| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 |  | 
 | #include "av1/common/common.h" | 
 | #include "av1/common/pred_common.h" | 
 | #include "av1/common/reconinter.h" | 
 | #include "av1/common/reconintra.h" | 
 | #include "av1/common/seg_common.h" | 
 |  | 
 | #if CONFIG_NEW_REF_SIGNALING | 
 | // Comparison function to sort reference frames in ascending score order | 
 | static int compare_score_data_asc(const void *a, const void *b) { | 
 |   if (((RefScoreData *)a)->score == ((RefScoreData *)b)->score) { | 
 |     return 0; | 
 |   } else if (((const RefScoreData *)a)->score > | 
 |              ((const RefScoreData *)b)->score) { | 
 |     return 1; | 
 |   } else { | 
 |     return -1; | 
 |   } | 
 | } | 
 |  | 
 | static void bubble_sort_ref_scores(RefScoreData *scores, int n_ranked) { | 
 |   for (int i = n_ranked - 1; i > 0; --i) { | 
 |     for (int j = 0; j < i; j++) { | 
 |       if (compare_score_data_asc(&scores[j], &scores[j + 1]) > 0) { | 
 |         RefScoreData score_temp = scores[j]; | 
 |         scores[j] = scores[j + 1]; | 
 |         scores[j + 1] = score_temp; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Checks to see if a particular reference frame is already in the reference | 
 | // frame map | 
 | static int is_in_ref_score(RefScoreData *map, int disp_order, int score, | 
 |                            int n_frames) { | 
 |   for (int i = 0; i < n_frames; i++) { | 
 |     if (disp_order == map[i].disp_order && score == map[i].score) return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Only 7 out of 8 reference buffers will be used as reference frames. This | 
 | // function applies heuristics to determine which one to be left out. | 
 | static int get_unmapped_ref(RefScoreData *scores, int n_bufs) { | 
 |   if (n_bufs < INTER_REFS_PER_FRAME) return INVALID_IDX; | 
 |  | 
 |   int min_q = INT_MAX; | 
 |   int max_q = INT_MIN; | 
 |   for (int i = n_bufs - 1; i >= 0; i--) { | 
 |     min_q = AOMMIN(min_q, scores[i].base_qindex); | 
 |     max_q = AOMMAX(max_q, scores[i].base_qindex); | 
 |   } | 
 |   const int q_thresh = (max_q + min_q + 1) / 2; | 
 |  | 
 |   int unmapped_past_idx = INVALID_IDX; | 
 |   int unmapped_future_idx = INVALID_IDX; | 
 |   int max_past_score = 0; | 
 |   int max_future_score = 0; | 
 |   int n_past = 0; | 
 |   int n_future = 0; | 
 |   for (int i = 0; i < n_bufs; i++) { | 
 |     if (scores[i].base_qindex >= q_thresh) { | 
 |       int dist = scores[i].distance; | 
 |       if (dist > 0) { | 
 |         if (dist > max_past_score) { | 
 |           max_past_score = dist; | 
 |           unmapped_past_idx = i; | 
 |         } | 
 |         n_past++; | 
 |       } else if (dist < 0) { | 
 |         if (-dist > max_future_score) { | 
 |           max_future_score = -dist; | 
 |           unmapped_future_idx = i; | 
 |         } | 
 |         n_future++; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (n_past > n_future) return unmapped_past_idx; | 
 |   if (n_past < n_future) return unmapped_future_idx; | 
 |   if (n_past == n_future && n_past > 0) | 
 |     return max_past_score >= max_future_score ? unmapped_past_idx | 
 |                                               : unmapped_future_idx; | 
 |  | 
 |   return INVALID_IDX; | 
 | } | 
 |  | 
 | // Obtain the lists of past/cur/future reference frames and their sizes. | 
 | void av1_get_past_future_cur_ref_lists(AV1_COMMON *cm, RefScoreData *scores) { | 
 |   int n_future = 0; | 
 |   int n_past = 0; | 
 |   int n_cur = 0; | 
 |   for (int i = 0; i < cm->ref_frames_info.num_total_refs; i++) { | 
 |     // If order hint is disabled, the scores and past/future information are | 
 |     // not available to the decoder. Assume all references are from the past. | 
 |     if (!cm->seq_params.order_hint_info.enable_order_hint || | 
 |         scores[i].distance > 0) { | 
 |       cm->ref_frames_info.past_refs[n_past] = i; | 
 |       n_past++; | 
 |     } else if (scores[i].distance < 0) { | 
 |       cm->ref_frames_info.future_refs[n_future] = i; | 
 |       n_future++; | 
 |     } else { | 
 |       cm->ref_frames_info.cur_refs[n_cur] = i; | 
 |       n_cur++; | 
 |     } | 
 |   } | 
 |   cm->ref_frames_info.num_past_refs = n_past; | 
 |   cm->ref_frames_info.num_future_refs = n_future; | 
 |   cm->ref_frames_info.num_cur_refs = n_cur; | 
 | } | 
 |  | 
 | #define DIST_WEIGHT_BITS 6 | 
 | #define DECAY_DIST_CAP 6 | 
 |  | 
 | static const int temp_dist_score_lookup[7] = { | 
 |   0, 64, 96, 112, 120, 124, 126, | 
 | }; | 
 |  | 
 | // Determine reference mapping by ranking the reference frames based on a | 
 | // score function. | 
 | void av1_get_ref_frames(AV1_COMMON *cm, int cur_frame_disp, | 
 |                         RefFrameMapPair *ref_frame_map_pairs) { | 
 |   RefScoreData scores[REF_FRAMES]; | 
