| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include "aom/aom_codec.h" |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/reconintra.h" |
| |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/block.h" |
| #include "av1/encoder/context_tree.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodeframe_utils.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/motion_search_facade.h" |
| #include "av1/encoder/partition_search.h" |
| #include "av1/encoder/partition_strategy.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/tokenize.h" |
| #if CONFIG_ADAPTIVE_MVD |
| #include "av1/common/reconinter.h" |
| #endif // CONFIG_ADAPTIVE_MVD |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #include "av1/encoder/erp_tflite.h" |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| #include "aom_util/debug_util.h" |
| |
| #if CONFIG_TUNE_VMAF |
| #include "av1/encoder/tune_vmaf.h" |
| #endif |
| |
| #if CONFIG_NEW_TX_PARTITION |
| static void update_partition_cdfs_and_counts(MACROBLOCKD *xd, int blk_col, |
| int blk_row, TX_SIZE max_tx_size, |
| int allow_update_cdf, |
| FRAME_COUNTS *counts) { |
| (void)counts; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| const int txb_size_index = |
| is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; |
| const int is_rect = is_rect_tx(max_tx_size); |
| const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index]; |
| const int allow_horz = allow_tx_horz_split(max_tx_size); |
| const int allow_vert = allow_tx_vert_split(max_tx_size); |
| if (allow_horz && allow_vert) { |
| const TX_PARTITION_TYPE split4_partition = get_split4_partition(partition); |
| const int split4_ctx = |
| is_inter ? txfm_partition_split4_inter_context( |
| xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, bsize, max_tx_size) |
| : get_tx_size_context(xd); |
| aom_cdf_prob *split4_cdf = |
| is_inter |
| ? xd->tile_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx] |
| : xd->tile_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx]; |
| if (allow_update_cdf) { |
| update_cdf(split4_cdf, split4_partition, 4); |
| } |
| #if CONFIG_ENTROPY_STATS |
| if (is_inter) |
| ++counts |
| ->inter_4way_txfm_partition[is_rect][split4_ctx][split4_partition]; |
| else |
| ++counts |
| ->intra_4way_txfm_partition[is_rect][split4_ctx][split4_partition]; |
| #endif // CONFIG_ENTROPY_STATS |
| } else if (allow_horz || allow_vert) { |
| const int has_first_split = partition != TX_PARTITION_NONE; |
| if (allow_update_cdf) { |
| aom_cdf_prob *split2_cdf = |
| is_inter ? xd->tile_ctx->inter_2way_txfm_partition_cdf |
| : xd->tile_ctx->intra_2way_txfm_partition_cdf; |
| update_cdf(split2_cdf, has_first_split, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| if (is_inter) |
| ++counts->inter_2way_txfm_partition[has_first_split]; |
| else |
| ++counts->intra_2way_txfm_partition[has_first_split]; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| } else { |
| assert(!allow_horz && !allow_vert); |
| assert(partition == PARTITION_NONE); |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| |
| static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, |
| FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, |
| int blk_row, int blk_col, |
| uint8_t allow_update_cdf) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| assert(tx_size > TX_4X4); |
| #if CONFIG_NEW_TX_PARTITION |
| (void)depth; |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; |
| get_tx_partition_sizes(mbmi->tx_partition_type[txb_size_index], tx_size, |
| sub_txs); |
| // TODO(sarahparker) This assumes all of the tx sizes in the partition scheme |
| // are the same size. This will need to be adjusted to deal with the case |
| // where they can be different. |
| TX_SIZE this_size = sub_txs[0]; |
| assert(mbmi->inter_tx_size[txb_size_index] == this_size); |
| if (mbmi->tx_partition_type[txb_size_index] != TX_PARTITION_NONE) |
| ++x->txfm_search_info.txb_split_count; |
| |
| update_partition_cdfs_and_counts(xd, blk_col, blk_row, tx_size, |
| allow_update_cdf, counts); |
| mbmi->tx_size = this_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, this_size, tx_size); |
| #else // CONFIG_NEW_TX_PARTITION |
| int ctx = txfm_partition_context( |
| xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], tx_size); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| if (depth == MAX_VARTX_DEPTH) { |
| // Don't add to counts in this case |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| |
| if (tx_size == plane_tx_size) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][1]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); |
| ++x->txfm_search_info.txb_split_count; |
| |
| if (sub_txs == TX_4X4) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = row; |
| int offsetc = col; |
| |
| update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, |
| blk_col + offsetc, allow_update_cdf); |
| } |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| |
| static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, |
| BLOCK_SIZE plane_bsize, |
| FRAME_COUNTS *td_counts, |
| uint8_t allow_update_cdf) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); |
| |
| for (int idy = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, |
| allow_update_cdf); |
| } |
| } |
| } |
| |
| static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, |
| int blk_col) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| |
| } else { |
| #if CONFIG_NEW_TX_PARTITION |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; |
| const int index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs); |
| int cur_partition = 0; |
| int bsw = 0, bsh = 0; |
| for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { |
| for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { |
| const TX_SIZE sub_tx = sub_txs[cur_partition]; |
| bsw = tx_size_wide_unit[sub_tx]; |
| bsh = tx_size_high_unit[sub_tx]; |
| const int offsetr = blk_row + r; |
| const int offsetc = blk_col + c; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| mbmi->tx_size = sub_tx; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, sub_tx, sub_tx); |
| cur_partition++; |
| } |
| } |
| #else |
| if (tx_size == TX_8X8) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| set_txfm_context(xd, sub_txs, offsetr, offsetc); |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| } |
| |
| static void tx_partition_set_contexts(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); |
| |
| for (int idy = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| set_txfm_context(xd, max_tx_size, idy, idx); |
| } |
| } |
| } |
| |
| static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TokenExtra **t, RUN_TYPE dry_run, |
| BLOCK_SIZE bsize, int plane_start, int plane_end, |
| int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO **mi_4x4 = xd->mi; |
| MB_MODE_INFO *mbmi = mi_4x4[0]; |
| const int seg_skip = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); |
| const int mis = cm->mi_params.mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| |
| // Initialize tx_mode and tx_size_search_method |
| TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| set_tx_size_search_method( |
| cm, &cpi->winner_mode_params, txfm_params, |
| cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1 |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| , |
| x, cpi->sf.tx_sf.use_largest_tx_size_for_small_bsize |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| ); |
| |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| if (!is_inter) { |
| if (xd->tree_type != LUMA_PART) { |
| xd->cfl.store_y = store_cfl_required(cm, xd); |
| } |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 1; |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| #if CONFIG_CROSS_CHROMA_TX |
| if (plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)) |
| av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, |
| cpi->optimize_seg_arr[mbmi->segment_id]); |
| else if (plane == AOM_PLANE_U) |
| av1_encode_intra_block_joint_uv( |
| cpi, x, bsize, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]); |
| #else |
| av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, |
| cpi->optimize_seg_arr[mbmi->segment_id]); |
| #endif // CONFIG_CROSS_CHROMA_TX |
| } |
| |
| // If there is at least one lossless segment, force the skip for intra |
| // block to be 0, in order to avoid the segment_id to be changed by in |
| // write_segment_id(). |
| if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && |
| cpi->enc_seg.has_lossless_segment) |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0; |
| |
| xd->cfl.store_y = 0; |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
| for (int plane = plane_start; plane < AOMMIN(2, plane_end); ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane] > 0) { |
| if (!dry_run) { |
| av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, |
| PALETTE_MAP, tile_data->allow_update_cdf, |
| td->counts); |
| } else if (dry_run == DRY_RUN_COSTCOEFFS) { |
| rate += |
| av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); |
| } |
| } |
| } |
| } |
| |
| av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize, |
| tile_data->allow_update_cdf); |
| } else { |
| int ref; |
| const int is_compound = has_second_ref(mbmi); |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const YV12_BUFFER_CONFIG *cfg = |
| get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]); |
| assert(IMPLIES(!is_intrabc_block(mbmi, xd->tree_type), cfg)); |
| av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, |
| xd->block_ref_scale_factors[ref], num_planes, |
| &mbmi->chroma_ref_info); |
| } |
| int start_plane = 0; |
| #if CONFIG_BAWP |
| struct macroblockd_plane *p = xd->plane; |
| const BUFFER_SET orig_dst = { |
| { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, |
| { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, |
| }; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, |
| #else |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| #endif |
| start_plane, av1_num_planes(cm) - 1); |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| assert(cm->features.enabled_motion_modes & (1 << OBMC_CAUSAL)); |
| #else |
| assert(cpi->oxcf.motion_mode_cfg.enable_obmc); |
| #endif |
| av1_build_obmc_inter_predictors_sb(cm, xd); |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (dry_run == OUTPUT_ENABLED) { |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| if (plane && !xd->is_chroma_ref) continue; |
