blob: 6bde5a8677489c983275f7a0dff38f8199e5ed5b [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "av1/common/warped_motion.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encoder_alloc.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/global_motion_facade.h"
#include "av1/encoder/rdopt.h"
#include "aom_dsp/aom_dsp_common.h"
#include "av1/encoder/tpl_model.h"
static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
for (int i = 0; i < REFERENCE_MODES; i++)
td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
#if CONFIG_NEW_REF_SIGNALING
for (int i = 0; i < INTER_REFS_PER_FRAME; i++)
#else
for (int i = 0; i < REF_FRAMES; i++)
#endif // CONFIG_NEW_REF_SIGNALING
td->rd_counts.global_motion_used[i] +=
td_t->rd_counts.global_motion_used[i];
td->rd_counts.compound_ref_used_flag |=
td_t->rd_counts.compound_ref_used_flag;
td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
for (int i = 0; i < TX_SIZES_ALL; i++) {
for (int j = 0; j < TX_TYPES; j++)
td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
}
for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
for (int j = 0; j < 2; j++) {
td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
}
}
for (int i = 0; i < 2; i++) {
td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
}
}
static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
const int mib_size = cm->seq_params.mib_size;
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int row = 0; row < cm->tiles.rows; row++) {
for (int col = 0; col < cm->tiles.cols; col++) {
TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
const TileInfo *const tile_info = &tile_data->tile_info;
for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += mib_size) {
if (mi_row == tile_info->mi_row_start)
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
for (int mi_col = tile_info->mi_col_start;
mi_col < tile_info->mi_col_end; mi_col += mib_size) {
const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
MB_MODE_INFO *mbmi = mi[0];
#if CONFIG_SDP
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 1 &&
(mbmi->sb_type[xd->tree_type == CHROMA_PART] ==
cm->seq_params.sb_size)) {
#else
if (mbmi->skip_txfm == 1 &&
(mbmi->sb_type == cm->seq_params.sb_size)) {
#endif
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
mbmi->delta_lf_from_base = xd->delta_lf_from_base;
} else {
if (cm->delta_q_info.delta_lf_multi) {
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
} else {
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
}
}
}
}
void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
int c) {
(void)row_mt_sync;
(void)r;
(void)c;
return;
}
void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
int c, int cols) {
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
return;
}
void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
if (r) {
pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
pthread_mutex_lock(mutex);
while (c > row_mt_sync->num_finished_cols[r - 1] - nsync) {
pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
int cols) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
int cur;
// Only signal when there are enough encoded blocks for next row to run.
int sig = 1;
if (c < cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = cols + nsync;
}
if (sig) {
pthread_mutex_lock(&row_mt_sync->mutex_[r]);
row_mt_sync->num_finished_cols[r] = cur;
pthread_cond_signal(&row_mt_sync->cond_[r]);
pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
#endif // CONFIG_MULTITHREAD
}
// Allocate memory for row synchronization
static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
AV1_COMMON *cm, int rows) {
#if CONFIG_MULTITHREAD
int i;
CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
if (row_mt_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
if (row_mt_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&row_mt_sync->cond_[i], NULL);
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
row_mt_sync->rows = rows;
// Set up nsync.
row_mt_sync->sync_range = 1;
}
// Deallocate row based multi-threading synchronization related mutex and data
static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
if (row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (row_mt_sync->mutex_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
}
aom_free(row_mt_sync->mutex_);
}
if (row_mt_sync->cond_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_cond_destroy(&row_mt_sync->cond_[i]);
}
aom_free(row_mt_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(row_mt_sync->num_finished_cols);
// clear the structure as the source of this call may be dynamic change
// in tiles in which case this call will be followed by an _alloc()
// which may fail.
