| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_MV_H_ |
| #define AOM_AV1_COMMON_MV_H_ |
| |
| #include "av1/common/common.h" |
| #include "av1/common/common_data.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/flow_estimation/flow_estimation.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define INVALID_MV 0x80008000 |
| #define GET_MV_RAWPEL(x) (((x) + 3 + ((x) >= 0)) >> 3) |
| #define GET_MV_SUBPEL(x) ((x)*8) |
| |
| #define MARK_MV_INVALID(mv) \ |
| do { \ |
| ((int_mv *)(mv))->as_int = INVALID_MV; \ |
| } while (0); |
| #define CHECK_MV_EQUAL(x, y) (((x).row == (y).row) && ((x).col == (y).col)) |
| |
| // The motion vector in units of full pixel |
| typedef struct fullpel_mv { |
| int16_t row; |
| int16_t col; |
| } FULLPEL_MV; |
| |
| // The motion vector in units of 1/8-pel |
| typedef struct mv { |
| int16_t row; |
| int16_t col; |
| } MV; |
| |
| static const MV kZeroMv = { 0, 0 }; |
| static const FULLPEL_MV kZeroFullMv = { 0, 0 }; |
| |
| typedef union int_mv { |
| uint32_t as_int; |
| MV as_mv; |
| FULLPEL_MV as_fullmv; |
| } int_mv; /* facilitates faster equality tests and copies */ |
| |
| typedef struct mv32 { |
| int32_t row; |
| int32_t col; |
| } MV32; |
| |
| #if CONFIG_FLEX_MVRES |
| enum { |
| MV_PRECISION_8_PEL = 0, |
| MV_PRECISION_FOUR_PEL = 1, |
| MV_PRECISION_TWO_PEL = 2, |
| MV_PRECISION_ONE_PEL = 3, |
| MV_PRECISION_HALF_PEL = 4, |
| MV_PRECISION_QTR_PEL = 5, |
| MV_PRECISION_ONE_EIGHTH_PEL = 6, |
| NUM_MV_PRECISIONS, |
| } SENUM1BYTE(MvSubpelPrecision); |
| |
| #if ADAPTIVE_PRECISION_SETS |
| typedef struct { |
| uint8_t num_precisions; |
| MvSubpelPrecision precision[NUM_MV_PRECISIONS]; |
| } PRECISION_SET; |
| #if MODE_BASED_PRECISION_ADAPTATION |
| static const PRECISION_SET |
| av1_mv_precision_sets[2 * NUMBER_OF_PRECISION_SETS] = { |
| |
| // sets when maximum precision is 1/8th |
| { 4, |
| { MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, MV_PRECISION_HALF_PEL, |
| MV_PRECISION_ONE_EIGHTH_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, |
| NUM_MV_PRECISIONS } }, |
| { 7, |
| { MV_PRECISION_8_PEL, MV_PRECISION_FOUR_PEL, MV_PRECISION_TWO_PEL, |
| MV_PRECISION_ONE_PEL, MV_PRECISION_HALF_PEL, MV_PRECISION_QTR_PEL, |
| MV_PRECISION_ONE_EIGHTH_PEL } }, |
| |
| // sets when maximum precision is 1/4th |
| { 4, |
| { MV_PRECISION_8_PEL, MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, |
| MV_PRECISION_QTR_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, |
| NUM_MV_PRECISIONS } }, |
| { 6, |
| { MV_PRECISION_8_PEL, MV_PRECISION_FOUR_PEL, MV_PRECISION_TWO_PEL, |
| MV_PRECISION_ONE_PEL, MV_PRECISION_HALF_PEL, MV_PRECISION_QTR_PEL, |
| NUM_MV_PRECISIONS } }, |
| }; |
| |
| #else |
| static const PRECISION_SET av1_mv_precision_sets[2] = { |
| { 4, |
| { MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, MV_PRECISION_HALF_PEL, |
| MV_PRECISION_ONE_EIGHTH_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, |
| NUM_MV_PRECISIONS } }, |
| { 4, |
| { MV_PRECISION_8_PEL, MV_PRECISION_FOUR_PEL, MV_PRECISION_ONE_PEL, |
| MV_PRECISION_QTR_PEL, NUM_MV_PRECISIONS, NUM_MV_PRECISIONS, |
| NUM_MV_PRECISIONS } }, |
| }; |
| #endif |
| #endif |
| |
| #define FLEX_MV_COSTS_SB_SIZE (NUM_MV_PRECISIONS - 1) |
| #if ADAPTIVE_PRECISION_SETS && MODE_BASED_PRECISION_ADAPTATION |
| #define MV_PREC_DOWN_CONTEXTS (2 * NUMBER_OF_PRECISION_SETS) |
| #else |
| #define MV_PREC_DOWN_CONTEXTS 2 |