| if (plane) { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, |
| mbmi->chroma_ref_info.mi_col_chroma_base, |
| mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| } else { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, |
| cm->current_frame.order_hint, plane, pixel_c, |
| pixel_r, pd->width, pd->height); |
| } |
| } |
| #else |
| (void)num_planes; |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| av1_encode_sb(cpi, x, bsize, dry_run, plane_start, plane_end); |
| av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate, |
| tile_data->allow_update_cdf, plane_start, plane_end); |
| } |
| |
| if (!dry_run) { |
| if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi, xd->tree_type)) |
| td->intrabc_used = 1; |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| !xd->lossless[mbmi->segment_id] && |
| mbmi->sb_type[xd->tree_type == CHROMA_PART] > BLOCK_4X4 && |
| !(is_inter && |
| (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip))) { |
| if (is_inter) { |
| tx_partition_count_update(cm, x, bsize, td->counts, |
| tile_data->allow_update_cdf); |
| } else { |
| if (mbmi->tx_size != max_txsize_rect_lookup[bsize] && |
| xd->tree_type != CHROMA_PART) |
| ++x->txfm_search_info.txb_split_count; |
| if (block_signals_txsize(bsize) && xd->tree_type != CHROMA_PART) { |
| #if CONFIG_NEW_TX_PARTITION |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; |
| update_partition_cdfs_and_counts( |
| xd, 0, 0, max_tx_size, tile_data->allow_update_cdf, td->counts); |
| #else // CONFIG_NEW_TX_PARTITION |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int depth = tx_size_to_depth(mbmi->tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| if (tile_data->allow_update_cdf) |
| update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| depth, max_depths + 1); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; |
| #endif |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| } |
| if (xd->tree_type != CHROMA_PART) |
| assert( |
| IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); |
| } else { |
| int i, j; |
| TX_SIZE intra_tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| intra_tx_size = TX_4X4; |
| } else { |
| intra_tx_size = |
| tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); |
| } |
| } else { |
| intra_tx_size = mbmi->tx_size; |
| } |
| |
| for (j = 0; j < mi_height; j++) |
| for (i = 0; i < mi_width; i++) |
| if (mi_col + i < cm->mi_params.mi_cols && |
| mi_row + j < cm->mi_params.mi_rows) |
| mi_4x4[mis * j + i]->tx_size = intra_tx_size; |
| |
| if (intra_tx_size != max_txsize_rect_lookup[bsize]) |
| ++x->txfm_search_info.txb_split_count; |
| } |
| #if CONFIG_REF_MV_BANK && !CONFIG_C043_MVP_IMPROVEMENTS |
| #if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT |
| if (cm->seq_params.enable_refmvbank && is_inter && |
| !is_intrabc_block(mbmi, xd->tree_type)) |
| #else |
| if (cm->seq_params.enable_refmvbank && is_inter) |
| #endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT |
| av1_update_ref_mv_bank(cm, xd, mbmi); |
| #endif // CONFIG_REF_MV_BANK && !CONFIG_C043_MVP_IMPROVEMENTS |
| |
| #if CONFIG_WARP_REF_LIST && !WARP_CU_BANK |
| if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi); |
| #endif // CONFIG_WARP_REF_LIST && !WARP_CU_BANK |
| } |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| block_signals_txsize(mbmi->sb_type[xd->tree_type == CHROMA_PART]) && |
| is_inter && |
| !(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) && |
| !xd->lossless[mbmi->segment_id]) { |
| if (dry_run) tx_partition_set_contexts(cm, xd, bsize); |
| } else { |
| TX_SIZE tx_size = mbmi->tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| tx_size = TX_4X4; |
| } else { |
| tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); |
| } |
| } else { |
| tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; |
| } |
| mbmi->tx_size = tx_size; |
| set_txfm_ctxs(tx_size, xd->width, xd->height, |
| (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) && |
| is_inter_block(mbmi, xd->tree_type), |
| xd); |
| } |
| |
| if (is_inter_block(mbmi, xd->tree_type) && !xd->is_chroma_ref && |
| is_cfl_allowed(xd)) { |
| #if CONFIG_ADAPTIVE_DS_FILTER |
| cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART], |
| mbmi->tx_size, |
| #if DS_FRAME_LEVEL |
| cm->features.ds_filter_type); |
| #else |
| cm->seq_params.enable_cfl_ds_filter); |
| #endif // DS_FRAME_LEVEL |
| #else |
| cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART], |
| mbmi->tx_size); |
| #endif // CONFIG_ADAPTIVE_DS_FILTER |
| } |
| if (xd->tree_type == LUMA_PART) { |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| for (int y = 0; y < mi_height; y++) { |
| for (int x_idx = 0; x_idx < mi_width; x_idx++) { |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| if (y == 0 && x_idx == 0) continue; |
| const int mi_idx = |
| get_alloc_mi_idx(mi_params, mi_row + y, mi_col + x_idx); |
| xd->mi[x_idx + y * mis] = &mi_params->mi_alloc[mi_idx]; |
| xd->mi[x_idx + y * mis]->skip_txfm[PLANE_TYPE_Y] = |
| xd->mi[0]->skip_txfm[PLANE_TYPE_Y]; |
| } |
| } |
| } |
| } |
| |
| av1_mark_block_as_coded(xd, bsize, cm->seq_params.sb_size); |
| } |
| |
| void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| AQ_MODE aq_mode, MB_MODE_INFO *mbmi) { |
| x->rdmult = cpi->rd.RDMULT; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| if (aq_mode != NO_AQ && xd->tree_type == SHARED_PART) { |
| assert(mbmi != NULL); |
| if (aq_mode == VARIANCE_AQ) { |
| if (cpi->vaq_refresh) { |
| const int energy = bsize <= BLOCK_16X16 |
| ? x->mb_energy |
| : av1_log_block_var(cpi, x, bsize); |
| mbmi->segment_id = energy; |
| } |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == COMPLEXITY_AQ) { |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == CYCLIC_REFRESH_AQ) { |
| // If segment is boosted, use rdmult for that segment. |
| if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) |
| x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| } |
| } |
| |
| const AV1_COMMON *const cm = &cpi->common; |
| if (cm->delta_q_info.delta_q_present_flag) { |
| x->rdmult = |
| av1_get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult); |
| } |
| |
| if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) { |
| av1_set_ssim_rdmult(cpi, &x->mv_costs, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| #if CONFIG_TUNE_VMAF |
| if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || |
| cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN || |
| cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { |
| av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| #endif |
| } |
| |
| void av1_set_offsets_without_segment_id( |
| const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, |
| mi_row, mi_col |
| #if CONFIG_C071_SUBBLK_WARPMV |
| , |
| mi_width, mi_height |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| ); |
| |
| set_entropy_context(xd, mi_row, mi_col, num_planes, chroma_ref_info); |
| xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| // Set up destination pointers. |
| av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes, chroma_ref_info); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height, |
| mi_width, cpi->oxcf.border_in_pixels); |
| |
| set_plane_n4(xd, mi_width, mi_height, num_planes, chroma_ref_info); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, |
| cm->mi_params.mi_rows, cm->mi_params.mi_cols, chroma_ref_info); |
| |
| // Set up source buffers. |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, |
| chroma_ref_info); |
| |
| // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() |
| xd->tile = *tile; |
| } |
| |
| void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, const CHROMA_REF_INFO *chroma_ref_info) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| |
| av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize, |
| chroma_ref_info); |
| |
| // Setup segment ID. |
| mbmi = xd->mi[0]; |
| mbmi->segment_id = 0; |
| if (seg->enabled) { |
| if (seg->enabled && !cpi->vaq_refresh) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
| mbmi->segment_id = |
| map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0; |
| } |
| av1_init_plane_quantizers(cpi, x, mbmi->segment_id); |
| } |
| } |
| |
| /*!\brief Interface for AV1 mode search for an individual coding block |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| * Searches prediction modes, transform, and coefficient coding modes for an |
| * individual coding block. This function is the top-level interface that |
| * directs the encoder to the proper mode search function, among these |
| * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during |
| * encoding |
| * \param[in] x Pointer to structure holding all the data for |
| * the current macroblock |
| * \param[in] mi_row Row coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] rd_cost Pointer to structure holding rate and distortion |
| * stats for the current block |
| * \param[in] partition Partition mode of the parent block |
| * \param[in] bsize Current block size |
| * \param[in] ctx Pointer to structure holding coding contexts and |
| * chosen modes for the current block |
| * \param[in] best_rd Upper bound of rd cost of a valid partition |
| * |
| * Nothing is returned. Instead, the chosen modes and contexts necessary |
| * for reconstruction are stored in ctx, the rate-distortion stats are stored in |
| * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be |
| * signalled by an INT64_MAX rd_cost->rdcost. |
| */ |
| static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, PARTITION_TYPE partition, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| RD_STATS best_rd) { |
| if (best_rd.rdcost < 0) { |
| ctx->rd_stats.rdcost = INT64_MAX; |
| ctx->rd_stats.skip_txfm = 0; |
| av1_invalid_rd_stats(rd_cost); |
| return; |
| } |
| |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int plane_type = (xd->tree_type == CHROMA_PART); |
| assert(is_bsize_geq(bsize, cpi->common.mi_params.mi_alloc_bsize)); |
| |
| av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize, |
| &ctx->chroma_ref_info); |
| |
| if (ctx->rd_mode_is_ready) { |
| assert(ctx->mic.sb_type[plane_type] == bsize); |
| assert(ctx->mic.partition == partition); |
| rd_cost->rate = ctx->rd_stats.rate; |
| rd_cost->dist = ctx->rd_stats.dist; |
| rd_cost->rdcost = ctx->rd_stats.rdcost; |
