| /* | 
 |  *  Copyright 2011 The LibYuv Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS. All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "libyuv/compare.h" | 
 |  | 
 | #include <float.h> | 
 | #include <math.h> | 
 | #ifdef _OPENMP | 
 | #include <omp.h> | 
 | #endif | 
 |  | 
 | #include "libyuv/basic_types.h" | 
 | #include "libyuv/cpu_id.h" | 
 | #include "libyuv/row.h" | 
 | #include "libyuv/video_common.h" | 
 |  | 
 | #ifdef __cplusplus | 
 | namespace libyuv { | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | // hash seed of 5381 recommended. | 
 | // Internal C version of HashDjb2 with int sized count for efficiency. | 
 | uint32 HashDjb2_C(const uint8* src, int count, uint32 seed); | 
 |  | 
 | // This module is for Visual C x86 | 
 | #if !defined(LIBYUV_DISABLE_X86) && \ | 
 |     (defined(_M_IX86) || \ | 
 |     (defined(__x86_64__) || (defined(__i386__) && !defined(__pic__)))) | 
 | #define HAS_HASHDJB2_SSE41 | 
 | uint32 HashDjb2_SSE41(const uint8* src, int count, uint32 seed); | 
 |  | 
 | #ifdef VISUALC_HAS_AVX2 | 
 | #define HAS_HASHDJB2_AVX2 | 
 | uint32 HashDjb2_AVX2(const uint8* src, int count, uint32 seed); | 
 | #endif | 
 |  | 
 | #endif  // HAS_HASHDJB2_SSE41 | 
 |  | 
 | // hash seed of 5381 recommended. | 
 | LIBYUV_API | 
 | uint32 HashDjb2(const uint8* src, uint64 count, uint32 seed) { | 
 |   const int kBlockSize = 1 << 15;  // 32768; | 
 |   int remainder; | 
 |   uint32 (*HashDjb2_SSE)(const uint8* src, int count, uint32 seed) = HashDjb2_C; | 
 | #if defined(HAS_HASHDJB2_SSE41) | 
 |   if (TestCpuFlag(kCpuHasSSE41)) { | 
 |     HashDjb2_SSE = HashDjb2_SSE41; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_HASHDJB2_AVX2) | 
 |   if (TestCpuFlag(kCpuHasAVX2)) { | 
 |     HashDjb2_SSE = HashDjb2_AVX2; | 
 |   } | 
 | #endif | 
 |  | 
 |   while (count >= (uint64)(kBlockSize)) { | 
 |     seed = HashDjb2_SSE(src, kBlockSize, seed); | 
 |     src += kBlockSize; | 
 |     count -= kBlockSize; | 
 |   } | 
 |   remainder = (int)(count) & ~15; | 
 |   if (remainder) { | 
 |     seed = HashDjb2_SSE(src, remainder, seed); | 
 |     src += remainder; | 
 |     count -= remainder; | 
 |   } | 
 |   remainder = (int)(count) & 15; | 
 |   if (remainder) { | 
 |     seed = HashDjb2_C(src, remainder, seed); | 
 |   } | 
 |   return seed; | 
 | } | 
 |  | 
 | static uint32 ARGBDetectRow_C(const uint8* argb, int width) { | 
 |   int x; | 
 |   for (x = 0; x < width - 1; x += 2) { | 
 |     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB. | 
 |       return FOURCC_BGRA; | 
 |     } | 
 |     if (argb[3] != 255) {  // 4th byte is not Alpha of 255, so not BGRA. | 
 |       return FOURCC_ARGB; | 
 |     } | 
 |     if (argb[4] != 255) {  // Second pixel first byte is not Alpha of 255. | 
 |       return FOURCC_BGRA; | 
 |     } | 
 |     if (argb[7] != 255) {  // Second pixel 4th byte is not Alpha of 255. | 
 |       return FOURCC_ARGB; | 
 |     } | 
 |     argb += 8; | 
 |   } | 
 |   if (width & 1) { | 
 |     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB. | 
 |       return FOURCC_BGRA; | 
 |     } | 
 |     if (argb[3] != 255) {  // 4th byte is not Alpha of 255, so not BGRA. | 
 |       return FOURCC_ARGB; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Scan an opaque argb image and return fourcc based on alpha offset. | 
 | // Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown. | 