| #endif |
| #if ADAPTIVE_PRECISION_SETS |
| #define FLEX_MV_COSTS_SIZE (MAX_NUM_OF_SUPPORTED_PRECISIONS - 1) |
| #else |
| #define FLEX_MV_COSTS_SIZE (NUM_MV_PRECISIONS - 1) |
| #endif |
| |
| #define NUM_MV_PREC_MPP_CONTEXT 3 |
| #define NUM_PB_FLEX_QUALIFIED_MAX_PREC \ |
| ((NUM_MV_PRECISIONS) - (MV_PRECISION_HALF_PEL)) |
| |
| #endif // CONFIG_FLEX_MVRES |
| |
| // The mv limit for fullpel mvs |
| typedef struct { |
| int col_min; |
| int col_max; |
| int row_min; |
| int row_max; |
| } FullMvLimits; |
| |
| // The mv limit for subpel mvs |
| typedef struct { |
| int col_min; |
| int col_max; |
| int row_min; |
| int row_max; |
| } SubpelMvLimits; |
| |
| static AOM_INLINE FULLPEL_MV get_fullmv_from_mv(const MV *subpel_mv) { |
| const FULLPEL_MV full_mv = { (int16_t)GET_MV_RAWPEL(subpel_mv->row), |
| (int16_t)GET_MV_RAWPEL(subpel_mv->col) }; |
| return full_mv; |
| } |
| |
| static AOM_INLINE MV get_mv_from_fullmv(const FULLPEL_MV *full_mv) { |
| const MV subpel_mv = { (int16_t)GET_MV_SUBPEL(full_mv->row), |
| (int16_t)GET_MV_SUBPEL(full_mv->col) }; |
| return subpel_mv; |
| } |
| |
| static AOM_INLINE void convert_fullmv_to_mv(int_mv *mv) { |
| mv->as_mv = get_mv_from_fullmv(&mv->as_fullmv); |
| } |
| |
| #if CONFIG_FLEX_MVRES |
| #define ABS(x) (((x) >= 0) ? (x) : (-(x))) |
| |
| static INLINE void lower_mv_precision(MV *mv, MvSubpelPrecision precision) { |
| const int radix = (1 << (MV_PRECISION_ONE_EIGHTH_PEL - precision)); |
| if (radix == 1) return; |
| int mod = (mv->row % radix); |
| if (mod != 0) { |
| mv->row -= mod; |
| if (ABS(mod) > radix / 2) { |
| if (mod > 0) { |
| mv->row += radix; |
| } else { |
| mv->row -= radix; |
| } |
| } |
| } |
| |
| mod = (mv->col % radix); |
| if (mod != 0) { |
| mv->col -= mod; |
| if (ABS(mod) > radix / 2) { |
| if (mod > 0) { |
| mv->col += radix; |
| } else { |
| mv->col -= radix; |
| } |
| } |
| } |
| } |
| |
| static INLINE void full_pel_lower_mv_precision(FULLPEL_MV *full_pel_mv, |
| MvSubpelPrecision precision) { |
| if (precision >= MV_PRECISION_ONE_PEL) return; |
| |
| const int radix = (1 << (MV_PRECISION_ONE_PEL - precision)); |
| if (radix == 1) return; |
| int mod = (full_pel_mv->row % radix); |
| if (mod != 0) { |
| full_pel_mv->row -= mod; |
| if (ABS(mod) > radix / 2) { |
| if (mod > 0) { |
| full_pel_mv->row += radix; |
| } else { |
| full_pel_mv->row -= radix; |
| } |
| } |
| } |
| |
| mod = (full_pel_mv->col % radix); |
| if (mod != 0) { |
| full_pel_mv->col -= mod; |
| if (ABS(mod) > radix / 2) { |
| if (mod > 0) { |
| full_pel_mv->col += radix; |
| } else { |
| full_pel_mv->col -= radix; |
| } |
| } |
| } |
| } |
| |
| static INLINE void full_pel_lower_mv_precision_one_comp( |
| int *comp_value, MvSubpelPrecision precision, int is_max) { |
| if (precision >= MV_PRECISION_ONE_PEL) return; |
| const int radix = (1 << (MV_PRECISION_ONE_PEL - precision)); |
| int value = *comp_value; |
| int mod = (value % radix); |
| if (mod != 0) { |
| if (mod < 0) |
| value -= mod; |
| else |
| value += (radix - ABS(mod)); |
| |
| if (is_max) { |
| value -= radix; |
| } |
| *comp_value = value; |
| } |
| } |
| #endif // CONFIG_FLEX_MVRES |
| |
| // Bits of precision used for the model |
| #define WARPEDMODEL_PREC_BITS 16 |
| #define WARPEDMODEL_ROW3HOMO_PREC_BITS 16 |
| |
| #define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS) |
