR(0, model.latest_state[c].eqns.x[n], kCoeffEps); |
| EXPECT_NEAR(0, model.combined_state[c].eqns.x[n], kCoeffEps); |
| } |
| } |
| |
| // Noise strength should vary between kLowStd and kHighStd. |
| const double kStdEps = 0.15; |
| // We have to normalize fitted standard deviation based on bit depth. |
| const double normalize = (1 << shift); |
| |
| ASSERT_EQ(20, model.latest_state[0].strength_solver.eqns.n); |
| for (int i = 0; i < model.latest_state[0].strength_solver.eqns.n; ++i) { |
| const double a = i / 19.0; |
| const double expected = (kLowStd * (1.0 - a) + kHighStd * a); |
| EXPECT_NEAR(expected, |
| model.latest_state[0].strength_solver.eqns.x[i] / normalize, |
| kStdEps); |
| EXPECT_NEAR(expected, |
| model.combined_state[0].strength_solver.eqns.x[i] / normalize, |
| kStdEps); |
| } |
| |
| // If we fit a piecewise linear model, there should be two points: |
| // one near kLowStd at 0, and the other near kHighStd and 255. |
| aom_noise_strength_lut_t lut; |
| aom_noise_strength_solver_fit_piecewise( |
| &model.latest_state[0].strength_solver, 2, &lut); |
| ASSERT_EQ(2, lut.num_points); |
| EXPECT_NEAR(0, lut.points[0][0], 1e-4); |
| EXPECT_NEAR(kLowStd, lut.points[0][1] / normalize, kStdEps); |
| EXPECT_NEAR((1 << this->kBitDepth) - 1, lut.points[1][0], 1e-5); |
| EXPECT_NEAR(kHighStd, lut.points[1][1] / normalize, kStdEps); |
| aom_noise_strength_lut_free(&lut); |
| } |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForCorrelatedNoise) { |
| aom_noise_model_t &model = this->model_; |
| const int kWidth = this->kWidth; |
| const int kHeight = this->kHeight; |
| const int kNumCoeffs = 24; |
| const double kStd = 4; |
| const double kStdEps = 0.3; |
| const double kCoeffEps = 0.065; |
| // Use different coefficients for each channel |
| const double kCoeffs[3][24] = { |
| { 0.02884, -0.03356, 0.00633, 0.01757, 0.02849, -0.04620, |
| 0.02833, -0.07178, 0.07076, -0.11603, -0.10413, -0.16571, |
| 0.05158, -0.07969, 0.02640, -0.07191, 0.02530, 0.41968, |
| 0.21450, -0.00702, -0.01401, -0.03676, -0.08713, 0.44196 }, |
| { 0.00269, -0.01291, -0.01513, 0.07234, 0.03208, 0.00477, |
| 0.00226, -0.00254, 0.03533, 0.12841, -0.25970, -0.06336, |
| 0.05238, -0.00845, -0.03118, 0.09043, -0.36558, 0.48903, |
| 0.00595, -0.11938, 0.02106, 0.095956, -0.350139, 0.59305 }, |
| { -0.00643, -0.01080, -0.01466, 0.06951, 0.03707, -0.00482, |
| 0.00817, -0.00909, 0.02949, 0.12181, -0.25210, -0.07886, |
| 0.06083, -0.01210, -0.03108, 0.08944, -0.35875, 0.49150, |
| 0.00415, -0.12905, 0.02870, 0.09740, -0.34610, 0.58824 }, |
| }; |
| |
| ASSERT_EQ(model.n, kNumCoeffs); |
| this->chroma_sub_[0] = this->chroma_sub_[1] = 1; |
| |
| this->flat_blocks_.assign(this->flat_blocks_.size(), 1); |
| |
| // Add different noise onto each plane |
| const int shift = this->kBitDepth - 8; |
| for (int c = 0; c < 3; ++c) { |
| noise_synth(&this->random_, model.params.lag, model.n, model.coords, |
| kCoeffs[c], this->noise_ptr_[c], kWidth, kHeight); |
| const int x_shift = c > 0 ? this->chroma_sub_[0] : 0; |
| const int y_shift = c > 0 ? this->chroma_sub_[1] : 0; |
| for (int y = 0; y < (kHeight >> y_shift); ++y) { |
| for (int x = 0; x < (kWidth >> x_shift); ++x) { |
| const uint8_t value = 64 + x / 2 + y / 4; |
