| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include "aom_dsp/txfm_common.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 |  | 
 | void aom_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { | 
 |   // The 2D transform is done with two passes which are actually pretty | 
 |   // similar. In the first one, we transform the columns and transpose | 
 |   // the results. In the second one, we transform the rows. To achieve that, | 
 |   // as the first pass results are transposed, we transpose the columns (that | 
 |   // is the transposed rows) and transpose the results (so that it goes back | 
 |   // in normal/row positions). | 
 |   // We need an intermediate buffer between passes. | 
 |   tran_low_t intermediate[4 * 4]; | 
 |   const tran_low_t *in_low = NULL; | 
 |   tran_low_t *out = intermediate; | 
 |   // Do the two transform/transpose passes | 
 |   for (int pass = 0; pass < 2; ++pass) { | 
 |     tran_high_t in_high[4];    // canbe16 | 
 |     tran_high_t step[4];       // canbe16 | 
 |     tran_high_t temp1, temp2;  // needs32 | 
 |     for (int i = 0; i < 4; ++i) { | 
 |       // Load inputs. | 
 |       if (pass == 0) { | 
 |         in_high[0] = input[0 * stride] * 16; | 
 |         in_high[1] = input[1 * stride] * 16; | 
 |         in_high[2] = input[2 * stride] * 16; | 
 |         in_high[3] = input[3 * stride] * 16; | 
 |         if (i == 0 && in_high[0]) { | 
 |           ++in_high[0]; | 
 |         } | 
 |       } else { | 
 |         assert(in_low != NULL); | 
 |         in_high[0] = in_low[0 * 4]; | 
 |         in_high[1] = in_low[1 * 4]; | 
 |         in_high[2] = in_low[2 * 4]; | 
 |         in_high[3] = in_low[3 * 4]; | 
 |         ++in_low; | 
 |       } | 
 |       // Transform. | 
 |       step[0] = in_high[0] + in_high[3]; | 
 |       step[1] = in_high[1] + in_high[2]; | 
 |       step[2] = in_high[1] - in_high[2]; | 
 |       step[3] = in_high[0] - in_high[3]; | 
 |       temp1 = (step[0] + step[1]) * cospi_16_64; | 
 |       temp2 = (step[0] - step[1]) * cospi_16_64; | 
 |       out[0] = (tran_low_t)fdct_round_shift(temp1); | 
 |       out[2] = (tran_low_t)fdct_round_shift(temp2); | 
 |       temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; | 
 |       temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; | 
 |       out[1] = (tran_low_t)fdct_round_shift(temp1); | 
 |       out[3] = (tran_low_t)fdct_round_shift(temp2); | 
 |       // Do next column (which is a transposed row in second/horizontal pass) | 
 |       ++input; | 
 |       out += 4; | 
 |     } | 
 |     // Setup in/out for next pass. | 
 |     in_low = intermediate; | 
 |     out = output; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     for (int j = 0; j < 4; ++j) | 
 |       output[j + i * 4] = (output[j + i * 4] + 1) >> 2; | 
 |   } | 
 | } | 
 |  | 
 | void aom_fdct4x4_lp_c(const int16_t *input, int16_t *output, int stride) { | 
 |   // The 2D transform is done with two passes which are actually pretty | 
 |   // similar. In the first one, we transform the columns and transpose | 
 |   // the results. In the second one, we transform the rows. To achieve that, | 
 |   // as the first pass results are transposed, we transpose the columns (that | 
 |   // is the transposed rows) and transpose the results (so that it goes back | 
 |   // in normal/row positions). | 
 |   // We need an intermediate buffer between passes. | 
 |   int16_t intermediate[4 * 4]; | 
 |   const int16_t *in_low = NULL; | 
 |   int16_t *out = intermediate; | 
 |   // Do the two transform/transpose passes | 
 |   for (int pass = 0; pass < 2; ++pass) { | 
 |     int32_t in_high[4];    // canbe16 | 
 |     int32_t step[4];       // canbe16 | 
 |     int32_t temp1, temp2;  // needs32 | 
 |     for (int i = 0; i < 4; ++i) { | 
 |       // Load inputs. | 
 |       if (pass == 0) { | 
 |         in_high[0] = input[0 * stride] * 16; | 
 |         in_high[1] = input[1 * stride] * 16; | 
 |         in_high[2] = input[2 * stride] * 16; | 
 |         in_high[3] = input[3 * stride] * 16; | 
 |         if (i == 0 && in_high[0]) { | 
 |           ++in_high[0]; | 
 |         } | 
 |       } else { | 
 |         assert(in_low != NULL); | 
 |         in_high[0] = in_low[0 * 4]; | 
 |         in_high[1] = in_low[1 * 4]; | 
 |         in_high[2] = in_low[2 * 4]; | 
 |         in_high[3] = in_low[3 * 4]; | 
 |         ++in_low; | 
 |       } | 
 |       // Transform. | 
 |       step[0] = in_high[0] + in_high[3]; | 