| #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3)) |
| #define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 2)) |
| |
| // Bits of subpel precision for warped interpolation |
| #define WARPEDPIXEL_PREC_BITS 6 |
| #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS) |
| |
| #define WARP_PARAM_REDUCE_BITS 6 |
| |
| #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS) |
| |
| typedef struct { |
| int global_warp_allowed; |
| int local_warp_allowed; |
| } WarpTypesAllowed; |
| |
| // The order of values in the wmmat matrix below is best described |
| // by the homography: |
| // [x' (m2 m3 m0 [x |
| // z . y' = m4 m5 m1 * y |
| // 1] m6 m7 1) 1] |
| typedef struct { |
| int32_t wmmat[MAX_PARAMDIM - 1]; |
| int16_t alpha, beta, gamma, delta; |
| TransformationType wmtype; |
| int8_t invalid; |
| } WarpedMotionParams; |
| |
| /* clang-format off */ |
| static const WarpedMotionParams default_warp_params = { |
| { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, |
| 0 }, |
| 0, 0, 0, 0, |
| IDENTITY, |
| 0, |
| }; |
| /* clang-format on */ |
| |
| // The following constants describe the various precisions |
| // of different parameters in the global motion experiment. |
| // |
| // Given the general homography: |
| // [x' (a b c [x |
| // z . y' = d e f * y |
| // 1] g h i) 1] |
| // |
| // Constants using the name ALPHA here are related to parameters |
| // a, b, d, e. Constants using the name TRANS are related |
| // to parameters c and f. |
| // |
| // Anything ending in PREC_BITS is the number of bits of precision |
| // to maintain when converting from double to integer. |
| // |
| // The ABS parameters are used to create an upper and lower bound |
| // for each parameter. In other words, after a parameter is integerized |
| // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS). |
| // |
| // XXX_PREC_DIFF and XXX_DECODE_FACTOR |
| // are computed once here to prevent repetitive |
| // computation on the decoder side. These are |
| // to allow the global motion parameters to be encoded in a lower |
| // precision than the warped model precision. This means that they |
| // need to be changed to warped precision when they are decoded. |
| // |
| // XX_MIN, XX_MAX are also computed to avoid repeated computation |
| |
| #define SUBEXPFIN_K 3 |
| #define GM_TRANS_PREC_BITS 6 |
| #define GM_ABS_TRANS_BITS 12 |
| #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3) |
| #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS) |
| #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) |
| #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF) |
| #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF) |
| |
| #define GM_ALPHA_PREC_BITS 15 |
| #define GM_ABS_ALPHA_BITS 12 |
| #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS) |
| #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF) |
| |
| #define GM_ROW3HOMO_PREC_BITS 16 |
| #define GM_ABS_ROW3HOMO_BITS 11 |
| #define GM_ROW3HOMO_PREC_DIFF \ |
| (WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS) |
| #define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF) |
| |
| #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS) |
| #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS) |
| #define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS) |
| |
| #define GM_TRANS_MIN -GM_TRANS_MAX |
| #define GM_ALPHA_MIN -GM_ALPHA_MAX |