| this->data_ptr_[c][y * kWidth + x] = |
| (uint8_t(value + this->noise_ptr_[c][y * kWidth + x] * kStd)) |
| << shift; |
| this->denoised_ptr_[c][y * kWidth + x] = value << shift; |
| } |
| } |
| } |
| EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); |
| |
| // For the Y plane, the solved coefficients should be close to the original |
| const int n = model.n; |
| for (int c = 0; c < 3; ++c) { |
| for (int i = 0; i < n; ++i) { |
| EXPECT_NEAR(kCoeffs[c][i], model.latest_state[c].eqns.x[i], kCoeffEps); |
| EXPECT_NEAR(kCoeffs[c][i], model.combined_state[c].eqns.x[i], kCoeffEps); |
| } |
| // The chroma planes should be uncorrelated with the luma plane |
| if (c > 0) { |
| EXPECT_NEAR(0, model.latest_state[c].eqns.x[n], kCoeffEps); |
| EXPECT_NEAR(0, model.combined_state[c].eqns.x[n], kCoeffEps); |
| } |
| // Correlation between the coefficient vector and the fitted coefficients |
| // should be close to 1. |
| EXPECT_LT(0.98, aom_normalized_cross_correlation( |
| model.latest_state[c].eqns.x, kCoeffs[c], kNumCoeffs)); |
| |
| noise_synth(&this->random_, model.params.lag, model.n, model.coords, |
| model.latest_state[c].eqns.x, &this->renoise_[0], kWidth, |
| kHeight); |
| |
| EXPECT_TRUE(aom_noise_data_validate(&this->renoise_[0], kWidth, kHeight)); |
| } |
| |
| // Check fitted noise strength |
| const double normalize = 1 << shift; |
| for (int c = 0; c < 3; ++c) { |
| for (int i = 0; i < model.latest_state[c].strength_solver.eqns.n; ++i) { |
| EXPECT_NEAR(kStd, |
| model.latest_state[c].strength_solver.eqns.x[i] / normalize, |
| kStdEps); |
| } |
| } |
| } |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, |
| NoiseStrengthChangeSignalsDifferentNoiseType) { |
| aom_noise_model_t &model = this->model_; |
| const int kWidth = this->kWidth; |
| const int kHeight = this->kHeight; |
| const int kBlockSize = this->kBlockSize; |
| // Create a gradient image with std = 2 uncorrelated noise |
| const double kStd = 2; |
| const int shift = this->kBitDepth - 8; |
| |
| for (int i = 0; i < kWidth * kHeight; ++i) { |
| const uint8_t val = (i % kWidth) < kWidth / 2 ? 64 : 192; |
| for (int c = 0; c < 3; ++c) { |
| this->noise_ptr_[c][i] = randn(&this->random_, 1); |
| this->data_ptr_[c][i] = ((uint8_t)(this->noise_ptr_[c][i] * kStd + val)) |
| << shift; |
| this->denoised_ptr_[c][i] = val << shift; |
| } |
| } |
| this->flat_blocks_.assign(this->flat_blocks_.size(), 1); |
| EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); |
| |
| const int kNumBlocks = kWidth * kHeight / kBlockSize / kBlockSize; |
| EXPECT_EQ(kNumBlocks, model.latest_state[0].strength_solver.num_equations); |
| EXPECT_EQ(kNumBlocks, model.latest_state[1].strength_solver.num_equations); |
| EXPECT_EQ(kNumBlocks, model.latest_state[2].strength_solver.num_equations); |
| EXPECT_EQ(kNumBlocks, model.combined_state[0].strength_solver.num_equations); |
| EXPECT_EQ(kNumBlocks, model.combined_state[1].strength_solver.num_equations); |
| EXPECT_EQ(kNumBlocks, model.combined_state[2].strength_solver.num_equations); |
| |
| // Bump up noise by an insignificant amount |
| for (int i = 0; i < kWidth * kHeight; ++i) { |
| const uint8_t val = (i % kWidth) < kWidth / 2 ? 64 : 192; |
| this->data_ptr_[0][i] = |