| #if CONFIG_C043_MVP_IMPROVEMENTS |
| const int is_inter = is_inter_block(&ctx->mic, xd->tree_type); |
| #if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT |
| if (cm->seq_params.enable_refmvbank && is_inter && |
| !is_intrabc_block(&ctx->mic, xd->tree_type)) |
| #else |
| if (cm->seq_params.enable_refmvbank && is_inter) |
| #endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT |
| av1_update_ref_mv_bank(cm, xd, &ctx->mic); |
| #endif // CONFIG_C043_MVP_IMPROVEMENTS |
| #if WARP_CU_BANK |
| if (is_inter) av1_update_warp_param_bank(cm, xd, &ctx->mic); |
| #endif // WARP_CU_BANK |
| return; |
| } |
| |
| MB_MODE_INFO *mbmi; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| |
| int i; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| |
| aom_clear_system_state(); |
| |
| mbmi = xd->mi[0]; |
| mbmi->sb_type[plane_type] = bsize; |
| if (xd->tree_type == SHARED_PART) mbmi->sb_type[PLANE_TYPE_UV] = bsize; |
| mbmi->partition = partition; |
| mbmi->chroma_ref_info = ctx->chroma_ref_info; |
| |
| #if CONFIG_RD_DEBUG |
| mbmi->mi_row = mi_row; |
| mbmi->mi_col = mi_col; |
| #endif |
| |
| // Sets up the tx_type_map buffer in MACROBLOCKD. |
| xd->tx_type_map = txfm_info->tx_type_map_; |
| xd->tx_type_map_stride = mi_size_wide[bsize]; |
| #if CONFIG_CROSS_CHROMA_TX |
| xd->cctx_type_map = txfm_info->cctx_type_map_; |
| xd->cctx_type_map_stride = mi_size_wide[bsize]; |
| #endif // CONFIG_CROSS_CHROMA_TX |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| p[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| |
| ctx->skippable = 0; |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0; |
| // Reset skip mode flag. |
| mbmi->skip_mode = 0; |
| |
| x->source_variance = |
| av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize, xd->bd); |
| |
| // Initialize default mode evaluation params |
| set_mode_eval_params(cpi, x, DEFAULT_EVAL); |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); |
| // Set error per bit for current rdmult |
| av1_set_error_per_bit(&x->mv_costs, x->rdmult); |
| av1_rd_cost_update(x->rdmult, &best_rd); |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| } else { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, best_rd.rdcost); |
| } else { |
| av1_rd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx, |
| best_rd.rdcost); |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| } |
| |
| #if CONFIG_C043_MVP_IMPROVEMENTS |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| #if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT |
| if (cm->seq_params.enable_refmvbank && is_inter && |
| !is_intrabc_block(mbmi, xd->tree_type)) |
| #else |
| if (cm->seq_params.enable_refmvbank && is_inter) |
| #endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT |
| av1_update_ref_mv_bank(cm, xd, mbmi); |
| #endif // CONFIG_C043_MVP_IMPROVEMENTS |
| |
| #if WARP_CU_BANK |
| if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi); |
| #endif // WARP_CU_BANK |
| |
| // Examine the resulting rate and for AQ mode 2 make a segment choice. |
| if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ && |
| bsize >= BLOCK_16X16) { |
| av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); |
| } |
| |
| x->rdmult = orig_rdmult; |
| |
| // TODO(jingning) The rate-distortion optimization flow needs to be |
| // refactored to provide proper exit/return handle. |
| if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; |
| |
| ctx->rd_stats.rate = rd_cost->rate; |
| ctx->rd_stats.dist = rd_cost->dist; |
| ctx->rd_stats.rdcost = rd_cost->rdcost; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| } |
| |
| static void update_drl_index_stats(int max_drl_bits, const int16_t mode_ctx, |
| FRAME_CONTEXT *fc, FRAME_COUNTS *counts, |
| const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT *mbmi_ext) { |
| #if !CONFIG_ENTROPY_STATS |
| (void)counts; |
| #endif // !CONFIG_ENTROPY_STATS |
| assert(have_drl_index(mbmi->mode)); |
| #if CONFIG_WARPMV |
| assert(IMPLIES(mbmi->mode == WARPMV, 0)); |
| #endif // CONFIG_WARPMV |
| #if IMPROVED_AMVD |
| if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1); |
| #endif // IMPROVED_AMVD |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| assert(mbmi->ref_mv_idx < max_drl_bits + 1); |
| for (int idx = 0; idx < max_drl_bits; ++idx) { |
| aom_cdf_prob *drl_cdf = |
| av1_get_drl_cdf(fc, mbmi_ext->weight[ref_frame_type], mode_ctx, idx); |
| #if CONFIG_ENTROPY_STATS |
| int drl_ctx = av1_drl_ctx(mode_ctx); |
| switch (idx) { |
| case 0: counts->drl_mode[0][drl_ctx][mbmi->ref_mv_idx != idx]++; break; |
| case 1: counts->drl_mode[1][drl_ctx][mbmi->ref_mv_idx != idx]++; break; |
| default: counts->drl_mode[2][drl_ctx][mbmi->ref_mv_idx != idx]++; break; |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2); |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| |
| #if CONFIG_BVP_IMPROVEMENT |
| static void update_intrabc_drl_idx_stats(int max_ref_bv_num, FRAME_CONTEXT *fc, |
| FRAME_COUNTS *counts, |
| const MB_MODE_INFO *mbmi) { |
| #if !CONFIG_ENTROPY_STATS |
| (void)counts; |
| #endif // !CONFIG_ENTROPY_STATS |
| assert(mbmi->intrabc_drl_idx < max_ref_bv_num); |
| int bit_cnt = 0; |
| for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) { |
| #if CONFIG_ENTROPY_STATS |
| counts->intrabc_drl_idx[bit_cnt][mbmi->intrabc_drl_idx != idx]++; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->intrabc_drl_idx_cdf[bit_cnt], mbmi->intrabc_drl_idx != idx, |
| 2); |
| if (mbmi->intrabc_drl_idx == idx) break; |
| ++bit_cnt; |
| } |
| } |
| #endif // CONFIG_BVP_IMPROVEMENT |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| static void update_warp_delta_param_stats(int index, int value, |
| #if CONFIG_ENTROPY_STATS |
| FRAME_COUNTS *counts, |
| #endif // CONFIG_ENTROPY_STATS |
| FRAME_CONTEXT *fc) { |
| assert(2 <= index && index <= 5); |
| int index_type = (index == 2 || index == 5) ? 0 : 1; |
| int coded_value = (value / WARP_DELTA_STEP) + WARP_DELTA_CODED_MAX; |
| assert(0 <= coded_value && coded_value < WARP_DELTA_NUM_SYMBOLS); |
| |
| update_cdf(fc->warp_delta_param_cdf[index_type], coded_value, |
| WARP_DELTA_NUM_SYMBOLS); |
| #if CONFIG_ENTROPY_STATS |
| counts->warp_delta_param[index_type][coded_value]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| |
| static void update_warp_delta_stats(const AV1_COMMON *cm, |
| #if !CONFIG_WARP_REF_LIST |
| const MACROBLOCKD *xd, |
| #endif //! CONFIG_WARP_REF_LIST |
| const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| #if CONFIG_ENTROPY_STATS |
| FRAME_COUNTS *counts, |
| #endif // CONFIG_ENTROPY_STATS |
| FRAME_CONTEXT *fc) { |
| |
| #if CONFIG_WARP_REF_LIST |
| if (mbmi->max_num_warp_candidates > 1) { |
| assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates); |
| int max_idx_bits = mbmi->max_num_warp_candidates - 1; |
| for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) { |
| aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(fc, bit_idx); |
| update_cdf(warp_ref_idx_cdf, mbmi->warp_ref_idx != bit_idx, 2); |
| if (mbmi->warp_ref_idx == bit_idx) break; |
| } |
| } |
| if (allow_warp_parameter_signaling(mbmi)) { |
| #endif // CONFIG_WARP_REF_LIST |
| const WarpedMotionParams *params = &mbmi->wm_params[0]; |
| WarpedMotionParams base_params; |
| av1_get_warp_base_params( |
| cm, |
| #if !CONFIG_WARP_REF_LIST |
| xd, |
| #endif //! CONFIG_WARP_REF_LIST |
| mbmi, |
| #if !CONFIG_WARP_REF_LIST |
| mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], |
| #endif //! CONFIG_WARP_REF_LIST |
| &base_params, NULL |
| #if CONFIG_WARP_REF_LIST |
| , |
| mbmi_ext->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)] |
| #endif // CONFIG_WARP_REF_LIST |
| |
| ); |
| |
| // The RDO stage should not give us a model which is not warpable. |
| // Such models can still be signalled, but are effectively useless |
| // as we'll just fall back to translational motion |
| assert(!params->invalid); |
| |
| // TODO(rachelbarker): Allow signaling warp type? |
| update_warp_delta_param_stats(2, params->wmmat[2] - base_params.wmmat[2], |
| #if CONFIG_ENTROPY_STATS |
| counts, |
| #endif // CONFIG_ENTROPY_STATS |
| fc); |
| update_warp_delta_param_stats(3, params->wmmat[3] - base_params.wmmat[3], |
| #if CONFIG_ENTROPY_STATS |
| counts, |
| #endif // CONFIG_ENTROPY_STATS |
| fc); |
| #if CONFIG_WARP_REF_LIST |
| } |
| #endif // CONFIG_WARP_REF_LIST |
| } |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| static void update_skip_drl_index_stats(int max_drl_bits, FRAME_CONTEXT *fc, |
| FRAME_COUNTS *counts, |
| const MB_MODE_INFO *mbmi) { |
| #if !CONFIG_ENTROPY_STATS |
| (void)counts; |
| #endif // !CONFIG_ENTROPY_STATS |
| assert(have_drl_index(mbmi->mode)); |
| assert(mbmi->ref_mv_idx < max_drl_bits + 1); |
| for (int idx = 0; idx < max_drl_bits; ++idx) { |
| aom_cdf_prob *drl_cdf = fc->skip_drl_cdf[AOMMIN(idx, 2)]; |
| #if CONFIG_ENTROPY_STATS |
| switch (idx) { |
| case 0: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break; |
| case 1: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break; |
| default: counts->skip_drl_mode[2][mbmi->ref_mv_idx != idx]++; break; |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2); |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| |
| static void update_stats(const AV1_COMMON *const cm, ThreadData *td) { |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const int seg_ref_active = 0; |
| |
| if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active && |
| is_comp_ref_allowed(bsize)) { |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; |
| #endif |
| update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); |
| } |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (!seg_ref_active) { |
| #else |
| if (!mbmi->skip_mode && !seg_ref_active) { |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts |
| ->skip_txfm[skip_ctx][mbmi->skip_txfm[xd->tree_type == CHROMA_PART]]++; |
| #endif |
| update_cdf(fc->skip_txfm_cdfs[skip_ctx], |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART], 2); |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag && |
| (bsize != cm->seq_params.sb_size || |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) && |
| super_block_upper_left) { |
| const int dq = (mbmi->current_qindex - xd->current_base_qindex) / |
| delta_q_info->delta_q_res; |
| const int absdq = abs(dq); |
| for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { |
| td->counts->delta_q[i][1]++; |
| } |
