|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #ifndef AOM_AV1_COMMON_PRED_COMMON_H_ | 
|  | #define AOM_AV1_COMMON_PRED_COMMON_H_ | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/mvref_common.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | typedef struct { | 
|  | int pyr_level; | 
|  | int disp_order; | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | int base_qindex; | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  | } RefFrameMapPair; | 
|  |  | 
|  | static INLINE void init_ref_map_pair(AV1_COMMON *cm, | 
|  | RefFrameMapPair *ref_frame_map_pairs, | 
|  | int is_key) { | 
|  | if (is_key) { | 
|  | memset(ref_frame_map_pairs, -1, sizeof(*ref_frame_map_pairs) * REF_FRAMES); | 
|  | return; | 
|  | } | 
|  | memset(ref_frame_map_pairs, 0, sizeof(*ref_frame_map_pairs) * REF_FRAMES); | 
|  | for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { | 
|  | // Get reference frame buffer | 
|  | const RefCntBuffer *const buf = cm->ref_frame_map[map_idx]; | 
|  | if (ref_frame_map_pairs[map_idx].disp_order == -1) continue; | 
|  | if (buf == NULL) { | 
|  | ref_frame_map_pairs[map_idx].disp_order = -1; | 
|  | ref_frame_map_pairs[map_idx].pyr_level = -1; | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | ref_frame_map_pairs[map_idx].base_qindex = -1; | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  | continue; | 
|  | } else if (buf->ref_count > 1) { | 
|  | // Once the keyframe is coded, the slots in ref_frame_map will all | 
|  | // point to the same frame. In that case, all subsequent pointers | 
|  | // matching the current are considered "free" slots. This will find | 
|  | // the next occurance of the current pointer if ref_count indicates | 
|  | // there are multiple instances of it and mark it as free. | 
|  | for (int idx2 = map_idx + 1; idx2 < REF_FRAMES; ++idx2) { | 
|  | const RefCntBuffer *const buf2 = cm->ref_frame_map[idx2]; | 
|  | if (buf2 == buf) { | 
|  | ref_frame_map_pairs[idx2].disp_order = -1; | 
|  | ref_frame_map_pairs[idx2].pyr_level = -1; | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | ref_frame_map_pairs[idx2].base_qindex = -1; | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  | } | 
|  | } | 
|  | } | 
|  | ref_frame_map_pairs[map_idx].disp_order = (int)buf->display_order_hint; | 
|  | ref_frame_map_pairs[map_idx].pyr_level = buf->pyramid_level; | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | ref_frame_map_pairs[map_idx].base_qindex = buf->base_qindex; | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | /*!\cond */ | 
|  | typedef struct { | 
|  | // Scoring function for usefulness of references (the lower score, the more | 
|  | // useful) | 
|  | int score; | 
|  | // Index in the reference buffer | 
|  | int index; | 
|  | // Temporal distance to the current frame | 
|  | int distance; | 
|  | // Display order hint | 
|  | int disp_order; | 
|  | // Quality of the reference frame | 
|  | int base_qindex; | 
|  | } RefScoreData; | 
|  | /*!\endcond */ | 
|  |  | 
|  | void av1_get_past_future_cur_ref_lists(AV1_COMMON *cm, RefScoreData *scores); | 
|  | void av1_get_ref_frames(AV1_COMMON *cm, int cur_frame_disp, | 
|  | RefFrameMapPair *ref_frame_map_pairs); | 
|  |  | 
|  | // Find the reference that is furthest in the future | 
|  | static INLINE int get_furthest_future_ref_index(const AV1_COMMON *const cm) { | 
|  | int index = NONE_FRAME; | 
|  | int ref_disp_order = -1; | 
|  | for (int i = 0; i < cm->ref_frames_info.num_future_refs; i++) { | 
|  | const int ref = cm->ref_frames_info.future_refs[i]; | 
|  | const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); | 
|  | if (buf == NULL) continue; | 
|  | if ((int)buf->display_order_hint > ref_disp_order) { | 
