blob: d57cb9b295ddfdd9868f6b0cdb91be8601dc5cc7 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <assert.h>
#include "config/aom_dsp_rtcd.h"
#include "av1/encoder/global_motion.h"
#include "av1/common/convolve.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/segmentation.h"
#define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR)
// Border over which to compute the global motion
#define ERRORADV_BORDER 0
int av1_is_enough_erroradvantage(double best_erroradvantage, int params_cost) {
return best_erroradvantage < erroradv_tr &&
best_erroradvantage * params_cost < erroradv_prod_tr;
}
static void convert_to_params(const double *params, int32_t *model) {
int i;
#if !CONFIG_IMPROVED_GLOBAL_MOTION
int alpha_present = 0;
#endif // !CONFIG_IMPROVED_GLOBAL_MOTION
model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5);
model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5);
model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) *
GM_TRANS_DECODE_FACTOR;
model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) *
GM_TRANS_DECODE_FACTOR;
for (i = 2; i < 6; ++i) {
const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0);
model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5);
model[i] =
(int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX);
#if !CONFIG_IMPROVED_GLOBAL_MOTION
alpha_present |= (model[i] != 0);
#endif // !CONFIG_IMPROVED_GLOBAL_MOTION
model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR;
}
for (; i < 8; ++i) {
model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5);
model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) *
GM_ROW3HOMO_DECODE_FACTOR;
#if !CONFIG_IMPROVED_GLOBAL_MOTION
alpha_present |= (model[i] != 0);
#endif // !CONFIG_IMPROVED_GLOBAL_MOTION
}
#if !CONFIG_IMPROVED_GLOBAL_MOTION
if (!alpha_present) {
if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) {
model[0] = 0;
model[1] = 0;
}
}
#endif // !CONFIG_IMPROVED_GLOBAL_MOTION
}
void av1_convert_model_to_params(const double *params,
WarpedMotionParams *model) {
convert_to_params(params, model->wmmat);
model->wmtype = get_wmtype(model);
model->invalid = 0;
}
// Adds some offset to a global motion parameter and handles
// all of the necessary precision shifts, clamping, and
// zero-centering.
static int32_t add_param_offset(int param_index, int32_t param_value,
int32_t offset) {
const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF,
GM_ROW3HOMO_PREC_DIFF };
const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX };
// type of param: 0 - translation, 1 - affine, 2 - homography
const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2));
const int is_one_centered = (param_index == 2 || param_index == 5);
// Make parameter zero-centered and offset the shift that was done to make
// it compatible with the warped model
param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >>
scale_vals[param_type];
// Add desired offset to the rescaled/zero-centered parameter
param_value += offset;
// Clamp the parameter so it does not overflow the number of bits allotted
// to it in the bitstream
param_value = (int32_t)clamp(param_value, -clamp_vals[param_type],
clamp_vals[param_type]);
// Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible
// with the warped motion library
param_value *= (1 << scale_vals[param_type]);
// Undo the zero-centering step if necessary
return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS);
}
static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) {
switch (wmtype) {
case IDENTITY:
wm->wmmat[0] = 0;
wm->wmmat[1] = 0;
AOM_FALLTHROUGH_INTENDED;
case TRANSLATION:
wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS;
wm->wmmat[3] = 0;
AOM_FALLTHROUGH_INTENDED;
case ROTZOOM:
wm->wmmat[4] = -wm->wmmat[3];
wm->wmmat[5] = wm->wmmat[2];
AOM_FALLTHROUGH_INTENDED;
case AFFINE: wm->wmmat[6] = wm->wmmat[7] = 0; break;
default: assert(0);
}
wm->wmtype = wmtype;
}
static int64_t highbd_warp_error(
WarpedMotionParams *wm, const uint16_t *const ref, int width, int height,
int stride, const uint16_t *const dst, int p_col, int p_row, int p_width,
int p_height, int p_stride, int subsampling_x, int subsampling_y, int bd,
int64_t best_error, uint8_t *segment_map, int segment_map_stride) {
int64_t gm_sumerr = 0;
const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
uint16_t tmp[WARP_ERROR_BLOCK * WARP_ERROR_BLOCK];
ConvolveParams conv_params = get_conv_params(0, 0, bd);
for (int i = p_row; i < p_row + p_height; i += WARP_ERROR_BLOCK) {
for (int j = p_col; j < p_col + p_width; j += WARP_ERROR_BLOCK) {
int seg_x = j >> WARP_ERROR_BLOCK_LOG;
int seg_y = i >> WARP_ERROR_BLOCK_LOG;
// Only compute the error if this block contains inliers from the motion
// model
if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;
// avoid warping extra 8x8 blocks in the padded region of the frame
// when p_width and p_height are not multiples of WARP_ERROR_BLOCK
const int warp_w = AOMMIN(error_bsize_w, p_col + p_width - j);
const int warp_h = AOMMIN(error_bsize_h, p_row + p_height - i);