| if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf_multi[lf_id][i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; |
| } |
| } else { |
| const int delta_lf = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf[i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf[abs_delta_lf][0]++; |
| } |
| } |
| } |
| #endif |
| if (!is_inter_block(mbmi, xd->tree_type)) { |
| av1_sum_intra_stats(cm, td->counts, xd, mbmi); |
| } |
| if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) { |
| const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); |
| #if CONFIG_NEW_CONTEXT_MODELING |
| const int intrabc_ctx = get_intrabc_ctx(xd); |
| update_cdf(fc->intrabc_cdf[intrabc_ctx], use_intrabc, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intrabc[intrabc_ctx][use_intrabc]; |
| #endif // CONFIG_ENTROPY_STATS |
| #else |
| update_cdf(fc->intrabc_cdf, use_intrabc, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intrabc[use_intrabc]; |
| #endif // CONFIG_ENTROPY_STATS |
| #endif // CONFIG_NEW_CONTEXT_MODELING |
| #if CONFIG_BVCOST_UPDATE |
| if (use_intrabc) { |
| const int_mv ref_mv = mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv; |
| #if CONFIG_FLEX_MVRES |
| av1_update_mv_stats(mbmi->mv[0].as_mv, ref_mv.as_mv, &fc->ndvc, |
| #if CONFIG_ADAPTIVE_MVD |
| 0, |
| #endif // CONFIG_ADAPTIVE_MVD |
| MV_PRECISION_ONE_PEL); |
| } |
| #else |
| av1_update_mv_stats(&mbmi->mv[0].as_mv, &ref_mv.as_mv, &fc->ndvc, |
| #if CONFIG_ADAPTIVE_MVD |
| 0, |
| #endif // CONFIG_ADAPTIVE_MVD |
| MV_SUBPEL_NONE); |
| } |
| #endif |
| |
| #endif // CONFIG_BVCOST_UPDATE |
| #if CONFIG_BVP_IMPROVEMENT |
| if (use_intrabc) { |
| update_cdf(fc->intrabc_mode_cdf, mbmi->intrabc_mode, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intrabc_mode[mbmi->intrabc_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| update_intrabc_drl_idx_stats(MAX_REF_BV_STACK_SIZE, fc, td->counts, mbmi); |
| } |
| #endif // CONFIG_BVP_IMPROVEMENT |
| } |
| |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (mbmi->skip_mode && have_drl_index(mbmi->mode)) { |
| FRAME_COUNTS *const counts = td->counts; |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| update_skip_drl_index_stats(cm->features.max_drl_bits, fc, counts, mbmi); |
| #else |
| const int16_t mode_ctx_pristine = |
| av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame); |
| update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc, |
| counts, mbmi, mbmi_ext); |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| } |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| |
| if (frame_is_intra_only(cm) || mbmi->skip_mode) return; |
| |
| FRAME_COUNTS *const counts = td->counts; |
| const int inter_block = mbmi->ref_frame[0] != INTRA_FRAME; |
| |
| if (!seg_ref_active) { |
| #if CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION |
| counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; |
| #endif // CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION |
| #if CONFIG_CONTEXT_DERIVATION |
| const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART]; |
| #if CONFIG_ENTROPY_STATS |
| counts->intra_inter[skip_txfm][av1_get_intra_inter_context(xd)] |
| [inter_block]++; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->intra_inter_cdf[skip_txfm][av1_get_intra_inter_context(xd)], |
| inter_block, 2); |
| #else |
| update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], |
| inter_block, 2); |
| #endif // CONFIG_CONTEXT_DERIVATION |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (inter_block) { |
| const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| |
| #if CONFIG_TIP |
| if (cm->features.tip_frame_mode && |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| is_tip_allowed_bsize(mbmi)) { |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| is_tip_allowed_bsize(bsize)) { |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| const int tip_ctx = get_tip_ctx(xd); |
| update_cdf(fc->tip_cdf[tip_ctx], is_tip_ref_frame(ref0), 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->tip_ref[tip_ctx][is_tip_ref_frame(ref0)]; |
| #endif |
| } |
| #endif // CONFIG_TIP |
| |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT |
| #if CONFIG_TIP |
| && !is_tip_ref_frame(ref0) |
| #endif // CONFIG_TIP |
| ) { |
| if (is_comp_ref_allowed(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_inter[av1_get_reference_mode_context(cm, xd)] |
| [has_second_ref(mbmi)]++; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(av1_get_reference_mode_cdf(cm, xd), has_second_ref(mbmi), |
| 2); |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| const int n_refs = cm->ref_frames_info.num_total_refs; |
| int n_bits = 0; |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| assert(ref0 <= ref1); |
| for (int i = 0; i < n_refs - 1 && n_bits < 2; i++) { |
| const int bit = |
| ((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i)); |
| #else |
| assert(ref0 < ref1); |
| for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) { |
| const int bit = ref0 == i || ref1 == i; |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| const int bit_type = n_bits == 0 ? -1 |
| : av1_get_compound_ref_bit_type( |
| &cm->ref_frames_info, ref0, i); |
| if (n_bits > 0 || i < RANKED_REF0_TO_PRUNE - 1) |
| update_cdf( |
| av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs), |
| bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| if (n_bits == 0) { |
| if (i < RANKED_REF0_TO_PRUNE - 1) |
| counts->comp_ref0[av1_get_ref_pred_context(xd, i, n_refs)][i] |
| [bit]++; |
| } else { |
| counts->comp_ref1[av1_get_ref_pred_context(xd, i, n_refs)][bit_type] |
| [i - 1][bit]++; |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| n_bits += bit; |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| if (i < cm->ref_frames_info.num_same_ref_compound) i -= bit; |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| } |
| #if CONFIG_TIP |
| } else if (!is_tip_ref_frame(ref0)) { |
| #else |
| } else { |
| #endif // CONFIG_TIP |
| const int n_refs = cm->ref_frames_info.num_total_refs; |
| const MV_REFERENCE_FRAME ref0_nrs = mbmi->ref_frame[0]; |
| for (int i = 0; i < n_refs - 1; i++) { |
| const int bit = ref0_nrs == i; |
| update_cdf(av1_get_pred_cdf_single_ref(xd, i, n_refs), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_ref_pred_context(xd, i, n_refs)][i][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit) break; |
| } |
| } |
| |
| #if CONFIG_BAWP |
| if (cm->features.enable_bawp && |
| av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) { |
| update_cdf(fc->bawp_cdf, mbmi->bawp_flag == 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->bawp[mbmi->bawp_flag == 1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| #endif // CONFIG_BAWP |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| const RefCntBuffer *const refbuf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const int allowed_motion_modes = motion_mode_allowed( |
| cm, xd, mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi, |
| refbuf ? refbuf->base_qindex : -1); |
| MOTION_MODE motion_mode = mbmi->motion_mode; |
| |
| #if CONFIG_WARPMV |
| if (mbmi->mode == WARPMV) { |
| if (allowed_motion_modes & (1 << WARPED_CAUSAL)) { |
| update_cdf(fc->warped_causal_warpmv_cdf[bsize], |
| motion_mode == WARPED_CAUSAL, 2); |
| } |
| #if CONFIG_INTERINTRA_WARP |
| if (motion_mode != WARPED_CAUSAL && |
| (allowed_motion_modes & (1 << WARPED_CAUSAL_INTERINTRA))) { |
| update_cdf(fc->warped_causal_interintra_warpmv_cdf[bsize], |
| motion_mode == WARPED_CAUSAL_INTERINTRA, 2); |
| } |
| #endif // CONFIG_INTERINTRA_WARP |
| } |
| #endif // CONFIG_WARPMV |
| |
| bool continue_motion_mode_signaling = |
| #if CONFIG_WARPMV |
| (mbmi->mode == WARPMV) ? false : |
| #endif // CONFIG_WARPMV |
| true; |
| |
| #if CONFIG_WARPMV |
| assert(IMPLIES(mbmi->mode == WARPMV, |
| mbmi->motion_mode == WARP_DELTA || |
| warped_causal_idx_map(mbmi->motion_mode))); |
| #endif // CONFIG_WARPMV |
| |
| if (continue_motion_mode_signaling && |
| (allowed_motion_modes & (1 << INTERINTRA))) { |
| const int bsize_group = size_group_lookup[bsize]; |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][motion_mode == INTERINTRA]++; |
| #endif |
| update_cdf(fc->interintra_cdf[bsize_group], motion_mode == INTERINTRA, |
| 2); |
| |
| if (motion_mode == INTERINTRA) { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; |
| #endif |
| update_cdf(fc->interintra_mode_cdf[bsize_group], |
| mbmi->interintra_mode, INTERINTRA_MODES); |
| if (av1_is_wedge_used(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; |
| #endif |
| update_cdf(fc->wedge_interintra_cdf[bsize], |
| mbmi->use_wedge_interintra, 2); |
| if (mbmi->use_wedge_interintra) { |
| #if CONFIG_WEDGE_MOD_EXT |
| update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index |
| #if CONFIG_ENTROPY_STATS |
| , |
| counts |
| #endif // CONFIG_ENTROPY_STATS |
| ); |
| #else |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; |
| #endif |
| update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, |
| 16); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| } |
| } |
| continue_motion_mode_signaling = false; |
| } |
| } |
| |
| if (continue_motion_mode_signaling && |
| (allowed_motion_modes & (1 << OBMC_CAUSAL))) { |
| #if CONFIG_ENTROPY_STATS |
| counts->obmc[bsize][motion_mode == OBMC_CAUSAL]++; |
| #endif |
| update_cdf(fc->obmc_cdf[bsize], motion_mode == OBMC_CAUSAL, 2); |
| if (motion_mode == OBMC_CAUSAL) { |
| continue_motion_mode_signaling = false; |
| } |
| } |
| |
| if (continue_motion_mode_signaling && |
| allowed_motion_modes & (1 << WARP_EXTEND)) { |
| const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi); |
| const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi); |
| #if CONFIG_ENTROPY_STATS |
| counts->warp_extend[ctx1][ctx2][mbmi->motion_mode == WARP_EXTEND]++; |
| #endif |
| update_cdf(fc->warp_extend_cdf[ctx1][ctx2], |
| mbmi->motion_mode == WARP_EXTEND, 2); |
| if (motion_mode == WARP_EXTEND) { |
| continue_motion_mode_signaling = false; |
| } |
| } |
| |
| if (continue_motion_mode_signaling && |
| (allowed_motion_modes & (1 << WARPED_CAUSAL))) { |
| #if CONFIG_ENTROPY_STATS |
| counts->warped_causal[bsize][motion_mode == WARPED_CAUSAL]++; |
| #endif |
| update_cdf(fc->warped_causal_cdf[bsize], motion_mode == WARPED_CAUSAL, |
| 2); |
| if (motion_mode == WARPED_CAUSAL) { |
| continue_motion_mode_signaling = false; |
| } |