av1_zero(*row_mt_sync);
}
}
static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
int alloc_row_ctx) {
struct AV1Common *cm = &cpi->common;
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tile_col, tile_row;
// Allocate memory for row based multi-threading
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);
this_tile->row_ctx = NULL;
if (alloc_row_ctx) {
assert(max_cols > 0);
const int num_row_ctx = AOMMAX(1, (max_cols - 1));
CHECK_MEM_ERROR(cm, this_tile->row_ctx,
(FRAME_CONTEXT *)aom_memalign(
16, num_row_ctx * sizeof(*this_tile->row_ctx)));
}
}
}
enc_row_mt->allocated_tile_cols = tile_cols;
enc_row_mt->allocated_tile_rows = tile_rows;
enc_row_mt->allocated_rows = max_rows;
enc_row_mt->allocated_cols = max_cols - 1;
}
void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
const int tile_cols = enc_row_mt->allocated_tile_cols;
const int tile_rows = enc_row_mt->allocated_tile_rows;
int tile_col, tile_row;
// Free row based multi-threading sync memory
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
if (cpi->oxcf.algo_cfg.cdf_update_mode) aom_free(this_tile->row_ctx);
}
}
enc_row_mt->allocated_rows = 0;
enc_row_mt->allocated_cols = 0;
enc_row_mt->allocated_tile_cols = 0;
enc_row_mt->allocated_tile_rows = 0;
}
static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id,
int num_tiles, int num_workers) {
int tile_id = 0;
int i;
for (i = 0; i < num_workers; i++) {
thread_id_to_tile_id[i] = tile_id++;
if (tile_id == num_tiles) tile_id = 0;
}
}
static AOM_INLINE int get_next_job(TileDataEnc *const tile_data,
int *current_mi_row, int mib_size) {
AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
const int mi_row_end = tile_data->tile_info.mi_row_end;
if (row_mt_sync->next_mi_row < mi_row_end) {
*current_mi_row = row_mt_sync->next_mi_row;
row_mt_sync->num_threads_working++;
row_mt_sync->next_mi_row += mib_size;
return 1;
}
return 0;
}
static AOM_INLINE void switch_tile_and_get_next_job(
AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
int *current_mi_row, int *end_of_frame, int is_firstpass) {
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tile_id = -1; // Stores the tile ID with minimum proc done
int max_mis_to_encode = 0;
int min_num_threads_working = INT_MAX;
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &tile_data[tile_index];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
int num_b_rows_in_tile =
is_firstpass ? av1_get_mb_rows_in_tile(this_tile->tile_info)
: av1_get_sb_rows_in_tile(cm, this_tile->tile_info);
int num_b_cols_in_tile =
is_firstpass ? av1_get_mb_cols_in_tile(this_tile->tile_info)
: av1_get_sb_cols_in_tile(cm, this_tile->tile_info);
int theoretical_limit_on_threads =
AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
int num_threads_working = row_mt_sync->num_threads_working;
if (num_threads_working < theoretical_limit_on_threads) {
int num_mis_to_encode =
this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
// Tile to be processed by this thread is selected on the basis of
// availability of jobs:
// 1) If jobs are available, tile to be processed is chosen on the
// basis of minimum number of threads working for that tile. If two or
// more tiles have same number of threads working for them, then the
// tile with maximum number of jobs available will be chosen.
// 2) If no jobs are available, then end_of_frame is reached.
if (num_mis_to_encode > 0) {
if (num_threads_working < min_num_threads_working) {
min_num_threads_working = num_threads_working;
max_mis_to_encode = 0;
}
if (num_threads_working == min_num_threads_working &&
num_mis_to_encode > max_mis_to_encode) {
tile_id = tile_index;
max_mis_to_encode = num_mis_to_encode;
}
}
}
}
}
if (tile_id == -1) {
*end_of_frame = 1;
} else {
// Update the current tile id to the tile id that will be processed next,
// which will be the least processed tile.
*cur_tile_id = tile_id;
get_next_job(&tile_data[tile_id], current_mi_row,
is_firstpass ? FP_MIB_SIZE : cm->seq_params.mib_size);
}
}
static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
EncWorkerData *const thread_data = (EncWorkerData *)arg1;
AV1_COMP *const cpi = thread_data->cpi;
AV1_COMMON *const cm = &cpi->common;
int thread_id = thread_data->thread_id;
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
#if CONFIG_MULTITHREAD
pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
#endif
(void)unused;
assert(cur_tile_id != -1);
int end_of_frame = 0;
while (1) {
int current_mi_row = -1;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(enc_row_mt_mutex_);
#endif
if (!get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
FP_MIB_SIZE)) {
// No jobs are available for the current tile. Query for the status of
// other tiles and get the next job if available
switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
&current_mi_row, &end_of_frame, 1);
}
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
if (end_of_frame == 1) break;
TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
ThreadData *td = thread_data->td;
assert(current_mi_row != -1 &&
current_mi_row <= this_tile->tile_info.mi_row_end);
av1_first_pass_row(cpi, td, this_tile, current_mi_row >> FP_MIB_SIZE_LOG2);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(enc_row_mt_mutex_);
#endif
row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
}
return 1;
}
static int enc_row_mt_worker_hook(void *arg1, void *unused) {
EncWorkerData *const thread_data = (EncWorkerData *)arg1;
AV1_COMP *const cpi = thread_data->cpi;
AV1_COMMON *const cm = &cpi->common;