 |   memset(scores, 0, REF_FRAMES * sizeof(*scores)); | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     scores[i].score = INT_MAX; | 
 |     cm->remapped_ref_idx[i] = INVALID_IDX; | 
 |   } | 
 |   int n_ranked = 0; | 
 |  | 
 |   // Give more weight to base_qindex if all references are from the past | 
 |   int max_disp = 0; | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     RefFrameMapPair cur_ref = ref_frame_map_pairs[i]; | 
 |     if (cur_ref.disp_order == -1) continue; | 
 |     max_disp = AOMMAX(max_disp, cur_ref.disp_order); | 
 |   } | 
 |  | 
 |   // Compute a score for each reference buffer | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     // Get reference frame buffer | 
 |     RefFrameMapPair cur_ref = ref_frame_map_pairs[i]; | 
 |     if (cur_ref.disp_order == -1) continue; | 
 |     const int ref_disp = cur_ref.disp_order; | 
 |     // In error resilient mode, ref mapping must be independent of the | 
 |     // base_qindex to ensure decoding independency | 
 |     const int ref_base_qindex = cur_ref.base_qindex; | 
 |     const int disp_diff = cur_frame_disp - ref_disp; | 
 |     int tdist = abs(disp_diff); | 
 |     const int score = | 
 |         max_disp > cur_frame_disp | 
 |             ? ((tdist << DIST_WEIGHT_BITS) + ref_base_qindex) | 
 |             : temp_dist_score_lookup[AOMMIN(tdist, DECAY_DIST_CAP)] + | 
 |                   AOMMAX(tdist - DECAY_DIST_CAP, 0) + ref_base_qindex; | 
 |     if (is_in_ref_score(scores, ref_disp, score, n_ranked)) continue; | 
 |  | 
 |     scores[n_ranked].index = i; | 
 |     scores[n_ranked].score = score; | 
 |     scores[n_ranked].distance = disp_diff; | 
 |     scores[n_ranked].disp_order = ref_disp; | 
 |     scores[n_ranked].base_qindex = ref_base_qindex; | 
 |     n_ranked++; | 
 |   } | 
 |   if (n_ranked > INTER_REFS_PER_FRAME) { | 
 |     const int unmapped_idx = get_unmapped_ref(scores, n_ranked); | 
 |     if (unmapped_idx != INVALID_IDX) scores[unmapped_idx].score = INT_MAX; | 
 |   } | 
 |  | 
 |   // Sort the references according to their score | 
 |   bubble_sort_ref_scores(scores, n_ranked); | 
 |  | 
 |   cm->ref_frames_info.num_total_refs = | 
 |       AOMMIN(n_ranked, cm->seq_params.max_reference_frames); | 
 |   for (int i = 0; i < cm->ref_frames_info.num_total_refs; i++) { | 
 |     cm->remapped_ref_idx[i] = scores[i].index; | 
 |     // The distance is not available to the decoder when order_hint is disabled. | 
 |     // In that case, set all distances to 1. | 
 |     cm->ref_frames_info.ref_frame_distance[i] = | 
 |         cm->seq_params.order_hint_info.enable_order_hint ? scores[i].distance | 
 |                                                          : 1; | 
 |   } | 
 |  | 
 |   // Fill in RefFramesInfo struct according to computed mapping | 
 |   av1_get_past_future_cur_ref_lists(cm, scores); | 
 |  | 
 |   if (n_ranked > INTER_REFS_PER_FRAME) | 
 |     cm->remapped_ref_idx[n_ranked - 1] = scores[n_ranked - 1].index; | 
 |  | 
 |   // Fill any slots that are empty (should only happen for the first 7 frames) | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     if (cm->remapped_ref_idx[i] == INVALID_IDX) cm->remapped_ref_idx[i] = 0; | 
 |   } | 
 | } | 
 | #else | 
 | /*!\cond */ | 
 | // Struct to keep track of relevant reference frame data | 
 | typedef struct { | 
 |   int map_idx; | 
 |   int disp_order; | 
 |   int pyr_level; | 
 |   int used; | 
 | } RefBufMapData; | 
 | /*!\endcond */ | 
 |  | 
 | // Comparison function to sort reference frames in ascending display order | 
 | static int compare_map_idx_pair_asc(const void *a, const void *b) { | 
 |   if (((RefBufMapData *)a)->disp_order == ((RefBufMapData *)b)->disp_order) { | 
 |     return 0; | 
 |   } else if (((const RefBufMapData *)a)->disp_order > | 
 |              ((const RefBufMapData *)b)->disp_order) { | 
 |     return 1; | 
 |   } else { | 
 |     return -1; | 
 |   } | 
 | } | 
 |  | 
 | // Checks to see if a particular reference frame is already in the reference | 
 | // frame map | 
 | static int is_in_ref_map(RefBufMapData *map, int disp_order, int n_frames) { | 
 |   for (int i = 0; i < n_frames; i++) { | 
 |     if (disp_order == map[i].disp_order) return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Add a reference buffer index to a named reference slot | 
 | static void add_ref_to_slot(RefBufMapData *ref, int *const remapped_ref_idx, | 
 |                             int frame) { | 
 |   remapped_ref_idx[frame - LAST_FRAME] = ref->map_idx; | 
 |   ref->used = 1; | 
 | } | 
 |  | 
 | // Threshold dictating when we are allowed to start considering | 
 | // leaving lowest level frames unmapped | 
 | #define LOW_LEVEL_FRAMES_TR 5 | 
 |  | 
 | // Find which reference buffer should be left out of the named mapping. | 
 | // This is because there are 8 reference buffers and only 7 named slots. | 