 | LIBYUV_API | 
 | uint32 ARGBDetect(const uint8* argb, int stride_argb, int width, int height) { | 
 |   uint32 fourcc = 0; | 
 |   int h; | 
 |  | 
 |   // Coalesce rows. | 
 |   if (stride_argb == width * 4) { | 
 |     width *= height; | 
 |     height = 1; | 
 |     stride_argb = 0; | 
 |   } | 
 |   for (h = 0; h < height && fourcc == 0; ++h) { | 
 |     fourcc = ARGBDetectRow_C(argb, width); | 
 |     argb += stride_argb; | 
 |   } | 
 |   return fourcc; | 
 | } | 
 |  | 
 | uint32 SumSquareError_C(const uint8* src_a, const uint8* src_b, int count); | 
 | #if !defined(LIBYUV_DISABLE_NEON) && \ | 
 |     (defined(__ARM_NEON__) || defined(LIBYUV_NEON) || defined(__aarch64__)) | 
 | #define HAS_SUMSQUAREERROR_NEON | 
 | uint32 SumSquareError_NEON(const uint8* src_a, const uint8* src_b, int count); | 
 | #endif | 
 | #if !defined(LIBYUV_DISABLE_X86) && \ | 
 |     (defined(_M_IX86) || defined(__x86_64__) || defined(__i386__)) | 
 | #define HAS_SUMSQUAREERROR_SSE2 | 
 | uint32 SumSquareError_SSE2(const uint8* src_a, const uint8* src_b, int count); | 
 | #endif | 
 |  | 
 | #ifdef VISUALC_HAS_AVX2 | 
 | #define HAS_SUMSQUAREERROR_AVX2 | 
 | uint32 SumSquareError_AVX2(const uint8* src_a, const uint8* src_b, int count); | 
 | #endif | 
 |  | 
 | // TODO(fbarchard): Refactor into row function. | 
 | LIBYUV_API | 
 | uint64 ComputeSumSquareError(const uint8* src_a, const uint8* src_b, | 
 |                              int count) { | 
 |   // SumSquareError returns values 0 to 65535 for each squared difference. | 
 |   // Up to 65536 of those can be summed and remain within a uint32. | 
 |   // After each block of 65536 pixels, accumulate into a uint64. | 
 |   const int kBlockSize = 65536; | 
 |   int remainder = count & (kBlockSize - 1) & ~31; | 
 |   uint64 sse = 0; | 
 |   int i; | 
 |   uint32 (*SumSquareError)(const uint8* src_a, const uint8* src_b, int count) = | 
 |       SumSquareError_C; | 
 | #if defined(HAS_SUMSQUAREERROR_NEON) | 
 |   if (TestCpuFlag(kCpuHasNEON)) { | 
 |     SumSquareError = SumSquareError_NEON; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_SUMSQUAREERROR_SSE2) | 
 |   if (TestCpuFlag(kCpuHasSSE2)) { | 
 |     // Note only used for multiples of 16 so count is not checked. | 
 |     SumSquareError = SumSquareError_SSE2; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_SUMSQUAREERROR_AVX2) | 
 |   if (TestCpuFlag(kCpuHasAVX2)) { | 
 |     // Note only used for multiples of 32 so count is not checked. | 
 |     SumSquareError = SumSquareError_AVX2; | 
 |   } | 
 | #endif | 
 | #ifdef _OPENMP | 
 | #pragma omp parallel for reduction(+: sse) | 
 | #endif | 
 |   for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { | 
 |     sse += SumSquareError(src_a + i, src_b + i, kBlockSize); | 
 |   } | 
 |   src_a += count & ~(kBlockSize - 1); | 
 |   src_b += count & ~(kBlockSize - 1); | 
 |   if (remainder) { | 
 |     sse += SumSquareError(src_a, src_b, remainder); | 
 |     src_a += remainder; | 
 |     src_b += remainder; | 
 |   } | 
 |   remainder = count & 31; | 
 |   if (remainder) { | 
 |     sse += SumSquareError_C(src_a, src_b, remainder); | 
 |   } | 
 |   return sse; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | uint64 ComputeSumSquareErrorPlane(const uint8* src_a, int stride_a, | 
 |                                   const uint8* src_b, int stride_b, | 