int thread_id = thread_data->thread_id;
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
#if CONFIG_MULTITHREAD
pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
#endif
(void)unused;
assert(cur_tile_id != -1);
int end_of_frame = 0;
while (1) {
int current_mi_row = -1;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(enc_row_mt_mutex_);
#endif
if (!get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
cm->seq_params.mib_size)) {
// No jobs are available for the current tile. Query for the status of
// other tiles and get the next job if available
switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
&current_mi_row, &end_of_frame, 0);
}
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
if (end_of_frame == 1) break;
TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
const TileInfo *const tile_info = &this_tile->tile_info;
const int tile_row = tile_info->tile_row;
const int tile_col = tile_info->tile_col;
ThreadData *td = thread_data->td;
assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
td->mb.e_mbd.tile_ctx = td->tctx;
td->mb.tile_pb_ctx = &this_tile->tctx;
if (this_tile->allow_update_cdf) {
td->mb.row_ctx = this_tile->row_ctx;
if (current_mi_row == tile_info->mi_row_start)
memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
} else {
memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
}
av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
&td->mb.e_mbd);
cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params);
av1_crc32c_calculator_init(
&td->mb.txfm_search_info.mb_rd_record.crc_calculator);
#if CONFIG_REF_MV_BANK
av1_zero(td->mb.e_mbd.ref_mv_bank);
td->mb.e_mbd.ref_mv_bank_pt = &td->mb.e_mbd.ref_mv_bank;
#endif // CONFIG_REF_MV_BANK}
av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(enc_row_mt_mutex_);
#endif
row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
}
return 1;
}
static int enc_worker_hook(void *arg1, void *unused) {
EncWorkerData *const thread_data = (EncWorkerData *)arg1;
AV1_COMP *const cpi = thread_data->cpi;
const AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int t;
(void)unused;
for (t = thread_data->start; t < tile_rows * tile_cols;
t += cpi->mt_info.num_workers) {
int tile_row = t / tile_cols;
int tile_col = t % tile_cols;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
}
return 1;
}
static AOM_INLINE void create_enc_workers(AV1_COMP *cpi, int num_workers) {
AV1_COMMON *const cm = &cpi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
MultiThreadInfo *const mt_info = &cpi->mt_info;
int sb_mi_size = av1_get_sb_mi_size(cm);
assert(mt_info->workers != NULL);
assert(mt_info->tile_thr_data != NULL);
#if CONFIG_MULTITHREAD
if (cpi->oxcf.row_mt == 1) {
AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
if (enc_row_mt->mutex_ == NULL) {
CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
aom_malloc(sizeof(*(enc_row_mt->mutex_))));
if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
}
}
AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
if (gm_sync->mutex_ == NULL) {
CHECK_MEM_ERROR(cm, gm_sync->mutex_,
aom_malloc(sizeof(*(gm_sync->mutex_))));
if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
}
#endif
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
++mt_info->num_enc_workers;
thread_data->cpi = cpi;
thread_data->thread_id = i;
if (i > 0) {
// Set up sms_tree.
av1_setup_sms_tree(cpi, thread_data->td);
alloc_obmc_buffers(&thread_data->td->obmc_buffer, cm);
CHECK_MEM_ERROR(cm, thread_data->td->inter_modes_info,
(InterModesInfo *)aom_malloc(
sizeof(*thread_data->td->inter_modes_info)));
for (int x = 0; x < 2; x++)
for (int y = 0; y < 2; y++)
CHECK_MEM_ERROR(
cm, thread_data->td->hash_value_buffer[x][y],
(uint32_t *)aom_malloc(
AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
sizeof(*thread_data->td->hash_value_buffer[0][0])));
// Allocate frame counters in thread data.
CHECK_MEM_ERROR(cm, thread_data->td->counts,
aom_calloc(1, sizeof(*thread_data->td->counts)));
// Allocate buffers used by palette coding mode.
CHECK_MEM_ERROR(
cm, thread_data->td->palette_buffer,
aom_memalign(16, sizeof(*thread_data->td->palette_buffer)));
alloc_compound_type_rd_buffers(cm, &thread_data->td->comp_rd_buffer);
CHECK_MEM_ERROR(
cm, thread_data->td->tmp_conv_dst,
aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
sizeof(*thread_data->td->tmp_conv_dst)));
for (int j = 0; j < 2; ++j) {
CHECK_MEM_ERROR(
cm, thread_data->td->tmp_pred_bufs[j],
aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->td->tmp_pred_bufs[j])));
}
CHECK_MEM_ERROR(
cm, thread_data->td->mbmi_ext,
aom_calloc(sb_mi_size, sizeof(*thread_data->td->mbmi_ext)));
// Create threads
if (!winterface->reset(worker))
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Tile encoder thread creation failed");
} else {
// Main thread acts as a worker and uses the thread data in cpi.
thread_data->td = &cpi->td;
}
if (cpi->oxcf.row_mt == 1)
CHECK_MEM_ERROR(
cm, thread_data->td->tctx,
(FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
winterface->sync(worker);
}
}
void av1_create_workers(AV1_COMP *cpi, int num_workers) {
AV1_COMMON *const cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
CHECK_MEM_ERROR(cm, mt_info->workers,
aom_malloc(num_workers * sizeof(*mt_info->workers)));
CHECK_MEM_ERROR(cm, mt_info->tile_thr_data,
aom_calloc(num_workers, sizeof(*mt_info->tile_thr_data)));
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
winterface->init(worker);
worker->thread_name = "aom enc worker";
if (i > 0) {
// Allocate thread data.