 | static void set_unmapped_ref(RefBufMapData *buffer_map, int n_bufs, | 
 |                              int n_min_level_refs, int min_level, | 
 |                              int cur_frame_disp) { | 
 |   int max_dist = 0; | 
 |   int unmapped_idx = -1; | 
 |   if (n_bufs <= ALTREF_FRAME) return; | 
 |   for (int i = 0; i < n_bufs; i++) { | 
 |     if (buffer_map[i].used) continue; | 
 |     if (buffer_map[i].pyr_level != min_level || | 
 |         n_min_level_refs >= LOW_LEVEL_FRAMES_TR) { | 
 |       int dist = abs(cur_frame_disp - buffer_map[i].disp_order); | 
 |       if (dist > max_dist) { | 
 |         max_dist = dist; | 
 |         unmapped_idx = i; | 
 |       } | 
 |     } | 
 |   } | 
 |   assert(unmapped_idx >= 0 && "Unmapped reference not found"); | 
 |   buffer_map[unmapped_idx].used = 1; | 
 | } | 
 |  | 
 | void av1_get_ref_frames(AV1_COMMON *const cm, int cur_frame_disp, | 
 |                         RefFrameMapPair *ref_frame_map_pairs) { | 
 |   int *const remapped_ref_idx = cm->remapped_ref_idx; | 
 |  | 
 |   int buf_map_idx = 0; | 
 |  | 
 |   // Initialize reference frame mappings | 
 |   for (int i = 0; i < REF_FRAMES; ++i) remapped_ref_idx[i] = INVALID_IDX; | 
 |  | 
 |   RefBufMapData buffer_map[REF_FRAMES]; | 
 |   int n_bufs = 0; | 
 |   memset(buffer_map, 0, REF_FRAMES * sizeof(buffer_map[0])); | 
 |   int min_level = INT_MAX; | 
 |   int max_level = 0; | 
 |  | 
 |   // Go through current reference buffers and store display order, pyr level, | 
 |   // and map index. | 
 |   for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { | 
 |     // Get reference frame buffer | 
 |     RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx]; | 
 |     if (ref_pair.disp_order == -1) continue; | 
 |     const int frame_order = ref_pair.disp_order; | 
 |     // Avoid duplicates | 
 |     if (is_in_ref_map(buffer_map, frame_order, n_bufs)) continue; | 
 |     const int reference_frame_level = ref_pair.pyr_level; | 
 |  | 
 |     // Keep track of the lowest and highest levels that currently exist | 
 |     if (reference_frame_level < min_level) min_level = reference_frame_level; | 
 |     if (reference_frame_level > max_level) max_level = reference_frame_level; | 
 |  | 
 |     buffer_map[n_bufs].map_idx = map_idx; | 
 |     buffer_map[n_bufs].disp_order = frame_order; | 
 |     buffer_map[n_bufs].pyr_level = reference_frame_level; | 
 |     buffer_map[n_bufs].used = 0; | 
 |     n_bufs++; | 
 |   } | 
 |  | 
 |   // Sort frames in ascending display order | 
 |   qsort(buffer_map, n_bufs, sizeof(buffer_map[0]), compare_map_idx_pair_asc); | 
 |  | 
 |   int n_min_level_refs = 0; | 
 |   int n_past_high_level = 0; | 
 |   int closest_past_ref = -1; | 
 |   int golden_idx = -1; | 
 |   int altref_idx = -1; | 
 |  | 
 |   // Find the GOLDEN_FRAME and BWDREF_FRAME. | 
 |   // Also collect various stats about the reference frames for the remaining | 
 |   // mappings | 
 |   for (int i = n_bufs - 1; i >= 0; i--) { | 
 |     if (buffer_map[i].pyr_level == min_level) { | 
 |       // Keep track of the number of lowest level frames | 
 |       n_min_level_refs++; | 
 |       if (buffer_map[i].disp_order < cur_frame_disp && golden_idx == -1 && | 
 |           remapped_ref_idx[GOLDEN_FRAME - LAST_FRAME] == INVALID_IDX) { | 
 |         // Save index for GOLDEN | 
 |         golden_idx = i; | 
 |       } else if (buffer_map[i].disp_order > cur_frame_disp && | 
 |                  altref_idx == -1 && | 
 |                  remapped_ref_idx[ALTREF_FRAME - LAST_FRAME] == INVALID_IDX) { | 
 |         // Save index for ALTREF | 
 |         altref_idx = i; | 
 |       } | 
 |     } else if (buffer_map[i].disp_order == cur_frame_disp) { | 
 |       // Map the BWDREF_FRAME if this is the show_existing_frame | 
 |       add_ref_to_slot(&buffer_map[i], remapped_ref_idx, BWDREF_FRAME); | 
 |     } | 
 |  | 
 |     // Keep track of the number of past frames that are not at the lowest level | 
 |     if (buffer_map[i].disp_order < cur_frame_disp && | 
 |         buffer_map[i].pyr_level != min_level) | 
 |       n_past_high_level++; | 
 |  | 
 |     // Keep track of where the frames change from being past frames to future | 
 |     // frames | 
 |     if (buffer_map[i].disp_order < cur_frame_disp && closest_past_ref < 0) | 
 |       closest_past_ref = i; | 
 |   } | 
 |  | 
 |   // Do not map GOLDEN and ALTREF based on their pyramid level if all reference | 
 |   // frames have the same level | 
 |   if (n_min_level_refs <= n_bufs) { | 
 |     // Map the GOLDEN_FRAME | 
 |     if (golden_idx > -1) | 
 |       add_ref_to_slot(&buffer_map[golden_idx], remapped_ref_idx, GOLDEN_FRAME); | 
 |     // Map the ALTREF_FRAME | 
 |     if (altref_idx > -1) | 
 |       add_ref_to_slot(&buffer_map[altref_idx], remapped_ref_idx, ALTREF_FRAME); | 
 |   } | 
 |  | 
 |   // Find the buffer to be excluded from the mapping | 