|  | index = ref; | 
|  | ref_disp_order = (int)buf->display_order_hint; | 
|  | } | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | // Get the past reference that is temporally closest to the current frame | 
|  | static INLINE int get_closest_past_ref_index(const AV1_COMMON *const cm) { | 
|  | int index = NONE_FRAME; | 
|  | int best_dist = INT_MAX; | 
|  | for (int i = 0; i < cm->ref_frames_info.num_past_refs; i++) { | 
|  | const int ref = cm->ref_frames_info.past_refs[i]; | 
|  | const int dist = cm->ref_frames_info.ref_frame_distance[ref]; | 
|  | if (dist < best_dist) { | 
|  | index = ref; | 
|  | best_dist = dist; | 
|  | } | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | // Get the current frame if it is available in the reference list. Otherwise | 
|  | // get the closest past reference | 
|  | static INLINE int get_closest_pastcur_ref_index(const AV1_COMMON *const cm) { | 
|  | if (cm->ref_frames_info.num_cur_refs > 0) | 
|  | return cm->ref_frames_info.cur_refs[0]; | 
|  | return get_closest_past_ref_index(cm); | 
|  | } | 
|  |  | 
|  | static INLINE int get_best_past_ref_index(const AV1_COMMON *const cm) { | 
|  | return cm->ref_frames_info.past_refs[0]; | 
|  | } | 
|  |  | 
|  | // Gets directional i.e. past/future ref rank from overall rank | 
|  | // in dir_refrank[0]/[1] respectively. Returns 0 if found in past | 
|  | // list, 1 if found in future list, -1 if not found in either (error). | 
|  | // Note dir_refrank can be NULL, in which case only the direction | 
|  | // is returned, the ranks are not output. | 
|  | static INLINE int get_dir_rank(const AV1_COMMON *const cm, int refrank, | 
|  | int *dir_refrank) { | 
|  | if (!is_inter_ref_frame(refrank)) return -1; | 
|  | #if CONFIG_TIP | 
|  | if (is_tip_ref_frame(refrank)) { | 
|  | if (dir_refrank) { | 
|  | dir_refrank[0] = -1; | 
|  | dir_refrank[1] = -1; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif  // CONFIG_TIP | 
|  | assert(refrank < cm->ref_frames_info.num_total_refs); | 
|  | if (dir_refrank) { | 
|  | dir_refrank[0] = -1; | 
|  | dir_refrank[1] = -1; | 
|  | } | 
|  | for (int i = 0; i < cm->ref_frames_info.num_past_refs; ++i) { | 
|  | if (cm->ref_frames_info.past_refs[i] == refrank) { | 
|  | if (dir_refrank) dir_refrank[0] = i; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < cm->ref_frames_info.num_future_refs; ++i) { | 
|  | if (cm->ref_frames_info.future_refs[i] == refrank) { | 
|  | if (dir_refrank) dir_refrank[1] = i; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | // If refrank has the same distance as a reference return 0 (past) | 
|  | // but the dir_refrank[0] is -1 | 
|  | if (cm->ref_frames_info.cur_refs[0] == refrank) return 0; | 
|  | return -1; | 
|  | } | 
|  | #else | 
|  | void av1_get_ref_frames(AV1_COMMON *const cm, int cur_frame_disp, | 
|  | RefFrameMapPair *ref_frame_map_pairs); | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  |  | 
|  | #if CONFIG_TIP | 
|  | static INLINE int get_tip_ctx(const MACROBLOCKD *xd) { | 
|  | int ctx; | 
|  | const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
|  | const int has_above = xd->up_available; | 
|  | const int has_left = xd->left_available; | 
|  |  | 
|  | if (has_above && has_left) { | 
|  | ctx = is_tip_ref_frame(above_mbmi->ref_frame[0]) + | 
|  | is_tip_ref_frame(left_mbmi->ref_frame[0]); | 
|  | } else if (has_above || has_left) { | 
|  | const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; | 
|  | ctx = is_tip_ref_frame(edge_mbmi->ref_frame[0]) * 2; | 
|  | } else { | 
|  | ctx = 0; | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  | #endif  // CONFIG_TIP | 
|  |  | 
|  | static INLINE int get_segment_id(const CommonModeInfoParams *const mi_params, | 