| ((uint8_t)(this->noise_ptr_[0][i] * (kStd + 0.085) + val)) << shift; |
| } |
| EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); |
| |
| const double kARGainTolerance = 0.02; |
| for (int c = 0; c < 3; ++c) { |
| EXPECT_EQ(kNumBlocks, model.latest_state[c].strength_solver.num_equations); |
| EXPECT_EQ(15250, model.latest_state[c].num_observations); |
| EXPECT_NEAR(1, model.latest_state[c].ar_gain, kARGainTolerance); |
| |
| EXPECT_EQ(2 * kNumBlocks, |
| model.combined_state[c].strength_solver.num_equations); |
| EXPECT_EQ(2 * 15250, model.combined_state[c].num_observations); |
| EXPECT_NEAR(1, model.combined_state[c].ar_gain, kARGainTolerance); |
| } |
| |
| // Bump up the noise strength on half the image for one channel by a |
| // significant amount. |
| for (int i = 0; i < kWidth * kHeight; ++i) { |
| const uint8_t val = (i % kWidth) < kWidth / 2 ? 64 : 128; |
| if (i % kWidth < kWidth / 2) { |
| this->data_ptr_[0][i] = |
| ((uint8_t)(randn(&this->random_, kStd + 0.5) + val)) << shift; |
| } |
| } |
| EXPECT_EQ(AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE, this->NoiseModelUpdate()); |
| |
| // Since we didn't update the combined state, it should still be at 2 * |
| // num_blocks |
| EXPECT_EQ(kNumBlocks, model.latest_state[0].strength_solver.num_equations); |
| EXPECT_EQ(2 * kNumBlocks, |
| model.combined_state[0].strength_solver.num_equations); |
| |
| // In normal operation, the "latest" estimate can be saved to the "combined" |
| // state for continued updates. |
| aom_noise_model_save_latest(&model); |
| for (int c = 0; c < 3; ++c) { |
| EXPECT_EQ(kNumBlocks, model.latest_state[c].strength_solver.num_equations); |
| EXPECT_EQ(15250, model.latest_state[c].num_observations); |
| EXPECT_NEAR(1, model.latest_state[c].ar_gain, kARGainTolerance); |
| |
| EXPECT_EQ(kNumBlocks, |
| model.combined_state[c].strength_solver.num_equations); |
| EXPECT_EQ(15250, model.combined_state[c].num_observations); |
| EXPECT_NEAR(1, model.combined_state[c].ar_gain, kARGainTolerance); |
| } |
| } |
| |
| TYPED_TEST_P(NoiseModelUpdateTest, NoiseCoeffsSignalsDifferentNoiseType) { |
| aom_noise_model_t &model = this->model_; |
| const int kWidth = this->kWidth; |
| const int kHeight = this->kHeight; |
| const double kCoeffs[2][24] = { |
| { 0.02884, -0.03356, 0.00633, 0.01757, 0.02849, -0.04620, |
| 0.02833, -0.07178, 0.07076, -0.11603, -0.10413, -0.16571, |
| 0.05158, -0.07969, 0.02640, -0.07191, 0.02530, 0.41968, |
| 0.21450, -0.00702, -0.01401, -0.03676, -0.08713, 0.44196 }, |
| { 0.00269, -0.01291, -0.01513, 0.07234, 0.03208, 0.00477, |
| 0.00226, -0.00254, 0.03533, 0.12841, -0.25970, -0.06336, |
| 0.05238, -0.00845, -0.03118, 0.09043, -0.36558, 0.48903, |
| 0.00595, -0.11938, 0.02106, 0.095956, -0.350139, 0.59305 } |
| }; |
| |
| noise_synth(&this->random_, model.params.lag, model.n, model.coords, |
| kCoeffs[0], this->noise_ptr_[0], kWidth, kHeight); |
| for (int i = 0; i < kWidth * kHeight; ++i) { |
| this->data_ptr_[0][i] = (uint8_t)(128 + this->noise_ptr_[0][i]); |
| } |
| this->flat_blocks_.assign(this->flat_blocks_.size(), 1); |
| EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); |
| |
| // Now try with the second set of AR coefficients |