 |                                   int width, int height) { | 
 |   uint64 sse = 0; | 
 |   int h; | 
 |   // Coalesce rows. | 
 |   if (stride_a == width && | 
 |       stride_b == width) { | 
 |     width *= height; | 
 |     height = 1; | 
 |     stride_a = stride_b = 0; | 
 |   } | 
 |   for (h = 0; h < height; ++h) { | 
 |     sse += ComputeSumSquareError(src_a, src_b, width); | 
 |     src_a += stride_a; | 
 |     src_b += stride_b; | 
 |   } | 
 |   return sse; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double SumSquareErrorToPsnr(uint64 sse, uint64 count) { | 
 |   double psnr; | 
 |   if (sse > 0) { | 
 |     double mse = (double)(count) / (double)(sse); | 
 |     psnr = 10.0 * log10(255.0 * 255.0 * mse); | 
 |   } else { | 
 |     psnr = kMaxPsnr;      // Limit to prevent divide by 0 | 
 |   } | 
 |  | 
 |   if (psnr > kMaxPsnr) | 
 |     psnr = kMaxPsnr; | 
 |  | 
 |   return psnr; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double CalcFramePsnr(const uint8* src_a, int stride_a, | 
 |                      const uint8* src_b, int stride_b, | 
 |                      int width, int height) { | 
 |   const uint64 samples = width * height; | 
 |   const uint64 sse = ComputeSumSquareErrorPlane(src_a, stride_a, | 
 |                                                 src_b, stride_b, | 
 |                                                 width, height); | 
 |   return SumSquareErrorToPsnr(sse, samples); | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double I420Psnr(const uint8* src_y_a, int stride_y_a, | 
 |                 const uint8* src_u_a, int stride_u_a, | 
 |                 const uint8* src_v_a, int stride_v_a, | 
 |                 const uint8* src_y_b, int stride_y_b, | 
 |                 const uint8* src_u_b, int stride_u_b, | 
 |                 const uint8* src_v_b, int stride_v_b, | 
 |                 int width, int height) { | 
 |   const uint64 sse_y = ComputeSumSquareErrorPlane(src_y_a, stride_y_a, | 
 |                                                   src_y_b, stride_y_b, | 
 |                                                   width, height); | 
 |   const int width_uv = (width + 1) >> 1; | 
 |   const int height_uv = (height + 1) >> 1; | 
 |   const uint64 sse_u = ComputeSumSquareErrorPlane(src_u_a, stride_u_a, | 
 |                                                   src_u_b, stride_u_b, | 
 |                                                   width_uv, height_uv); | 
 |   const uint64 sse_v = ComputeSumSquareErrorPlane(src_v_a, stride_v_a, | 
 |                                                   src_v_b, stride_v_b, | 
 |                                                   width_uv, height_uv); | 
 |   const uint64 samples = width * height + 2 * (width_uv * height_uv); | 
 |   const uint64 sse = sse_y + sse_u + sse_v; | 
 |   return SumSquareErrorToPsnr(sse, samples); | 
 | } | 
 |  | 
 | static const int64 cc1 =  26634;  // (64^2*(.01*255)^2 | 
 | static const int64 cc2 = 239708;  // (64^2*(.03*255)^2 | 
 |  | 
 | static double Ssim8x8_C(const uint8* src_a, int stride_a, | 
 |                         const uint8* src_b, int stride_b) { | 
 |   int64 sum_a = 0; | 
 |   int64 sum_b = 0; | 
 |   int64 sum_sq_a = 0; | 
 |   int64 sum_sq_b = 0; | 
 |   int64 sum_axb = 0; | 
 |  | 
 |   int i; | 
 |   for (i = 0; i < 8; ++i) { | 
 |     int j; | 
 |     for (j = 0; j < 8; ++j) { | 
 |       sum_a += src_a[j]; | 
 |       sum_b += src_b[j]; | 