CHECK_MEM_ERROR(cm, thread_data->td,
aom_memalign(32, sizeof(*thread_data->td)));
av1_zero(*thread_data->td);
// Set up shared coeff buffers.
av1_setup_shared_coeff_buffer(cm, &thread_data->td->shared_coeff_buf);
}
++mt_info->num_workers;
}
}
static AOM_INLINE void fp_create_enc_workers(AV1_COMP *cpi, int num_workers) {
AV1_COMMON *const cm = &cpi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
MultiThreadInfo *const mt_info = &cpi->mt_info;
assert(mt_info->workers != NULL);
assert(mt_info->tile_thr_data != NULL);
#if CONFIG_MULTITHREAD
AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
if (enc_row_mt->mutex_ == NULL) {
CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
aom_malloc(sizeof(*(enc_row_mt->mutex_))));
if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
}
#endif
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
++mt_info->num_fp_workers;
thread_data->cpi = cpi;
thread_data->thread_id = i;
if (i > 0) {
// Set up firstpass PICK_MODE_CONTEXT.
thread_data->td->firstpass_ctx =
av1_alloc_pmc(cm, BLOCK_16X16, &thread_data->td->shared_coeff_buf);
// Create threads
if (!winterface->reset(worker))
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Tile encoder thread creation failed");
} else {
// Main thread acts as a worker and uses the thread data in cpi.
thread_data->td = &cpi->td;
}
winterface->sync(worker);
}
}
static AOM_INLINE void launch_enc_workers(MultiThreadInfo *const mt_info,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Encode a frame
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
// Set the starting tile for each thread.
thread_data->start = i;
if (i == 0)
winterface->execute(worker);
else
winterface->launch(worker);
}
}
static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info,
AV1_COMMON *const cm, int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int had_error = 0;
// Encoding ends.
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
had_error |= !winterface->sync(worker);
}
if (had_error)
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Failed to encode tile data");
}
static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi,
int num_workers) {
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &cpi->mt_info.workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
cpi->intrabc_used |= thread_data->td->intrabc_used;
cpi->deltaq_used |= thread_data->td->deltaq_used;
// Accumulate counters.
if (i > 0) {
av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
accumulate_rd_opt(&cpi->td, thread_data->td);
cpi->td.mb.txfm_search_info.txb_split_count +=
thread_data->td->mb.txfm_search_info.txb_split_count;
#if CONFIG_SPEED_STATS
cpi->td.mb.txfm_search_info.tx_search_count +=
thread_data->td->mb.txfm_search_info.tx_search_count;
#endif // CONFIG_SPEED_STATS
}
}
}
static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
int num_workers) {
MultiThreadInfo *const mt_info = &cpi->mt_info;
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
worker->hook = hook;
worker->data1 = thread_data;
worker->data2 = NULL;
thread_data->cpi = cpi;
if (i == 0) {
thread_data->td = &cpi->td;
}
thread_data->td->intrabc_used = 0;
thread_data->td->deltaq_used = 0;
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
thread_data->td->rd_counts = cpi->td.rd_counts;
thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
thread_data->td->mb.inter_modes_info = thread_data->td->inter_modes_info;
for (int x = 0; x < 2; x++) {
for (int y = 0; y < 2; y++) {
memcpy(thread_data->td->hash_value_buffer[x][y],
cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
sizeof(*thread_data->td->hash_value_buffer[0][0]));
thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
thread_data->td->hash_value_buffer[x][y];
}
}
thread_data->td->mb.mbmi_ext = thread_data->td->mbmi_ext;
}
if (thread_data->td->counts != &cpi->counts) {
memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
}
if (i > 0) {
thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
thread_data->td->mb.tmp_pred_bufs[j] =
thread_data->td->tmp_pred_bufs[j];
}
thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
thread_data->td->mb.tmp_pred_bufs[j];
}
}
#if CONFIG_REF_MV_BANK
av1_zero(thread_data->td->mb.e_mbd.ref_mv_bank);
thread_data->td->mb.e_mbd.ref_mv_bank_pt =
&thread_data->td->mb.e_mbd.ref_mv_bank;
#endif // CONFIG_REF_MV_BANK
}
}
static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
int num_workers) {
MultiThreadInfo *const mt_info = &cpi->mt_info;
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
worker->hook = hook;
worker->data1 = thread_data;
worker->data2 = NULL;
thread_data->cpi = cpi;
if (i == 0) {
thread_data->td = &cpi->td;
}
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
}
}
}
// Computes the number of workers for row multi-threading of encoding stage
static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm,
int max_threads) {
TileInfo tile_info;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int total_num_threads_row_mt = 0;
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
av1_tile_init(&tile_info, cm, row, col);
const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info);
const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
total_num_threads_row_mt +=
AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
}
}
return AOMMIN(max_threads, total_num_threads_row_mt);
}
// Computes the number of workers for tile multi-threading of encoding stage
static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm,
int max_threads) {
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
return AOMMIN(max_threads, tile_cols * tile_rows);
}
// Computes the number of workers for encoding stage (row/tile multi-threading)
int av1_compute_num_enc_workers(AV1_COMP *cpi, int max_workers) {
if (max_workers <= 1) return 1;
if (cpi->oxcf.row_mt)
return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
else
return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
}
void av1_encode_tiles_mt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int num_workers = av1_compute_num_enc_workers(cpi, mt_info->num_workers);
assert(IMPLIES(cpi->tile_data == NULL,
cpi->allocated_tiles < tile_cols * tile_rows));
if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
av1_init_tile_data(cpi);
// Only run once to create threads and allocate thread data.