| noise_synth(&this->random_, model.params.lag, model.n, model.coords, |
| kCoeffs[1], this->noise_ptr_[0], kWidth, kHeight); |
| for (int i = 0; i < kWidth * kHeight; ++i) { |
| this->data_ptr_[0][i] = (uint8_t)(128 + this->noise_ptr_[0][i]); |
| } |
| EXPECT_EQ(AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE, this->NoiseModelUpdate()); |
| } |
| REGISTER_TYPED_TEST_SUITE_P(NoiseModelUpdateTest, UpdateFailsNoFlatBlocks, |
| UpdateSuccessForZeroNoiseAllFlat, |
| UpdateFailsBlockSizeTooSmall, |
| UpdateSuccessForWhiteRandomNoise, |
| UpdateSuccessForScaledWhiteNoise, |
| UpdateSuccessForCorrelatedNoise, |
| NoiseStrengthChangeSignalsDifferentNoiseType, |
| NoiseCoeffsSignalsDifferentNoiseType); |
| |
| INSTANTIATE_TYPED_TEST_SUITE_P(NoiseModelUpdateTestInstatiation, |
| NoiseModelUpdateTest, AllBitDepthParams); |
| |
| TEST(NoiseModelGetGrainParameters, TestLagSize) { |
| aom_film_grain_t film_grain; |
| for (int lag = 1; lag <= 3; ++lag) { |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; |
| aom_noise_model_t model; |
| EXPECT_TRUE(aom_noise_model_init(&model, params)); |
| EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); |
| EXPECT_EQ(lag, film_grain.ar_coeff_lag); |
| aom_noise_model_free(&model); |
| } |
| |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 4, 8, 0 }; |
| aom_noise_model_t model; |
| EXPECT_TRUE(aom_noise_model_init(&model, params)); |
| EXPECT_FALSE(aom_noise_model_get_grain_parameters(&model, &film_grain)); |
| aom_noise_model_free(&model); |
| } |
| |
| TEST(NoiseModelGetGrainParameters, TestARCoeffShiftBounds) { |
| struct TestCase { |
| double max_input_value; |
| int expected_ar_coeff_shift; |
| int expected_value; |
| }; |
| const int lag = 1; |
| const int kNumTestCases = 19; |
| const TestCase test_cases[] = { |
| // Test cases for ar_coeff_shift = 9 |
| { 0, 9, 0 }, |
| { 0.125, 9, 64 }, |
| { -0.125, 9, -64 }, |
| { 0.2499, 9, 127 }, |
| { -0.25, 9, -128 }, |
| // Test cases for ar_coeff_shift = 8 |
| { 0.25, 8, 64 }, |
| { -0.2501, 8, -64 }, |
| { 0.499, 8, 127 }, |
| { -0.5, 8, -128 }, |
| // Test cases for ar_coeff_shift = 7 |
| { 0.5, 7, 64 }, |
| { -0.5001, 7, -64 }, |
| { 0.999, 7, 127 }, |
| { -1, 7, -128 }, |
| // Test cases for ar_coeff_shift = 6 |
| { 1.0, 6, 64 }, |
| { -1.0001, 6, -64 }, |
| { 2.0, 6, 127 }, |
| { -2.0, 6, -128 }, |
| { 4, 6, 127 }, |
| { -4, 6, -128 }, |
| }; |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; |
| aom_noise_model_t model; |
| EXPECT_TRUE(aom_noise_model_init(&model, params)); |
| |
| for (int i = 0; i < kNumTestCases; ++i) { |
| const TestCase &test_case = test_cases[i]; |
| model.combined_state[0].eqns.x[0] = test_case.max_input_value; |
| |
| aom_film_grain_t film_grain; |
| EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); |
| EXPECT_EQ(1, film_grain.ar_coeff_lag); |
| EXPECT_EQ(test_case.expected_ar_coeff_shift, film_grain.ar_coeff_shift); |
| EXPECT_EQ(test_case.expected_value, film_grain.ar_coeffs_y[0]); |
| } |
| aom_noise_model_free(&model); |
| } |
| |
| TEST(NoiseModelGetGrainParameters, TestNoiseStrengthShiftBounds) { |
| struct TestCase { |
| double max_input_value; |
| int expected_scaling_shift; |
| int expected_value; |
| }; |
| const int kNumTestCases = 10; |
