blob: 8517cee88205f5d17f40d1c8f665af9265e9a350 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include "aom_dsp/entenc.h"
#include "aom_dsp/prob.h"
#if OD_MEASURE_EC_OVERHEAD
#if !defined(M_LOG2E)
#define M_LOG2E (1.4426950408889634073599246810019)
#endif
#define OD_LOG2(x) (M_LOG2E * log(x))
#endif // OD_MEASURE_EC_OVERHEAD
/*A range encoder.
See entdec.c and the references for implementation details \cite{Mar79,MNW98}.
@INPROCEEDINGS{Mar79,
author="Martin, G.N.N.",
title="Range encoding: an algorithm for removing redundancy from a digitised
message",
booktitle="Video \& Data Recording Conference",
year=1979,
address="Southampton",
month=Jul,
URL="http://www.compressconsult.com/rangecoder/rngcod.pdf.gz"
}
@ARTICLE{MNW98,
author="Alistair Moffat and Radford Neal and Ian H. Witten",
title="Arithmetic Coding Revisited",
journal="{ACM} Transactions on Information Systems",
year=1998,
volume=16,
number=3,
pages="256--294",
month=Jul,
URL="http://researchcommons.waikato.ac.nz/bitstream/handle/10289/78/content.pdf"
}*/
/*Takes updated low and range values, renormalizes them so that
32768 <= rng < 65536 (flushing bytes from low to the pre-carry buffer if
necessary), and stores them back in the encoder context.
low: The new value of low.
rng: The new value of the range.*/
static void od_ec_enc_normalize(od_ec_enc *enc, od_ec_window low,
#if CONFIG_BYPASS_IMPROVEMENT
unsigned rng, int n_bypass) {
#else
unsigned rng) {
#endif // CONFIG_BYPASS_IMPROVEMENT
int d;
int c;
int s;
assert(rng <= 65535U);
#if CONFIG_BYPASS_IMPROVEMENT
if (n_bypass > 0) {
/* n_bypass: # of bits bypass encoded.*/
c = enc->cnt + n_bypass;
d = 0;
} else {
c = enc->cnt;
/*The number of leading zeros in the 16-bit binary representation of rng.*/
d = 16 - OD_ILOG_NZ(rng);
}
#else
c = enc->cnt;
/*The number of leading zeros in the 16-bit binary representation of rng.*/
d = 16 - OD_ILOG_NZ(rng);
#endif // CONFIG_BYPASS_IMPROVEMENT
s = c + d;
/*TODO: Right now we flush every time we have at least one byte available.
Instead we should use an od_ec_window and flush right before we're about to
shift bits off the end of the window.
For a 32-bit window this is about the same amount of work, but for a 64-bit
window it should be a fair win.*/
if (s >= 0) {
uint16_t *buf;
uint32_t storage;
uint32_t offs;
unsigned m;
buf = enc->precarry_buf;
storage = enc->precarry_storage;
offs = enc->offs;
if (offs + 2 > storage) {
storage = 2 * storage + 2;
buf = (uint16_t *)realloc(buf, sizeof(*buf) * storage);
if (buf == NULL) {
enc->error = -1;
enc->offs = 0;
return;
}
enc->precarry_buf = buf;
enc->precarry_storage = storage;
}
c += 16;
m = (1 << c) - 1;
if (s >= 8) {
assert(offs < storage);
buf[offs++] = (uint16_t)(low >> c);
low &= m;
c -= 8;
m >>= 8;
}
assert(offs < storage);
buf[offs++] = (uint16_t)(low >> c);
s = c + d - 24;
low &= m;
enc->offs = offs;
}
enc->low = low << d;
enc->rng = rng << d;
enc->cnt = s;
}
/*Initializes the encoder.
size: The initial size of the buffer, in bytes.*/
void od_ec_enc_init(od_ec_enc *enc, uint32_t size) {
od_ec_enc_reset(enc);
enc->buf = (unsigned char *)malloc(sizeof(*enc->buf) * size);
enc->storage = size;
if (size > 0 && enc->buf == NULL) {
enc->storage = 0;
enc->error = -1;
}
enc->precarry_buf = (uint16_t *)malloc(sizeof(*enc->precarry_buf) * size);
enc->precarry_storage = size;
if (size > 0 && enc->precarry_buf == NULL) {
enc->precarry_storage = 0;
enc->error = -1;
}
}
/*Reinitializes the encoder.*/
void od_ec_enc_reset(od_ec_enc *enc) {
enc->offs = 0;
enc->low = 0;
enc->rng = 0x8000;
/*This is initialized to -9 so that it crosses zero after we've accumulated
one byte + one carry bit.*/
enc->cnt = -9;
enc->error = 0;
#if OD_MEASURE_EC_OVERHEAD
enc->entropy = 0;
enc->nb_symbols = 0;
#endif
}
/*Frees the buffers used by the encoder.*/
void od_ec_enc_clear(od_ec_enc *enc) {
free(enc->precarry_buf);
free(enc->buf);
}
#if CONFIG_BYPASS_IMPROVEMENT
// Scale the CDF to match the range value stored in the entropy decoder.