| } |
| #if CONFIG_INTERINTRA_WARP |
| if (continue_motion_mode_signaling && |
| (allowed_motion_modes & (1 << WARPED_CAUSAL_INTERINTRA))) { |
| #if CONFIG_ENTROPY_STATS |
| counts->warped_causal_interintra[bsize][motion_mode == |
| WARPED_CAUSAL_INTERINTRA]++; |
| #endif |
| update_cdf(fc->warped_causal_interintra_cdf[bsize], |
| motion_mode == WARPED_CAUSAL_INTERINTRA, 2); |
| if (motion_mode == WARPED_CAUSAL_INTERINTRA) { |
| continue_motion_mode_signaling = false; |
| } |
| } |
| #endif // CONFIG_INTERINTRA_WARP |
| |
| if (continue_motion_mode_signaling && |
| (allowed_motion_modes & (1 << WARP_DELTA))) { |
| #if CONFIG_ENTROPY_STATS |
| counts->warp_delta[bsize][motion_mode == WARP_DELTA]++; |
| #endif |
| update_cdf(fc->warp_delta_cdf[bsize], motion_mode == WARP_DELTA, 2); |
| } |
| |
| if (motion_mode == WARP_DELTA |
| #if CONFIG_WARPMV |
| || (warped_causal_idx_map(motion_mode) && mbmi->mode == WARPMV) |
| #endif // CONFIG_WARPMV |
| ) { |
| update_warp_delta_stats(cm, |
| #if !CONFIG_WARP_REF_LIST |
| xd, |
| #endif //! CONFIG_WARP_REF_LIST |
| mbmi, mbmi_ext, |
| #if CONFIG_ENTROPY_STATS |
| counts, |
| #endif // CONFIG_ENTROPY_STATS |
| fc); |
| // The following line is commented out to remove a spurious |
| // static analysis warning. Uncomment when adding a new motion mode |
| // continue_motion_mode_signaling = false; |
| } |
| |
| #else |
| if (cm->seq_params.enable_interintra_compound && |
| is_interintra_allowed(mbmi)) { |
| const int bsize_group = size_group_lookup[bsize]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][1]++; |
| #endif |
| update_cdf(fc->interintra_cdf[bsize_group], 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; |
| #endif |
| update_cdf(fc->interintra_mode_cdf[bsize_group], |
| mbmi->interintra_mode, INTERINTRA_MODES); |
| if (av1_is_wedge_used(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; |
| #endif |
| update_cdf(fc->wedge_interintra_cdf[bsize], |
| mbmi->use_wedge_interintra, 2); |
| if (mbmi->use_wedge_interintra) { |
| #if CONFIG_WEDGE_MOD_EXT |
| update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index |
| #if CONFIG_ENTROPY_STATS |
| , |
| counts |
| #endif // CONFIG_ENTROPY_STATS |
| ); |
| #else |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; |
| #endif |
| update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, |
| 16); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| } |
| } |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][0]++; |
| #endif |
| update_cdf(fc->interintra_cdf[bsize_group], 0, 2); |
| } |
| } |
| |
| const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi); |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed == WARPED_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->motion_mode[bsize][mbmi->motion_mode]++; |
| #endif |
| update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, |
| MOTION_MODES); |
| } else if (motion_allowed == OBMC_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| #endif |
| update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2); |
| } |
| } |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| if (has_second_ref(mbmi) |
| #if CONFIG_OPTFLOW_REFINEMENT |
| && mbmi->mode < NEAR_NEARMV_OPTFLOW |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| && !is_joint_amvd_coding_mode(mbmi->mode) |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| ) { |
| assert(current_frame->reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| if (masked_compound_used) { |
| const int comp_group_idx_ctx = get_comp_group_idx_context(cm, xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| #endif |
| update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], |
| mbmi->comp_group_idx, 2); |
| } |
| |
| if (mbmi->comp_group_idx == 1) { |
| assert(masked_compound_used); |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_type[bsize][mbmi->interinter_comp.type - |
| COMPOUND_WEDGE]; |
| #endif |
| update_cdf(fc->compound_type_cdf[bsize], |
| mbmi->interinter_comp.type - COMPOUND_WEDGE, |
| MASKED_COMPOUND_TYPES); |
| } |
| } |
| } |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_WEDGE_MOD_EXT |
| update_wedge_mode_cdf(fc, bsize, mbmi->interinter_comp.wedge_index |
| #if CONFIG_ENTROPY_STATS |
| , |
| counts |
| #endif // CONFIG_ENTROPY_STATS |
| ); |
| #else |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; |
| #endif |
| update_cdf(fc->wedge_idx_cdf[bsize], |
| mbmi->interinter_comp.wedge_index, 16); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| } |
| } |
| } |
| } |
| |
| if (inter_block && cm->features.interp_filter == SWITCHABLE && |
| !is_warp_mode(mbmi->motion_mode) && |
| !is_nontrans_global_motion(xd, mbmi)) { |
| update_filter_type_cdf(xd, mbmi); |
| } |
| if (inter_block && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| if (has_second_ref(mbmi)) { |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (cm->features.opfl_refine_type == REFINE_SWITCHABLE && |
| is_opfl_refine_allowed(cm, mbmi)) { |
| const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->use_optflow[mode_ctx][use_optical_flow]; |
| #endif |
| update_cdf(fc->use_optflow_cdf[mode_ctx], use_optical_flow, 2); |
| } |
| const int comp_mode_idx = opfl_get_comp_idx(mode); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->inter_compound_mode[mode_ctx][comp_mode_idx]; |
| #endif |
| update_cdf(fc->inter_compound_mode_cdf[mode_ctx], comp_mode_idx, |
| INTER_COMPOUND_REF_TYPES); |
| #else |
| #if CONFIG_ENTROPY_STATS |
| ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; |
| #endif |
| update_cdf(fc->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD |
| if (is_joint_mvd_coding_mode(mbmi->mode)) { |
| #if CONFIG_ADAPTIVE_MVD |
| const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode); |
| aom_cdf_prob *jmvd_scale_mode_cdf = is_joint_amvd_mode |
| ? fc->jmvd_amvd_scale_mode_cdf |
| : fc->jmvd_scale_mode_cdf; |
| const int jmvd_scale_cnt = is_joint_amvd_mode |
| ? JOINT_AMVD_SCALE_FACTOR_CNT |
| : JOINT_NEWMV_SCALE_FACTOR_CNT; |
| update_cdf(jmvd_scale_mode_cdf, mbmi->jmvd_scale_mode, jmvd_scale_cnt); |
| #else |
| update_cdf(fc->jmvd_scale_mode_cdf, mbmi->jmvd_scale_mode, |
| JOINT_NEWMV_SCALE_FACTOR_CNT); |
| #endif // CONFIG_ADAPTIVE_MVD |
| } |
| |
| #endif // CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD |
| } else { |
| av1_update_inter_mode_stats(fc, counts, mode, mode_ctx |
| #if CONFIG_WARPMV |
| , |
| cm, xd, mbmi, bsize |
| #endif // CONFIG_WARPMV |
| |
| ); |
| } |
| |
| const int new_mv = have_newmv_in_each_reference(mbmi->mode); |
| #if CONFIG_JOINT_MVD |
| const int jmvd_base_ref_list = is_joint_mvd_coding_mode(mbmi->mode) |
| ? get_joint_mvd_base_ref_list(cm, mbmi) |
| : 0; |
| #endif // CONFIG_JOINT_MVD |
| #if CONFIG_ADAPTIVE_MVD |
| const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi); |
| #endif // CONFIG_ADAPTIVE_MVD |
| if (have_drl_index(mbmi->mode)) { |
| const int16_t mode_ctx_pristine = |
| av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame); |
| update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc, |
| counts, mbmi, mbmi_ext); |
| } |
| if (have_newmv_in_inter_mode(mbmi->mode) && xd->tree_type != CHROMA_PART) { |
| #if CONFIG_FLEX_MVRES |
| const int pb_mv_precision = mbmi->pb_mv_precision; |
| assert(IMPLIES(cm->features.cur_frame_force_integer_mv, |
| pb_mv_precision == MV_PRECISION_ONE_PEL)); |
| #else |
| const int allow_hp = cm->features.cur_frame_force_integer_mv |
| ? MV_SUBPEL_NONE |
| : cm->features.allow_high_precision_mv; |
| #endif |
| |
| #if CONFIG_FLEX_MVRES |
| if (is_pb_mv_precision_active(cm, mbmi, bsize)) { |
| #if CONFIG_ADAPTIVE_MVD |
| assert(!is_adaptive_mvd); |
| #endif |
| assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision); |
| const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd); |
| const int mpp_flag = |
| (mbmi->pb_mv_precision == mbmi->most_probable_pb_mv_precision); |
| update_cdf(fc->pb_mv_mpp_flag_cdf[mpp_flag_context], mpp_flag, 2); |
| |
| if (!mpp_flag) { |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| int down = av1_get_pb_mv_precision_index(mbmi); |
| int nsymbs = precision_def->num_precisions - 1; |
| |
| const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd); |
| |
| update_cdf(fc->pb_mv_precision_cdf[down_ctx][mbmi->max_mv_precision - |
| MV_PRECISION_HALF_PEL], |
| down, nsymbs); |
| } |
| } |
| #endif // CONFIG_FLEX_MVRES |
| |
| if (new_mv) { |
| for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| |
| #if CONFIG_FLEX_MVRES |
| av1_update_mv_stats(mbmi->mv[ref].as_mv, ref_mv.as_mv, &fc->nmvc, |
| #if CONFIG_ADAPTIVE_MVD |
| is_adaptive_mvd, |
| #endif // CONFIG_ADAPTIVE_MVD |
| pb_mv_precision); |
| #else |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| #if CONFIG_ADAPTIVE_MVD |
| is_adaptive_mvd, |
| #endif // CONFIG_ADAPTIVE_MVD |
| allow_hp); |
| #endif |
| } |
| } else if (have_nearmv_newmv_in_inter_mode(mbmi->mode)) { |
| const int ref = |
| #if CONFIG_OPTFLOW_REFINEMENT |
| mbmi->mode == NEAR_NEWMV_OPTFLOW || |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_JOINT_MVD |
| jmvd_base_ref_list || |
| #endif // CONFIG_JOINT_MVD |
| mbmi->mode == NEAR_NEWMV; |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| #if CONFIG_FLEX_MVRES |
| av1_update_mv_stats(mbmi->mv[ref].as_mv, ref_mv.as_mv, &fc->nmvc, |
| #if CONFIG_ADAPTIVE_MVD |
| is_adaptive_mvd, |
| #endif // CONFIG_ADAPTIVE_MVD |
| pb_mv_precision); |
| #else |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| #if CONFIG_ADAPTIVE_MVD |
| is_adaptive_mvd, |
| #endif // CONFIG_ADAPTIVE_MVD |
| allow_hp); |
| #endif |
| } |
| } |
| } |
| } |
| |
| /*!\brief Reconstructs an individual coding block |
| * |
| * \ingroup partition_search |
| * Reconstructs an individual coding block by applying the chosen modes stored |
| * in ctx, also updates mode counts and entropy models. |
| * |
| * This function works on planes determined by get_partition_plane_start() and |
| * get_partition_plane_end() based on xd->tree_type. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during encoding |
| * \param[in] td Pointer to thread data |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] dry_run A code indicating whether it is part of the final |
| * pass for reconstructing the superblock |
| * \param[in] bsize Current block size |
| * \param[in] partition Partition mode of the parent block |
| * \param[in] ctx Pointer to structure holding coding contexts and the |