 |   set_unmapped_ref(buffer_map, n_bufs, n_min_level_refs, min_level, | 
 |                    cur_frame_disp); | 
 |  | 
 |   // Place past frames in LAST_FRAME, LAST2_FRAME, and LAST3_FRAME | 
 |   for (int frame = LAST_FRAME; frame < GOLDEN_FRAME; frame++) { | 
 |     // Continue if the current ref slot is already full | 
 |     if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; | 
 |     // Find the next unmapped reference buffer | 
 |     // in decreasing ouptut oreder relative to current picture | 
 |     int next_buf_max = 0; | 
 |     int next_disp_order = INT_MIN; | 
 |     for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { | 
 |       if (!buffer_map[buf_map_idx].used && | 
 |           buffer_map[buf_map_idx].disp_order < cur_frame_disp && | 
 |           buffer_map[buf_map_idx].disp_order > next_disp_order) { | 
 |         next_disp_order = buffer_map[buf_map_idx].disp_order; | 
 |         next_buf_max = buf_map_idx; | 
 |       } | 
 |     } | 
 |     buf_map_idx = next_buf_max; | 
 |     if (buf_map_idx < 0) break; | 
 |     if (buffer_map[buf_map_idx].used) break; | 
 |     add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); | 
 |   } | 
 |  | 
 |   // Place future frames (if there are any) in BWDREF_FRAME and ALTREF2_FRAME | 
 |   for (int frame = BWDREF_FRAME; frame < REF_FRAMES; frame++) { | 
 |     // Continue if the current ref slot is already full | 
 |     if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; | 
 |     // Find the next unmapped reference buffer | 
 |     // in increasing ouptut oreder relative to current picture | 
 |     int next_buf_max = 0; | 
 |     int next_disp_order = INT_MAX; | 
 |     for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { | 
 |       if (!buffer_map[buf_map_idx].used && | 
 |           buffer_map[buf_map_idx].disp_order > cur_frame_disp && | 
 |           buffer_map[buf_map_idx].disp_order < next_disp_order) { | 
 |         next_disp_order = buffer_map[buf_map_idx].disp_order; | 
 |         next_buf_max = buf_map_idx; | 
 |       } | 
 |     } | 
 |     buf_map_idx = next_buf_max; | 
 |     if (buf_map_idx < 0) break; | 
 |     if (buffer_map[buf_map_idx].used) break; | 
 |     add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); | 
 |   } | 
 |  | 
 |   // Place remaining past frames | 
 |   buf_map_idx = closest_past_ref; | 
 |   for (int frame = LAST_FRAME; frame < REF_FRAMES; frame++) { | 
 |     // Continue if the current ref slot is already full | 
 |     if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; | 
 |     // Find the next unmapped reference buffer | 
 |     for (; buf_map_idx >= 0; buf_map_idx--) { | 
 |       if (!buffer_map[buf_map_idx].used) break; | 
 |     } | 
 |     if (buf_map_idx < 0) break; | 
 |     if (buffer_map[buf_map_idx].used) break; | 
 |     add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); | 
 |   } | 
 |  | 
 |   // Place remaining future frames | 
 |   buf_map_idx = n_bufs - 1; | 
 |   for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; frame--) { | 
 |     // Continue if the current ref slot is already full | 
 |     if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; | 
 |     // Find the next unmapped reference buffer | 
 |     for (; buf_map_idx > closest_past_ref; buf_map_idx--) { | 
 |       if (!buffer_map[buf_map_idx].used) break; | 
 |     } | 
 |     if (buf_map_idx < 0) break; | 
 |     if (buffer_map[buf_map_idx].used) break; | 
 |     add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); | 
 |   } | 
 |  | 
 |   // Fill any slots that are empty (should only happen for the first 7 frames) | 
 |   for (int i = 0; i < REF_FRAMES; ++i) | 
 |     if (remapped_ref_idx[i] == INVALID_IDX) remapped_ref_idx[i] = 0; | 
 | } | 
 | #endif  // CONFIG_NEW_REF_SIGNALING | 
 |  | 
 | // Returns a context number for the given MB prediction signal | 
 | static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi, | 
 |                                         const MACROBLOCKD *xd, int dir, | 
 |                                         MV_REFERENCE_FRAME ref_frame) { | 
 |   (void)xd; | 
 |  | 
 |   if (ref_mbmi->ref_frame[0] != ref_frame && | 
 |       ref_mbmi->ref_frame[1] != ref_frame) { | 
 |     return SWITCHABLE_FILTERS; | 
 |   } | 
 |   (void)dir; | 
 |   return ref_mbmi->interp_fltr; | 
 | } | 
 |  | 
 | int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) { | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   const int ctx_offset = | 
 |       is_inter_ref_frame(mbmi->ref_frame[1]) * INTER_FILTER_COMP_OFFSET; | 
 |   assert(dir == 0 || dir == 1); | 
 |   const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; | 
 |   // Note: | 
 |   // The mode info data structure has a one element border above and to the | 
 |   // left of the entries corresponding to real macroblocks. | 