static INLINE unsigned od_ec_prob_scale(uint16_t p, unsigned r, int n) {
return (((r >> 8) * (uint32_t)(p >> EC_PROB_SHIFT) >>
(7 - EC_PROB_SHIFT - CDF_SHIFT + 1))
<< 1) +
EC_MIN_PROB * n;
}
#endif // CONFIG_BYPASS_IMPROVEMENT
/*Encodes a symbol given its frequency in Q15.
fl: CDF_PROB_TOP minus the cumulative frequency of all symbols that come
before the
one to be encoded.
fh: CDF_PROB_TOP minus the cumulative frequency of all symbols up to and
including
the one to be encoded.*/
static void od_ec_encode_q15(od_ec_enc *enc, unsigned fl, unsigned fh, int s,
int nsyms) {
od_ec_window l;
unsigned r;
unsigned u;
unsigned v;
l = enc->low;
r = enc->rng;
#if CONFIG_BYPASS_IMPROVEMENT
assert((r & 1) == 0);
#endif // CONFIG_BYPASS_IMPROVEMENT
assert(32768U <= r);
assert(fh <= fl);
assert(fl <= 32768U);
assert(7 - EC_PROB_SHIFT - CDF_SHIFT >= 0);
const int N = nsyms - 1;
if (fl < CDF_PROB_TOP) {
#if CONFIG_BYPASS_IMPROVEMENT
u = od_ec_prob_scale(fl, r, N - (s - 1));
v = od_ec_prob_scale(fh, r, N - (s - 0));
#else
u = ((r >> 8) * (uint32_t)(fl >> EC_PROB_SHIFT) >>
(7 - EC_PROB_SHIFT - CDF_SHIFT)) +
EC_MIN_PROB * (N - (s - 1));
v = ((r >> 8) * (uint32_t)(fh >> EC_PROB_SHIFT) >>
(7 - EC_PROB_SHIFT - CDF_SHIFT)) +
EC_MIN_PROB * (N - (s + 0));
#endif // CONFIG_BYPASS_IMPROVEMENT
l += r - u;
r = u - v;
} else {
#if CONFIG_BYPASS_IMPROVEMENT
v = od_ec_prob_scale(fh, r, N - (s + 0));
r -= v;
#else
r -= ((r >> 8) * (uint32_t)(fh >> EC_PROB_SHIFT) >>
(7 - EC_PROB_SHIFT - CDF_SHIFT)) +
EC_MIN_PROB * (N - (s + 0));
#endif // CONFIG_BYPASS_IMPROVEMENT
}
#if CONFIG_BYPASS_IMPROVEMENT
od_ec_enc_normalize(enc, l, r, 0);
#else
od_ec_enc_normalize(enc, l, r);
#endif // CONFIG_BYPASS_IMPROVEMENT
#if OD_MEASURE_EC_OVERHEAD
enc->entropy -= OD_LOG2(((double)(OD_ICDF(fh) - OD_ICDF(fl)) / CDF_PROB_TOP));
enc->nb_symbols++;
#endif
}
/*Encode a single binary value.
val: The value to encode (0 or 1).
f: The probability that the val is one, scaled by 32768.*/
void od_ec_encode_bool_q15(od_ec_enc *enc, int val, unsigned f) {
od_ec_window l;
unsigned r;
unsigned v;
assert(0 < f);
assert(f < 32768U);
l = enc->low;
r = enc->rng;
assert(32768U <= r);
#if CONFIG_BYPASS_IMPROVEMENT
v = od_ec_prob_scale(f, r, 1);
#else
v = ((r >> 8) * (uint32_t)(f >> EC_PROB_SHIFT) >> (7 - EC_PROB_SHIFT));
v += EC_MIN_PROB;
#endif
if (val) l += r - v;
r = val ? v : r - v;
#if CONFIG_BYPASS_IMPROVEMENT
od_ec_enc_normalize(enc, l, r, 0);
#else
od_ec_enc_normalize(enc, l, r);
#endif // CONFIG_BYPASS_IMPROVEMENT
#if OD_MEASURE_EC_OVERHEAD
enc->entropy -= OD_LOG2((double)(val ? f : (32768 - f)) / 32768.);
enc->nb_symbols++;
#endif
}
#if CONFIG_BYPASS_IMPROVEMENT
/*Encode a single binary value.