 |       sum_sq_a += src_a[j] * src_a[j]; | 
 |       sum_sq_b += src_b[j] * src_b[j]; | 
 |       sum_axb += src_a[j] * src_b[j]; | 
 |     } | 
 |  | 
 |     src_a += stride_a; | 
 |     src_b += stride_b; | 
 |   } | 
 |  | 
 |   { | 
 |     const int64 count = 64; | 
 |     // scale the constants by number of pixels | 
 |     const int64 c1 = (cc1 * count * count) >> 12; | 
 |     const int64 c2 = (cc2 * count * count) >> 12; | 
 |  | 
 |     const int64 sum_a_x_sum_b = sum_a * sum_b; | 
 |  | 
 |     const int64 ssim_n = (2 * sum_a_x_sum_b + c1) * | 
 |                          (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2); | 
 |  | 
 |     const int64 sum_a_sq = sum_a*sum_a; | 
 |     const int64 sum_b_sq = sum_b*sum_b; | 
 |  | 
 |     const int64 ssim_d = (sum_a_sq + sum_b_sq + c1) * | 
 |                          (count * sum_sq_a - sum_a_sq + | 
 |                           count * sum_sq_b - sum_b_sq + c2); | 
 |  | 
 |     if (ssim_d == 0.0) { | 
 |       return DBL_MAX; | 
 |     } | 
 |     return ssim_n * 1.0 / ssim_d; | 
 |   } | 
 | } | 
 |  | 
 | // We are using a 8x8 moving window with starting location of each 8x8 window | 
 | // on the 4x4 pixel grid. Such arrangement allows the windows to overlap | 
 | // block boundaries to penalize blocking artifacts. | 
 | LIBYUV_API | 
 | double CalcFrameSsim(const uint8* src_a, int stride_a, | 
 |                      const uint8* src_b, int stride_b, | 
 |                      int width, int height) { | 
 |   int samples = 0; | 
 |   double ssim_total = 0; | 
 |   double (*Ssim8x8)(const uint8* src_a, int stride_a, | 
 |                     const uint8* src_b, int stride_b) = Ssim8x8_C; | 
 |  | 
 |   // sample point start with each 4x4 location | 
 |   int i; | 
 |   for (i = 0; i < height - 8; i += 4) { | 
 |     int j; | 
 |     for (j = 0; j < width - 8; j += 4) { | 
 |       ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b); | 
 |       samples++; | 
 |     } | 
 |  | 
 |     src_a += stride_a * 4; | 
 |     src_b += stride_b * 4; | 
 |   } | 
 |  | 
 |   ssim_total /= samples; | 
 |   return ssim_total; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double I420Ssim(const uint8* src_y_a, int stride_y_a, | 
 |                 const uint8* src_u_a, int stride_u_a, | 
 |                 const uint8* src_v_a, int stride_v_a, | 
 |                 const uint8* src_y_b, int stride_y_b, | 
 |                 const uint8* src_u_b, int stride_u_b, | 
 |                 const uint8* src_v_b, int stride_v_b, | 
 |                 int width, int height) { | 
 |   const double ssim_y = CalcFrameSsim(src_y_a, stride_y_a, | 
 |                                       src_y_b, stride_y_b, width, height); | 
 |   const int width_uv = (width + 1) >> 1; | 
 |   const int height_uv = (height + 1) >> 1; | 
 |   const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, | 
 |                                       src_u_b, stride_u_b, | 
 |                                       width_uv, height_uv); | 
 |   const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, | 
 |                                       src_v_b, stride_v_b, | 
 |                                       width_uv, height_uv); | 
 |   return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v); | 
 | } | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | }  // namespace libyuv | 
 | #endif |