 |   // The prediction flags in these dummy entries are initialized to 0. | 
 |   int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET; | 
 |   int left_type = SWITCHABLE_FILTERS; | 
 |   int above_type = SWITCHABLE_FILTERS; | 
 |  | 
 |   if (xd->left_available) | 
 |     left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame); | 
 |  | 
 |   if (xd->up_available) | 
 |     above_type = | 
 |         get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame); | 
 |  | 
 |   if (left_type == above_type) { | 
 |     filter_type_ctx += left_type; | 
 |   } else if (left_type == SWITCHABLE_FILTERS) { | 
 |     assert(above_type != SWITCHABLE_FILTERS); | 
 |     filter_type_ctx += above_type; | 
 |   } else if (above_type == SWITCHABLE_FILTERS) { | 
 |     assert(left_type != SWITCHABLE_FILTERS); | 
 |     filter_type_ctx += left_type; | 
 |   } else { | 
 |     filter_type_ctx += SWITCHABLE_FILTERS; | 
 |   } | 
 |  | 
 |   return filter_type_ctx; | 
 | } | 
 |  | 
 | static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) { | 
 |   // Do not add an already existing value | 
 | #if !CONFIG_INDEP_PALETTE_PARSING | 
 |   if (*n > 0 && val == cache[*n - 1]) return; | 
 | #endif  //! CONFIG_INDEP_PALETTE_PARSING | 
 |  | 
 |   cache[(*n)++] = val; | 
 | } | 
 |  | 
 | int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, | 
 |                           uint16_t *cache) { | 
 |   const int row = -xd->mb_to_top_edge >> 3; | 
 |   // Do not refer to above SB row when on SB boundary. | 
 |   const MB_MODE_INFO *const above_mi = | 
 |       (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL; | 
 |   const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
 |   int above_n = 0, left_n = 0; | 
 |   if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0]; | 
 |   if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0]; | 
 |   if (above_n == 0 && left_n == 0) return 0; | 
 |   int above_idx = plane * PALETTE_MAX_SIZE; | 
 |   int left_idx = plane * PALETTE_MAX_SIZE; | 
 |   int n = 0; | 
 |   const uint16_t *above_colors = | 
 |       above_mi ? above_mi->palette_mode_info.palette_colors : NULL; | 
 |   const uint16_t *left_colors = | 
 |       left_mi ? left_mi->palette_mode_info.palette_colors : NULL; | 
 |   // Merge the sorted lists of base colors from above and left to get | 
 |   // combined sorted color cache. | 
 |   while (above_n > 0 && left_n > 0) { | 
 |     uint16_t v_above = above_colors[above_idx]; | 
 |     uint16_t v_left = left_colors[left_idx]; | 
 | #if CONFIG_INDEP_PALETTE_PARSING | 
 |     palette_add_to_cache(cache, &n, v_above); | 
 |     ++above_idx, --above_n; | 
 |     palette_add_to_cache(cache, &n, v_left); | 
 |     ++left_idx, --left_n; | 
 | #else | 
 |     if (v_left < v_above) { | 
 |       palette_add_to_cache(cache, &n, v_left); | 
 |       ++left_idx, --left_n; | 
 |     } else { | 
 |       palette_add_to_cache(cache, &n, v_above); | 
 |       ++above_idx, --above_n; | 
 |       if (v_left == v_above) ++left_idx, --left_n; | 
 |     } | 
 | #endif  // CONFIG_INDEP_PALETTE_PARSING | 
 |   } | 
 |   while (above_n-- > 0) { | 
 |     uint16_t val = above_colors[above_idx++]; | 
 |     palette_add_to_cache(cache, &n, val); | 
 |   } | 
 |   while (left_n-- > 0) { | 
 |     uint16_t val = left_colors[left_idx++]; | 
 |     palette_add_to_cache(cache, &n, val); | 
 |   } | 
 |   assert(n <= 2 * PALETTE_MAX_SIZE); | 
 |   return n; | 
 | } | 
 |  | 
 | // The mode info data structure has a one element border above and to the | 
 | // left of the entries corresponding to real macroblocks. | 
 | // The prediction flags in these dummy entries are initialized to 0. | 
 | // 0 - inter/inter, inter/--, --/inter, --/-- | 
 | // 1 - intra/inter, inter/intra | 
 | // 2 - intra/--, --/intra | 
 | // 3 - intra/intra | 
 | int av1_get_intra_inter_context(const MACROBLOCKD *xd) { | 
 |   const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
 |   const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
 |   const int has_above = xd->up_available; | 
 |   const int has_left = xd->left_available; | 
 |  | 
 |   if (has_above && has_left) {  // both edges available | 
 |     const int above_intra = !is_inter_block(above_mbmi, xd->tree_type); | 
 |     const int left_intra = !is_inter_block(left_mbmi, xd->tree_type); | 
 |     return left_intra && above_intra ? 3 : left_intra || above_intra; | 
 |   } else if (has_above || has_left) {  // one edge available | 
 |     return 2 * | 
 |            !is_inter_block(has_above ? above_mbmi : left_mbmi, xd->tree_type); | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_NEW_REF_SIGNALING | 
 | #define IS_BACKWARD_REF_FRAME(ref_frame) \ | 
 |   (get_dir_rank(cm, ref_frame, NULL) == 1) | 
 | #else | 
 | #define CHECK_BACKWARD_REFS(ref_frame) \ | 
 |   (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME)) | 