highbd_warp_plane(wm, ref, width, height, stride, tmp, j, i, warp_w,
warp_h, WARP_ERROR_BLOCK, subsampling_x, subsampling_y,
bd, &conv_params);
gm_sumerr += av1_calc_highbd_frame_error(tmp, WARP_ERROR_BLOCK,
dst + j + i * p_stride, warp_w,
warp_h, p_stride, bd);
if (gm_sumerr > best_error) return INT64_MAX;
}
}
return gm_sumerr;
}
int64_t av1_warp_error(WarpedMotionParams *wm, int bd, const uint16_t *ref,
int width, int height, int stride, uint16_t *dst,
int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y,
int64_t best_error, uint8_t *segment_map,
int segment_map_stride) {
force_wmtype(wm, wm->wmtype);
if (wm->wmtype <= AFFINE) {
#if CONFIG_EXTENDED_WARP_PREDICTION
av1_reduce_warp_model(wm);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
if (!av1_get_shear_params(wm)) return INT64_MAX;
}
return highbd_warp_error(wm, ref, width, height, stride, dst, p_col, p_row,
p_width, p_height, p_stride, subsampling_x,
subsampling_y, bd, best_error, segment_map,
segment_map_stride);
}
// Factors used to calculate the thresholds for av1_warp_error
static double thresh_factors[GM_MAX_REFINEMENT_STEPS] = { 1.25, 1.20, 1.15,
1.10, 1.05 };
static INLINE int64_t calc_approx_erroradv_threshold(
double scaling_factor, int64_t erroradv_threshold) {
return erroradv_threshold <
(int64_t)(((double)INT64_MAX / scaling_factor) + 0.5)
? (int64_t)(scaling_factor * erroradv_threshold + 0.5)
: INT64_MAX;
}
int64_t av1_refine_integerized_param(
WarpedMotionParams *wm, TransformationType wmtype, int bd, uint16_t *ref,
int r_width, int r_height, int r_stride, uint16_t *dst, int d_width,
int d_height, int d_stride, int n_refinements, int64_t best_frame_error,
uint8_t *segment_map, int segment_map_stride, int64_t erroradv_threshold) {
const int border = ERRORADV_BORDER;
int i = 0, p;
int n_params = trans_model_params[wmtype];
int32_t *param_mat = wm->wmmat;
int64_t step_error, best_error;
int32_t step;
int32_t *param;
int32_t curr_param;
int32_t best_param;
force_wmtype(wm, wmtype);
best_error =
av1_warp_error(wm, bd, ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border, border,
d_width - 2 * border, d_height - 2 * border, d_stride, 0,
0, best_frame_error, segment_map, segment_map_stride);
if (n_refinements == 0) {
wm->wmtype = get_wmtype(wm);
return best_error;
}
best_error = AOMMIN(best_error, best_frame_error);
step = 1 << (n_refinements - 1);
for (i = 0; i < n_refinements; i++, step >>= 1) {
int64_t error_adv_thresh =
calc_approx_erroradv_threshold(thresh_factors[i], erroradv_threshold);
for (p = 0; p < n_params; ++p) {
int step_dir = 0;
// Skip searches for parameters that are forced to be 0
param = param_mat + p;
curr_param = *param;
best_param = curr_param;
// look to the left
*param = add_param_offset(p, curr_param, -step);
step_error =
av1_warp_error(wm, bd, ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border, border,
d_width - 2 * border, d_height - 2 * border, d_stride,
0, 0, AOMMIN(best_error, error_adv_thresh),
segment_map, segment_map_stride);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
step_dir = -1;
}
// look to the right
*param = add_param_offset(p, curr_param, step);
step_error =
av1_warp_error(wm, bd, ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border, border,
d_width - 2 * border, d_height - 2 * border, d_stride,
0, 0, AOMMIN(best_error, error_adv_thresh),
segment_map, segment_map_stride);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
step_dir = 1;
}
*param = best_param;
// look to the direction chosen above repeatedly until error increases
// for the biggest step size
while (step_dir) {
*param = add_param_offset(p, best_param, step * step_dir);
step_error =
av1_warp_error(wm, bd, ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border, border,
d_width - 2 * border, d_height - 2 * border,
d_stride, 0, 0, AOMMIN(best_error, error_adv_thresh),
segment_map, segment_map_stride);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
} else {
*param = best_param;
step_dir = 0;
}
}
}
}
force_wmtype(wm, wmtype);
wm->wmtype = get_wmtype(wm);
return best_error;
}
#define FEAT_COUNT_TR 3
#define SEG_COUNT_TR 0.40
void av1_compute_feature_segmentation_map(uint8_t *segment_map, int width,
int height, int *inliers,
int num_inliers) {
int seg_count = 0;
memset(segment_map, 0, sizeof(*segment_map) * width * height);
for (int i = 0; i < num_inliers; i++) {
int x = inliers[i * 2];
int y = inliers[i * 2 + 1];
int seg_x = x >> WARP_ERROR_BLOCK_LOG;
int seg_y = y >> WARP_ERROR_BLOCK_LOG;
segment_map[seg_y * width + seg_x] += 1;
}
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
uint8_t feat_count = segment_map[i * width + j];
segment_map[i * width + j] = (feat_count >= FEAT_COUNT_TR);
seg_count += (segment_map[i * width + j]);
}
}
// If this motion does not make up a large enough portion of the frame,
// use the unsegmented version of the error metric
if (seg_count < (width * height * SEG_COUNT_TR))
memset(segment_map, 1, width * height * sizeof(*segment_map));
}