| * chosen modes for the current block |
| * \param[in] rate Pointer to the total rate for the current block |
| * |
| * Nothing is returned. Instead, reconstructions (w/o in-loop filters) |
| * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes |
| * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0]. |
| */ |
| static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TokenExtra **tp, int mi_row, int mi_col, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, |
| const PICK_MODE_CONTEXT *const ctx, int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize, |
| &ctx->chroma_ref_info); |
| const int origin_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| mbmi->partition = partition; |
| av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); |
| |
| const int num_planes = av1_num_planes(cm); |
| const int plane_start = (xd->tree_type == CHROMA_PART); |
| const int plane_end = (xd->tree_type == LUMA_PART) ? 1 : num_planes; |
| |
| if (!dry_run) { |
| for (int plane = plane_start; plane < plane_end; plane++) { |
| x->mbmi_ext_frame->cb_offset[plane] = x->cb_offset[plane]; |
| assert(x->cb_offset[plane] < |
| (1 << num_pels_log2_lookup[cpi->common.seq_params.sb_size])); |
| } |
| #if CONFIG_PC_WIENER |
| av1_init_txk_skip_array(&cpi->common, mi_row, mi_col, bsize, 0, |
| xd->tree_type, &mbmi->chroma_ref_info, plane_start, |
| plane_end); |
| #endif // CONFIG_PC_WIENER |
| } |
| |
| encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, plane_start, |
| plane_end, rate); |
| |
| if (!dry_run) { |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| if (plane == 0) { |
| x->cb_offset[plane] += block_size_wide[bsize] * block_size_high[bsize]; |
| } else if (xd->is_chroma_ref) { |
| const BLOCK_SIZE bsize_base = mbmi->chroma_ref_info.bsize_base; |
| x->cb_offset[plane] += |
| block_size_wide[bsize_base] * block_size_high[bsize_base]; |
| } |
| } |
| if (bsize == cpi->common.seq_params.sb_size && |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 1 && |
| cm->delta_q_info.delta_lf_present_flag) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; |
| mbmi->delta_lf_from_base = xd->delta_lf_from_base; |
| } |
| if (has_second_ref(mbmi)) { |
| if (mbmi->interinter_comp.type == COMPOUND_AVERAGE) |
| mbmi->comp_group_idx = 0; |
| else |
| mbmi->comp_group_idx = 1; |
| } |
| |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag && |
| (bsize != cm->seq_params.sb_size || |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) && |
| super_block_upper_left) { |
| xd->current_base_qindex = mbmi->current_qindex; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| |
| RD_COUNTS *rdc = &td->rd_counts; |
| if (mbmi->skip_mode) { |
| assert(!frame_is_intra_only(cm)); |
| rdc->skip_mode_used_flag = 1; |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| #if !CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| assert(has_second_ref(mbmi)); |
| #endif // !CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| rdc->compound_ref_used_flag = 1; |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } else { |
| const int seg_ref_active = 0; |
| if (!seg_ref_active) { |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (is_inter_block(mbmi, xd->tree_type)) { |
| av1_collect_neighbors_ref_counts(xd); |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| if (has_second_ref(mbmi)) { |
| // This flag is also updated for 4x4 blocks |
| rdc->compound_ref_used_flag = 1; |
| } |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } |
| } |
| } |
| |
| if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); |
| |
| // Gather obmc and warped motion count to update the probability. |
| if ((!cpi->sf.inter_sf.disable_obmc && |
| cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) || |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { |
| #else |
| (cm->features.allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) { |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| const int inter_block = is_inter_block(mbmi, xd->tree_type); |
| const int seg_ref_active = 0; |
| if (!seg_ref_active && inter_block) { |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| const RefCntBuffer *const refbuf = |
| get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const int allowed_motion_modes = motion_mode_allowed( |
| cm, xd, x->mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi, |
| refbuf ? refbuf->base_qindex : -1); |
| if (mbmi->motion_mode != INTERINTRA) { |
| if (allowed_motion_modes & (1 << OBMC_CAUSAL)) { |
| td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| } |
| if (allowed_motion_modes & WARPED_CAUSAL_MASK) { |
| td->rd_counts |
| .warped_used[warped_causal_idx_map(mbmi->motion_mode)]++; |
| } |
| // TODO(rachelbarker): Add counts and pruning for WARP_DELTA and |
| // WARP_EXTEND |
| } |
| #else |
| const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi); |
| |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed >= OBMC_CAUSAL) { |
| td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| } |
| if (motion_allowed == WARPED_CAUSAL) { |
| td->rd_counts |
| .warped_used[warped_causal_idx_map(mbmi->motion_mode)]++; |
| } |
| } |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| } |
| } |
| } |
| // TODO(Ravi/Remya): Move this copy function to a better logical place |
| // This function will copy the best mode information from block |
| // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This |
| // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during |
| // bitstream preparation. |
| if (xd->tree_type != CHROMA_PART) |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| { |
| if (mbmi->skip_mode) { |
| const SkipModeInfo *const skip_mode_info = |
| &cpi->common.current_frame.skip_mode_info; |
| |
| MV_REFERENCE_FRAME rf[2]; |
| rf[0] = skip_mode_info->ref_frame_idx_0; |
| rf[1] = skip_mode_info->ref_frame_idx_1; |
| MV_REFERENCE_FRAME ref_frame_type = av1_ref_frame_type(rf); |
| |
| av1_find_mv_refs(&cpi->common, xd, mbmi, ref_frame_type, |
| x->mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, |
| NULL, NULL |
| #if !CONFIG_C076_INTER_MOD_CTX |
| , |
| NULL |
| #endif //! CONFIG_C076_INTER_MOD_CTX |
| #if CONFIG_WARP_REF_LIST |
| , |
| NULL, 0, NULL |
| #endif // CONFIG_WARP_REF_LIST |
| ); |
| // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and |
| // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. |
| av1_copy_usable_ref_mv_stack_and_weight(xd, x->mbmi_ext, ref_frame_type); |
| } |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| av1_copy_mbmi_ext_to_mbmi_ext_frame( |
| x->mbmi_ext_frame, x->mbmi_ext, |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| mbmi->skip_mode, |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| av1_ref_frame_type(xd->mi[0]->ref_frame)); |
| #if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| } |
| #endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX |
| x->rdmult = origin_mult; |
| } |
| |
| static void update_partition_stats(MACROBLOCKD *const xd, |
| #if CONFIG_ENTROPY_STATS |
| FRAME_COUNTS *counts, |
| #endif // CONFIG_ENTROPY_STATS |
| int allow_update_cdf, |
| const CommonModeInfoParams *const mi_params, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| int disable_ext_part, |
| #if !CONFIG_H_PARTITION |
| PARTITION_TREE const *ptree, |
| #endif // !CONFIG_H_PARTITION |
| PARTITION_TREE const *ptree_luma, |
| const CHROMA_REF_INFO *chroma_ref_info, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| PARTITION_TYPE partition, const int mi_row, |
| const int mi_col, BLOCK_SIZE bsize, |
| const int ctx) { |
| const int plane_index = xd->tree_type == CHROMA_PART; |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const int ss_x = xd->plane[1].subsampling_x; |
| const int ss_y = xd->plane[1].subsampling_y; |
| if (is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize)) { |
| PARTITION_TYPE derived_partition_mode = |
| sdp_chroma_part_from_luma(bsize, ptree_luma->partition, ss_x, ss_y); |
| assert(partition == derived_partition_mode && |
| "Chroma partition does not match the derived mode."); |
| (void)derived_partition_mode; |
| return; |
| } |
| |
| PARTITION_TYPE implied_partition; |
| const bool is_part_implied = is_partition_implied_at_boundary( |
| mi_params, xd->tree_type, ss_x, ss_y, mi_row, mi_col, bsize, |
| chroma_ref_info, &implied_partition); |
| if (is_part_implied) { |
| assert(partition == implied_partition && |
| "Partition doesn't match the implied partition at boundary."); |
| return; |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #if !CONFIG_H_PARTITION |
| const PARTITION_TYPE parent_partition = |
| ptree->parent ? ptree->parent->partition : PARTITION_INVALID; |
| const bool is_middle_block = (parent_partition == PARTITION_HORZ_3 || |
| parent_partition == PARTITION_VERT_3) && |
| ptree->index == 1; |
| const bool limit_rect_split = is_middle_block && |
| is_bsize_geq(bsize, BLOCK_8X8) && |
| is_bsize_geq(BLOCK_64X64, bsize); |
| #endif // !CONFIG_H_PARTITION |
| if (is_square_block(bsize)) { |
| if (disable_ext_part) { |
| #if !CONFIG_H_PARTITION |
| if (limit_rect_split) { |
| const int dir_idx = (parent_partition == PARTITION_HORZ_3) ? 0 : 1; |
| const int symbol = get_symbol_from_limited_partition_noext( |
| partition, parent_partition); |
| |
| if (allow_update_cdf) { |
| update_cdf(fc->limited_partition_noext_cdf[plane_index][dir_idx][ctx], |
| symbol, LIMITED_PARTITION_TYPES); |
| } |
| } else { |
| #endif // !CONFIG_H_PARTITION |
| if (allow_update_cdf) { |
| update_cdf(fc->partition_noext_cdf[plane_index][ctx], partition, |
| PARTITION_TYPES); |
| } |
| #if !CONFIG_H_PARTITION |
| } |
| #endif // !CONFIG_H_PARTITION |
| } else { |
| #if !CONFIG_H_PARTITION |
| if (limit_rect_split) { |
| const int dir_idx = (parent_partition == PARTITION_HORZ_3) ? 0 : 1; |
| const int symbol = |
| get_symbol_from_limited_partition(partition, parent_partition); |
| |
| #if CONFIG_ENTROPY_STATS |
| counts->limited_partition[plane_index][dir_idx][ctx][symbol]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| update_cdf(fc->limited_partition_cdf[plane_index][dir_idx][ctx], |
| symbol, limited_partition_cdf_length(bsize)); |
| } |
| } else { |
| #endif // !CONFIG_H_PARTITION |
| #if CONFIG_ENTROPY_STATS |
| counts->partition[plane_index][ctx][partition]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| update_cdf(fc->partition_cdf[plane_index][ctx], partition, |