| const TestCase test_cases[] = { |
| { 0, 11, 0 }, { 1, 11, 64 }, { 2, 11, 128 }, { 3.99, 11, 255 }, |
| { 4, 10, 128 }, { 7.99, 10, 255 }, { 8, 9, 128 }, { 16, 8, 128 }, |
| { 31.99, 8, 255 }, { 64, 8, 255 }, // clipped |
| }; |
| const int lag = 1; |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; |
| aom_noise_model_t model; |
| EXPECT_TRUE(aom_noise_model_init(&model, params)); |
| |
| for (int i = 0; i < kNumTestCases; ++i) { |
| const TestCase &test_case = test_cases[i]; |
| aom_equation_system_t &eqns = model.combined_state[0].strength_solver.eqns; |
| // Set the fitted scale parameters to be a constant value. |
| for (int j = 0; j < eqns.n; ++j) { |
| eqns.x[j] = test_case.max_input_value; |
| } |
| aom_film_grain_t film_grain; |
| EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); |
| // We expect a single constant segemnt |
| EXPECT_EQ(test_case.expected_scaling_shift, film_grain.scaling_shift); |
| EXPECT_EQ(test_case.expected_value, film_grain.scaling_points_y[0][1]); |
| EXPECT_EQ(test_case.expected_value, film_grain.scaling_points_y[1][1]); |
| } |
| aom_noise_model_free(&model); |
| } |
| |
| // The AR coefficients are the same inputs used to generate "Test 2" in the test |
| // vectors |
| TEST(NoiseModelGetGrainParameters, GetGrainParametersReal) { |
| const double kInputCoeffsY[] = { 0.0315, 0.0073, 0.0218, 0.00235, 0.00511, |
| -0.0222, 0.0627, -0.022, 0.05575, -0.1816, |
| 0.0107, -0.1966, 0.00065, -0.0809, 0.04934, |
| -0.1349, -0.0352, 0.41772, 0.27973, 0.04207, |
| -0.0429, -0.1372, 0.06193, 0.52032 }; |
| const double kInputCoeffsCB[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5 }; |
| const double kInputCoeffsCR[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.5 }; |
| const int kExpectedARCoeffsY[] = { 4, 1, 3, 0, 1, -3, 8, -3, |
| 7, -23, 1, -25, 0, -10, 6, -17, |
| -5, 53, 36, 5, -5, -18, 8, 67 }; |
| const int kExpectedARCoeffsCB[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84 }; |
| const int kExpectedARCoeffsCR[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -126 }; |
| // Scaling function is initialized analytically with a sqrt function. |
| const int kNumScalingPointsY = 12; |
| const int kExpectedScalingPointsY[][2] = { |
| { 0, 0 }, { 13, 44 }, { 27, 62 }, { 40, 76 }, |
| { 54, 88 }, { 67, 98 }, { 94, 117 }, { 121, 132 }, |
| { 148, 146 }, { 174, 159 }, { 201, 171 }, { 255, 192 }, |
| }; |
| |
| const int lag = 3; |
| aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; |
| aom_noise_model_t model; |
| EXPECT_TRUE(aom_noise_model_init(&model, params)); |
| |
| // Setup the AR coeffs |
| memcpy(model.combined_state[0].eqns.x, kInputCoeffsY, sizeof(kInputCoeffsY)); |
| memcpy(model.combined_state[1].eqns.x, kInputCoeffsCB, |
| sizeof(kInputCoeffsCB)); |
| memcpy(model.combined_state[2].eqns.x, kInputCoeffsCR, |
| sizeof(kInputCoeffsCR)); |
| for (int i = 0; i < model.combined_state[0].strength_solver.num_bins; ++i) { |
| const double x = |
| ((double)i) / (model.combined_state[0].strength_solver.num_bins - 1.0); |
| model.combined_state[0].strength_solver.eqns.x[i] = 6 * sqrt(x); |
| model.combined_state[1].strength_solver.eqns.x[i] = 3; |
| model.combined_state[2].strength_solver.eqns.x[i] = 2; |
| |