val: The value to encode (0 or 1). */
void od_ec_encode_bool_bypass(od_ec_enc *enc, int val) {
od_ec_encode_literal_bypass(enc, val, 1);
}
/*Encode a single binary value.
val: The value to encode
n_bits: number of bits (limit of 16 for now) */
void od_ec_encode_literal_bypass(od_ec_enc *enc, int val, int n_bits) {
od_ec_window l;
unsigned r;
l = enc->low;
r = enc->rng;
assert(32768U <= r);
assert((r & 1) == 0);
l <<= n_bits;
l += r * val;
od_ec_enc_normalize(enc, l, r, n_bits);
#if OD_MEASURE_EC_OVERHEAD
enc->entropy -= OD_LOG2((double)16384) * n_bits;
enc->nb_symbols += n_bits;
enc->nb_bypass += n_bits;
enc->nb_bits[n_bits]++;
#endif
}
#endif // CONFIG_BYPASS_IMPROVEMENT
/*Encodes a symbol given a cumulative distribution function (CDF) table in Q15.
s: The index of the symbol to encode.
icdf: 32768 minus the CDF, such that symbol s falls in the range
[s > 0 ? (32768 - icdf[s - 1]) : 0, 32768 - icdf[s]).
The values must be monotonically decreasing, and icdf[nsyms - 1] must
be 0.
nsyms: The number of symbols in the alphabet.
This should be at most 16.*/
void od_ec_encode_cdf_q15(od_ec_enc *enc, int s, const uint16_t *icdf,
int nsyms) {
(void)nsyms;
assert(s >= 0);
assert(s < nsyms);
assert(icdf[nsyms - 1] == OD_ICDF(CDF_PROB_TOP));
od_ec_encode_q15(enc, s > 0 ? icdf[s - 1] : OD_ICDF(0), icdf[s], s, nsyms);
}
/*Overwrites a few bits at the very start of an existing stream, after they
have already been encoded.
This makes it possible to have a few flags up front, where it is easy for
decoders to access them without parsing the whole stream, even if their
values are not determined until late in the encoding process, without having
to buffer all the intermediate symbols in the encoder.
In order for this to work, at least nbits bits must have already been encoded
using probabilities that are an exact power of two.
The encoder can verify the number of encoded bits is sufficient, but cannot
check this latter condition.
val: The bits to encode (in the least nbits significant bits).
They will be decoded in order from most-significant to least.
nbits: The number of bits to overwrite.
This must be no more than 8.*/
void od_ec_enc_patch_initial_bits(od_ec_enc *enc, unsigned val, int nbits) {
int shift;
unsigned mask;
assert(nbits >= 0);
assert(nbits <= 8);
assert(val < 1U << nbits);
shift = 8 - nbits;
mask = ((1U << nbits) - 1) << shift;
if (enc->offs > 0) {
/*The first byte has been finalized.*/
enc->precarry_buf[0] =
(uint16_t)((enc->precarry_buf[0] & ~mask) | val << shift);
} else if (9 + enc->cnt + (enc->rng == 0x8000) > nbits) {
/*The first byte has yet to be output.*/
enc->low = (enc->low & ~((od_ec_window)mask << (16 + enc->cnt))) |
(od_ec_window)val << (16 + enc->cnt + shift);
} else {
/*The encoder hasn't even encoded _nbits of data yet.*/
enc->error = -1;
}
}
#if OD_MEASURE_EC_OVERHEAD
#include <stdio.h>
#endif
/*Indicates that there are no more symbols to encode.
All remaining output bytes are flushed to the output buffer.
od_ec_enc_reset() should be called before using the encoder again.
bytes: Returns the size of the encoded data in the returned buffer.