|  | const uint8_t *segment_ids, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col) { | 
|  | const int mi_offset = mi_row * mi_params->mi_cols + mi_col; | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw); | 
|  | const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh); | 
|  | int segment_id = MAX_SEGMENTS; | 
|  |  | 
|  | for (int y = 0; y < ymis; ++y) { | 
|  | for (int x = 0; x < xmis; ++x) { | 
|  | segment_id = AOMMIN(segment_id, | 
|  | segment_ids[mi_offset + y * mi_params->mi_cols + x]); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); | 
|  | return segment_id; | 
|  | } | 
|  |  | 
|  | static INLINE int av1_get_spatial_seg_pred(const AV1_COMMON *const cm, | 
|  | const MACROBLOCKD *const xd, | 
|  | int *cdf_index) { | 
|  | int prev_ul = -1;  // top left segment_id | 
|  | int prev_l = -1;   // left segment_id | 
|  | int prev_u = -1;   // top segment_id | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const uint8_t *seg_map = cm->cur_frame->seg_map; | 
|  | if ((xd->up_available) && (xd->left_available)) { | 
|  | prev_ul = | 
|  | get_segment_id(mi_params, seg_map, BLOCK_4X4, mi_row - 1, mi_col - 1); | 
|  | } | 
|  | if (xd->up_available) { | 
|  | prev_u = | 
|  | get_segment_id(mi_params, seg_map, BLOCK_4X4, mi_row - 1, mi_col - 0); | 
|  | } | 
|  | if (xd->left_available) { | 
|  | prev_l = | 
|  | get_segment_id(mi_params, seg_map, BLOCK_4X4, mi_row - 0, mi_col - 1); | 
|  | } | 
|  | // This property follows from the fact that get_segment_id() returns a | 
|  | // nonnegative value. This allows us to test for all edge cases with a simple | 
|  | // prev_ul < 0 check. | 
|  | assert(IMPLIES(prev_ul >= 0, prev_u >= 0 && prev_l >= 0)); | 
|  |  | 
|  | // Pick CDF index based on number of matching/out-of-bounds segment IDs. | 
|  | if (prev_ul < 0) /* Edge cases */ | 
|  | *cdf_index = 0; | 
|  | else if ((prev_ul == prev_u) && (prev_ul == prev_l)) | 
|  | *cdf_index = 2; | 
|  | else if ((prev_ul == prev_u) || (prev_ul == prev_l) || (prev_u == prev_l)) | 
|  | *cdf_index = 1; | 
|  | else | 
|  | *cdf_index = 0; | 
|  |  | 
|  | // If 2 or more are identical returns that as predictor, otherwise prev_l. | 
|  | if (prev_u == -1)  // edge case | 
|  | return prev_l == -1 ? 0 : prev_l; | 
|  | if (prev_l == -1)  // edge case | 
|  | return prev_u; | 
|  | return (prev_ul == prev_u) ? prev_u : prev_l; | 
|  | } | 
|  |  | 
|  | static INLINE int av1_get_pred_context_seg_id(const MACROBLOCKD *xd) { | 
|  | const MB_MODE_INFO *const above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | const int above_sip = (above_mi != NULL) ? above_mi->seg_id_predicted : 0; | 
|  | const int left_sip = (left_mi != NULL) ? left_mi->seg_id_predicted : 0; | 
|  |  | 
|  | return above_sip + left_sip; | 
|  | } | 
|  |  | 
|  | static INLINE int get_comp_group_idx_context(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd) { | 
|  | (void)cm; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | MV_REFERENCE_FRAME furthest_future_ref = get_furthest_future_ref_index(cm); | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  | const RefCntBuffer *const bck_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]); | 
|  | const RefCntBuffer *const fwd_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]); | 
|  | int bck_frame_index = 0, fwd_frame_index = 0; | 
|  | int cur_frame_index = cm->cur_frame->order_hint; | 
|  |  | 
|  | if (bck_buf != NULL) bck_frame_index = bck_buf->order_hint; | 
|  | if (fwd_buf != NULL) fwd_frame_index = fwd_buf->order_hint; | 
|  |  | 
|  | int fwd = abs(get_relative_dist(&cm->seq_params.order_hint_info, | 
|  | fwd_frame_index, cur_frame_index)); | 