if (mt_info->num_enc_workers == 0) {
create_enc_workers(cpi, num_workers);
} else {
num_workers = AOMMIN(num_workers, mt_info->num_enc_workers);
}
prepare_enc_workers(cpi, enc_worker_hook, num_workers);
launch_enc_workers(&cpi->mt_info, num_workers);
sync_enc_workers(&cpi->mt_info, cm, num_workers);
accumulate_counters_enc_workers(cpi, num_workers);
}
// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
// members, so we treat it as an array, and sum over the whole length.
void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
const FRAME_COUNTS *counts) {
unsigned int *const acc = (unsigned int *)acc_counts;
const unsigned int *const cnt = (const unsigned int *)counts;
const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
}
// Computes the maximum number of sb_rows for row multi-threading of encoding
// stage
static AOM_INLINE void compute_max_sb_rows_cols(AV1_COMP *cpi, int *max_sb_rows,
int *max_sb_cols) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
const int tile_index = row * cm->tiles.cols + col;
TileInfo tile_info = cpi->tile_data[tile_index].tile_info;
const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info);
const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
*max_sb_rows = AOMMAX(*max_sb_rows, num_sb_rows_in_tile);
*max_sb_cols = AOMMAX(*max_sb_cols, num_sb_cols_in_tile);
}
}
}
// Computes the number of workers for firstpass stage (row/tile multi-threading)
int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int total_num_threads_row_mt = 0;
TileInfo tile_info;
if (cpi->oxcf.max_threads <= 1) return 1;
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
av1_tile_init(&tile_info, cm, row, col);
const int num_mb_rows_in_tile = av1_get_mb_rows_in_tile(tile_info);
const int num_mb_cols_in_tile = av1_get_mb_cols_in_tile(tile_info);
total_num_threads_row_mt +=
AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
}
}
return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
}
// Computes the maximum number of mb_rows for row multi-threading of firstpass
// stage
static AOM_INLINE int fp_compute_max_mb_rows(
const AV1_COMMON *const cm, const TileDataEnc *const tile_data) {
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int max_mb_rows = 0;
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
const int tile_index = row * cm->tiles.cols + col;
TileInfo tile_info = tile_data[tile_index].tile_info;
const int num_mb_rows_in_tile = av1_get_mb_rows_in_tile(tile_info);
max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
}
}
return max_mb_rows;
}
void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
int max_sb_rows = 0, max_sb_cols = 0;
// TODO(ravi.chaudhary@ittiam.com): Currently the percentage of
// post-processing stages in encoder is quiet low, so limiting the number of
// threads to the theoretical limit in row-mt does not have much impact on
// post-processing multi-threading stage. Need to revisit this when
// post-processing time starts shooting up.
int num_workers = av1_compute_num_enc_workers(cpi, mt_info->num_workers);
assert(IMPLIES(cpi->tile_data == NULL,
cpi->allocated_tiles < tile_cols * tile_rows));
if (cpi->allocated_tiles < tile_cols * tile_rows) {
av1_row_mt_mem_dealloc(cpi);
av1_alloc_tile_data(cpi);
}
av1_init_tile_data(cpi);
compute_max_sb_rows_cols(cpi, &max_sb_rows, &max_sb_cols);
if (enc_row_mt->allocated_tile_cols != tile_cols ||
enc_row_mt->allocated_tile_rows != tile_rows ||
enc_row_mt->allocated_rows != max_sb_rows ||
enc_row_mt->allocated_cols != (max_sb_cols - 1)) {
av1_row_mt_mem_dealloc(cpi);
row_mt_mem_alloc(cpi, max_sb_rows, max_sb_cols,
cpi->oxcf.algo_cfg.cdf_update_mode);
}
memset(thread_id_to_tile_id, -1,
sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
// Initialize num_finished_cols to -1 for all rows.