| #define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX |
| |
| static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) { |
| const int bw = block_size_wide[bs]; |
| return mi_col * MI_SIZE + bw / 2 - 1; |
| } |
| |
| static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) { |
| const int bh = block_size_high[bs]; |
| return mi_row * MI_SIZE + bh / 2 - 1; |
| } |
| |
| #if CONFIG_FLEX_MVRES |
| static INLINE int convert_to_trans_prec(MvSubpelPrecision precision, int coor) { |
| if (precision > MV_PRECISION_QTR_PEL) |
| #else |
| static INLINE int convert_to_trans_prec(int allow_hp, int coor) { |
| if (allow_hp) |
| #endif |
| return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3); |
| else |
| return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2; |
| } |
| |
| #if CONFIG_FLEX_MVRES |
| // Returns how many bits do not need to be signaled relative to |
| // MV_PRECISION_ONE_EIGHTH_PEL |
| static INLINE int get_gm_precision_loss(MvSubpelPrecision precision) { |
| // NOTE: there is a bit of an anomaly in AV1 that the translation-only |
| // global parameters are sent only at 1/4 or 1/8 pel resolution depending |
| // on whether the allow_high_precision_mv flag is 0 or 1, but the |
| // cur_frame_force_integer_mv is ignored. Hence the AOMMIN(1, ...) |
| // below, but in CONFIG_FLEX_MVRES we correct that so that translation- |
| // only global parameters are sent at the MV resolution of the frame. |
| return AOMMIN(1, MV_PRECISION_ONE_EIGHTH_PEL - precision); |
| } |
| #else |
| static INLINE void integer_mv_precision(MV *mv) { |
| int mod = (mv->row % 8); |
| if (mod != 0) { |
| mv->row -= mod; |
| if (abs(mod) > 4) { |
| if (mod > 0) { |
| mv->row += 8; |
| } else { |
| mv->row -= 8; |
| } |
| } |
| } |
| |
| mod = (mv->col % 8); |
| if (mod != 0) { |
| mv->col -= mod; |
| if (abs(mod) > 4) { |
| if (mod > 0) { |
| mv->col += 8; |
| } else { |
| mv->col -= 8; |
| } |
| } |
| } |
| } |
| #endif |
| // Convert a global motion vector into a motion vector at the centre of the |
| // given block. |
| // |
| // The resulting motion vector will have three fractional bits of precision. If |
| // precision < MV_SUBPEL_EIGHTH, the bottom bit will always be zero. If |
| // CONFIG_AMVR and precision == MV_SUBPEL_NONE, the bottom three bits will be |
| // zero (so the motion vector represents an integer) |
| #if CONFIG_FLEX_MVRES |
| static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm, |
| MvSubpelPrecision precision, |
| BLOCK_SIZE bsize, int mi_col, |
| int mi_row) { |
| #else |
| static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm, |
| int allow_hp, BLOCK_SIZE bsize, |
| int mi_col, int mi_row, |
| int is_integer) { |
| #endif |
| int_mv res; |
| |
| if (gm->wmtype == IDENTITY) { |
| res.as_int = 0; |
| return res; |
| } |
| |
| const int32_t *mat = gm->wmmat; |
| int x, y, tx, ty; |
| |
| if (gm->wmtype == TRANSLATION) { |
| // All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16) |
| // bits of fractional precision. The offset for a translation is stored in |
| // entries 0 and 1. For translations, all but the top three (two if |
| // precision < MV_SUBPEL_EIGHTH) fractional bits are always |
| // zero. |
| // |
| #if CONFIG_FLEX_MVRES |
| // After the right shifts, there are 3 fractional bits of precision. If |
| // precision < MV_SUBPEL_EIGHTH is false, the bottom bit is always zero |