|  | int bck = abs(get_relative_dist(&cm->seq_params.order_hint_info, | 
|  | cur_frame_index, bck_frame_index)); | 
|  | const int offset = (fwd == bck); | 
|  |  | 
|  | const MB_MODE_INFO *const above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | int above_ctx = 0, left_ctx = 0; | 
|  |  | 
|  | if (above_mi) { | 
|  | if (has_second_ref(above_mi)) above_ctx = above_mi->comp_group_idx; | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | else if (above_mi->ref_frame[0] == furthest_future_ref) | 
|  | #else | 
|  | else if (above_mi->ref_frame[0] == ALTREF_FRAME) | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  | above_ctx = 2; | 
|  | } | 
|  | if (left_mi) { | 
|  | if (has_second_ref(left_mi)) left_ctx = left_mi->comp_group_idx; | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | else if (left_mi->ref_frame[0] == furthest_future_ref) | 
|  | #else | 
|  | else if (left_mi->ref_frame[0] == ALTREF_FRAME) | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  | left_ctx = 2; | 
|  | } | 
|  | const int ctxmap[3 * 3] = { 0, 1, 2, 1, 3, 4, 2, 4, 5 }; | 
|  |  | 
|  | return ctxmap[3 * above_ctx + left_ctx] + offset * 6; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_seg_id( | 
|  | struct segmentation_probs *segp, const MACROBLOCKD *xd) { | 
|  | return segp->pred_cdf[av1_get_pred_context_seg_id(xd)]; | 
|  | } | 
|  |  | 
|  | static INLINE int av1_get_skip_mode_context(const MACROBLOCKD *xd) { | 
|  | const MB_MODE_INFO *const above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | const int above_skip_mode = above_mi ? above_mi->skip_mode : 0; | 
|  | const int left_skip_mode = left_mi ? left_mi->skip_mode : 0; | 
|  | return above_skip_mode + left_skip_mode; | 
|  | } | 
|  |  | 
|  | static INLINE int av1_get_skip_txfm_context(const MACROBLOCKD *xd) { | 
|  | const MB_MODE_INFO *const above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | const int above_skip_txfm = | 
|  | above_mi ? above_mi->skip_txfm[xd->tree_type == CHROMA_PART] : 0; | 
|  | const int left_skip_txfm = | 
|  | left_mi ? left_mi->skip_txfm[xd->tree_type == CHROMA_PART] : 0; | 
|  |  | 
|  | #if CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | int ctx_idx = above_skip_txfm + left_skip_txfm; | 
|  | if (xd->mi[0]->skip_mode) ctx_idx += SKIP_CONTEXTS >> 1; | 
|  |  | 
|  | return ctx_idx; | 
|  | #else | 
|  | return above_skip_txfm + left_skip_txfm; | 
|  | #endif  // CONFIG_SKIP_MODE_ENHANCEMENT | 
|  | } | 
|  |  | 
|  | int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir); | 
|  |  | 
|  | // Get a list of palette base colors that are used in the above and left blocks, | 
|  | // referred to as "color cache". The return value is the number of colors in the | 
|  | // cache (<= 2 * PALETTE_MAX_SIZE). The color values are stored in "cache" | 
|  | // in ascending order. | 
|  | int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, | 
|  | uint16_t *cache); | 
|  |  | 
|  | static INLINE int av1_get_palette_bsize_ctx(BLOCK_SIZE bsize) { | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | return num_pels_log2_lookup[bsize] - num_pels_log2_lookup[BLOCK_8X8]; | 
|  | } | 
|  |  | 
|  | static INLINE int av1_get_palette_mode_ctx(const MACROBLOCKD *xd) { | 
|  | const MB_MODE_INFO *const above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | int ctx = 0; | 
|  | if (above_mi) ctx += (above_mi->palette_mode_info.palette_size[0] > 0); | 