Return: A pointer to the start of the final buffer, or NULL if there was an
encoding error.*/
unsigned char *od_ec_enc_done(od_ec_enc *enc, uint32_t *nbytes) {
unsigned char *out;
uint32_t storage;
uint16_t *buf;
uint32_t offs;
od_ec_window m;
od_ec_window e;
od_ec_window l;
int c;
int s;
if (enc->error) return NULL;
#if OD_MEASURE_EC_OVERHEAD
{
uint32_t tell;
/* Don't count the 1 bit we lose to raw bits as overhead. */
tell = od_ec_enc_tell(enc) - 1;
fprintf(stderr, "overhead: %f%%\n",
100 * (tell - enc->entropy) / enc->entropy);
fprintf(stderr, "efficiency: %f bits/symbol\n",
(double)tell / enc->nb_symbols);
}
#endif
/*We output the minimum number of bits that ensures that the symbols encoded
thus far will be decoded correctly regardless of the bits that follow.*/
l = enc->low;
c = enc->cnt;
s = 10;
m = 0x3FFF;
e = ((l + m) & ~m) | (m + 1);
s += c;
offs = enc->offs;
buf = enc->precarry_buf;
if (s > 0) {
unsigned n;
storage = enc->precarry_storage;
if (offs + ((s + 7) >> 3) > storage) {
storage = storage * 2 + ((s + 7) >> 3);
buf = (uint16_t *)realloc(buf, sizeof(*buf) * storage);
if (buf == NULL) {
enc->error = -1;
return NULL;
}
enc->precarry_buf = buf;
enc->precarry_storage = storage;
}
n = (1 << (c + 16)) - 1;
do {
assert(offs < storage);
buf[offs++] = (uint16_t)(e >> (c + 16));
e &= n;
s -= 8;
c -= 8;
n >>= 8;
} while (s > 0);
}
/*Make sure there's enough room for the entropy-coded bits.*/
out = enc->buf;
storage = enc->storage;
c = OD_MAXI((s + 7) >> 3, 0);
if (offs + c > storage) {
storage = offs + c;
out = (unsigned char *)realloc(out, sizeof(*out) * storage);
if (out == NULL) {
enc->error = -1;
return NULL;
}
enc->buf = out;
enc->storage = storage;
}
*nbytes = offs;
/*Perform carry propagation.*/
assert(offs <= storage);
out = out + storage - offs;
c = 0;
while (offs > 0) {
offs--;
c = buf[offs] + c;
out[offs] = (unsigned char)c;
c >>= 8;
}
/*Note: Unless there's an allocation error, if you keep encoding into the
current buffer and call this function again later, everything will work
just fine (you won't get a new packet out, but you will get a single
buffer with the new data appended to the old).
However, this function is O(N) where N is the amount of data coded so far,
so calling it more than once for a given packet is a bad idea.*/
return out;
}
/*Returns the number of bits "used" by the encoded symbols so far.
This same number can be computed in either the encoder or the decoder, and is
suitable for making coding decisions.
Warning: The value returned by this function can decrease compared to an
earlier call, even after encoding more data, if there is an encoding error
(i.e., a failure to allocate enough space for the output buffer).
Return: The number of bits.
This will always be slightly larger than the exact value (e.g., all
rounding error is in the positive direction).*/
int od_ec_enc_tell(const od_ec_enc *enc) {
/*The 10 here counteracts the offset of -9 baked into cnt, and adds 1 extra
bit, which we reserve for terminating the stream.*/
return (enc->cnt + 10) + enc->offs * 8;
}
/*Returns the number of bits "used" by the encoded symbols so far.
This same number can be computed in either the encoder or the decoder, and is
suitable for making coding decisions.
Warning: The value returned by this function can decrease compared to an
earlier call, even after encoding more data, if there is an encoding error
(i.e., a failure to allocate enough space for the output buffer).
Return: The number of bits scaled by 2**OD_BITRES.
This will always be slightly larger than the exact value (e.g., all
rounding error is in the positive direction).*/
uint32_t od_ec_enc_tell_frac(const od_ec_enc *enc) {
return od_ec_tell_frac(od_ec_enc_tell(enc), enc->rng);
}
/*Saves a entropy coder checkpoint to dst.
This allows an encoder to reverse a series of entropy coder
decisions if it decides that the information would have been
better coded some other way.*/
void od_ec_enc_checkpoint(od_ec_enc *dst, const od_ec_enc *src) {
OD_COPY(dst, src, 1);
}
/*Restores an entropy coder checkpoint saved by od_ec_enc_checkpoint.
This can only be used to restore from checkpoints earlier in the target
state's history: you can not switch backwards and forwards or otherwise
switch to a state which isn't a casual ancestor of the current state.
Restore is also incompatible with patching the initial bits, as the
changes will remain in the restored version.*/
void od_ec_enc_rollback(od_ec_enc *dst, const od_ec_enc *src) {
unsigned char *buf;
uint32_t storage;
uint16_t *precarry_buf;
uint32_t precarry_storage;
assert(dst->storage >= src->storage);
assert(dst->precarry_storage >= src->precarry_storage);
buf = dst->buf;
storage = dst->storage;
precarry_buf = dst->precarry_buf;
precarry_storage = dst->precarry_storage;
OD_COPY(dst, src, 1);
dst->buf = buf;
dst->storage = storage;
dst->precarry_buf = precarry_buf;
dst->precarry_storage = precarry_storage;
}