| // Inject some observations into the strength solver, as during film grain |
| // parameter extraction an estimate of the average strength will be used to |
| // adjust correlation. |
| const int n = model.combined_state[0].strength_solver.num_bins; |
| for (int j = 0; j < model.combined_state[0].strength_solver.num_bins; ++j) { |
| model.combined_state[0].strength_solver.eqns.A[i * n + j] = 1; |
| model.combined_state[1].strength_solver.eqns.A[i * n + j] = 1; |
| model.combined_state[2].strength_solver.eqns.A[i * n + j] = 1; |
| } |
| } |
| |
| aom_film_grain_t film_grain; |
| EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); |
| EXPECT_EQ(lag, film_grain.ar_coeff_lag); |
| EXPECT_EQ(3, film_grain.ar_coeff_lag); |
| EXPECT_EQ(7, film_grain.ar_coeff_shift); |
| EXPECT_EQ(10, film_grain.scaling_shift); |
| EXPECT_EQ(kNumScalingPointsY, film_grain.num_y_points); |
| EXPECT_EQ(1, film_grain.update_parameters); |
| EXPECT_EQ(1, film_grain.apply_grain); |
| |
| const int kNumARCoeffs = 24; |
| for (int i = 0; i < kNumARCoeffs; ++i) { |
| EXPECT_EQ(kExpectedARCoeffsY[i], film_grain.ar_coeffs_y[i]); |
| } |
| for (int i = 0; i < kNumARCoeffs + 1; ++i) { |
| EXPECT_EQ(kExpectedARCoeffsCB[i], film_grain.ar_coeffs_cb[i]); |
| } |
| for (int i = 0; i < kNumARCoeffs + 1; ++i) { |
| EXPECT_EQ(kExpectedARCoeffsCR[i], film_grain.ar_coeffs_cr[i]); |
| } |
| for (int i = 0; i < kNumScalingPointsY; ++i) { |
| EXPECT_EQ(kExpectedScalingPointsY[i][0], film_grain.scaling_points_y[i][0]); |
| EXPECT_EQ(kExpectedScalingPointsY[i][1], film_grain.scaling_points_y[i][1]); |
| } |
| |
| // CB strength should just be a piecewise segment |
| EXPECT_EQ(2, film_grain.num_cb_points); |
| EXPECT_EQ(0, film_grain.scaling_points_cb[0][0]); |
| EXPECT_EQ(255, film_grain.scaling_points_cb[1][0]); |
| EXPECT_EQ(96, film_grain.scaling_points_cb[0][1]); |
| EXPECT_EQ(96, film_grain.scaling_points_cb[1][1]); |
| |
| // CR strength should just be a piecewise segment |
| EXPECT_EQ(2, film_grain.num_cr_points); |
| EXPECT_EQ(0, film_grain.scaling_points_cr[0][0]); |
| EXPECT_EQ(255, film_grain.scaling_points_cr[1][0]); |
| EXPECT_EQ(64, film_grain.scaling_points_cr[0][1]); |
| EXPECT_EQ(64, film_grain.scaling_points_cr[1][1]); |
| |
| EXPECT_EQ(128, film_grain.cb_mult); |
| EXPECT_EQ(192, film_grain.cb_luma_mult); |
| EXPECT_EQ(256, film_grain.cb_offset); |
| EXPECT_EQ(128, film_grain.cr_mult); |
| EXPECT_EQ(192, film_grain.cr_luma_mult); |
| EXPECT_EQ(256, film_grain.cr_offset); |
| EXPECT_EQ(0, film_grain.chroma_scaling_from_luma); |
| EXPECT_EQ(0, film_grain.grain_scale_shift); |
| |
| aom_noise_model_free(&model); |
| } |
| |
| template <typename T> |
| class WienerDenoiseTest : public ::testing::Test, public T { |
| public: |
| static void SetUpTestSuite() { aom_dsp_rtcd(); } |
| |
| protected: |
| void SetUp() { |
| static const float kNoiseLevel = 5.f; |
| static const float kStd = 4.0; |
| static const double kMaxValue = (1 << T::kBitDepth) - 1; |
| |
| chroma_sub_[0] = 1; |
| chroma_sub_[1] = 1; |
| stride_[0] = kWidth; |
| stride_[1] = kWidth / 2; |
| stride_[2] = kWidth / 2; |
| for (int k = 0; k < 3; ++k) { |
| data_[k].resize(kWidth * kHeight); |
| denoised_[k].resize(kWidth * kHeight); |
| noise_psd_[k].resize(kBlockSize * kBlockSize); |