| partition_cdf_length(bsize)); |
| } |
| #if !CONFIG_H_PARTITION |
| } |
| #endif // !CONFIG_H_PARTITION |
| } |
| } else { // Rectangular blocks |
| if (disable_ext_part) { |
| #if !CONFIG_H_PARTITION |
| if (limit_rect_split) { |
| const PARTITION_TYPE_REC p_rec = |
| get_symbol_from_limited_partition_noext(partition, |
| parent_partition); |
| if (allow_update_cdf) { |
| update_cdf(fc->partition_middle_noext_rec_cdf[ctx], p_rec, |
| partition_middle_noext_rec_cdf_length(bsize)); |
| } |
| } else { |
| #endif // !CONFIG_H_PARTITION |
| const PARTITION_TYPE_REC p_rec = |
| get_symbol_from_partition_noext_rec_block(bsize, partition); |
| if (allow_update_cdf) { |
| update_cdf(fc->partition_noext_rec_cdf[ctx], p_rec, |
| partition_noext_rec_cdf_length(bsize)); |
| } |
| #if !CONFIG_H_PARTITION |
| } |
| #endif // !CONFIG_H_PARTITION |
| } else { |
| const PARTITION_TYPE_REC p_rec = |
| get_symbol_from_partition_rec_block(bsize, partition); |
| #if !CONFIG_H_PARTITION |
| if (limit_rect_split) { |
| #if CONFIG_ENTROPY_STATS |
| counts->partition_middle_rec[ctx][p_rec]++; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| if (allow_update_cdf) { |
| update_cdf(fc->partition_middle_rec_cdf[ctx], p_rec, |
| partition_middle_rec_cdf_length(bsize)); |
| } |
| } else { |
| #endif // !CONFIG_H_PARTITION |
| #if CONFIG_ENTROPY_STATS |
| counts->partition_rec[ctx][p_rec]++; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| if (allow_update_cdf) { |
| update_cdf(fc->partition_rec_cdf[ctx], p_rec, |
| partition_rec_cdf_length(bsize)); |
| } |
| #if !CONFIG_H_PARTITION |
| } |
| #endif // !CONFIG_H_PARTITION |
| } |
| } |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| const int hbs_w = mi_size_wide[bsize] / 2; |
| const int hbs_h = mi_size_high[bsize] / 2; |
| const int has_rows = (mi_row + hbs_h) < mi_params->mi_rows; |
| const int has_cols = (mi_col + hbs_w) < mi_params->mi_cols; |
| if (has_rows && has_cols) { |
| int luma_split_flag = 0; |
| int parent_block_width = block_size_wide[bsize]; |
| if (xd->tree_type == CHROMA_PART && |
| parent_block_width >= SHARED_PART_SIZE) { |
| luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); |
| } |
| if (luma_split_flag <= 3) { |
| #if CONFIG_ENTROPY_STATS |
| counts->partition[plane_index][ctx][partition]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| update_cdf(fc->partition_cdf[plane_index][ctx], partition, |
| partition_cdf_length(bsize)); |
| } |
| } else { |
| // if luma blocks uses smaller blocks, then chroma will also split |
| assert(partition == PARTITION_SPLIT); |
| } |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| /*!\brief Reconstructs a partition (may contain multiple coding blocks) |
| * |
| * \ingroup partition_search |
| * Reconstructs a sub-partition of the superblock by applying the chosen modes |
| * and partition trees stored in pc_tree. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] td Pointer to thread data |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during encoding |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] dry_run A code indicating whether it is part of the final |
| * pass for reconstructing the superblock |
| * \param[in] bsize Current block size |
| * \param[in] pc_tree Pointer to the PC_TREE node storing the picked |
| * partitions and mode info for the current block |
| * \param[in] ptree Pointer to the PARTITION_TREE node holding the |
| * partition info for the current node and all of its |
| * descendants. |
| * \param[in] ptree_luma Pointer to the luma partition tree so that the |
| * encoder to estimate the |
| * partition type for chroma. |
| * \param[in] rate Pointer to the total rate for the current block |
| * |
| * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) |
| * will be updated in the pixel buffers in td->mb.e_mbd. |
| */ |
| static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, int mi_row, |
| int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| const PC_TREE *pc_tree, PARTITION_TREE *ptree, |
| PARTITION_TREE *ptree_luma, int *rate) { |
| #else |
| /*!\brief Reconstructs a partition (may contain multiple coding blocks) |
| * |
| * \ingroup partition_search |
| * Reconstructs a sub-partition of the superblock by applying the chosen modes |
| * and partition trees stored in pc_tree. |
| * |
| * This function works on planes determined by get_partition_plane_start() and |
| * get_partition_plane_end() based on xd->tree_type. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] td Pointer to thread data |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during encoding |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] dry_run A code indicating whether it is part of the final |
| * pass for reconstructing the superblock |
| * \param[in] bsize Current block size |
| * \param[in] pc_tree Pointer to the PC_TREE node storing the picked |
| * partitions and mode info for the current block |
| * \param[in] ptree Pointer to the PARTITION_TREE node holding the |
| * partition info for the current node and all of its |
| * descendants. |
| * \param[in] rate Pointer to the total rate for the current block |
| * |
| * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) |
| * will be updated in the pixel buffers in td->mb.e_mbd. |
| */ |
| static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, int mi_row, |
| int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| const PC_TREE *pc_tree, PARTITION_TREE *ptree, |
| int *rate) { |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| assert(bsize < BLOCK_SIZES_ALL); |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int hbs_w = mi_size_wide[bsize] / 2; |
| const int hbs_h = mi_size_high[bsize] / 2; |
| #if !CONFIG_H_PARTITION |
| const int qbs_w = mi_size_wide[bsize] / 4; |
| const int qbs_h = mi_size_high[bsize] / 4; |
| #endif // !CONFIG_H_PARTITION |
| const int is_partition_root = is_partition_point(bsize); |
| const int ctx = is_partition_root |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : -1; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const bool disable_ext_part = !cm->seq_params.enable_ext_partitions; |
| #else |
| const BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| if (subsize == BLOCK_INVALID) return; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| assert(partition != PARTITION_SPLIT); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| if (!dry_run && ctx >= 0) |
| update_partition_stats(xd, |
| #if CONFIG_ENTROPY_STATS |
| td->counts, |
| #endif // CONFIG_ENTROPY_STATS |
| tile_data->allow_update_cdf, mi_params, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| disable_ext_part, |
| #if !CONFIG_H_PARTITION |
| ptree, |
| #endif // !CONFIG_H_PARTITION |
| ptree_luma, &pc_tree->chroma_ref_info, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| partition, mi_row, mi_col, bsize, ctx); |
| |
| PARTITION_TREE *sub_tree[4] = { NULL, NULL, NULL, NULL }; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| // If two pass partition tree is enable, then store the partition types in |
| // ptree even if it's dry run. |
| if (!dry_run || (cpi->sf.part_sf.two_pass_partition_search && ptree)) { |
| #else |
| if (!dry_run) { |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| assert(ptree); |
| |
| ptree->partition = partition; |
| ptree->bsize = bsize; |
| ptree->mi_row = mi_row; |
| ptree->mi_col = mi_col; |
| PARTITION_TREE *parent = ptree->parent; |
| const int ss_x = xd->plane[1].subsampling_x; |
| const int ss_y = xd->plane[1].subsampling_y; |
| set_chroma_ref_info( |
| mi_row, mi_col, ptree->index, bsize, &ptree->chroma_ref_info, |
| parent ? &parent->chroma_ref_info : NULL, |
| parent ? parent->bsize : BLOCK_INVALID, |
| parent ? parent->partition : PARTITION_NONE, ss_x, ss_y); |
| |
| switch (partition) { |
| case PARTITION_SPLIT: |
| ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); |
| ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); |
| break; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ: |
| case PARTITION_VERT: |
| ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| break; |
| case PARTITION_HORZ_3: |
| case PARTITION_VERT_3: |
| ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); |
| #if CONFIG_H_PARTITION |
| ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); |
| #endif // CONFIG_H_PARTITION |
| break; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| default: break; |
| } |
| for (int i = 0; i < 4; ++i) sub_tree[i] = ptree->sub_tree[i]; |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const int track_ptree_luma = |
| is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize); |
| |
| if (track_ptree_luma && partition != PARTITION_NONE) { |
| assert(ptree_luma); |
| assert(ptree_luma->sub_tree); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->none, rate); |
| break; |
| case PARTITION_VERT: |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->vertical[0], sub_tree[0], |
| track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); |
| if (mi_col + hbs_w < cm->mi_params.mi_cols) { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs_w, dry_run, |
| subsize, pc_tree->vertical[1], sub_tree[1], |
| track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); |
| } |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->vertical[0], rate); |
| if (mi_col + hbs_w < mi_params->mi_cols) { |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, |
| subsize, partition, pc_tree->vertical[1], rate); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| break; |
| case PARTITION_HORZ: |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->horizontal[0], sub_tree[0], |
| track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); |
| if (mi_row + hbs_h < cm->mi_params.mi_rows) { |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col, dry_run, |
| subsize, pc_tree->horizontal[1], sub_tree[1], |
| track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); |
| } |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal[0], rate); |
| if (mi_row + hbs_h < mi_params->mi_rows) { |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, |
| subsize, partition, pc_tree->horizontal[1], rate); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| break; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_H_PARTITION |
| case PARTITION_HORZ_3: |
| case PARTITION_VERT_3: { |