memset(row_mt_sync->num_finished_cols, -1,
sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows);
row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
row_mt_sync->num_threads_working = 0;
av1_inter_mode_data_init(this_tile);
av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
this_tile->tile_info.mi_col_start,
this_tile->tile_info.mi_col_end, tile_row);
}
}
// Only run once to create threads and allocate thread data.
if (mt_info->num_enc_workers == 0) {
create_enc_workers(cpi, num_workers);
} else {
num_workers = AOMMIN(num_workers, mt_info->num_enc_workers);
}
assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
num_workers);
prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
launch_enc_workers(&cpi->mt_info, num_workers);
sync_enc_workers(&cpi->mt_info, cm, num_workers);
if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
accumulate_counters_enc_workers(cpi, num_workers);
}
void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
int num_workers = 0;
int max_mb_rows = 0;
assert(IMPLIES(cpi->tile_data == NULL,
cpi->allocated_tiles < tile_cols * tile_rows));
if (cpi->allocated_tiles < tile_cols * tile_rows) {
av1_row_mt_mem_dealloc(cpi);
av1_alloc_tile_data(cpi);
}
av1_init_tile_data(cpi);
max_mb_rows = fp_compute_max_mb_rows(cm, cpi->tile_data);
// TODO(ravi.chaudhary@ittiam.com): Currently the percentage of
// post-processing stages in encoder is quiet low, so limiting the number of
// threads to the theoretical limit in row-mt does not have much impact on
// post-processing multi-threading stage. Need to revisit this when
// post-processing time starts shooting up.
num_workers = av1_fp_compute_num_enc_workers(cpi);
if (enc_row_mt->allocated_tile_cols != tile_cols ||
enc_row_mt->allocated_tile_rows != tile_rows ||
enc_row_mt->allocated_rows != max_mb_rows) {
av1_row_mt_mem_dealloc(cpi);
row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
}
memset(thread_id_to_tile_id, -1,
sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
// Initialize num_finished_cols to -1 for all rows.
memset(row_mt_sync->num_finished_cols, -1,
sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
row_mt_sync->num_threads_working = 0;
}
}
num_workers = AOMMIN(num_workers, mt_info->num_workers);
// Only run once to create threads and allocate thread data.
if (mt_info->num_fp_workers == 0) fp_create_enc_workers(cpi, num_workers);
assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
num_workers);
fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
launch_enc_workers(&cpi->mt_info, num_workers);
sync_enc_workers(&cpi->mt_info, cm, num_workers);
}
void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
int r, int c) {
(void)tpl_mt_sync;
(void)r;
(void)c;
return;
}
void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
int r, int c, int cols) {
(void)tpl_mt_sync;
(void)r;
(void)c;
(void)cols;
return;
}
void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
int c) {
#if CONFIG_MULTITHREAD
int nsync = tpl_row_mt_sync->sync_range;
if (r) {
pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
pthread_mutex_lock(mutex);
while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
pthread_mutex_unlock(mutex);
}
#else
(void)tpl_row_mt_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
int c, int cols) {
#if CONFIG_MULTITHREAD
int nsync = tpl_row_mt_sync->sync_range;
int cur;
// Only signal when there are enough encoded blocks for next row to run.
int sig = 1;
if (c < cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = cols + nsync;
}
if (sig) {
pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);
tpl_row_mt_sync->num_finished_cols[r] = cur;
pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
}
#else
(void)tpl_row_mt_sync;
(void)r;
(void)c;
(void)cols;
#endif // CONFIG_MULTITHREAD
}
// Each worker calls tpl_worker_hook() and computes the tpl data.
static int tpl_worker_hook(void *arg1, void *unused) {
(void)unused;
EncWorkerData *thread_data = (EncWorkerData *)arg1;
AV1_COMP *cpi = thread_data->cpi;
AV1_COMMON *cm = &cpi->common;
MACROBLOCK *x = &thread_data->td->mb;
MACROBLOCKD *xd = &x->e_mbd;
CommonModeInfoParams *mi_params = &cm->mi_params;
BLOCK_SIZE bsize = convert_length_to_bsize(cpi->tpl_data.tpl_bsize_1d);
TX_SIZE tx_size = max_txsize_lookup[bsize];
int mi_height = mi_size_high[bsize];
int num_active_workers = cpi->tpl_data.tpl_mt_sync.num_threads_working;
for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
mi_row += num_active_workers * mi_height) {
// Motion estimation row boundary
av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
cpi->oxcf.border_in_pixels);
xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
xd->mb_to_bottom_edge =
GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
av1_mc_flow_dispenser_row(cpi, x, mi_row, bsize, tx_size);
}
return 1;
}
// Deallocate tpl synchronization related mutex and data.