| } |
| |
| const double kCoeffsY[] = { 0.0406, -0.116, -0.078, -0.152, 0.0033, -0.093, |
| 0.048, 0.404, 0.2353, -0.035, -0.093, 0.441 }; |
| const int kCoords[12][2] = { |
| { -2, -2 }, { -1, -2 }, { 0, -2 }, { 1, -2 }, { 2, -2 }, { -2, -1 }, |
| { -1, -1 }, { 0, -1 }, { 1, -1 }, { 2, -1 }, { -2, 0 }, { -1, 0 } |
| }; |
| const int kLag = 2; |
| const int kLength = 12; |
| libaom_test::ACMRandom random; |
| std::vector<double> noise(kWidth * kHeight); |
| noise_synth(&random, kLag, kLength, kCoords, kCoeffsY, &noise[0], kWidth, |
| kHeight); |
| noise_psd_[0] = get_noise_psd(&noise[0], kWidth, kHeight, kBlockSize); |
| for (int i = 0; i < kBlockSize * kBlockSize; ++i) { |
| noise_psd_[0][i] = (float)(noise_psd_[0][i] * kStd * kStd * kScaleNoise * |
| kScaleNoise / (kMaxValue * kMaxValue)); |
| } |
| |
| float psd_value = |
| aom_noise_psd_get_default_value(kBlockSizeChroma, kNoiseLevel); |
| for (int i = 0; i < kBlockSizeChroma * kBlockSizeChroma; ++i) { |
| noise_psd_[1][i] = psd_value; |
| noise_psd_[2][i] = psd_value; |
| } |
| for (int y = 0; y < kHeight; ++y) { |
| for (int x = 0; x < kWidth; ++x) { |
| data_[0][y * stride_[0] + x] = (typename T::data_type_t)fclamp( |
| (x + noise[y * stride_[0] + x] * kStd) * kScaleNoise, 0, kMaxValue); |
| } |
| } |
| |
| for (int c = 1; c < 3; ++c) { |
| for (int y = 0; y < (kHeight >> 1); ++y) { |
| for (int x = 0; x < (kWidth >> 1); ++x) { |
| data_[c][y * stride_[c] + x] = (typename T::data_type_t)fclamp( |
| (x + randn(&random, kStd)) * kScaleNoise, 0, kMaxValue); |
| } |
| } |
| } |
| for (int k = 0; k < 3; ++k) { |
| noise_psd_ptrs_[k] = &noise_psd_[k][0]; |
| } |
| } |
| static const int kBlockSize = 32; |
| static const int kBlockSizeChroma = 16; |
| static const int kWidth = 256; |
| static const int kHeight = 256; |
| static const int kScaleNoise = 1 << (T::kBitDepth - 8); |
| |
| std::vector<typename T::data_type_t> data_[3]; |
| std::vector<typename T::data_type_t> denoised_[3]; |
| std::vector<float> noise_psd_[3]; |
| int chroma_sub_[2]; |
| float *noise_psd_ptrs_[3]; |
| int stride_[3]; |
| }; |
| |
| TYPED_TEST_SUITE_P(WienerDenoiseTest); |
| |
| TYPED_TEST_P(WienerDenoiseTest, InvalidBlockSize) { |
| const uint8_t *const data_ptrs[3] = { |
| reinterpret_cast<uint8_t *>(&this->data_[0][0]), |
| reinterpret_cast<uint8_t *>(&this->data_[1][0]), |
| reinterpret_cast<uint8_t *>(&this->data_[2][0]), |
| }; |
| uint8_t *denoised_ptrs[3] = { |
| reinterpret_cast<uint8_t *>(&this->denoised_[0][0]), |
| reinterpret_cast<uint8_t *>(&this->denoised_[1][0]), |
| reinterpret_cast<uint8_t *>(&this->denoised_[2][0]), |
| }; |
| EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, |
| this->kHeight, this->stride_, |
| this->chroma_sub_, this->noise_psd_ptrs_, |
| 18, this->kBitDepth, this->kUseHighBD)); |
| EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, |
| this->kHeight, this->stride_, |
| this->chroma_sub_, this->noise_psd_ptrs_, |
| 48, this->kBitDepth, this->kUseHighBD)); |
| EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, |
| this->kHeight, this->stride_, |
| this->chroma_sub_, this->noise_psd_ptrs_, |
| 64, this->kBitDepth, this->kUseHighBD)); |
| } |
| |
| TYPED_TEST_P(WienerDenoiseTest, InvalidChromaSubsampling) { |