| for (int i = 0; i < 4; ++i) { |
| const BLOCK_SIZE this_bsize = |
| get_h_partition_subsize(bsize, i, partition); |
| const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition); |
| const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition); |
| const int this_mi_row = mi_row + offset_r; |
| const int this_mi_col = mi_col + offset_c; |
| PC_TREE *this_pc_tree = partition == PARTITION_HORZ_3 |
| ? pc_tree->horizontal3[i] |
| : pc_tree->vertical3[i]; |
| |
| if (partition == PARTITION_HORZ_3) { |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| } else { |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| } |
| encode_sb(cpi, td, tile_data, tp, this_mi_row, this_mi_col, dry_run, |
| this_bsize, this_pc_tree, sub_tree[i], |
| track_ptree_luma ? ptree_luma->sub_tree[i] : NULL, rate); |
| } |
| break; |
| } |
| #else |
| case PARTITION_HORZ_3: { |
| const BLOCK_SIZE bsize3 = get_partition_subsize(bsize, PARTITION_HORZ); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->horizontal3[0], sub_tree[0], |
| track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); |
| if (mi_row + qbs_h >= cm->mi_params.mi_rows) break; |
| encode_sb(cpi, td, tile_data, tp, mi_row + qbs_h, mi_col, dry_run, bsize3, |
| pc_tree->horizontal3[1], sub_tree[1], |
| track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); |
| if (mi_row + 3 * qbs_h >= cm->mi_params.mi_rows) break; |
| encode_sb(cpi, td, tile_data, tp, mi_row + 3 * qbs_h, mi_col, dry_run, |
| subsize, pc_tree->horizontal3[2], sub_tree[2], |
| track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate); |
| break; |
| } |
| case PARTITION_VERT_3: { |
| const BLOCK_SIZE bsize3 = get_partition_subsize(bsize, PARTITION_VERT); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->vertical3[0], sub_tree[0], |
| track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate); |
| if (mi_col + qbs_w >= cm->mi_params.mi_cols) break; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + qbs_w, dry_run, bsize3, |
| pc_tree->vertical3[1], sub_tree[1], |
| track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate); |
| if (mi_col + 3 * qbs_w >= cm->mi_params.mi_cols) break; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + 3 * qbs_w, dry_run, |
| subsize, pc_tree->vertical3[2], sub_tree[2], |
| track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate); |
| break; |
| } |
| #endif // CONFIG_H_PARTITION |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_SPLIT: |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->split[0], sub_tree[0], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs_w, dry_run, |
| subsize, pc_tree->split[1], sub_tree[1], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col, dry_run, |
| subsize, pc_tree->split[2], sub_tree[2], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run, |
| subsize, pc_tree->split[3], sub_tree[3], rate); |
| break; |
| case PARTITION_HORZ_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, pc_tree->horizontala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, bsize2, |
| partition, pc_tree->horizontala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontala[2], rate); |
| break; |
| case PARTITION_HORZ_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, bsize2, |
| partition, pc_tree->horizontalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run, |
| bsize2, partition, pc_tree->horizontalb[2], rate); |
| break; |
| case PARTITION_VERT_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, pc_tree->verticala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, bsize2, |
| partition, pc_tree->verticala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, subsize, |
| partition, pc_tree->verticala[2], rate); |
| |
| break; |
| case PARTITION_VERT_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->verticalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, bsize2, |
| partition, pc_tree->verticalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run, |
| bsize2, partition, pc_tree->verticalb[2], rate); |
| break; |
| case PARTITION_HORZ_4: |
| for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { |
| int this_mi_row = mi_row + i * qbs_h; |
| if (i > 0 && this_mi_row >= mi_params->mi_rows) break; |
| |
| encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal4[i], rate); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { |
| int this_mi_col = mi_col + i * qbs_w; |
| if (i > 0 && this_mi_col >= mi_params->mi_cols) break; |
| encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, |
| partition, pc_tree->vertical4[i], rate); |
| } |
| break; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| default: assert(0 && "Invalid partition type."); break; |
| } |
| |
| if (ptree) ptree->is_settled = 1; |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| static void build_one_split_tree(AV1_COMMON *const cm, TREE_TYPE tree_type, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| BLOCK_SIZE final_bsize, |
| PARTITION_TREE *ptree) { |
| assert(block_size_high[bsize] == block_size_wide[bsize]); |
| if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) |
| return; |
| |
| const int ss_x = cm->seq_params.subsampling_x; |
| const int ss_y = cm->seq_params.subsampling_y; |
| |
| PARTITION_TREE *parent = ptree->parent; |
| set_chroma_ref_info(mi_row, mi_col, ptree->index, bsize, |
| &ptree->chroma_ref_info, |
| parent ? &parent->chroma_ref_info : NULL, |
| parent ? parent->bsize : BLOCK_INVALID, |
| parent ? parent->partition : PARTITION_NONE, ss_x, ss_y); |
| |
| if (bsize == BLOCK_4X4) { |
| ptree->partition = PARTITION_NONE; |
| return; |
| } |
| |
| const CHROMA_REF_INFO *chroma_ref_info = &ptree->chroma_ref_info; |
| |
| // Handle boundary for first partition. |
| PARTITION_TYPE implied_first_partition; |
| const bool is_first_part_implied = is_partition_implied_at_boundary( |
| &cm->mi_params, tree_type, ss_x, ss_y, mi_row, mi_col, bsize, |
| chroma_ref_info, &implied_first_partition); |
| |
| if (!is_first_part_implied && |
| (block_size_wide[bsize] <= block_size_wide[final_bsize]) && |
| (block_size_high[bsize] <= block_size_high[final_bsize])) { |
| ptree->partition = PARTITION_NONE; |
| return; |
| } |
| |
| // In general, we simulate SPLIT partition as HORZ followed by VERT partition. |
| // But in case first partition is implied to be VERT, we are forced to use |
| // VERT followed by HORZ. |
| PARTITION_TYPE first_partition = PARTITION_INVALID; |
| if (is_first_part_implied) { |
| first_partition = implied_first_partition; |
| } else if (check_is_chroma_size_valid(tree_type, PARTITION_HORZ, bsize, |
| mi_row, mi_col, ss_x, ss_y, |
| chroma_ref_info)) { |
| first_partition = PARTITION_HORZ; |
| } else if (check_is_chroma_size_valid(tree_type, PARTITION_VERT, bsize, |
| mi_row, mi_col, ss_x, ss_y, |
| chroma_ref_info)) { |
| first_partition = PARTITION_VERT; |
| } |
| assert(first_partition != PARTITION_INVALID); |
| const PARTITION_TYPE second_partition = |
| (first_partition == PARTITION_HORZ) ? PARTITION_VERT : PARTITION_HORZ; |
| |
| const int hbs_w = mi_size_wide[bsize] >> 1; |
| const int hbs_h = mi_size_high[bsize] >> 1; |
| |
| const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; |
| |
| ptree->partition = first_partition; |
| ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| |
| #ifndef NDEBUG |
| // Boundary sanity checks for 2nd partitions. |
| { |
| PARTITION_TYPE implied_second_first_partition; |
| const bool is_second_first_part_implied = is_partition_implied_at_boundary( |
| &cm->mi_params, tree_type, ss_x, ss_y, mi_row, mi_col, |
| subsize_lookup[first_partition][bsize], |
| &ptree->sub_tree[0]->chroma_ref_info, &implied_second_first_partition); |
| assert(IMPLIES(is_second_first_part_implied, |
| implied_second_first_partition == second_partition)); |
| } |
| |
| { |
| const int mi_row_second_second = |
| (second_partition == PARTITION_HORZ) ? mi_row + hbs_h : mi_row; |
| const int mi_col_second_second = |
| (second_partition == PARTITION_VERT) ? mi_col + hbs_w : mi_col; |
| PARTITION_TYPE implied_second_second_partition; |
| const bool is_second_second_part_implied = is_partition_implied_at_boundary( |
| &cm->mi_params, tree_type, ss_x, ss_y, mi_row_second_second, |
| mi_col_second_second, subsize_lookup[first_partition][bsize], |
| &ptree->sub_tree[0]->chroma_ref_info, &implied_second_second_partition); |
| assert(IMPLIES(is_second_second_part_implied, |
| implied_second_second_partition == second_partition)); |
| } |
| #endif // NDEBUG |
| |
| ptree->sub_tree[0]->partition = second_partition; |
| ptree->sub_tree[0]->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[0]->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| |
| ptree->sub_tree[1]->partition = second_partition; |
| ptree->sub_tree[1]->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1]->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| |
| if (first_partition == PARTITION_HORZ) { |
| assert(second_partition == PARTITION_VERT); |
| build_one_split_tree(cm, tree_type, mi_row, mi_col, subsize, final_bsize, |
| ptree->sub_tree[0]->sub_tree[0]); |
| build_one_split_tree(cm, tree_type, mi_row, mi_col + hbs_w, subsize, |
| final_bsize, ptree->sub_tree[0]->sub_tree[1]); |
| build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col, subsize, |
| final_bsize, ptree->sub_tree[1]->sub_tree[0]); |
| build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col + hbs_w, subsize, |
| final_bsize, ptree->sub_tree[1]->sub_tree[1]); |
| } else { |
| assert(first_partition == PARTITION_VERT); |
| assert(second_partition == PARTITION_HORZ); |
| build_one_split_tree(cm, tree_type, mi_row, mi_col, subsize, final_bsize, |
| ptree->sub_tree[0]->sub_tree[0]); |
| build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col, subsize, |
| final_bsize, ptree->sub_tree[0]->sub_tree[1]); |
| build_one_split_tree(cm, tree_type, mi_row, mi_col + hbs_w, subsize, |
| final_bsize, ptree->sub_tree[1]->sub_tree[0]); |
| build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col + hbs_w, subsize, |
| final_bsize, ptree->sub_tree[1]->sub_tree[1]); |
| } |
| } |
| |
| void av1_build_partition_tree_fixed_partitioning(AV1_COMMON *const cm, |
| TREE_TYPE tree_type, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize, |
| PARTITION_TREE *ptree) { |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| |
| build_one_split_tree(cm, tree_type, mi_row, mi_col, sb_size, bsize, ptree); |
|