 |       step[1] = in_high[1] + in_high[2]; | 
 |       step[2] = in_high[1] - in_high[2]; | 
 |       step[3] = in_high[0] - in_high[3]; | 
 |       temp1 = (step[0] + step[1]) * (int32_t)cospi_16_64; | 
 |       temp2 = (step[0] - step[1]) * (int32_t)cospi_16_64; | 
 |       out[0] = (int16_t)fdct_round_shift(temp1); | 
 |       out[2] = (int16_t)fdct_round_shift(temp2); | 
 |       temp1 = step[2] * (int32_t)cospi_24_64 + step[3] * (int32_t)cospi_8_64; | 
 |       temp2 = -step[2] * (int32_t)cospi_8_64 + step[3] * (int32_t)cospi_24_64; | 
 |       out[1] = (int16_t)fdct_round_shift(temp1); | 
 |       out[3] = (int16_t)fdct_round_shift(temp2); | 
 |       // Do next column (which is a transposed row in second/horizontal pass) | 
 |       ++input; | 
 |       out += 4; | 
 |     } | 
 |     // Setup in/out for next pass. | 
 |     in_low = intermediate; | 
 |     out = output; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     for (int j = 0; j < 4; ++j) | 
 |       output[j + i * 4] = (output[j + i * 4] + 1) >> 2; | 
 |   } | 
 | } | 
 |  | 
 | void aom_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { | 
 |   int i, j; | 
 |   tran_low_t intermediate[64]; | 
 |   int pass; | 
 |   tran_low_t *output = intermediate; | 
 |   const tran_low_t *in = NULL; | 
 |  | 
 |   // Transform columns | 
 |   for (pass = 0; pass < 2; ++pass) { | 
 |     tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16 | 
 |     tran_high_t t0, t1, t2, t3;                  // needs32 | 
 |     tran_high_t x0, x1, x2, x3;                  // canbe16 | 
 |  | 
 |     for (i = 0; i < 8; i++) { | 
 |       // stage 1 | 
 |       if (pass == 0) { | 
 |         s0 = (input[0 * stride] + input[7 * stride]) * 4; | 
 |         s1 = (input[1 * stride] + input[6 * stride]) * 4; | 
 |         s2 = (input[2 * stride] + input[5 * stride]) * 4; | 
 |         s3 = (input[3 * stride] + input[4 * stride]) * 4; | 
 |         s4 = (input[3 * stride] - input[4 * stride]) * 4; | 
 |         s5 = (input[2 * stride] - input[5 * stride]) * 4; | 
 |         s6 = (input[1 * stride] - input[6 * stride]) * 4; | 
 |         s7 = (input[0 * stride] - input[7 * stride]) * 4; | 
 |         ++input; | 
 |       } else { | 
 |         s0 = in[0 * 8] + in[7 * 8]; | 
 |         s1 = in[1 * 8] + in[6 * 8]; | 
 |         s2 = in[2 * 8] + in[5 * 8]; | 
 |         s3 = in[3 * 8] + in[4 * 8]; | 
 |         s4 = in[3 * 8] - in[4 * 8]; | 
 |         s5 = in[2 * 8] - in[5 * 8]; | 
 |         s6 = in[1 * 8] - in[6 * 8]; | 
 |         s7 = in[0 * 8] - in[7 * 8]; | 
 |         ++in; | 
 |       } | 
 |  | 
 |       // fdct4(step, step); | 
 |       x0 = s0 + s3; | 
 |       x1 = s1 + s2; | 
 |       x2 = s1 - s2; | 
 |       x3 = s0 - s3; | 
 |       t0 = (x0 + x1) * cospi_16_64; | 
 |       t1 = (x0 - x1) * cospi_16_64; | 
 |       t2 = x2 * cospi_24_64 + x3 * cospi_8_64; | 
 |       t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; | 
 |       output[0] = (tran_low_t)fdct_round_shift(t0); | 
 |       output[2] = (tran_low_t)fdct_round_shift(t2); | 
 |       output[4] = (tran_low_t)fdct_round_shift(t1); | 
 |       output[6] = (tran_low_t)fdct_round_shift(t3); | 
 |  | 
 |       // Stage 2 | 
 |       t0 = (s6 - s5) * cospi_16_64; | 
 |       t1 = (s6 + s5) * cospi_16_64; | 
 |       t2 = fdct_round_shift(t0); | 
 |       t3 = fdct_round_shift(t1); | 
 |  | 
 |       // Stage 3 | 
 |       x0 = s4 + t2; | 
 |       x1 = s4 - t2; | 
 |       x2 = s7 - t3; | 
 |       x3 = s7 + t3; | 
 |  | 
 |       // Stage 4 | 
 |       t0 = x0 * cospi_28_64 + x3 * cospi_4_64; | 
 |       t1 = x1 * cospi_12_64 + x2 * cospi_20_64; | 
 |       t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; | 
 |       t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; | 
 |       output[1] = (tran_low_t)fdct_round_shift(t0); | 
 |       output[3] = (tran_low_t)fdct_round_shift(t2); | 
 |       output[5] = (tran_low_t)fdct_round_shift(t1); | 
 |       output[7] = (tran_low_t)fdct_round_shift(t3); | 
 |       output += 8; | 
 |     } | 
 |     in = intermediate; | 
 |     output = final_output; | 
 |   } | 
 |  | 
 |   // Rows | 
 |   for (i = 0; i < 8; ++i) { | 
 |     for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; | 
 |   } | 
 | } | 
 |  | 
 | void aom_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, | 
 |                           int stride) { | 
 |   aom_fdct8x8_c(input, final_output, stride); | 
 | } |