 | #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame) | 
 | #endif  // CONFIG_NEW_REF_SIGNALING | 
 |  | 
 | int av1_get_reference_mode_context(const AV1_COMMON *cm, | 
 |                                    const MACROBLOCKD *xd) { | 
 |   (void)cm; | 
 |   int ctx; | 
 |   const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
 |   const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
 |   const int has_above = xd->up_available; | 
 |   const int has_left = xd->left_available; | 
 |  | 
 |   // Note: | 
 |   // The mode info data structure has a one element border above and to the | 
 |   // left of the entries corresponding to real macroblocks. | 
 |   // The prediction flags in these dummy entries are initialized to 0. | 
 |   if (has_above && has_left) {  // both edges available | 
 |     if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) | 
 |       // neither edge uses comp pred (0/1) | 
 |       ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^ | 
 |             IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]); | 
 |     else if (!has_second_ref(above_mbmi)) | 
 |       // one of two edges uses comp pred (2/3) | 
 |       ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) || | 
 |                  !is_inter_block(above_mbmi, xd->tree_type)); | 
 |     else if (!has_second_ref(left_mbmi)) | 
 |       // one of two edges uses comp pred (2/3) | 
 |       ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) || | 
 |                  !is_inter_block(left_mbmi, xd->tree_type)); | 
 |     else  // both edges use comp pred (4) | 
 |       ctx = 4; | 
 |   } else if (has_above || has_left) {  // one edge available | 
 |     const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; | 
 |  | 
 |     if (!has_second_ref(edge_mbmi)) | 
 |       // edge does not use comp pred (0/1) | 
 |       ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]); | 
 |     else | 
 |       // edge uses comp pred (3) | 
 |       ctx = 3; | 
 |   } else {  // no edges available (1) | 
 |     ctx = 1; | 
 |   } | 
 |   assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); | 
 |   return ctx; | 
 | } | 
 |  | 
 | #if CONFIG_NEW_REF_SIGNALING | 
 | // The context for reference frame is defined by comparing A) the count of | 
 | // rank n references and B) the count of rank > n references in the neighboring | 
 | // blocks. Context will be 0 if A<B, 1 if A=B, and 2 if A>B. | 
 | int av1_get_ref_pred_context(const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref, | 
 |                              int num_total_refs) { | 
 |   assert((ref + 1) < num_total_refs); | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |   const int this_ref_count = ref_counts[ref]; | 
 |   int next_refs_count = 0; | 
 |  | 
 |   for (int i = ref + 1; i < num_total_refs; i++) { | 
 |     next_refs_count += ref_counts[i]; | 
 |   } | 
 |  | 
 |   const int pred_context = (this_ref_count == next_refs_count) | 
 |                                ? 1 | 
 |                                : ((this_ref_count < next_refs_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 | #else | 
 | int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) { | 
 |   int pred_context; | 
 |   const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
 |   const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
 |   const int above_in_image = xd->up_available; | 
 |   const int left_in_image = xd->left_available; | 
 |  | 
 |   if (above_in_image && left_in_image) {  // both edges available | 
 |     const int above_intra = !is_inter_block(above_mbmi, xd->tree_type); | 
 |     const int left_intra = !is_inter_block(left_mbmi, xd->tree_type); | 
 |  | 
 |     if (above_intra && left_intra) {  // intra/intra | 
 |       pred_context = 2; | 
 |     } else if (above_intra || left_intra) {  // intra/inter | 
 |       const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi; | 
 |  | 
 |       if (!has_second_ref(inter_mbmi))  // single pred | 
 |         pred_context = 2; | 
 |       else  // comp pred | 
 |         pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi); | 
 |     } else {  // inter/inter | 
 |       const int a_sg = !has_second_ref(above_mbmi); | 
 |       const int l_sg = !has_second_ref(left_mbmi); | 
 |       const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0]; | 
 |       const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0]; | 
 |  | 
 |       if (a_sg && l_sg) {  // single/single | 
 |         pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^ | 
 |                                   IS_BACKWARD_REF_FRAME(frfl))); | 
 |       } else if (l_sg || a_sg) {  // single/comp | 
 |         const int uni_rfc = | 
 |             a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi); | 
 |  | 
 |         if (!uni_rfc)  // comp bidir | 