|  | if (left_mi) ctx += (left_mi->palette_mode_info.palette_size[0] > 0); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | int av1_get_intra_inter_context(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_reference_mode_context(const AV1_COMMON *cm, const MACROBLOCKD *xd); | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_reference_mode_cdf(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx->comp_inter_cdf[av1_get_reference_mode_context(cm, xd)]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_skip_txfm_cdf(const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx->skip_txfm_cdfs[av1_get_skip_txfm_context(xd)]; | 
|  | } | 
|  |  | 
|  | #if CONFIG_NEW_REF_SIGNALING | 
|  | int av1_get_ref_pred_context(const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref, | 
|  | int num_total_refs); | 
|  |  | 
|  | // Obtain cdf of reference frame for single prediction | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref(const MACROBLOCKD *xd, | 
|  | MV_REFERENCE_FRAME ref, | 
|  | int num_total_refs) { | 
|  | assert((ref + 1) < num_total_refs); | 
|  | return xd->tile_ctx | 
|  | ->single_ref_cdf[av1_get_ref_pred_context(xd, ref, num_total_refs)][ref]; | 
|  | } | 
|  |  | 
|  | // This function checks whether the previously coded reference frame is on the | 
|  | // same side as the frame to be coded. The returned value is used as the cdf | 
|  | // context. | 
|  | static INLINE int av1_get_compound_ref_bit_type( | 
|  | const RefFramesInfo *const ref_frames_info, int i, int j) { | 
|  | const int bit_type = (ref_frames_info->ref_frame_distance[i] >= 0) ^ | 
|  | (ref_frames_info->ref_frame_distance[j] >= 0); | 
|  | return bit_type; | 
|  | } | 
|  |  | 
|  | // Obtain cdf of reference frame for compound prediction | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_compound_ref( | 
|  | const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref, int n_bits, int bit_type, | 
|  | int num_total_refs) { | 
|  | assert((ref + 1) < num_total_refs); | 
|  | assert(n_bits < 2); | 
|  | assert(ref - n_bits < num_total_refs - 2); | 
|  | assert(bit_type < COMPREF_BIT_TYPES); | 
|  | assert(IMPLIES(n_bits == 0, ref < RANKED_REF0_TO_PRUNE - 1)); | 
|  | return n_bits == 0 ? xd->tile_ctx->comp_ref0_cdf[av1_get_ref_pred_context( | 
|  | xd, ref, num_total_refs)][ref] | 
|  | : xd->tile_ctx->comp_ref1_cdf[av1_get_ref_pred_context( | 
|  | xd, ref, num_total_refs)][bit_type][ref - 1]; | 
|  | } | 
|  | #else | 
|  | int av1_get_comp_reference_type_context(const MACROBLOCKD *xd); | 
|  |  | 
|  | // == Uni-directional contexts == | 
|  |  | 
|  | int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd); | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_comp_reference_type_cdf( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_comp_reference_type_context(xd); | 
|  | return xd->tile_ctx->comp_ref_type_cdf[pred_context]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_uni_comp_ref_p( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_uni_comp_ref_p(xd); | 
|  | return xd->tile_ctx->uni_comp_ref_cdf[pred_context][0]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_uni_comp_ref_p1( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_uni_comp_ref_p1(xd); | 
|  | return xd->tile_ctx->uni_comp_ref_cdf[pred_context][1]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_uni_comp_ref_p2( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_uni_comp_ref_p2(xd); | 
|  | return xd->tile_ctx->uni_comp_ref_cdf[pred_context][2]; | 
|  | } | 
|  |  | 
|  | // == Bi-directional contexts == | 
|  |  | 
|  | int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd); | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_comp_ref_p(const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_comp_ref_p(xd); | 
|  | return xd->tile_ctx->comp_ref_cdf[pred_context][0]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_comp_ref_p1( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_comp_ref_p1(xd); | 