void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
assert(tpl_sync != NULL);
#if CONFIG_MULTITHREAD
if (tpl_sync->mutex_ != NULL) {
for (int i = 0; i < tpl_sync->rows; ++i)
pthread_mutex_destroy(&tpl_sync->mutex_[i]);
aom_free(tpl_sync->mutex_);
}
if (tpl_sync->cond_ != NULL) {
for (int i = 0; i < tpl_sync->rows; ++i)
pthread_cond_destroy(&tpl_sync->cond_[i]);
aom_free(tpl_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(tpl_sync->num_finished_cols);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*tpl_sync);
}
// Allocate memory for tpl row synchronization.
void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
int mb_rows) {
tpl_sync->rows = mb_rows;
#if CONFIG_MULTITHREAD
{
CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
if (tpl_sync->mutex_) {
for (int i = 0; i < mb_rows; ++i)
pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
}
CHECK_MEM_ERROR(cm, tpl_sync->cond_,
aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
if (tpl_sync->cond_) {
for (int i = 0; i < mb_rows; ++i)
pthread_cond_init(&tpl_sync->cond_[i], NULL);
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));
// Set up nsync.
tpl_sync->sync_range = 1;
}
// Each worker is prepared by assigning the hook function and individual thread
// data.
static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
int num_workers) {
MultiThreadInfo *mt_info = &cpi->mt_info;
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *worker = &mt_info->workers[i];
EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
worker->hook = hook;
worker->data1 = thread_data;
worker->data2 = NULL;
thread_data->cpi = cpi;
if (i == 0) {
thread_data->td = &cpi->td;
}
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
thread_data->td->mb.mbmi_ext = thread_data->td->mbmi_ext;
}
}
}
// Computes num_workers for tpl multi-threading.
static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) {
return av1_compute_num_enc_workers(cpi, cpi->mt_info.num_workers);
}
// Implements multi-threading for tpl.
void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
CommonModeInfoParams *mi_params = &cm->mi_params;
MultiThreadInfo *mt_info = &cpi->mt_info;
TplParams *tpl_data = &cpi->tpl_data;
AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
int mb_rows = mi_params->mb_rows;
int num_workers = compute_num_tpl_workers(cpi);
if (mt_info->num_enc_workers == 0)
create_enc_workers(cpi, num_workers);
else
num_workers = AOMMIN(num_workers, mt_info->num_enc_workers);
if (mb_rows != tpl_sync->rows) {
av1_tpl_dealloc(tpl_sync);
av1_tpl_alloc(tpl_sync, cm, mb_rows);
}
tpl_sync->num_threads_working = num_workers;
// Initialize cur_mb_col to -1 for all MB rows.
memset(tpl_sync->num_finished_cols, -1,
sizeof(*tpl_sync->num_finished_cols) * mb_rows);
prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
launch_enc_workers(&cpi->mt_info, num_workers);
sync_enc_workers(&cpi->mt_info, cm, num_workers);
}
// Checks if a job is available in the current direction. If a job is available,
// frame_idx will be populated and returns 1, else returns 0.
static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx,
int cur_dir) {
GlobalMotionInfo *gm_info = &cpi->gm_info;
JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
int total_refs = gm_info->num_ref_frames[cur_dir];
int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];
if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
*frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
job_info->next_frame_to_process[cur_dir] += 1;
return 1;
}
return 0;
}
// Switches the current direction and calls the function get_next_gm_job() if
// the speed feature 'prune_ref_frame_for_gm_search' is not set.
static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx,
int *cur_dir) {
if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
// Switch the direction and get next job
*cur_dir = !(*cur_dir);
get_next_gm_job(cpi, frame_idx, *(cur_dir));
}
// Initializes inliers, num_inliers and segment_map.
static AOM_INLINE void init_gm_thread_data(
const GlobalMotionInfo *gm_info, GlobalMotionThreadData *thread_data) {
for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
MotionModel motion_params = thread_data->params_by_motion[m];
av1_zero(motion_params.params);
motion_params.num_inliers = 0;
}
av1_zero_array(thread_data->segment_map,
gm_info->segment_map_w * gm_info->segment_map_h);
}
// Hook function for each thread in global motion multi-threading.
static int gm_mt_worker_hook(void *arg1, void *unused) {
(void)unused;
EncWorkerData *thread_data = (EncWorkerData *)arg1;
AV1_COMP *cpi = thread_data->cpi;
GlobalMotionInfo *gm_info = &cpi->gm_info;
MultiThreadInfo *mt_info = &cpi->mt_info;
JobInfo *job_info = &mt_info->gm_sync.job_info;
int thread_id = thread_data->thread_id;
GlobalMotionThreadData *gm_thread_data =
&mt_info->gm_sync.thread_data[thread_id];
int cur_dir = job_info->thread_id_to_dir[thread_id];
#if CONFIG_MULTITHREAD
pthread_mutex_t *gm_mt_mutex_ = mt_info->gm_sync.mutex_;
#endif
while (1) {
int ref_buf_idx = -1;
int ref_frame_idx = -1;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(gm_mt_mutex_);
#endif
// Populates ref_buf_idx(the reference frame type) for which global motion
// estimation will be done.