 |           pred_context = 1; | 
 |         else  // comp unidir | 
 |           pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^ | 
 |                                 IS_BACKWARD_REF_FRAME(frfl))); | 
 |       } else {  // comp/comp | 
 |         const int a_uni_rfc = has_uni_comp_refs(above_mbmi); | 
 |         const int l_uni_rfc = has_uni_comp_refs(left_mbmi); | 
 |  | 
 |         if (!a_uni_rfc && !l_uni_rfc)  // bidir/bidir | 
 |           pred_context = 0; | 
 |         else if (!a_uni_rfc || !l_uni_rfc)  // unidir/bidir | 
 |           pred_context = 2; | 
 |         else  // unidir/unidir | 
 |           pred_context = | 
 |               3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME))); | 
 |       } | 
 |     } | 
 |   } else if (above_in_image || left_in_image) {  // one edge available | 
 |     const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; | 
 |     if (!is_inter_block(edge_mbmi, xd->tree_type)) {  // intra | 
 |       pred_context = 2; | 
 |     } else {                           // inter | 
 |       if (!has_second_ref(edge_mbmi))  // single pred | 
 |         pred_context = 2; | 
 |       else  // comp pred | 
 |         pred_context = 4 * has_uni_comp_refs(edge_mbmi); | 
 |     } | 
 |   } else {  // no edges available | 
 |     pred_context = 2; | 
 |   } | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // Returns a context number for the given MB prediction signal | 
 | // | 
 | // Signal the uni-directional compound reference frame pair as either | 
 | // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN), | 
 | // conditioning on the pair is known as uni-directional. | 
 | // | 
 | // 3 contexts: Voting is used to compare the count of forward references with | 
 | //             that of backward references from the spatial neighbors. | 
 | int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of forward references (L, L2, L3, or G) | 
 |   const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + | 
 |                         ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
 |   // Count of backward references (B or A) | 
 |   const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + | 
 |                         ref_counts[ALTREF_FRAME]; | 
 |  | 
 |   const int pred_context = | 
 |       (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // Returns a context number for the given MB prediction signal | 
 | // | 
 | // Signal the uni-directional compound reference frame pair as | 
 | // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN), | 
 | // conditioning on the pair is known as one of the above three. | 
 | // | 
 | // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the | 
 | //             total count of LAST3/GOLDEN from the spatial neighbors. | 
 | int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of LAST2 | 
 |   const int last2_count = ref_counts[LAST2_FRAME]; | 
 |   // Count of LAST3 or GOLDEN | 
 |   const int last3_or_gld_count = | 
 |       ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
 |  | 
 |   const int pred_context = (last2_count == last3_or_gld_count) | 
 |                                ? 1 | 
 |                                : ((last2_count < last3_or_gld_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // Returns a context number for the given MB prediction signal | 
 | // | 
 | // Signal the uni-directional compound reference frame pair as | 
 | // either (LAST, LAST3) or (LAST, GOLDEN), | 
 | // conditioning on the pair is known as one of the above two. | 
 | // | 
 | // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the | 
 | //             total count of GOLDEN_FRAME from the spatial neighbors. | 
 | int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of LAST3 | 
 |   const int last3_count = ref_counts[LAST3_FRAME]; | 
 |   // Count of GOLDEN | 
 |   const int gld_count = ref_counts[GOLDEN_FRAME]; | 
 |  | 
 |   const int pred_context = | 
 |       (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // == Common context functions for both comp and single ref == | 
 | // | 
 | // Obtain contexts to signal a reference frame to be either LAST/LAST2 or | 
 | // LAST3/GOLDEN. | 
 | static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of LAST + LAST2 | 
 |   const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME]; | 
 |   // Count of LAST3 + GOLDEN | 
 |   const int last3_gld_count = | 
 |       ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
 |  | 
 |   const int pred_context = (last_last2_count == last3_gld_count) | 
 |                                ? 1 | 
 |                                : ((last_last2_count < last3_gld_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // Obtain contexts to signal a reference frame to be either LAST or LAST2. | 
 | static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of LAST | 