| const uint8_t *const data_ptrs[3] = { |
| reinterpret_cast<uint8_t *>(&this->data_[0][0]), |
| reinterpret_cast<uint8_t *>(&this->data_[1][0]), |
| reinterpret_cast<uint8_t *>(&this->data_[2][0]), |
| }; |
| uint8_t *denoised_ptrs[3] = { |
| reinterpret_cast<uint8_t *>(&this->denoised_[0][0]), |
| reinterpret_cast<uint8_t *>(&this->denoised_[1][0]), |
| reinterpret_cast<uint8_t *>(&this->denoised_[2][0]), |
| }; |
| int chroma_sub[2] = { 1, 0 }; |
| EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, |
| this->kHeight, this->stride_, chroma_sub, |
| this->noise_psd_ptrs_, 32, this->kBitDepth, |
| this->kUseHighBD)); |
| |
| chroma_sub[0] = 0; |
| chroma_sub[1] = 1; |
| EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, |
| this->kHeight, this->stride_, chroma_sub, |
| this->noise_psd_ptrs_, 32, this->kBitDepth, |
| this->kUseHighBD)); |
| } |
| |
| TYPED_TEST_P(WienerDenoiseTest, GradientTest) { |
| const int kWidth = this->kWidth; |
| const int kHeight = this->kHeight; |
| const int kBlockSize = this->kBlockSize; |
| const uint8_t *const data_ptrs[3] = { |
| reinterpret_cast<uint8_t *>(&this->data_[0][0]), |
| reinterpret_cast<uint8_t *>(&this->data_[1][0]), |
| reinterpret_cast<uint8_t *>(&this->data_[2][0]), |
| }; |
| uint8_t *denoised_ptrs[3] = { |
| reinterpret_cast<uint8_t *>(&this->denoised_[0][0]), |
| reinterpret_cast<uint8_t *>(&this->denoised_[1][0]), |
| reinterpret_cast<uint8_t *>(&this->denoised_[2][0]), |
| }; |
| const int ret = aom_wiener_denoise_2d( |
| data_ptrs, denoised_ptrs, kWidth, kHeight, this->stride_, |
| this->chroma_sub_, this->noise_psd_ptrs_, this->kBlockSize, |
| this->kBitDepth, this->kUseHighBD); |
| EXPECT_EQ(1, ret); |
| |
| // Check the noise on the denoised image (from the analytical gradient) |
| // and make sure that it is less than what we added. |
| for (int c = 0; c < 3; ++c) { |
| std::vector<double> measured_noise(kWidth * kHeight); |
| |
| double var = 0; |
| const int shift = (c > 0); |
| for (int x = 0; x < (kWidth >> shift); ++x) { |
| for (int y = 0; y < (kHeight >> shift); ++y) { |
| const double diff = this->denoised_[c][y * this->stride_[c] + x] - |
| x * this->kScaleNoise; |
| var += diff * diff; |
| measured_noise[y * kWidth + x] = diff; |
| } |
| } |
| var /= (kWidth * kHeight); |
| const double std = sqrt(std::max(0.0, var)); |
| EXPECT_LE(std, 1.25f * this->kScaleNoise); |
| if (c == 0) { |
| std::vector<float> measured_psd = |
| get_noise_psd(&measured_noise[0], kWidth, kHeight, kBlockSize); |
| std::vector<double> measured_psd_d(kBlockSize * kBlockSize); |
| std::vector<double> noise_psd_d(kBlockSize * kBlockSize); |
| std::copy(measured_psd.begin(), measured_psd.end(), |
| measured_psd_d.begin()); |
| std::copy(this->noise_psd_[0].begin(), this->noise_psd_[0].end(), |
| noise_psd_d.begin()); |
| EXPECT_LT( |
| aom_normalized_cross_correlation(&measured_psd_d[0], &noise_psd_d[0], |
| (int)(noise_psd_d.size())), |
| 0.35); |
| } |
| } |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(WienerDenoiseTest, InvalidBlockSize, |
| InvalidChromaSubsampling, GradientTest); |
| |
| INSTANTIATE_TYPED_TEST_SUITE_P(WienerDenoiseTestInstatiation, WienerDenoiseTest, |
| AllBitDepthParams); |