|  | return xd->tile_ctx->comp_ref_cdf[pred_context][1]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_comp_ref_p2( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_comp_ref_p2(xd); | 
|  | return xd->tile_ctx->comp_ref_cdf[pred_context][2]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_comp_bwdref_p( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_comp_bwdref_p(xd); | 
|  | return xd->tile_ctx->comp_bwdref_cdf[pred_context][0]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_comp_bwdref_p1( | 
|  | const MACROBLOCKD *xd) { | 
|  | const int pred_context = av1_get_pred_context_comp_bwdref_p1(xd); | 
|  | return xd->tile_ctx->comp_bwdref_cdf[pred_context][1]; | 
|  | } | 
|  |  | 
|  | // == Single contexts == | 
|  |  | 
|  | int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd); | 
|  |  | 
|  | int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd); | 
|  |  | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref_p1( | 
|  | const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx | 
|  | ->single_ref_cdf[av1_get_pred_context_single_ref_p1(xd)][0]; | 
|  | } | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref_p2( | 
|  | const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx | 
|  | ->single_ref_cdf[av1_get_pred_context_single_ref_p2(xd)][1]; | 
|  | } | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref_p3( | 
|  | const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx | 
|  | ->single_ref_cdf[av1_get_pred_context_single_ref_p3(xd)][2]; | 
|  | } | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref_p4( | 
|  | const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx | 
|  | ->single_ref_cdf[av1_get_pred_context_single_ref_p4(xd)][3]; | 
|  | } | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref_p5( | 
|  | const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx | 
|  | ->single_ref_cdf[av1_get_pred_context_single_ref_p5(xd)][4]; | 
|  | } | 
|  | static INLINE aom_cdf_prob *av1_get_pred_cdf_single_ref_p6( | 
|  | const MACROBLOCKD *xd) { | 
|  | return xd->tile_ctx | 
|  | ->single_ref_cdf[av1_get_pred_context_single_ref_p6(xd)][5]; | 
|  | } | 
|  | #endif  // CONFIG_NEW_REF_SIGNALING | 
|  |  | 
|  | // Returns a context number for the given MB prediction signal | 
|  | // The mode info data structure has a one element border above and to the | 
|  | // left of the entries corresponding to real blocks. | 
|  | // The prediction flags in these dummy entries are initialized to 0. | 
|  | static INLINE int get_tx_size_context(const MACROBLOCKD *xd) { | 
|  | const MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
|  | const TX_SIZE max_tx_size = | 
|  | max_txsize_rect_lookup[mbmi->sb_type[PLANE_TYPE_Y]]; | 
|  | const int max_tx_wide = tx_size_wide[max_tx_size]; | 
|  | const int max_tx_high = tx_size_high[max_tx_size]; | 
|  | const int has_above = xd->up_available; | 
|  | const int has_left = xd->left_available; | 
|  |  | 
|  | int above = xd->above_txfm_context[0] >= max_tx_wide; | 
|  | int left = xd->left_txfm_context[0] >= max_tx_high; | 
|  |  | 
|  | if (has_above) | 
|  | if (is_inter_block(above_mbmi, xd->tree_type)) | 
|  | above = block_size_wide[above_mbmi->sb_type[PLANE_TYPE_Y]] >= max_tx_wide; | 
|  |  | 
|  | if (has_left) | 
|  | if (is_inter_block(left_mbmi, xd->tree_type)) | 
|  | left = block_size_high[left_mbmi->sb_type[PLANE_TYPE_Y]] >= max_tx_high; | 
|  |  | 
|  | if (has_above && has_left) | 
|  | return (above + left); | 
|  | else if (has_above) | 
|  | return above; | 
|  | else if (has_left) | 
|  | return left; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | }  // extern "C" | 
|  | #endif | 
|  |  | 
|  | #endif  // AOM_AV1_COMMON_PRED_COMMON_H_ |