 |   const int last_count = ref_counts[LAST_FRAME]; | 
 |   // Count of LAST2 | 
 |   const int last2_count = ref_counts[LAST2_FRAME]; | 
 |  | 
 |   const int pred_context = | 
 |       (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN. | 
 | static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of LAST3 | 
 |   const int last3_count = ref_counts[LAST3_FRAME]; | 
 |   // Count of GOLDEN | 
 |   const int gld_count = ref_counts[GOLDEN_FRAME]; | 
 |  | 
 |   const int pred_context = | 
 |       (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or | 
 | // ALTREF. | 
 | static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A) | 
 |   const int brfarf2_count = | 
 |       ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME]; | 
 |   const int arf_count = ref_counts[ALTREF_FRAME]; | 
 |  | 
 |   const int pred_context = | 
 |       (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2. | 
 | static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of BWDREF frames (B) | 
 |   const int brf_count = ref_counts[BWDREF_FRAME]; | 
 |   // Count of ALTREF2 frames (A2) | 
 |   const int arf2_count = ref_counts[ALTREF2_FRAME]; | 
 |  | 
 |   const int pred_context = | 
 |       (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // == Context functions for comp ref == | 
 | // | 
 | // Returns a context number for the given MB prediction signal | 
 | // Signal the first reference frame for a compound mode be either | 
 | // GOLDEN/LAST3, or LAST/LAST2. | 
 | int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_ll2_or_l3gld(xd); | 
 | } | 
 |  | 
 | // Returns a context number for the given MB prediction signal | 
 | // Signal the first reference frame for a compound mode be LAST, | 
 | // conditioning on that it is known either LAST/LAST2. | 
 | int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_last_or_last2(xd); | 
 | } | 
 |  | 
 | // Returns a context number for the given MB prediction signal | 
 | // Signal the first reference frame for a compound mode be GOLDEN, | 
 | // conditioning on that it is known either GOLDEN or LAST3. | 
 | int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_last3_or_gld(xd); | 
 | } | 
 |  | 
 | // Signal the 2nd reference frame for a compound mode be either | 
 | // ALTREF, or ALTREF2/BWDREF. | 
 | int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_brfarf2_or_arf(xd); | 
 | } | 
 |  | 
 | // Signal the 2nd reference frame for a compound mode be either | 
 | // ALTREF2 or BWDREF. | 
 | int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_brf_or_arf2(xd); | 
 | } | 
 |  | 
 | // == Context functions for single ref == | 
 | // | 
 | // For the bit to signal whether the single reference is a forward reference | 
 | // frame or a backward reference frame. | 
 | int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { | 
 |   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
 |  | 
 |   // Count of forward reference frames | 
 |   const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + | 
 |                         ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
 |   // Count of backward reference frames | 
 |   const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + | 
 |                         ref_counts[ALTREF_FRAME]; | 
 |  | 
 |   const int pred_context = | 
 |       (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2); | 
 |  | 
 |   assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
 |   return pred_context; | 
 | } | 
 |  | 
 | // For the bit to signal whether the single reference is ALTREF_FRAME or | 
 | // non-ALTREF backward reference frame, knowing that it shall be either of | 
 | // these 2 choices. | 
 | int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_brfarf2_or_arf(xd); | 
 | } | 
 |  | 
 | // For the bit to signal whether the single reference is LAST3/GOLDEN or | 
 | // LAST2/LAST, knowing that it shall be either of these 2 choices. | 
 | int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_ll2_or_l3gld(xd); | 
 | } | 
 |  | 
 | // For the bit to signal whether the single reference is LAST2_FRAME or | 
 | // LAST_FRAME, knowing that it shall be either of these 2 choices. | 
 | int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_last_or_last2(xd); | 
 | } | 
 |  | 
 | // For the bit to signal whether the single reference is GOLDEN_FRAME or | 
 | // LAST3_FRAME, knowing that it shall be either of these 2 choices. | 
 | int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_last3_or_gld(xd); | 
 | } | 
 |  | 
 | // For the bit to signal whether the single reference is ALTREF2_FRAME or | 
 | // BWDREF_FRAME, knowing that it shall be either of these 2 choices. | 
 | int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) { | 
 |   return get_pred_context_brf_or_arf2(xd); | 
 | } | 
 | #endif  // CONFIG_NEW_REF_SIGNALING |