if (!get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
// No jobs are available for the current direction. Switch
// to other direction and get the next job, if available.
switch_direction(cpi, &ref_buf_idx, &cur_dir);
}
// 'ref_frame_idx' holds the index of the current reference frame type in
// gm_info->reference_frames. job_info->next_frame_to_process will be
// incremented in get_next_gm_job() and hence subtracting by 1.
ref_frame_idx = job_info->next_frame_to_process[cur_dir] - 1;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(gm_mt_mutex_);
#endif
if (ref_buf_idx == -1) break;
init_gm_thread_data(gm_info, gm_thread_data);
// Compute global motion for the given ref_buf_idx.
av1_compute_gm_for_valid_ref_frames(
cpi, gm_info->ref_buf, ref_buf_idx, gm_info->num_src_corners,
gm_info->src_corners, gm_info->src_buffer,
gm_thread_data->params_by_motion, gm_thread_data->segment_map,
gm_info->segment_map_w, gm_info->segment_map_h);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(gm_mt_mutex_);
#endif
assert(ref_frame_idx != -1);
// If global motion w.r.t. current ref frame is
// INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
// the remaining ref frames in that direction. The below exit is disabled
// when ref frame distance w.r.t. current frame is zero. E.g.:
// source_alt_ref_frame w.r.t. ARF frames.
if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
gm_info->reference_frames[cur_dir][ref_frame_idx].distance != 0 &&
cpi->common.global_motion[ref_buf_idx].wmtype != ROTZOOM)
job_info->early_exit[cur_dir] = 1;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(gm_mt_mutex_);
#endif
}
return 1;
}
// Assigns global motion hook function and thread data to each worker.
static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
int num_workers) {
MultiThreadInfo *mt_info = &cpi->mt_info;
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *worker = &mt_info->workers[i];
EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
worker->hook = hook;
worker->data1 = thread_data;
worker->data2 = NULL;
thread_data->cpi = cpi;
}
}
// Assigns available threads to past/future direction.
static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir,
int num_workers) {
int8_t frame_dir_idx = 0;
for (int i = 0; i < num_workers; i++) {
thread_id_to_dir[i] = frame_dir_idx++;
if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
}
}
// Computes number of workers for global motion multi-threading.
static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) {
int total_refs =
cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
int max_num_workers = cpi->mt_info.num_workers;
int max_allowed_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
? AOMMIN(MAX_DIRECTIONS, max_num_workers)
: max_num_workers;
return (AOMMIN(total_refs, max_allowed_workers));
}
// Frees the memory allocated for each worker in global motion multi-threading.
void av1_gm_dealloc(AV1GlobalMotionSync *gm_sync_data) {
if (gm_sync_data->thread_data != NULL) {
for (int j = 0; j < gm_sync_data->allocated_workers; j++) {
GlobalMotionThreadData *thread_data = &gm_sync_data->thread_data[j];
aom_free(thread_data->segment_map);
for (int m = 0; m < RANSAC_NUM_MOTIONS; m++)
aom_free(thread_data->params_by_motion[m].inliers);
}
aom_free(gm_sync_data->thread_data);
}
}
// Allocates memory for inliers and segment_map for each worker in global motion
// multi-threading.
static AOM_INLINE void gm_alloc(AV1_COMP *cpi, int num_workers) {
AV1_COMMON *cm = &cpi->common;
AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
GlobalMotionInfo *gm_info = &cpi->gm_info;
gm_sync->allocated_workers = num_workers;
gm_sync->allocated_width = cpi->source->y_width;
gm_sync->allocated_height = cpi->source->y_height;
CHECK_MEM_ERROR(cm, gm_sync->thread_data,
aom_malloc(sizeof(*gm_sync->thread_data) * num_workers));
for (int i = 0; i < num_workers; i++) {
GlobalMotionThreadData *thread_data = &gm_sync->thread_data[i];
CHECK_MEM_ERROR(
cm, thread_data->segment_map,
aom_malloc(sizeof(*thread_data->segment_map) * gm_info->segment_map_w *
gm_info->segment_map_h));
for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
CHECK_MEM_ERROR(
cm, thread_data->params_by_motion[m].inliers,
aom_malloc(sizeof(*thread_data->params_by_motion[m].inliers) * 2 *
MAX_CORNERS));
}
}
}
// Implements multi-threading for global motion.
void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
JobInfo *job_info = &gm_sync->job_info;
av1_zero(*job_info);
int num_workers = compute_gm_workers(cpi);
if (num_workers > gm_sync->allocated_workers ||
cpi->source->y_width != gm_sync->allocated_width ||
cpi->source->y_height != gm_sync->allocated_height) {
av1_gm_dealloc(gm_sync);
gm_alloc(cpi, num_workers);
}
assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
launch_enc_workers(&cpi->mt_info, num_workers);
sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
}