| // (so we don't need a call to convert_to_trans_prec here) |
| res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF; |
| res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF; |
| assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), |
| precision == MV_PRECISION_ONE_EIGHTH_PEL)); |
| lower_mv_precision(&res.as_mv, precision); |
| #else |
| // After the right shifts, there are 3 fractional bits of precision. If |
| // allow_hp is false, the bottom bit is always zero (so we don't need a |
| // call to convert_to_trans_prec here) |
| res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF; |
| res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF; |
| assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), allow_hp)); |
| if (is_integer) { |
| integer_mv_precision(&res.as_mv); |
| } |
| #endif |
| return res; |
| } |
| |
| x = block_center_x(mi_col, bsize); |
| y = block_center_y(mi_row, bsize); |
| |
| if (gm->wmtype == ROTZOOM) { |
| assert(gm->wmmat[5] == gm->wmmat[2]); |
| assert(gm->wmmat[4] == -gm->wmmat[3]); |
| } |
| |
| const int xc = |
| (mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0]; |
| const int yc = |
| mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1]; |
| #if CONFIG_FLEX_MVRES |
| tx = convert_to_trans_prec(precision, xc); |
| ty = convert_to_trans_prec(precision, yc); |
| #else |
| tx = convert_to_trans_prec(allow_hp, xc); |
| ty = convert_to_trans_prec(allow_hp, yc); |
| #endif |
| |
| res.as_mv.row = ty; |
| res.as_mv.col = tx; |
| |
| #if CONFIG_FLEX_MVRES |
| lower_mv_precision(&res.as_mv, precision); |
| #else |
| if (is_integer) { |
| integer_mv_precision(&res.as_mv); |
| } |
| #endif |
| return res; |
| } |
| |
| static INLINE TransformationType get_wmtype(const WarpedMotionParams *gm) { |
| if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] && |
| gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) { |
| return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION); |
| } |
| if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4]) |
| return ROTZOOM; |
| else |
| return AFFINE; |
| } |
| |
| typedef struct candidate_mv { |
| int_mv this_mv; |
| int_mv comp_mv; |
| } CANDIDATE_MV; |
| |
| static INLINE int is_zero_mv(const MV *mv) { |
| return *((const uint32_t *)mv) == 0; |
| } |
| |
| static INLINE int is_equal_mv(const MV *a, const MV *b) { |
| return *((const uint32_t *)a) == *((const uint32_t *)b); |
| } |
| |
| static INLINE void clamp_mv(MV *mv, const SubpelMvLimits *mv_limits) { |
| mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); |
| mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); |
| } |
| |
| static INLINE void clamp_fullmv(FULLPEL_MV *mv, const FullMvLimits *mv_limits) { |
| mv->col = clamp(mv->col, mv_limits->col_min, mv_limits->col_max); |
| mv->row = clamp(mv->row, mv_limits->row_min, mv_limits->row_max); |
| } |
| #if 0 // CONFIG_FLEX_MVRES |
| static INLINE MvSubpelPrecision |
| get_mv_precision(const MV mv, MvSubpelPrecision max_precision) { |
| return max_precision; |
| } |
| static INLINE MvSubpelPrecision |
| get_mv_precision2(const MV mv, const MV mv2, MvSubpelPrecision max_precision) { |
| return (MvSubpelPrecision)AOMMAX(get_mv_precision(mv, max_precision), |
| get_mv_precision(mv2, max_precision)); |
| } |
| #endif // CONFIG_FLEX_MVRES |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AOM_AV1_COMMON_MV_H_ |